301
|
Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2005; 102:13170-5. [PMID: 16141334 PMCID: PMC1201570 DOI: 10.1073/pnas.0501672102] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability to generate a wide spectrum of differentiated cell types from ES cells in culture offers a powerful approach for studying lineage induction and specification and a promising source of progenitors for cell replacement therapy. Although significant efforts are being made to optimize culture conditions for the generation of different cell populations from ES cells, the identification and efficient isolation of specific progenitors for many lineages within these cultures remains a major challenge. By specifically tracking hematopoietic and cardiac development, we demonstrate here that these two lineages arise from distinct mesoderm subpopulations that develop in sequential waves from pre-mesoderm cells. Access to these populations provides a unique approach to isolate and characterize the earliest progenitors of these lineages.
Collapse
Affiliation(s)
- Valerie Kouskoff
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
302
|
Phan D, Rasmussen TL, Nakagawa O, McAnally J, Gottlieb PD, Tucker PW, Richardson JA, Bassel-Duby R, Olson EN. BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development 2005; 132:2669-78. [PMID: 15890826 DOI: 10.1242/dev.01849] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate heart is assembled during embryogenesis in a modular manner from different populations of precursor cells. The right ventricular chamber and outflow tract are derived primarily from a population of progenitors known as the anterior heart field. These regions of the heart are severely hypoplastic in mutant mice lacking the myocyte enhancer factor 2C (MEF2C) and BOP transcription factors, suggesting that these cardiogenic regulatory factors may act in a common pathway for development of the anterior heart field and its derivatives. We show that Bop expression in the developing heart depends on the direct binding of MEF2C to a MEF2-response element in the Bop promoter that is necessary and sufficient to recapitulate endogenous Bop expression in the anterior heart field and its cardiac derivatives during mouse development. The Bop promoter also directs transcription in the skeletal muscle lineage, but only cardiac expression is dependent on MEF2. These findings identify Bop as an essential downstream effector gene of MEF2C in the developing heart, and reveal a transcriptional cascade involved in development of the anterior heart field and its derivatives.
Collapse
Affiliation(s)
- Dillon Phan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Affiliation(s)
- Jau-Nian Chen
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
304
|
Naito AT, Akazawa H, Takano H, Minamino T, Nagai T, Aburatani H, Komuro I. Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis by regulating canonical Wnt signaling. Circ Res 2005; 97:144-51. [PMID: 15994435 DOI: 10.1161/01.res.0000175241.92285.f8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have recently reported that activation of phosphatidylinositol 3-kinase (PI3K) plays a critical role in the early stage of cardiomyocyte differentiation of P19CL6 cells. We here examined molecular mechanisms of how PI3K is involved in cardiomyocyte differentiation. DNA chip analysis revealed that expression levels of Wnt-3a were markedly increased and that the Wnt/beta-catenin pathway was activated temporally during the early stage of cardiomyocyte differentiation of P19CL6 cells. Activation of the Wnt/beta-catenin pathway during this period was required and sufficient for cardiomyocyte differentiation of P19CL6 cells. Inhibition of the PI3K/Akt pathway suppressed the Wnt/beta-catenin pathway by activation of glycogen synthase kinase-3beta (GSK-3beta) and degradation of beta-catenin. Suppression of cardiomyocyte differentiation by inhibiting the PI3K/Akt pathway was rescued by forced expression of a nonphosphorylated, constitutively active form of beta-catenin. These results suggest that the PI3K pathway regulates cardiomyocyte differentiation through suppressing the GSK-3beta activity and maintaining the Wnt/beta-catenin activity.
Collapse
Affiliation(s)
- Atsuhiko T Naito
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
305
|
Linask KK, Manisastry S, Han M. Cross talk between cell-cell and cell-matrix adhesion signaling pathways during heart organogenesis: implications for cardiac birth defects. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2005; 11:200-8. [PMID: 16060972 DOI: 10.1017/s1431927605050440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 10/27/2004] [Indexed: 05/03/2023]
Abstract
The anterior-posterior and dorsal-ventral progression of heart organogenesis is well illustrated by the patterning and activity of two members of different families of cell adhesion molecules: the calcium-dependent cadherins, specifically N-cadherin, and the extracellular matrix glycoproteins, fibronectin. N-cadherin by its binding to the intracellular molecule beta-catenin and fibronectin by its binding to integrins at focal adhesion sites, are involved in regulation of gene expression by their association with the cytoskeleton and through signal transduction pathways. The ventral precardiac mesoderm cells epithelialize and become stably committed by the activation of these cell-matrix and intracellular signaling transduction pathways. Cross talk between the adhesion signaling pathways initiates the characteristic phenotypic changes associated with cardiomyocyte differentiation: electrical activity and organization of myofibrils. The development of both organ form and function occurs within a short interval thereafter. Mutations in any of the interacting molecules, or environmental insults affecting either of these signaling pathways, can result in embryonic lethality or fetuses born with severe heart defects. As an example, we have defined that exposure of the embryo temporally to lithium during an early sensitive developmental period affects a canonical Wnt pathway leading to beta-catenin stabilization. Lithium exposure results in an anterior-posterior progression of severe cardiac defects.
Collapse
Affiliation(s)
- Kersti K Linask
- Department of Pediatrics, University of South Florida, College of Medicine, The Children's Research Institute, St. Petersburg, FL 33701, USA.
| | | | | |
Collapse
|
306
|
Brott BK, Sokol SY. A Vertebrate Homolog of the Cell Cycle Regulator Dbf4 Is an Inhibitor of Wnt Signaling Required for Heart Development. Dev Cell 2005; 8:703-15. [PMID: 15866161 DOI: 10.1016/j.devcel.2005.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 01/24/2005] [Accepted: 02/11/2005] [Indexed: 11/21/2022]
Abstract
Early stages of vertebrate heart development have been linked to Wnt signaling. Here we show in both gain- and loss-of-function experiments that XDbf4, a known regulator of Cdc7 kinase, is an inhibitor of the canonical Wnt signaling pathway. Depletion of endogenous XDbf4 protein did not disturb gastrulation movements or early organizer genes but resulted in embryos with morphologically defective heart and eyes and suppressed cardiac markers. These markers were restored by overexpressed XDbf4, or an XDbf4 mutant that inhibits Wnt signaling but lacks the ability to regulate Cdc7. This indicates that the function of XDbf4 in heart development is independent of its role in the cell cycle. Moreover, our data suggest that XDbf4 acts through the physical and functional interaction with Frodo, a context-dependent regulator of Wnt signaling. These findings establish an unexpected function for a vertebrate Dbf4 homolog and demonstrate the requirement for Wnt inhibition in early cardiac specification.
Collapse
Affiliation(s)
- Barbara K Brott
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
307
|
Garriock RJ, D'Agostino SL, Pilcher KC, Krieg PA. Wnt11-R, a protein closely related to mammalian Wnt11, is required for heart morphogenesis in Xenopus. Dev Biol 2005; 279:179-92. [PMID: 15708567 DOI: 10.1016/j.ydbio.2004.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/30/2004] [Accepted: 12/02/2004] [Indexed: 11/19/2022]
Abstract
Wnt11 is a secreted protein that signals through the non-canonical planar cell polarity pathway and is a potent modulator of cell behavior and movement. In human, mouse, and chicken, there is a single Wnt11 gene, but in zebrafish and Xenopus, there are two genes related to Wnt11. The originally characterized Xenopus Wnt11 gene is expressed during early embryonic development and has a critical role in regulation of gastrulation movements. We have identified a second Xenopus Wnt11-Related gene (Wnt11-R) that is expressed after gastrulation. Sequence comparison suggests that Xenopus Wnt11-R, not Wnt11, is the ortholog of mammalian and chicken Wnt11. Xenopus Wnt11-R is expressed in neural tissue, dorsal mesenchyme derived from the dermatome region of the somites, the brachial arches, and the muscle layer of the heart, similar to the expression patterns reported for mouse and chicken Wnt11. Xenopus Wnt11-R exhibits biological properties similar to those previously described for Xenopus Wnt11, in particular the ability to activate Jun-N-terminal kinase (JNK) and to induce myocardial marker expression in ventral marginal zone (VMZ) explants. Morpholino inhibition experiments demonstrate, however, that Wnt11-R is not required for cardiac differentiation, but functions in regulation of cardiac morphogenesis. Embryos with reduced Wnt11-R activity exhibit aberrant cell-cell contacts within the myocardial wall and defects in fusion of the nascent heart tube.
Collapse
Affiliation(s)
- Robert J Garriock
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, P.O. Box 245044, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
308
|
Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 2005; 19:387-96. [PMID: 15687261 PMCID: PMC546516 DOI: 10.1101/gad.1279405] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inhibition of canonical Wnt/beta-catenin signaling by Dickkopf-1 (Dkk-1) or Crescent initiates cardiogenesis in vertebrate embryos. However, nearly nothing is known about the downstream effectors of these secreted Wnt antagonists or the mechanism by which they activate heart formation. Here we show that Wnt antagonists in Xenopus stimulate cardiogenesis non-cell-autonomously, up to several cells away from those in which canonical Wnt/beta-catenin signaling is blocked, indicative of an indirect role in heart induction. A screen for downstream mediators revealed that Dkk-1 and other inhibitors of the canonical Wnt pathway induce the homeodomain transcription factor Hex, which is normally expressed in endoderm underlying the presumptive cardiac mesoderm in amphibian, bird, and mammalian embryos. Loss of Hex function blocks both endogenous heart development and ectopic heart induction by Dkk-1. As with the canonical Wnt pathway antagonists, ectopic Hex induces expression of cardiac markers non-cell-autonomously. Thus, to initiate cardiogenesis, Wnt antagonists act on endoderm to up-regulate Hex, which, in turn, controls production of a diffusible heart-inducing factor. This novel function for Hex suggests an etiology for the cardiac malformations in Hex mutant mice and will make possible the isolation of factors that induce heart directly in the mesoderm.
Collapse
Affiliation(s)
- Ann C Foley
- Stem Cell and Regeneration Program, Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
309
|
Mueller W, Lass U, Wellmann S, Kunitz F, von Deimling A. Mutation analysis of DKK1 and in vivo evidence of predominant p53-independent DKK1 function in gliomas. Acta Neuropathol 2005; 109:314-20. [PMID: 15668788 DOI: 10.1007/s00401-004-0969-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/17/2004] [Accepted: 11/26/2004] [Indexed: 12/18/2022]
Abstract
DKK1 protein belongs to a family of inhibitors of the Wnt/beta1-catenin signaling pathway. Sporadic mutations affecting almost each major player of the Wnt/beta1-catenin pathway have been described in a variety of human carcinomas. DKK1 translation can be induced by p53, thereby linking TP53 and Wnt/beta1-catenin signaling pathways. These findings raise questions in regard to human gliomas, which similar to carcinomas carry a high rate of mutations in TP53. To analyze DKK1 for its role in initiation or progression, we screened a series of 73 brain tumors for structural alterations in the entire coding sequence by single-strand conformation polymorphism and direct sequencing. While several sequence variants were detected, there were no obvious mutations affecting DKK1. Further, we analyzed the prevalence of mRNA from TP53, DKK1 and CTNNB1 and of p53 and beta1-catenin protein in a series of human gliomas with and without mutations in TP53. Transcription and expression of CTNNB1/beta1-catenin and DKK1 proved to be independent of TP53/p53. These data support in vivo function of DKK1, independent of p53, in human gliomas with no major impact on their pathogenesis.
Collapse
Affiliation(s)
- Wolf Mueller
- Department of Neuropathology, Charité, Humboldt University, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | |
Collapse
|
310
|
Matsui T, Raya A, Kawakami Y, Callol-Massot C, Capdevila J, Rodríguez-Esteban C, Izpisúa Belmonte JC. Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes Dev 2005; 19:164-75. [PMID: 15630025 PMCID: PMC540234 DOI: 10.1101/gad.1253605] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several components of noncanonical Wnt signaling pathways are involved in the control of convergence and extension (CE) movements during zebrafish and Xenopus gastrulation. However, the complexity of these pathways and the wide patterns of expression and activity displayed by some of their components immediately suggest additional morphogenetic roles beyond the control of CE. Here we show that the key modular intracellular mediator Dishevelled, through a specific activation of RhoA GTPase, controls the process of convergence of endoderm and organ precursors toward the embryonic midline in the zebrafish embryo. We also show that three Wnt noncanonical ligands wnt4a, silberblick/wnt11, and wnt11-related regulate this process by acting in a largely redundant way. The same ligands are also required, nonredundantly, to control specific aspects of CE that involve interaction of Dishevelled with mediators different from that of RhoA GTPase. Overall, our results uncover a late, previously unexpected role of noncanonical Wnt signaling in the control of midline assembly of organ precursors during vertebrate embryo development.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
311
|
Chiba H, Kobune M, Kato J, Kawano Y, Ito Y, Nakamura K, Asakura S, Hamada H, Niitsu Y. Wnt3 modulates the characteristics and cobblestone area-supporting activity of human stromal cells. Exp Hematol 2005; 32:1194-203. [PMID: 15588944 DOI: 10.1016/j.exphem.2004.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/06/2004] [Accepted: 08/09/2004] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Our objective was to investigate the expression and significance of Wnt proteins in adult human hematopoietic-supporting stromal cells. METHODS Degenerate reverse transcription-polymerase chain reaction was performed to screen telomerized human stromal cells (hTERT-stromal cells) and multipotent mesenchymal cells (hTERT-MSCs) for expression of Wnt genes. We studied the actions of Wnt proteins by overexpressing them in stromal cells and MSCs by retrovirus-mediated gene transfer. RESULTS The hTERT-stromal and primary stromal cells expressed Wnt5A, while hTERT-MSCs and primary MSCs expressed Wnt3 and Wnt5A. Gene transfer of Wnt5A slightly reduced the growth rate of hTERT-stromal cells, but did not affect their morphology. In contrast, gene transfer of Wnt3 into both hTERT-stromal cells and hTERT-MSCs enhanced Wnt-betacatenin signaling, and caused remarkable morphological changes and growth retardation. Upon 2-week co-culture, expansion of clonogenic cells on Wnt5A-stromal cells was superior to that on control stromal cells. However, expansion of CD34+ cells on Wnt3-stromal cells did not differ from that on control stromal cells. Moreover, there was a drastic reduction in the formation of cobblestone area (CA) underneath Wnt3-stromal cells compared with that underneath control stromal cells. CONCLUSION These results suggest that Wnt3 plays an important role in regulating characteristics and CA support activity of stromal cells.
Collapse
Affiliation(s)
- Hiroki Chiba
- Forth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Afrakhte M, Schultheiss TM. Construction and analysis of a subtracted library and microarray of cDNAs expressed specifically in chicken heart progenitor cells. Dev Dyn 2005; 230:290-8. [PMID: 15162507 DOI: 10.1002/dvdy.20059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A subtracted library was constructed of genes expressed specifically in the chick precardiac mesoendoderm. The subtracted library was obtained by hybridization of nucleic acids derived from a starting tester library of stage 4-7 chick precardiac mesoendoderm and a starting driver library of stage 2 area pellucida. Approximately 11,000 clones from the resulting subtracted library were printed onto a microarray. Screening of the microarray with probes derived from cardiac and noncardiac tissues, followed by in situ hybridization during chick embryo development, has identified multiple cardiac-specific genes, including several that have not been characterized previously. The microarray will be useful for future attempts to identify additional novel cardiac-specific genes, as well as to characterize patterns of gene expression during heart differentiation.
Collapse
Affiliation(s)
- Mozhgan Afrakhte
- Department of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
313
|
McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 2005; 132:189-201. [PMID: 15576406 DOI: 10.1242/dev.01562] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The basic helix-loop-helix transcription factors Hand1 and Hand2 display dynamic and spatially restricted expression patterns in the developing heart. Mice that lack Hand2 die at embryonic day 10.5 from right ventricular hypoplasia and vascular defects, whereas mice that lack Hand1 die at embryonic day 8.5 from placental and extra-embryonic abnormalities that preclude analysis of its potential role in later stages of heart development. To determine the cardiac functions of Hand1, we generated mice harboring a conditional Hand1-null allele and excised the gene by cardiac-specific expression of Cre recombinase. Embryos homozygous for the cardiac Hand1 gene deletion displayed defects in the left ventricle and endocardial cushions, and exhibited dysregulated ventricular gene expression. However, these embryos survived until the perinatal period when they died from a spectrum of cardiac abnormalities. Creation of Hand1/2 double mutant mice revealed gene dose-sensitive functions of Hand transcription factors in the control of cardiac morphogenesis and ventricular gene expression. These findings demonstrate that Hand factors play pivotal and partially redundant roles in cardiac morphogenesis, cardiomyocyte differentiation and cardiac-specific transcription.
Collapse
Affiliation(s)
- David G McFadden
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
314
|
Shiojima I, Komuro I. Cardiac Developmental Biology: From Flies to Humans. ACTA ACUST UNITED AC 2005; 55:245-54. [PMID: 16277874 DOI: 10.2170/jjphysiol.m94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 11/08/2005] [Indexed: 11/05/2022]
Abstract
The heart is the first organ to form during embryogenesis, and heart formation is essential for subsequent embryonic development. Since the identification of a cardiac-restricted transcription factor Csx/Nkx-2.5 in the early 1990s, extensive studies on cardiac development have been done in various species ranging from flies to humans. Molecular dissection of regulatory pathways that control multiple steps of cardiogenesis will not only advance our understanding of cardiac development and congenital heart diseases, but will also provide an important clue to novel therapeutic strategies for heart diseases.
Collapse
Affiliation(s)
- Ichiro Shiojima
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| | | |
Collapse
|
315
|
Matsui H, Ikeda K, Nakatani K, Sakabe M, Yamagishi T, Nakanishi T, Nakajima Y. Induction of initial cardiomyocyte α-actin—smooth muscle α-actin—in cultured avian pregastrula epiblast: A role for nodal and BMP antagonist. Dev Dyn 2005; 233:1419-29. [PMID: 15977172 DOI: 10.1002/dvdy.20477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During early cardiogenesis, endoderm-derived bone morphogenetic protein (BMP) induces the expression of both heart-specific transcription factors and sarcomeric proteins. However, BMP antagonists do not inhibit the expression of the "initial heart alpha-actin"--smooth muscle alpha-actin (SMA)--which is first expressed in the anterior lateral mesoderm and then recruited into the initial myofibrils (Nakajima et al. [2002] Dev. Biol. 245:291-303). Therefore, mechanisms that regulate the expression of SMA in the heart-forming mesoderm are not well-understood. Regional explantation experiments using chick blastoderm showed that the posterolateral region of the epiblast differentiated into cardiomyocytes. Posterior epiblast cultured with or without the associated hypoblast showed that interaction between the tissues of these two germ layers at the early pregastrula stage (stages X-XI) was a prerequisite for the expression of SMA. Posterior epiblast that is cultured without hypoblast could also be induced to express SMA if TGF-beta or activin was added to the culture medium. However, neither neutralizing antibodies against TGF-betas nor follistatin perturbed the expression of SMA in cultured blastoderm. Adding BMP to the cultured blastoderm inhibited the expression of SMA, whereas BMP antagonists, such as chordin, were able to induce the expression of SMA in cultured posterior epiblast. Furthermore, adding lefty-1, a nodal antagonist, to the blastoderm inhibited the expression of SMA, and nodal plus BMP antagonist up-regulated the expression of SMA in cultured posterior epiblast. Results indicate that the interaction between the tissues of the posterior epiblast and hypoblast is necessary to initiate the expression of SMA during early cardiogenesis and that nodal and BMP antagonist may play an important role in the regulation of SMA expression.
Collapse
Affiliation(s)
- Hiroko Matsui
- Department of Anatomy, Graduate School of Medicine, Osaka City University, Abenoku, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
316
|
Terami H, Hidaka K, Katsumata T, Iio A, Morisaki T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem Biophys Res Commun 2004; 325:968-75. [PMID: 15541384 DOI: 10.1016/j.bbrc.2004.10.103] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Wnt signaling plays a crucial role in the control of morphogenesis in several tissues. Herein, we describe the role of Wnt11 during cardiac differentiation of embryonic stem cells. First, we examined the expression profile of Wnt11 during the course of differentiation in embryoid bodies, and then compared its expression in retinoic acid-treated embryoid bodies with that in untreated. In differentiating embryoid bodies, Wnt11 expression rose along with that of Nkx2.5 expression and continued to increase. When the embryoid bodies were treated with retinoic acid, Wnt11 expression decreased in parallel with the decreased expression of cardiac genes. Further, treatment of embryoid bodies with medium containing Wnt11 increased the expression of cardiac marker genes. Based on these results, we propose that Wnt11 plays an important role for cardiac development by embryoid bodies, and may be a key regulator of cardiac muscle cell proliferation and differentiation during heart development.
Collapse
Affiliation(s)
- Hiromi Terami
- Department of Bioscience, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | |
Collapse
|
317
|
Eisenberg LM, Eisenberg CA. An In Vitro Analysis of Myocardial Potential Indicates That Phenotypic Plasticity Is an Innate Property of Early Embryonic Tissue. Stem Cells Dev 2004; 13:614-24. [PMID: 15684829 DOI: 10.1089/scd.2004.13.614] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Explants from gastrula-stage avian embryos have provided an important culture model for examining the formation of the vertebrate heart. Explants harvested from anterior regions containing the precardiac mesoderm faithfully recapitulate cardiogenesis and generate contractile tissue in culture. Posterior regions of the early embryo do not supply cellular material to the developing heart in situ, and thus have been commonly employed as negative control tissues for studying cardiogenic induction. To begin to understand the cellular mechanisms that account for the distinct cell fates of precardiac and posterior tissue within the embryo, we undertook a comprehensive investigation on the myocardial potential of presumptive noncardiac tissue. Myocardial differentiation was assayed by expression of the myocardium-associated transcription factor gene Nkx2.5 and positive immunostaining for sarcomeric myosin, muscle alpha-actinin, and smooth muscle alpha-actin. Our results demonstrate that regions of the early embryo that do not provide a cellular contribution to the myocardium in situ are capable of generating myocardial tissue when removed from their normal embryonic environment and placed in culture under nontreated conditions. Although treatment with the presumptive cardiac inducer Dickkopf-1 increased the frequency that cardiac tissue appeared within cultures of posterior tissue, no difference was observed in either the size or morphology of the myocardium-positive areas among treated and nontreated explants. These findings suggest that progenitor cells within the early embryo possess an innate phenotypic plasticity and that presumptive cardiac inducing signals do not induce cardiac differentiation but instead augment a pre-existing cardiac potential of embryonic tissue.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
318
|
Lee KH, Evans S, Ruan TY, Lassar AB. SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chick Nkx2.5enhancer. Development 2004; 131:4709-23. [PMID: 15329343 DOI: 10.1242/dev.01344] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prior work has indicated that BMP signals act in concert with FGF8, WNT11 and WNT antagonists to induce the formation of cardiac tissue in the vertebrate embryo. In an effort to understand how these signaling pathways control the expression of key cardiac regulators, we have characterized the cis-regulatory elements of the chick tinman homolog chick Nkx2.5. We find that at least three distinct cardiac activating regions (CARs) of chick Nkx2.5 cooperate to regulate early expression in the cardiac crescent and later segmental expression in the developing heart. In this report, we focus our attention on a 3′ BMP-responsive enhancer, termed CAR3, which directs robust cardiac transgene expression. By systematic mutagenesis and gel shift analysis of this enhancer, we demonstrate that GATA4/5/6, YY1 and SMAD1/4 are all necessary for BMP-mediated induction and heart-specific expression of CAR3. Adjacent YY1 and SMAD-binding sites within CAR3 constitute a minimal BMP response element, and interaction of SMAD1/4 with the N terminus of YY1 is required for BMP-mediated induction of CAR3. Our data suggest that BMP-mediated activation of this regulatory region reflects both the induction of GATA genes by BMP signals, as well as modulation of the transcriptional activity of YY1 by direct interaction of this transcription factor with BMP-activated SMADs.
Collapse
Affiliation(s)
- Kyu-Ho Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue Boston, MA 02115, USA
| | | | | | | |
Collapse
|
319
|
Esteve P, Lopez-Rios J, Bovolenta P. SFRP1 is required for the proper establishment of the eye field in the medaka fish. Mech Dev 2004; 121:687-701. [PMID: 15210177 DOI: 10.1016/j.mod.2004.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 03/09/2004] [Accepted: 03/10/2004] [Indexed: 11/29/2022]
Abstract
Secreted Frizzled Related Proteins (SFRPs) are a family of soluble molecules structurally related to the Wnt receptors. Functional analysis in different vertebrate species suggests that these molecules are multifunctional modulators of Wnt and possibly other signalling pathways. Sfrp1 a member of this family, is strongly expressed throughout embryonic development in different vertebrate species. Its function is, however, poorly understood. To address the role of this protein at early stages of embryonic development, we have used the medaka fish (Oryzias latipes) as a model system. Here, we describe the characterisation and the expression analysis of olSfrp1. We also show that morpholino-based interference with olSfrp1 expression results in embryos with a reduced eye field, a phenotype that, in the most affected embryos, is associated with a shortening and widening of the A-P axis. Because the expression of posterior diencephalic markers is unchanged but that of rostral telencephalic ones is expanded, we propose that olSfrp1 is needed for a proper establishment of the eye field within the forebrain. In addition, olSfrp1 may contribute to the control of mesodermal convergence extension movements that take place during gastrulation.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiologia del Desarrollo, Instituto Cajal, CSIC, Avenida Dr Arce 37, Madrid 28002, Spain
| | | | | |
Collapse
|
320
|
Abstract
The heart is the first organ to form in the embryo, and all subsequent events in the life of the organism depend on its function. Inherited mutations in cardiac regulatory genes give rise to congenital heart disease, the most common form of human birth defects, and abnormalities of the adult heart represent the most prevalent cause of morbidity and mortality in the industrialized world. The past decade has marked a transition from physiological and functional studies of the heart toward a deeper understanding of cardiac function (and dysfunction) at genetic and molecular levels. These discoveries have provided new therapeutic approaches for prevention and palliation of cardiac disease and have raised new questions, challenges and opportunities for the future.
Collapse
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, Texas 75390-9148, USA.
| |
Collapse
|
321
|
Vilimas T, Abraham A, Okkema PG. An early pharyngeal muscle enhancer from the Caenorhabditis elegans ceh-22 gene is targeted by the Forkhead factor PHA-4. Dev Biol 2004; 266:388-98. [PMID: 14738885 DOI: 10.1016/j.ydbio.2003.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans pharyngeal muscle development involves ceh-22, an NK-2 family homeobox gene related to genes controlling heart development in other species. ceh-22 is the earliest known gene expressed in the pharyngeal muscles and is likely regulated directly by factors specifying pharyngeal muscle fate. We have previously implicated the ceh-22 distal enhancer in initiating ceh-22 expression. Here we analyze the distal enhancer using functional and comparative assays. The distal enhancer contains three subelements contributing additively to its activity, and functionally important regulatory sequences are highly conserved in Caenorhabditis briggsae. One subelement, termed DE3, is strongly active in the pharyngeal muscles, and we identified two short oligonucleotides (de199 and de209) contributing to DE3 activity. Multimerized de209 enhances transcription similarly to DE3 specifically in the pharyngeal muscles, suggesting it may be an essential site regulating ceh-22. de209 binds the pan-pharyngeal Forkhead factor PHA-4 in vitro and responds to ectopic pha-4 expression in vivo, suggesting that PHA-4 directly initiates ceh-22 expression through de209. Because de209 enhancer activity is primarily limited to the pharyngeal muscles, we hypothesize that de209 also binds factors functioning with PHA-4 to specifically activate ceh-22 expression in pharyngeal muscle.
Collapse
Affiliation(s)
- Tomas Vilimas
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
322
|
Abstract
Postnatally, heart muscle cells almost completely lose their ability to divide, which makes their loss after trauma irreversible. Potential repair by cell grafting or mobilizing endogenous cells is of particular interest for possible treatments for heart disease, where the poor capacity for cardiomyocyte proliferation probably contributes to the irreversibility of heart failure. Knowledge of the molecular mechanisms that underly formation of heart muscle cells might provide opportunities to repair the diseased heart by induction of (trans) differentiation of endogenous or exogenous cells into heart muscle cells. We briefly review the molecular mechanisms involved in early development of the linear heart tube by differentiation of mesodermal cells into heart muscle cells. Because the initial heart tube does not comprise all the cardiac compartments present in the adult heart, heart muscle cells are added to the distal borders of the tube and within the tube. At both distal borders, mesodermal cell are recruited into the cardiac lineage and, within the heart tube, muscular septa are formed. In this review, the relative late additions of heart muscle cells to the linear heart tube are described and the potential underlying molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Maurice J B van den Hoff
- Molecular and Experimental Cardiology Group, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
323
|
van Tuyn J, de Vries AAF, van der Laarse A, Schalij MJ, van der Wall EE, Atsma DE. Genetic programme of cardiogenesis: implications for therapeutic application. Neth Heart J 2004; 12:13-17. [PMID: 25696254 PMCID: PMC2497038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
It has become accepted that new cardiomyocytes can be derived from stem cells. Although the potential for therapeutic application is evident, the reported efficiency of differentiation varies greatly from 0.02 to 54%. To obtain clinically relevant numbers of newly differentiated cardiac cells, stem cell differentiation should be as efficient as possible. A plausible way to increase the efficiency of differentiation of stem cells into cardiomyocytes is through the introduction of cardiac specific regulatory genes in the stem cells. This review summarises the role of several key transcription factors in cardiogenesis.
Collapse
|
324
|
Eisenberg LM, Kubalak SW, Eisenberg CA. Stem cells and the formation of the myocardium in the vertebrate embryo. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2004; 276:2-12. [PMID: 14699629 PMCID: PMC3096003 DOI: 10.1002/ar.a.10130] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A major goal in cardiovascular biology is to repair diseased or damaged hearts with newly generated myocardial tissue. Stem cells offer a potential source of replacement myocytes for restoring cardiac function. Yet little is known about the nature of the cells that are able to generate myocardium and the conditions they require to form heart tissue. A source of information that may be pertinent to addressing these issues is the study of how the myocardium arises from progenitor cells in the early vertebrate embryo. Accordingly, this review will examine the initial events of cardiac developmental biology for insights into the identity and characteristics of the stem cells that can be used to generate myocardial tissue for therapeutic purposes.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
325
|
Tabibiazar R, Wagner RA, Liao A, Quertermous T. Transcriptional Profiling of the Heart Reveals Chamber-Specific Gene Expression Patterns. Circ Res 2003; 93:1193-201. [PMID: 14576202 DOI: 10.1161/01.res.0000103171.42654.dd] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac chamber-specific gene expression is critical for the normal development and function of the heart. To investigate the genetic basis of cardiac anatomical specialization, we have undertaken a nearly genome-wide transcriptional profiling of the four heart chambers and the interventricular septum. Rigorous statistical analysis has allowed the identification of known and novel members of gene families that are felt to be important in cardiac development and function, including LIM proteins, homeobox proteins, wnt and T-box pathway proteins, as well as structural proteins like actins and myosins. In addition, these studies have allowed the identification of thousands of additional differentially expressed genes, for which there is little structural or functional information. Clustering of genes with known and unknown functions provides insights into signaling pathways that are essential for development and maintenance of chamber-specific features. To facilitate future research in this area, a searchable internet database has been constructed that allows study of the chamber-specific expression of any gene represented on this comprehensive microarray. It is anticipated that further study of genes identified through this effort will provide insights into the specialization of heart chamber tissues, and their specific roles in cardiac development, aging, and disease.
Collapse
Affiliation(s)
- Raymond Tabibiazar
- Donald W. Reynolds Cardiovascular Clinical Research Center, Division of Cardiovascular Medicine, Stanford University School of Medicine 300 Pasteur Dr, Falk CVRC Stanford, Calif 94305, USA
| | | | | | | |
Collapse
|
326
|
Gitler AD, Lu MM, Jiang YQ, Epstein JA, Gruber PJ. Molecular markers of cardiac endocardial cushion development. Dev Dyn 2003; 228:643-50. [PMID: 14648841 DOI: 10.1002/dvdy.10418] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endocardial cushions are precursors of mature heart valves. They form within the looped heart tube as discrete swellings and develop into thin, pliable leaflets that prevent regurgitation of blood. The embryonic origins of cardiac valves include endothelial, myocardial, and neural crest cells. Recently, an increasing number of animal models derived from mutational screens, gene inactivation, and transgenic studies have identified specific molecules required for normal development of the cardiac valves, and critical molecular pathways are beginning to emerge. To further this process, we have sought to assemble a diverse set of molecular markers encompassing all stages of cardiac valve development. Here, we provide a detailed comparative gene expression analysis of thirteen endocardial cushion markers. We identify endocardial cushion expression of the transcription factor Fog1, and we demonstrate active Wnt/beta-catenin signaling in developing endocardial cushions suggesting pathways that have not been previously appreciated to participate in cardiac valve formation.
Collapse
Affiliation(s)
- Aaron D Gitler
- Department of Medicine, Cardiology Division, University of Pennsylvania Health System, 954 BRB II/III, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
327
|
Abstract
The region with the potential to form the heart has traditionally been called the heart field. This region can be approximated by, but is not identical to, the expression domain of the early cardiac gene Nkx2.5. The region expressing Nkx2.5 does not change in size, although there are major shape changes and a subdivision of the region into non-myogenic and myogenic lineages. Using a variety of embryo manipulations, we have sought to determine whether cellular interactions could change the size of the initial Nkx2.5-expressing region and thus change the size of the heart. We have shown that if the heart is isolated from the dorsal half of the embryo, the volume of tissue expressing myocardial differentiation markers increases, indicating that signals restricting the size of the heart come from the dorsal side. Despite the change in myocardial volume, the non-myogenic heart lineages are still present. The ability of dorsal tissues to restrict the size of the heart is further demonstrated by fusing two Xenopus embryos shortly after gastrulation, generating twinned embryos where the heart of one embryo would develop adjacent to different tissues of the second embryo. The final size of the differentiated heart was markedly reduced if it developed in close proximity to the dorso-anterior surface of the head but not if it developed adjacent to the flank or belly. In all cases, the manipulations that restricted the size of the myocardium also restricted the expression of Nkx2.5 and GATA-4, both key regulatory genes in the cardiogenic pathway. These results provide evidence for a model in which signals from dorso-anterior tissues restrict the size of the heart after gastrulation but before neural fold closure.
Collapse
Affiliation(s)
- Robert J Garriock
- Lawson Health Research Institute Department of Paediatrics, University of Western Ontario London, Ontario N6A-4V2 Canada
| | | |
Collapse
|
328
|
Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5:367-77. [PMID: 12967557 DOI: 10.1016/s1534-5807(03)00266-1] [Citation(s) in RCA: 1048] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More is becoming known about so-called noncanonical Wnt pathways that signal independently of beta-catenin. Here we review recent developments in both the functions and mechanisms of noncanonical Wnt signaling. We also discuss some unresolved and vexing questions. How many noncanonical Wnt pathways are there? How extensive are the parallels between Drosophila planar polarization and vertebrate convergence and extension? Last, we will outline some challenges and difficulties we foresee for this exciting but still very young field.
Collapse
Affiliation(s)
- Michael T Veeman
- Howard Hughes Medical Institute, Department of Pharmacology, Center for Developmental Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
329
|
Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 2003; 130:4217-27. [PMID: 12874139 DOI: 10.1242/dev.00589] [Citation(s) in RCA: 382] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hematopoietic and endothelial lineages derive from mesoderm and are thought to develop through the maturation of a common progenitor, the hemangioblast. To investigate the developmental processes that regulate mesoderm induction and specification to the hemangioblast, we generated an embryonic stem cell line with the green fluorescent protein (GFP) targeted to the mesodermal gene, brachyury. After the in vitro differentiation of these embryonic stem cells to embryoid bodies, developing mesodermal progenitors could be separated from those with neuroectoderm potential based on GFP expression. Co-expression of GFP with the receptor tyrosine kinase Flk1 revealed the emergence of three distinct cell populations, GFP(-)Flk1(-), GFP(+)Flk1(-) and GFP(+)Flk1(+) cells, which represent a developmental progression ranging from pre-mesoderm to prehemangioblast mesoderm to the hemangioblast.
Collapse
Affiliation(s)
- Hans Jörg Fehling
- Department of Immunology, Medical Faculty/University Clinics Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
330
|
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
| | | |
Collapse
|
331
|
Park KW, Yang HM, Youn SW, Yang HJ, Chae IH, Oh BH, Lee MM, Park YB, Choi YS, Kim HS, Walsh K. Constitutively active glycogen synthase kinase-3beta gene transfer sustains apoptosis, inhibits proliferation of vascular smooth muscle cells, and reduces neointima formation after balloon injury in rats. Arterioscler Thromb Vasc Biol 2003; 23:1364-9. [PMID: 12805073 DOI: 10.1161/01.atv.0000081633.53390.b4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Glycogen synthase kinase (GSK)-3beta is a crucial factor in many cellular signaling pathways and may play an important role in smooth muscle proliferation and apoptosis after angioplasty. METHODS AND RESULTS To investigate the effect of GSK-3beta modulation on neointima formation, smooth muscle proliferation, and apoptosis after balloon injury in vivo, we delivered adenoviral vectors expressing the constitutively active form of GSK-3beta (GSK-S9A: 9th serine switched to alanine) or a control gene into rat carotid arterial segments after balloon injury with a 2F Fogarty catheter. Viral infusion mixtures (5x108 pfu) were incubated in the arterial lumen for 20 minutes, and the effects of gene delivery were evaluated 3 days and 2 weeks after gene delivery with morphometry and immunohistochemical staining for proliferating and apoptotic cells. There were no significant differences in intimal, medial, and lumen areas at 3 days after the procedure. However, 2 weeks after gene delivery, the active GSK-3beta gene transfer resulted in a significantly lower intima to media ratio (0.29+/-0.06 versus 0.86+/-0.09, P<0.01) and a greater lumen area (0.41+/-0.02 versus 0.31+/-0.01 mm2, P<0.01) compared with the control gene transfected group. This was attributable to a significant reduction in intimal area (0.05+/-0.01 versus 0.15+/-0.02 mm2, P<0.01), whereas the medial area was similar (0.17+/-0.01 versus 0.18+/-0.01 mm2, P=0.21). Proliferation index was significantly reduced both at 3 days and 2 weeks in the active GSK-3beta gene transferred group (2.97+/-0.29% versus 5.71+/-0.50%, P<0.01). In addition, apoptotic index, which was not significantly different between the 2 groups at 3 days, was significantly higher in the active GSK-3beta gene transferred group at 2 weeks (3.14+/-0.68% versus 22.7+/-1.63%, n=10, P<0.01, for control versus active GSK-3beta gene transfer). CONCLUSIONS In vivo delivery of the active GSK-3beta gene inhibits smooth muscle proliferation, sustains apoptosis, and reduces neointima formation after balloon injury in rats and may be a future therapeutic target to limit neointima hyperplasia after angioplasty.
Collapse
Affiliation(s)
- Kyung-Woo Park
- Cardiovascular Laboratory, Clinical Research Institute, Seoul National University Hospital, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Latinkić BV, Kotecha S, Mohun TJ. Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants. Development 2003; 130:3865-76. [PMID: 12835401 DOI: 10.1242/dev.00599] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The earliest step in heart formation in vertebrates occurs during gastrulation, when cardiac tissue is specified. Dorsoanterior endoderm is thought to provide a signal that induces adjacent mesodermal cells to adopt a cardiac fate. However, the nature of this signalling and the precise role of endoderm are unknown because of the close proximity and interdependence of mesoderm and endoderm during gastrulation. To better define the molecular events that underlie cardiac induction, we have sought to develop a simple means of inducing cardiac tissue. We show that the transcription factor GATA4, which has been implicated in regulating cardiac gene expression, is sufficient to induce cardiac differentiation in Xenopus embryonic ectoderm (animal pole) explants, frequently resulting in beating tissue. Lineage labelling experiments demonstrate that GATA4 can trigger cardiac differentiation not only in cells in which it is present, but also in neighbouring cells. Surprisingly, cardiac differentiation can occur without any stable differentiation of anterior endoderm and is in fact enhanced under conditions in which endoderm formation is inhibited. Remarkably, cardiac tissue is formed even when GATA4 activity is delayed until long after explants have commenced differentiation into epidermal tissue. These findings provide a simple assay system for cardiac induction that may allow elucidation of pathways leading to cardiac differentiation. Better knowledge of the pathways governing this process may help develop procedures for efficient generation of cardiomyocytes from pluripotent stem cells.
Collapse
Affiliation(s)
- Branko V Latinkić
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | |
Collapse
|
333
|
Klinedinst SL, Bodmer R. Gata factor Pannier is required to establish competence for heart progenitor formation. Development 2003; 130:3027-38. [PMID: 12756184 DOI: 10.1242/dev.00517] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inductive signaling is of pivotal importance for developmental patterns to form. In Drosophila, the transfer of TGFbeta (Dpp) and Wnt (Wg) signaling information from the ectoderm to the underlying mesoderm induces cardiac-specific differentiation in the presence of Tinman, a mesoderm-specific homeobox transcription factor. We present evidence that the Gata transcription factor, Pannier, and its binding partner U-shaped, also a zinc-finger protein, cooperate in the process of heart development. Loss-of-function and germ layer-specific rescue experiments suggest that pannier provides an essential function in the mesoderm for initiation of cardiac-specific expression of tinman and for specification of the heart primordium. u-shaped also promotes heart development, but unlike pannier, only by maintaining tinman expression in the cardiogenic region. By contrast, pan-mesodermal overexpression of pannier ectopically expands tinman expression, whereas overexpression of u-shaped inhibits cardiogenesis. Both factors are also required for maintaining dpp expression after germ band retraction in the dorsal ectoderm. Thus, we propose that Pannier mediates as well as maintains the cardiogenic Dpp signal. In support, we find that manipulation of pannier activity in either germ layer affects cardiac specification, suggesting that its function is required in both the mesoderm and the ectoderm.
Collapse
Affiliation(s)
- Susan L Klinedinst
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
334
|
Esteve P, Trousse F, Rodríguez J, Bovolenta P. SFRP1 modulates retina cell differentiation through a beta-catenin-independent mechanism. J Cell Sci 2003; 116:2471-81. [PMID: 12724355 DOI: 10.1242/jcs.00452] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secreted frizzled related proteins (SFRPs) are soluble molecules capable of binding WNTS and preventing the activation of their canonical signalling cascade. Here we show that Sfrp1 contributes to chick retina differentiation with a mechanism that does not involve modifications in the transcriptional activity of beta-catenin. Thus, addition of SFRP1 to dissociated retinal cultures or retroviral mediated overexpression of the molecule consistently promoted retinal ganglion and cone photoreceptor cell generation, while decreasing the number of amacrine cells. Measure of the activity of the beta-catenin-responsive Tcf-binding site coupled to a luciferase reporter in transiently transfected retinal cells showed that Sfrp1 was unable to modify the basal beta-catenin transcriptional activity of the retina cells. Interestingly, a dominant-negative form of GSK3beta gave similar results to those of Sfrp1, and a phosphorylation-dependent inhibition of GSK3beta activity followed SFRP1 treatment of retina cells. Furthermore, retroviral mediated expression of a dominant-negative form of GSK3beta induced a retina phenotype similar to that observed after Sfrp1 overexpression, suggesting a possible involvement of this kinase in SFRP1 function.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain
| | | | | | | |
Collapse
|
335
|
Abstract
The heart develops from two bilateral heart fields that are formed during early gastrulation. In recent years, signaling pathways that specify cardiac mesoderm have been extensively analyzed. In addition, a battery of transcription factors that regulate different aspects of cardiac morphogenesis and cytodifferentiation have been identified and characterized in model organisms. At the anterior pole, a secondary heart field is formed, which in its molecular make-up, appears to be similar to the primary heart field. The cardiac outflow tract and the right ventricle to a large extent are derivatives of this anterior heart field. Cardiac mesoderm receives positional information by which it is patterned along the three body axes. The molecular control of left-right axis development has received particular attention, and the underlying regulatory network begins to emerge. Cardiac chamber development involves the activation of a transcription program that is different from the one present in the primary heart field and regulates cardiac morphogenesis in a region-specific manner. This review also attempts to identify areas in which additional research is needed to fully understand early cardiac development.
Collapse
Affiliation(s)
- Thomas Brand
- Department of Cell and Molecular Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
336
|
Nakamura T, Sano M, Songyang Z, Schneider MD. A Wnt- and beta -catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 2003; 100:5834-9. [PMID: 12719544 PMCID: PMC156287 DOI: 10.1073/pnas.0935626100] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acquisition of a cardiac fate by embryonic mesodermal cells is a fundamental step in heart formation. Heart development in frogs and avians requires positive signals from adjacent endoderm, including bone morphogenic proteins, and is antagonized by a second secreted signal, Wnt proteins, from neural tube. By contrast, mechanisms of mesodermal commitment to create heart muscle in mammals are largely unknown. In addition, Wnt-dependent signals can involve either a canonical beta-catenin pathway or other, alternative mediators. Here, we tested the involvement of Wnts and beta-catenin in mammalian cardiac myogenesis by using a pluripotent mouse cell line (P19CL6) that recapitulates early steps for cardiac specification. In this system, early and late cardiac genes are up-regulated by 1% DMSO, and spontaneous beating occurs. Notably, Wnt3A and Wnt8A were induced days before even the earliest cardiogenic transcription factors. DMSO induced biochemical mediators of Wnt signaling (decreased phosphorylation and increased levels of beta-catenin), which were suppressed by Frizzled-8Fc, a soluble Wnt antagonist. DMSO provoked T cell factor-dependent transcriptional activity; thus, induction of Wnt proteins by DMSO was functionally coupled. Frizzled-8Fc inhibited the induction of cardiogenic transcription factors, cardiogenic growth factors, and sarcomeric myosin heavy chains. Likewise, differentiation was blocked by constitutively active glycogen synthase kinase 3beta, an intracellular inhibitor of the Wntbeta-catenin pathway. Conversely, lithium chloride, which inhibits glycogen synthase kinase 3beta, and Wnt3A-conditioned medium up-regulated early cardiac markers and the proportion of differentiated cells. Thus, Wntbeta-catenin signaling is activated at the inception of mammalian cardiac myogenesis and is indispensable for cardiac differentiation, at least in this pluripotent model system.
Collapse
Affiliation(s)
- Teruya Nakamura
- Center for Cardiovascular Development and Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
337
|
Abstract
Congenital heart defects are common in humans, but the underlying basis for these defects is not well understood. It has been clear that abnormal heart development is at the root of these diseases, but the genes involved have remained elusive until recently. This review focuses on recent advances in our understanding of mammalian heart formation, and how some of these processes, when disrupted, lead to congenital heart defects.
Collapse
Affiliation(s)
- B G Bruneau
- Program in Cardiovascular Research, the Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, ON, Canada.
| |
Collapse
|
338
|
Mukhopadhyay M, Teufel A, Yamashita T, Agulnick AD, Chen L, Downs KM, Schindler A, Grinberg A, Huang SP, Dorward D, Westphal H. Functional ablation of the mouse Ldb1 gene results in severe patterning defects during gastrulation. Development 2003; 130:495-505. [PMID: 12490556 DOI: 10.1242/dev.00225] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The LIM domain-binding protein 1 (Ldb1) is found in multi-protein complexes containing various combinations of LIM-homeodomain, LIM-only, bHLH, GATA and Otx transcription factors. These proteins exert key functions during embryogenesis. Here we show that targeted deletion of the Ldb1 gene in mice results in a pleiotropic phenotype. There is no heart anlage and head structures are truncated anterior to the hindbrain. In about 40% of the mutants, posterior axis duplication is observed. There are also severe defects in mesoderm-derived extraembryonic structures, including the allantois, blood islands of the yolk sack, primordial germ cells and the amnion. Abnormal organizer gene expression during gastrulation may account for the observed axis defects in Ldb1 mutant embryos. The expression of several Wnt inhibitors is curtailed in the mutant, suggesting that Wnt pathways may be involved in axial patterning regulated by Ldb1.
Collapse
Affiliation(s)
- Mahua Mukhopadhyay
- Department of Anatomy, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Brand T, Andrée B, Schlange T. Molecular characterization of early cardiac development. Results Probl Cell Differ 2003; 38:215-38. [PMID: 12132397 DOI: 10.1007/978-3-540-45686-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Thomas Brand
- Institute of Biochemistry and Biotechnology, Department of Cell and Molecular Biology, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
340
|
Affiliation(s)
- Deepak Srivastava
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex 75390-9148, USA.
| |
Collapse
|
341
|
Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z, Mei L, Chien KR, Sussman DJ, Wynshaw-Boris A. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 2002; 129:5827-38. [PMID: 12421720 DOI: 10.1242/dev.00164] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The murine dishevelled 2 (Dvl2) gene is an ortholog of the Drosophila segment polarity gene Dishevelled, a member of the highly conserved Wingless/Wnt developmental pathway. Dvl2-deficient mice were produced to determine the role of Dvl2 in mammalian development. Mice containing null mutations in Dvl2 present with 50% lethality in both inbred 129S6 and in a hybrid 129S6-NIH Black Swiss background because of severe cardiovascular outflow tract defects, including double outlet right ventricle, transposition of the great arteries and persistent truncus arteriosis. The majority of the surviving Dvl2(-/-) mice were female, suggesting that penetrance was influenced by sex. Expression of Pitx2 and plexin A2 was attenuated in Dvl2 null mutants, suggesting a defect in cardiac neural crest development during outflow tract formation. In addition, approximately 90% of Dvl2(-/-) mice have vertebral and rib malformations that affect the proximal as well as the distal parts of the ribs. These skeletal abnormalities were more pronounced in mice deficient for both Dvl1 and Dvl2. Somite differentiation markers used to analyze Dvl2(-/-) and Dvl1(-/-);Dvl2(-/-) mutant embryos revealed mildly aberrant expression of Uncx4.1, delta 1 and myogenin, suggesting defects in somite segmentation. Finally, 2-3% of Dvl2(-/-) embryos displayed thoracic spina bifida, while virtually all Dvl1/2 double mutant embryos displayed craniorachishisis, a completely open neural tube from the midbrain to the tail. Thus, Dvl2 is essential for normal cardiac morphogenesis, somite segmentation and neural tube closure, and there is functional redundancy between Dvl1 and Dvl2 in some phenotypes.
Collapse
Affiliation(s)
- Natasha S Hamblet
- Department of Pediatrics, UCSD Comprehensive Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0627, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Kumano G, Smith WC. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 2002; 225:409-21. [PMID: 12454919 DOI: 10.1002/dvdy.10177] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A revised fate map of the gastrula Xenopus embryo predicts the existence of patterning mechanisms that operate within the animal/vegetal axis of the mesoderm-forming marginal zone. We review here molecular and embryologic data that demonstrate that such mechanisms are present and that they operate independently of the Spemann organizer. Evidence suggests that polarized fibroblast growth factor activity in the animal/vegetal axis patterns this axis. We present a model of mesoderm induction and patterning that integrates the new data on Spemann organizer-independent animal/vegetal patterning with data on other inductive pathways known to act on the gastrula marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
343
|
Rottbauer W, Saurin AJ, Lickert H, Shen X, Burns CG, Wo ZG, Kemler R, Kingston R, Wu C, Fishman M. Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 2002; 111:661-72. [PMID: 12464178 DOI: 10.1016/s0092-8674(02)01112-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organ size is precisely regulated during development, but the control mechanisms remain obscure. We have isolated a mutation in zebrafish, liebeskummer (lik), which causes development of hyperplastic embryonic hearts. lik encodes Reptin, a component of a DNA-stimulated ATPase complex. The mutation activates ATPase activity of Reptin complexes and causes a cell-autonomous proliferation of cardiomyocytes to begin well after progenitors have fashioned the primitive heart tube. With regard to heart growth, beta-catenin and Pontin, a DNA-stimulated ATPase that is often part of complexes with Reptin, are in the same genetic pathways. Pontin reduction phenocopies the cardiac hyperplasia of the lik mutation. Thus, the Reptin/Pontin ratio serves to regulate heart growth during development, at least in part via the beta-catenin pathway.
Collapse
Affiliation(s)
- Wolfgang Rottbauer
- Cardiovascular Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Firulli AB, Thattaliyath BD. Transcription factors in cardiogenesis: the combinations that unlock the mysteries of the heart. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:1-62. [PMID: 11893163 DOI: 10.1016/s0074-7696(02)14002-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart formation is one of the first signs of organogenesis within the developing embryo and this process is conserved from flies to man. Completing the genetic roadmap of the molecular mechanisms that control the cell specification and differentiation of cells that form the developing heart has been an exciting and fast-moving area of research in the fields of molecular and developmental biology. At the core of these studies is an interest in the transcription factors that are responsible for initiation of a pluripotent cell to become programmed to the cardiac lineage and the subsequent transcription factors that implement the instructions set up by the cells commitment decision. To gain a better understanding of these pathways, cardiac-expressed transcription factors have been identified, cloned, overexpressed, and mutated to try to determine function. Although results vary depending on the gene in question, it is clear that there is a striking evolutionary conservation of the cardiogenic program among species. As we move up the evolutionary ladder toward man, we encounter cases of functional redundancy and combinatorial interactions that reflect the complex networks of gene expression that orchestrate heart development. This review focuses on what is known about the transcription factors implicated in heart formation and the role they play in this intricate genetic program.
Collapse
Affiliation(s)
- Anthony B Firulli
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | | |
Collapse
|
345
|
Abstract
Embryonic stem cells are pluripotent cell lines that are derived from the blastocyst-stage early mammalian embryo. These unique cells are characterized by their capacity for prolonged undifferentiated proliferation in culture while maintaining the potential to differentiate into derivatives of all three germ layers. During in vitro differentiation, embryonic stem cells can develop into specialized somatic cells, including cardiomyocytes, and have been shown to recapitulate many processes of early embryonic development. The present review describes the derivation and unique properties of the recently described human embryonic stem cells as well as the properties of cardiomyocytes derived using this unique differentiating system. The possible applications of this system in several cardiac research areas, including developmental biology, functional genomics, pharmacological testing, cell therapy, and tissue engineering, are discussed. Because of their combined ability to proliferate indefinitely and to differentiate to mature tissue types, human embryonic stem cells can potentially provide an unlimited supply of cardiomyocytes for cell therapy procedures aiming to regenerate functional myocardium. However, many obstacles must still be overcome on the way to successful clinical utilization of these cells.
Collapse
Affiliation(s)
- Lior Gepstein
- Cardiovascular Research Laboratory, the Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, and Rambam Medical Center, Haifa, Israel.
| |
Collapse
|
346
|
Abstract
The heart is the first organ to form during embryogenesis and its circulatory function is critical from early on for the viability of the mammalian embryo. Developmental abnormalities of the heart have also been widely recognized as the underlying cause of many congenital heart malformations. Hence, the developmental mechanisms that orchestrate the formation and morphogenesis of this organ have received much attention among classical and molecular embryologists. Due to the evolutionary conservation of many of these processes, major insights have been gained from the studies of a number of vertebrate and invertebrate models, including mouse, chick, amphibians, zebrafish, and Drosophila. In all of these systems, the heart precursors are generated within bilateral fields in the lateral mesoderm and then converge toward the midline to form a beating linear heart tube. The specification of heart precursors is a result of multiple tissue and cell-cell interactions that involve temporally and spatially integrated programs of inductive signaling events. In the present review, we focus on the molecular and developmental functions of signaling processes during early cardiogenesis that have been defined in both vertebrate and invertebrate models. We discuss the current knowledge on the mechanisms through which signals induce the expression of cardiogenic transcription factors and the relationships between signaling pathways and transcriptional regulators that cooperate to control cardiac induction and the formation of a linear heart tube.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell and Developmental Biology, New York, NY 10029, USA
| | | |
Collapse
|
347
|
Abstract
Development of the heart is a complex process involving primary and secondary heart fields that are set aside to generate myocardial and endocardial cell lineages. The molecular inductions that occur in the primary heart field appear to be recapitulated in induction and myocardial differentiation of the secondary heart field, which adds the conotruncal segments to the primary heart tube. While much is now known about the initial steps and factors involved in induction of myocardial differentiation, little is known about induction of endocardial development. Many of the genes expressed by nascent myocardial cells, which then become committed to a specific heart segment, have been identified and studied. In addition to the heart fields, several other "extracardiac" cell populations contribute to the fully functional mature heart. Less is known about the genetic programs of extracardiac cells as they enter the heart and take part in cardiogenesis. The molecular/genetic basis of many congenital cardiac defects has been elucidated in recent years as a result of new insights into the molecular control of developmental events.
Collapse
Affiliation(s)
- Margaret L Kirby
- Department of Pediatrics, Division of Neonatology, Duke University Medical Center, Box 3179, Durham, NC 27710, USA.
| |
Collapse
|
348
|
Bertocchini F, Stern CD. The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 2002; 3:735-44. [PMID: 12431379 DOI: 10.1016/s1534-5807(02)00318-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The hypoblast (equivalent to the mouse anterior visceral endoderm) of the chick embryo plays a role in regulating embryonic polarity. Surprisingly, hypoblast removal causes multiple embryonic axes to form, suggesting that it emits an inhibitor of axis formation. We show that Cerberus (a multifunctional antagonist of Nodal, Wnt, and BMP signaling) is produced by the hypoblast and inhibits primitive streak formation. This activity is mimicked by Cerberus-Short (CerS), which only inhibits Nodal. Nodal misexpression can initiate an ectopic primitive streak, but only when the hypoblast is removed. We propose that, during normal development, the primitive streak forms only when the hypoblast is displaced away from the posterior margin by the endoblast, which lacks Cerberus.
Collapse
Affiliation(s)
- Federica Bertocchini
- Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | | |
Collapse
|
349
|
Abstract
Dickkopfs (Dkks) are secreted developmental regulators composed of two cysteine-rich domains. We report that the effects of Dkks depend on molecular context. Although Wnt8 signaling is inhibited by both Dkk1 and Dkk2 in Xenopus embryos, the same pathway is activated upon interaction of Dkk2 with the Wnt coreceptor LRP6. Analysis of individual Dkk domains and chimeric Dkks shows that the carboxy-terminal domains of both Dkks associate with LRP6 and are necessary and sufficient for Wnt8 inhibition, whereas the amino-terminal domain of Dkk1 plays an inhibitory role in Dkk-LRP interactions. Our study illustrates how an inhibitor of a pathway may be converted into an activator and is the first study to suggest a molecular mechanism for how a ligand other than Wnt can positively regulate beta-catenin signaling.
Collapse
Affiliation(s)
- Barbara K Brott
- Department of Microbiology and Molecular Genetics, Harvard Medical School. Molecular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
350
|
Pandur P, Läsche M, Eisenberg LM, Kühl M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 2002; 418:636-41. [PMID: 12167861 DOI: 10.1038/nature00921] [Citation(s) in RCA: 437] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Formation of the vertebrate heart requires a complex interplay of several temporally regulated signalling cascades. In Xenopus laevis, cardiac specification occurs during gastrulation and requires signals from the dorsal lip and underlying endoderm. Among known Xenopus Wnt genes, only Wnt-11 shows a spatiotemporal pattern of expression that correlates with cardiac specification, which indicates that Wnt-11 may be involved in heart development. Here we show, through loss- and gain-of-function experiments, that XWnt-11 is required for heart formation in Xenopus embryos and is sufficient to induce a contractile phenotype in embryonic explants. Treating the mouse embryonic carcinoma stem cell line P19 with murine Wnt-11 conditioned medium triggers cardiogenesis, which indicates that the function of Wnt-11 in heart development has been conserved in higher vertebrates. XWnt-11 mediates this effect by non-canonical Wnt signalling, which is independent of beta-catenin and involves protein kinase C and Jun amino-terminal kinase. Our results indicate that the cardiac developmental program requires non-canonical Wnt signal transduction.
Collapse
Affiliation(s)
- Petra Pandur
- [1] Abt Entwicklungsbiochemie, Junior group SFB 271, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany [2] Abt Biochemie, Universität Ulm, Albert-Einstein-Allee-11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|