301
|
Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. PLANT CELL REPORTS 2011; 30:153-76. [PMID: 20960203 PMCID: PMC3020307 DOI: 10.1007/s00299-010-0928-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 05/19/2023]
Abstract
Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants.
Collapse
Affiliation(s)
- Thomas Merkle
- Faculty of Biology, Institute for Genome Research and Systems Biology, University of Bielefeld, 33594 Bielefeld, Germany.
| |
Collapse
|
302
|
Bai W, Chern M, Ruan D, Canlas PE, Sze-To WH, Ronald PC. Enhanced disease resistance and hypersensitivity to BTH by introduction of an NH1/OsNPR1 paralog. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:205-15. [PMID: 20561248 DOI: 10.1111/j.1467-7652.2010.00544.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Non-expresser of pathogenesis-related genes 1 (NPR1) is the master regulator of salicylic acid-mediated systemic acquired resistance. Over-expression of Arabidopsis NPR1 and rice NH1 (NPR1 homolog1)/OsNPR1 in rice results in enhanced resistance. While there are four rice NPR1 paralogs in the rice genome, none have been demonstrated to function in disease resistance. To study rice NPR1 paralog 3, we introduced constructs into rice and tested for effects on resistance to infection by Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight. While over-expression of NH3 using the maize ubiquitin-1 promoter failed to enhance resistance, introduction of an extra copy of NH3 driven by its own promoter (nNT-NH3) resulted in clear, enhanced resistance. Progeny analysis confirms that the enhanced resistance phenotype, measured by Xoo-induced lesion length, is associated with the NH3 transgene. Bacterial growth curve analysis indicates that bacterial population levels are reduced 10-fold in nNT-NH3 lines compared to control rice lines. The transgenic plants exhibit higher sensitivity to benzothiadiazole (BTH) and 2,6-dichloroisonicotinic acid (INA) treatment as measured by increased cell death. Expression analysis of pathogenesis-related (PR) genes showed that nNT-NH3 plants display greatly enhanced induction of PR genes only after treatment with BTH. Our study demonstrates an alternative method to employ a regulatory protein to enhance plant defence. This approach avoids using undesirable constitutive, high-level expression and may prove to be more practical for engineering resistance.
Collapse
Affiliation(s)
- Wei Bai
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
303
|
DeFraia C, Mou Z. The role of the Elongator complex in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:19-22. [PMID: 21248476 PMCID: PMC3121998 DOI: 10.4161/psb.6.1.14040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 10/28/2010] [Indexed: 05/08/2023]
Abstract
The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is conserved in eukaryotes, yet functions in diverse kingdom-specific processes. In this mini-review, we discuss the known functions of Elongator in plants, including its roles in development and responses to biotic and abiotic stresses. We propose that Elongator functions in these processes by accelerating gene induction in response to changing cellular and environmental conditions.
Collapse
Affiliation(s)
- Christopher DeFraia
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
304
|
Maier F, Zwicker S, Hückelhoven A, Meissner M, Funk J, Pfitzner AJP, Pfitzner UM. NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. MOLECULAR PLANT PATHOLOGY 2011; 12:73-91. [PMID: 21118350 PMCID: PMC6640455 DOI: 10.1111/j.1364-3703.2010.00653.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1; also known as NIM1) is a master regulator of systemic acquired resistance (SAR). SAR is induced by salicylic acid (SA), leading to the expression of PATHOGENESIS-RELATED (PR) genes. Current evidence suggests that NPR1 is part of a transcription complex tethered to activation sequence-1 (as-1)-like cis-acting elements in PR-1 gene promoters through TGA transcription factors, and that SA-dependent PR-1 gene expression is regulated by NIM1-INTERACTING (NIMIN) proteins. In Arabidopsis, NPR1 is active only after SA induction. Regulation of Arabidopsis NPR1 activity has been proposed to comprise cysteine-156 (Cys-156), mediating SA-induced cytoplasmic oligomer-nuclear monomer exchange, and Cys-521 and Cys-529, mediating SA-dependent transcriptional activation. Tobacco NPR1 does not harbour these residues. To understand the function of tobacco NPR1, we analysed its biochemical capabilities in a heterologous system: yeast. Tobacco NPR1 differs from Arabidopsis NPR1 in its subcellular localization and its transactivation potential. Yet, both tobacco and Arabidopsis NPR1, as well as tobacco NIM1-like1, alter some of their biochemical activities in response to SA. Whereas the addition of SA to yeast growth medium induces transcriptional activity in tobacco NPR1, its interaction with NIMIN2-type proteins is suppressed. The effects of SA are specific, sensitive and occur coordinately. They are abolished completely by mutation of the arginine residue within the invariable penta-amino acid motif LENRV, as present in the nonfunctional Arabidopsis nim1-4 allele. Furthermore, NPR1 proteins with the LENRV domain coincidently harbour a broad and strongly conserved NIMIN1/NIMIN2 binding site. Our data suggest that NPR1 and some NPR1-like proteins are sensitive to the plant hormone SA, altering some of their biochemical capabilities to enable stimulus-dependent gene expression. The sensitivity of NPR1 proteins to SA, together with their differential interaction with diverse NIMIN proteins, seems a plausible molecular basis for the timely and coordinated activation of PR genes during SAR.
Collapse
Affiliation(s)
- Felix Maier
- Institut für Genetik, Universität Hohenheim, FG Allgemeine Virologie, D-70593 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
305
|
Sugano S, Jiang CJ, Miyazawa SI, Masumoto C, Yazawa K, Hayashi N, Shimono M, Nakayama A, Miyao M, Takatsuji H. Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. PLANT MOLECULAR BIOLOGY 2010; 74:549-62. [PMID: 20924648 DOI: 10.1007/s11103-010-9695-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/21/2010] [Indexed: 05/04/2023]
Abstract
NPR1 is a central regulator of salicylic-acid (SA)-mediated defense signaling in Arabidopsis. Here, we report the characterization of OsNPR1, an Oryzae sativa (rice) ortholog of NPR1, focusing on its role in blast disease resistance and identification of OsNPR1-regulated genes. Blast resistance tests using OsNPR1 knockdown and overexpressing rice lines demonstrated the essential role of OsNPR1 in benzothiadiazole (BTH)-induced blast resistance. Genome-wide transcript profiling using OsNPR1-knockdown lines revealed that 358 genes out of 1,228 BTH-upregulated genes and 724 genes out of 1,069 BTH-downregulated genes were OsNPR1-dependent with respect to BTH responsiveness, thereby indicating that OsNPR1 plays a more vital role in gene downregulation. The OsNPR1-dependently downregulated genes included many of those involved in photosynthesis and in chloroplast translation and transcription. Reduction of photosynthetic activity after BTH treatment and its negation by OsNPR1 knockdown were indeed reflected in the changes in Fv/Fm values in leaves. These results imply the role of OsNPR1 in the reallocation of energy and resources during defense responses. We also examined the OsNPR1-dependence of SA-mediated suppression of ABA-induced genes.
Collapse
Affiliation(s)
- Shoji Sugano
- Plant Disease Resistance Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Shi Z, Maximova SN, Liu Y, Verica J, Guiltinan MJ. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:248. [PMID: 21078185 PMCID: PMC3095330 DOI: 10.1186/1471-2229-10-248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/15/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1) that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA) accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. RESULTS A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS)). To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. CONCLUSION Our data indicate that the TcNPR1 is a functional ortholog of Arabidopsis NPR1, and is likely to play a major role in defense response in cacao. This fundamental knowledge can contribute to breeding of disease resistant cacao varieties through the application of molecular markers or the use of transgenic strategies.
Collapse
Affiliation(s)
- Zi Shi
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Liu
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph Verica
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
307
|
DeFraia CT, Zhang X, Mou Z. Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:511-23. [PMID: 20807211 DOI: 10.1111/j.1365-313x.2010.04345.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Immune responses in eukaryotes involve rapid and profound transcriptional reprogramming. Although mechanisms regulating the amplitude of defense gene expression have been extensively characterized, those controlling the speed of defense gene induction are not well understood. Here, we show that the Arabidopsis Elongator subunit 2 (AtELP2) regulates the kinetics of defense gene induction. AtELP2 is required for rapid defense gene induction and the establishment of full basal and effector-triggered immunity (ETI). Surprisingly, biological or chemical induction of systemic acquired resistance (SAR), a long-lasting plant immunity against a broad spectrum of pathogens, restores pathogen resistance to Atelp2 mutant plants. Simultaneous removal of AtELP2 and NPR1, a transcription coactivator essential for full-scale expression of a subset of defense genes and the establishment of SAR, completely abolishes resistance to two different ETI-inducing pathogens. These results demonstrate that AtELP2 is an accelerator of defense gene induction, which functions largely independently of NPR1 in establishing plant immunity.
Collapse
Affiliation(s)
- Christopher T DeFraia
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
308
|
Padmanabhan MS, Dinesh-Kumar SP. All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1368-80. [PMID: 20923348 DOI: 10.1094/mpmi-05-10-0113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant innate immunity is mediated by cell membrane and intracellular immune receptors that function in distinct and overlapping cell-signaling pathways to activate defense responses. It is becoming increasingly evident that immune receptors rely on components from multiple organelles for the generation of appropriate defense responses. This review analyzes the defense-related functions of the chloroplast, nucleus, and endoplasmic reticulum (ER) during plant innate immunity. It details the role of the chloroplasts in synthesizing defense-specific second messengers and discusses the retrograde signal transduction pathways that exist between the chloroplast and nucleus. Because the activities of immune modulators are regulated, in part, by their subcellular localization, the review places special emphasis on the dynamics and nuclear–cytoplasmic transport of immune receptors and regulators and highlights the importance of this process in generating orderly events during an innate immune response. The review also covers the recently discovered contributions of the ER quality-control pathways in ensuring the signaling competency of cell surface immune receptors or immune regulators.
Collapse
Affiliation(s)
- Meenu S Padmanabhan
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis 95616, USA
| | | |
Collapse
|
309
|
Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochem Biophys Res Commun 2010; 401:598-604. [DOI: 10.1016/j.bbrc.2010.09.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 11/21/2022]
|
310
|
Ramírez V, Van der Ent S, García-Andrade J, Coego A, Pieterse CMJ, Vera P. OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:199. [PMID: 20836879 PMCID: PMC2956548 DOI: 10.1186/1471-2229-10-199] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/13/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Upon appropriate stimulation, plants increase their level of resistance against future pathogen attack. This phenomenon, known as induced resistance, presents an adaptive advantage due to its reduced fitness costs and its systemic and broad-spectrum nature. In Arabidopsis, different types of induced resistance have been defined based on the signaling pathways involved, particularly those dependent on salicylic acid (SA) and/or jasmonic acid (JA). RESULTS Here, we have assessed the implication of the transcriptional regulator OCP3 in SA- and JA-dependent induced defenses. Through a series of double mutant analyses, we conclude that SA-dependent defense signaling does not require OCP3. However, we found that ocp3 plants are impaired in a Pseudomonas fluorescens WCS417r-triggered induced systemic resistance (ISR) against both Pseudomonas syrinagae DC3000 and Hyaloperonospora arabidopsidis, and we show that this impairment is not due to a defect in JA-perception. Likewise, exogenous application of JA failed to induce defenses in ocp3 plants. In addition, we provide evidence showing that the over-expression of an engineered cytosolic isoform of the disease resistance regulator NPR1 restores the impaired JA-induced disease resistance in ocp3 plants. CONCLUSIONS Our findings point to a model in which OCP3 may modulate the nucleocytosolic function of NPR1 in the regulation of JA-dependent induced defense responses.
Collapse
Affiliation(s)
- Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Sjoerd Van der Ent
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Corné MJ Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| |
Collapse
|
311
|
Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL. PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. PLANT MOLECULAR BIOLOGY 2010; 74:129-42. [PMID: 20602150 DOI: 10.1007/s11103-010-9660-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/21/2010] [Indexed: 05/07/2023]
Abstract
A MADS-box gene was isolated using the suppressive subtractive hybridization library between early-flowering mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.). This gene is highly homologous with Arabidopsis SHORT VEGETATIVE PHASE (SVP). Based on real-time PCR and in situ hybridization during bud differentiation, PtSVP was expressed intensively in dormant tissue and vegetative meristems. PtSVP transcripts were detected in apical meristems before floral transition, then down-regulated during the transition. PtSVP expression was higher in differentiated (flower primordium) than in undifferentiated cells (apical meristems). The PtSVP expression pattern during apical meristem determination suggested that its function is not to depress flower initiation but to maintain meristem development. Transcription of PtSVP in Arabidopsis svp-41 showed partially rescued SVP function. Ectopic overexpression of PtSVP in wild-type Arabidopsis induced late flowering similar to the phenotypes induced by other SVP/StMADS-11-like genes, but transformants produced additional trichomes and floral defects, such as flower-like structures instead of carpels. Ectopic expression of PtSVP in tobacco also caused additional florets. Overexpression of PtSVP in tobacco inhibited early transition of the coflorescence and prolonged coflorescence development, thus causing additional florets at the later stage. A yeast two-hybrid assay indicated that PtSVP significantly interacted with PtAP1, a homolog of Arabidopsis APETALA1 (AP1). These findings suggest that citrus SVP homolog genes are involved in flowering time regulation and may influence inflorescence meristem identity in some conditions or genetic backgrounds. SVP homologs might have evolved among plant species, but the protein functions are conserved between Arabidopsis and citrus.
Collapse
Affiliation(s)
- Zhi-Min Li
- Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
312
|
Tripathi D, Jiang YL, Kumar D. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett 2010; 584:3458-63. [PMID: 20621100 DOI: 10.1016/j.febslet.2010.06.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 01/24/2023]
Abstract
Tobacco SABP2, a 29kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | |
Collapse
|
313
|
Xie C, Zhou X, Deng X, Guo Y. PKS5, a SNF1-related kinase, interacts with and phosphorylates NPR1, and modulates expression of WRKY38 and WRKY62. J Genet Genomics 2010; 37:359-69. [DOI: 10.1016/s1673-8527(09)60054-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
|
314
|
Vasyukova NI, Ozeretskovskaya OL, Chalenko GI, Gerasimova NG, L’vova AA, Il’ina AV, Levov AN, Varlamov VP, Tarchevsky IA. Immunomodulating activity of chitosan derivatives with salicylic acid and its fragments. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
315
|
Hannah MA, Caldana C, Steinhauser D, Balbo I, Fernie AR, Willmitzer L. Combined transcript and metabolite profiling of Arabidopsis grown under widely variant growth conditions facilitates the identification of novel metabolite-mediated regulation of gene expression. PLANT PHYSIOLOGY 2010; 152:2120-9. [PMID: 20190096 PMCID: PMC2850026 DOI: 10.1104/pp.109.147306] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/12/2010] [Indexed: 05/19/2023]
Abstract
Regulation of metabolism at the level of transcription and its corollary metabolite-mediated regulation of transcription are well-documented mechanisms by which plants adapt to circumstance. That said the function of only a minority of transcription factor networks are fully understood and it seems likely that we have only identified a subset of the metabolites that play a mediator function in the regulation of transcription. Here we describe an integrated genomics approach in which we perform combined transcript and metabolite profiling on Arabidopsis (Arabidopsis thaliana) plants challenged by various environmental extremes. We chose this approach to generate a large variance in the levels of all parameters recorded. The data was then statistically evaluated to identify metabolites whose level robustly correlated with those of a particularly large number of transcripts. Since correlation alone provides no proof of causality we subsequently attempted to validate these putative mediators of gene expression via a combination of statistical analysis of data available in publicly available databases and iterative experimental evaluation. Data presented here suggest that, on adoption of appropriate caution, the approach can be used for the identification of metabolite mediators of gene expression. As an exemplary case study we document that in plants, as in yeast (Saccharomyces cerevisiae) and mammals, leucine plays an important role as a regulator of gene expression and provide a leucine response gene regulatory network.
Collapse
Affiliation(s)
| | | | | | | | | | - Lothar Willmitzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
316
|
Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C. Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:340-51. [PMID: 20121455 DOI: 10.1094/mpmi-23-3-0340] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana vtc1-1 mutant exhibits increased resistance to the virulent bacterial pathogen Pseudomonas syringae. This response correlates with heightened levels of salicylic acid (SA), which induces antimicrobial pathogenesis-related (PR) proteins. To determine if SA-mediated, enhanced disease resistance is a general phenomenon of AA deficiency, to elucidate the signal that stimulates SA synthesis, and to identify the biosynthetic pathway through which SA accumulates, we studied the four AA-deficient vtc1-1, vtc2-1, vtc3-1, and vtc4-1 mutants. We also studied double mutants defective in the AA-biosynthetic gene VTC1 and the SA signaling pathway genes PAD4, EDS5, and NPR1, respectively. All vtc mutants were more resistant to P. syringae than the wild type. With the exception of vtc4-1, this correlated with constitutively upregulated H(2)O(2), SA, and messenger RNA levels of PR genes. Double mutants exhibited decreased SA levels and enhanced susceptibility to P. syringae compared with the wild type, suggesting that vtc1-1 requires functional PAD4, EDS5, and NPR1 for SA biosynthesis and pathogen resistance. We suggest that AA deficiency causes constitutive priming through a buildup of H(2)O(2) that stimulates SA accumulation, conferring enhanced disease resistance in vtc1-1, vtc2-1, and vtc3-1, whereas vtc4-1 might be sensitized to H(2)O(2) and SA production after infection.
Collapse
Affiliation(s)
- Madhumati Mukherjee
- Department Of Biology, West Virginia University, 53 Campus Drive, Morgantown, USA
| | | | | | | | | | | | | |
Collapse
|
317
|
Zang A, Xu X, Neill S, Cai W. Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:777-89. [PMID: 20018899 PMCID: PMC2814108 DOI: 10.1093/jxb/erp341] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 05/18/2023]
Abstract
Nucleo-cytoplasmic partitioning of regulatory proteins is increasingly being recognized as a major control mechanism for the regulation of signalling in plants. Ras-related nuclear protein (Ran) GTPase is required for regulating transport of proteins and RNA across the nuclear envelope and also has roles in mitotic spindle assembly and nuclear envelope (NE) assembly. However, thus far little is known of any Ran functions in the signalling pathways in plants in response to changing environmental stimuli. The OsRAN2 gene, which has high homology (77% at the amino acid level) with its human counterpart, was isolated here. Subcellular localization results showed that OsRan2 is mainly localized in the nucleus, with some in the cytoplasm. Transcription of OsRAN2 was reduced by salt, osmotic, and exogenous abscisic acid (ABA) treatments, as determined by real-time PCR. Overexpression of OsRAN2 in rice resulted in enhanced sensitivity to salinity, osmotic stress, and ABA. Seedlings of transgenic Arabidopsis thaliana plants overexpressing OsRAN2 were overly sensitive to salinity stress and exogenous ABA treatment. Furthermore, three ABA- or stress-responsive genes, AtNCED3, AtPLC1, and AtMYB2, encoding a key enzyme in ABA synthesis, a phospholipase C homologue, and a putative transcriptional factor, respectively, were shown to have differentially induced expression under salinity and ABA treatments in transgenic and wild-type Arabidopsis plants. OsRAN2 overexpression in tobacco epidermal leaf cells disturbed the nuclear import of a maize (Zea mays L.) leaf colour transcription factor (Lc). In addition, gene-silenced rice plants generated via RNA interference (RNAi) displayed pleiotropic developmental abnormalities and were male sterile.
Collapse
Affiliation(s)
- Aiping Zang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Xiaojie Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Steven Neill
- Centre for Research in Plant Science, University of the West of England, Bristol BS16 1QY, UK
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
318
|
Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS. Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 2010; 19:959-75. [DOI: 10.1007/s11248-010-9374-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/01/2010] [Indexed: 11/28/2022]
|
319
|
Zhang X, Chen S, Mou Z. Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:144-8. [PMID: 19716624 DOI: 10.1016/j.jplph.2009.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 05/20/2023]
Abstract
Plant systemic acquired resistance (SAR) is a broad-spectrum immune response in which pathogen infection in local tissue induces resistance in systemic leaves. Activation of SAR requires the signal molecule salicylic acid (SA), which is primarily synthesized from chorismate via isochorismate through the action of isochorismate synthase 1 (ICS1) and a putative isochorismate pyruvate lyase. The Arabidopsis transcription coactivator NPR1 is a key regulator of SAR, which functions at multiple nodes in the SA signaling network. NPR1 not only acts downstream of SA to activate SAR, but also upstream of SA to suppress the expression of ICS1, thus inhibiting SA biosynthesis. NPR1 also positively regulates SA tolerance and plays a role in SA-mediated negative regulation of jasmonic acid (JA) signaling. The NPR1 protein contains a functional bipartite nuclear localization signal (NLS). It has been shown that the NLS and nuclear localization of NPR1 are required for activation of pathogenesis-related gene expression, whereas modulation of the crosstalk between SA- and JA-dependent defense pathways is mediated by cytosolic NPR1. In this study we used two transgenic lines, one expressing a mutated npr1 with a dysfunctional NLS and the other in which NPR1 nuclear localization can be induced by dexamethasone treatment, to test whether nuclear localization is required for other functions of NPR1. We found that prevention of NPR1 nuclear localization renders transgenic seedlings sensitive to the toxicity of high levels of SA and causes over-accumulation of ICS1 transcripts and SA in response to pathogen infection. Induction of NPR1 nuclear localization restores SA tolerance and normal accumulation of ICS1 transcripts and SA. These results indicate that the NLS and nuclear localization of NPR1 are required for regulation of SA tolerance, ICS1 expression and SA accumulation.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
320
|
Zhang Y, Shi J, Liu JY, Zhang Y, Zhang JD, Guo XQ. Identification of a novel NPR1-like gene from Nicotiana glutinosa and its role in resistance to fungal, bacterial and viral pathogens. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:23-34. [PMID: 20653885 DOI: 10.1111/j.1438-8677.2009.00210.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The NPR1 or NPR1-like genes play a pivotal role in systemic acquired resistance in plants. Here, we isolated and identified a novel tobacco (Nicotiana glutinosa) NPR1-like gene (designated as NgNPR3). The full-length cDNA is 2049 bp in length with a 1767 bp open reading frame which encodes a 588 amino acids protein with an estimated molecular mass of 66 kDa and a calculated pI of 7.14. Homology analysis suggested that the NgNPR3 protein shares significant similarity to AtNPR3 of Arabidopsis. Transient expression assay of NgNPR3-GFP fusion gene in onion epidermal cells revealed that the NgNPR3 protein was localized to the cytoplasm and moved into the nucleus after redox change. RT-PCR results indicated that NgNPR3 was up-regulated after treatment with SA, INA, H(2)O(2,) and MeJA, which play important roles in various resistance responses in tobacco. Transcriptional level of NgNPR3 was also up-regulated after inoculation with Rhizoctonia solani, Phytophthora parasitica, Alternaria alternata, Pseudomonas solanacearum, and potato virus Y (PVY), respectively. When NgNPR3 was overexpressed in N. tabacum cv. Samsun plants, the transgenic plants showed enhanced resistance to the pathogens A. alternate, P. solanacearum and PVY. Furthermore, NgNPR3-mediated disease resistance is dosage-dependent. Our results suggest that NgNPR3 could be a putative NPR1-like gene, and might play an important role in resistance to a broad range of pathogens in tobacco.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | | | | | | | | | | |
Collapse
|
321
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
322
|
|
323
|
Gou M, Su N, Zheng J, Huai J, Wu G, Zhao J, He J, Tang D, Yang S, Wang G. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:757-70. [PMID: 19682297 DOI: 10.1111/j.1365-313x.2009.03995.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabidopsis gain-of-resistance mutants, which show HR-like lesion formation and SAR-like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense-response gene expression. The cpr30-conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30-conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30-conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30-GFP fusion protein in the cytoplasm and nucleus. As an F-box protein, CPR30 could interact with multiple Arabidopsis-SKP1-like (ASK) proteins in vivo. Co-localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA-dependent and SA-independent defense signaling, most likely through the ubiquitin-proteasome pathway in Arabidopsis.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Agrobiotechnology and National Center for Plant Gene Research (Beijing), China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C. The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. THE PLANT CELL 2009; 21:3700-13. [PMID: 19915088 PMCID: PMC2798319 DOI: 10.1105/tpc.109.069971] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/21/2009] [Accepted: 11/02/2009] [Indexed: 05/19/2023]
Abstract
TGA2 and NONEXPRESSER OF PR GENES1 (NPR1) are activators of systemic acquired resistance (SAR) and of the SAR marker gene pathogenesis-related-1 (PR-1) in Arabidopsis thaliana. TGA2 is a transcriptional repressor required for basal repression of PR-1, but during SAR, TGA2 recruits NPR1 as part of an enhanceosome. Transactivation by the enhanceosome requires the NPR1 BTB/POZ domain. However, the NPR1 BTB/POZ domain does not contain an autonomous transactivation domain; thus, its molecular role within the enhanceosome remains elusive. We now show by gel filtration analyses that TGA2 binds DNA as a dimer, tetramer, or oligomer. Using in vivo plant transcription assays, we localize the repression domain of TGA2 to the N terminus and demonstrate that this domain is responsible for modulating the DNA binding activity of the oligomer both in vitro and in vivo. We confirm that the NPR1 BTB/POZ domain interacts with and negates the molecular function of the TGA2 repression domain by excluding TGA2 oligomers from cognate DNA. These data distinguish the NPR1 BTB/POZ domain from other known BTB/POZ domains and establish its molecular role in the context of the Arabidopsis PR-1 gene enhanceosome.
Collapse
Affiliation(s)
- Patrick Boyle
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Errol Le Su
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Amanda Rochon
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Heather L. Shearer
- National Research Council Canada, Plant Biotechnology Institute, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Jhadeswar Murmu
- National Research Council Canada, Plant Biotechnology Institute, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Jee Yan Chu
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Pierre R. Fobert
- National Research Council Canada, Plant Biotechnology Institute, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Charles Després
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
- Address correspondence to
| |
Collapse
|
325
|
Sandhu D, Tasma IM, Frasch R, Bhattacharyya MK. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1. BMC PLANT BIOLOGY 2009; 9:105. [PMID: 19656407 PMCID: PMC2738679 DOI: 10.1186/1471-2229-9-105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/05/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. RESULTS Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. CONCLUSION Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1, with Ser and Leu residues in GmNPR1-1 and GmNPR1-2, respectively, suggested that there may be differences between the regulatory mechanisms of GmNPR1 and Arabidopsis NPR proteins.
Collapse
Affiliation(s)
- Devinder Sandhu
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA
| | - I Made Tasma
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Current address: The Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A Bogor 16111, Indonesia
| | - Ryan Frasch
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA
| | | |
Collapse
|
326
|
Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 2009; 137:860-72. [PMID: 19490895 PMCID: PMC2704463 DOI: 10.1016/j.cell.2009.03.038] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/10/2008] [Accepted: 03/17/2009] [Indexed: 01/28/2023]
Abstract
Systemic acquired resistance (SAR) is a broad-spectrum plant immune response involving profound transcriptional changes that are regulated by the coactivator NPR1. Nuclear translocation of NPR1 is a critical regulatory step, but how the protein is regulated in the nucleus is unknown. Here, we show that turnover of nuclear NPR1 protein plays an important role in modulating transcription of its target genes. In the absence of pathogen challenge, NPR1 is continuously cleared from the nucleus by the proteasome, which restricts its coactivator activity to prevent untimely activation of SAR. Surprisingly, inducers of SAR promote NPR1 phosphorylation at residues Ser11/Ser15, and then facilitate its recruitment to a Cullin3-based ubiquitin ligase. Turnover of phosphorylated NPR1 is required for full induction of target genes and establishment of SAR. These in vivo data demonstrate dual roles for coactivator turnover in both preventing and stimulating gene transcription to regulate plant immunity.
Collapse
Affiliation(s)
- Steven H. Spoel
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | - Yasuomi Tada
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Natalie W. Spivey
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
327
|
Characterization of Arabidopsis 6-Phosphogluconolactonase T-DNA Insertion Mutants Reveals an Essential Role for the Oxidative Section of the Plastidic Pentose Phosphate Pathway in Plant Growth and Development. ACTA ACUST UNITED AC 2009; 50:1277-91. [DOI: 10.1093/pcp/pcp070] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
328
|
Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B, Chong J. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC PLANT BIOLOGY 2009; 9:54. [PMID: 19432948 PMCID: PMC2686700 DOI: 10.1186/1471-2229-9-54] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/11/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapevine protection against diseases needs alternative strategies to the use of phytochemicals, implying a thorough knowledge of innate defense mechanisms. However, signalling pathways and regulatory elements leading to induction of defense responses have yet to be characterized in this species. In order to study defense response signalling to pathogens in Vitis vinifera, we took advantage of its recently completed genome sequence to characterize two putative orthologs of NPR1, a key player in salicylic acid (SA)-mediated resistance to biotrophic pathogens in Arabidopsis thaliana. RESULTS Two cDNAs named VvNPR1.1 and VvNPR1.2 were isolated from Vitis vinifera cv chardonnay, encoding proteins showing 55% and 40% identity to Arabidopsis NPR1 respectively. Constitutive expression of VvNPR1.1 and VvNPR1.2 monitored in leaves of V. vinifera cv chardonnay was found to be enhanced by treatment with benzothiadiazole, a SA analog. In contrast, VvNPR1.1 and VvNPR1.2 transcript levels were not affected during infection of resistant Vitis riparia or susceptible V. vinifera with Plasmopara viticola, the causal agent of downy mildew, suggesting regulation of VvNPR1 activity at the protein level. VvNPR1.1-GFP and VvNPR1.2-GFP fusion proteins were transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, where they localized predominantly to the nucleus. In this system, VvNPR1.1 and VvNPR1.2 expression was sufficient to trigger the accumulation of acidic SA-dependent pathogenesis-related proteins PR1 and PR2, but not of basic chitinases (PR3) in the absence of pathogen infection. Interestingly, when VvNPR1.1 or AtNPR1 were transiently overexpressed in Vitis vinifera leaves, the induction of grapevine PR1 was significantly enhanced in response to P. viticola. CONCLUSION In conclusion, our data identified grapevine homologs of NPR1, and their functional analysis showed that VvNPR1.1 and VvNPR1.2 likely control the expression of SA-dependent defense genes. Overexpression of VvNPR1 has thus the potential to enhance grapevine defensive capabilities upon fungal infection. As a consequence, manipulating VvNPR1 and other signalling elements could open ways to strengthen disease resistance mechanisms in this crop species.
Collapse
Affiliation(s)
- Gaëlle Le Henanff
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, EA3991), Université de Haute Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| | - Thierry Heitz
- Département Réseaux Métaboliques chez les Végétaux, IBMP du CNRS (UPR2357), 12 rue du général Zimmer, 67000 Strasbourg, France
| | - Pere Mestre
- Laboratoire de Génétique et Amélioration de la Vigne, INRA et Université de Strasbourg (UMR1131), 28 rue de Herrlisheim, 68000 Colmar, France
| | - Jerôme Mutterer
- Département Réseaux Métaboliques chez les Végétaux, IBMP du CNRS (UPR2357), 12 rue du général Zimmer, 67000 Strasbourg, France
| | - Bernard Walter
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, EA3991), Université de Haute Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, EA3991), Université de Haute Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| |
Collapse
|
329
|
Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. PLANT PHYSIOLOGY 2009; 149:1797-809. [PMID: 19176718 PMCID: PMC2663751 DOI: 10.1104/pp.108.133926] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/25/2009] [Indexed: 05/18/2023]
Abstract
The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to fine-tune defenses that are activated in response to multiple attackers. In Arabidopsis (Arabidopsis thaliana), NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) was demonstrated to be required for SA-mediated suppression of JA-dependent defenses. Because ET is known to enhance SA/NPR1-dependent defense responses, we investigated the role of ET in the SA-JA signal interaction. Pharmacological experiments with gaseous ET and the ET precursor 1-aminocyclopropane-1-carboxylic acid showed that ET potentiated SA/NPR1-dependent PATHOGENESIS-RELATED1 transcription, while it rendered the antagonistic effect of SA on methyl jasmonate-induced PDF1.2 and VSP2 expression NPR1 independent. This overriding effect of ET on NPR1 function in SA-JA cross talk was absent in the npr1-1/ein2-1 double mutant, demonstrating that it is mediated via ET signaling. Abiotic and biotic induction of the ET response similarly abolished the NPR1 dependency of the SA-JA signal interaction. Furthermore, JA-dependent resistance against biotic attackers was antagonized by SA in an NPR1-dependent fashion only when the plant-attacker combination did not result in the production of high levels of endogenous ET. Hence, the interaction between ET and NPR1 plays an important modulating role in the fine tuning of the defense signaling network that is activated upon pathogen and insect attack. Our results suggest a model in which ET modulates the NPR1 dependency of SA-JA antagonism, possibly to compensate for enhanced allocation of NPR1 to function in SA-dependent activation of PR genes.
Collapse
Affiliation(s)
- Antonio Leon-Reyes
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H. Enhanced Defense Responses in Arabidopsis Induced by the Cell Wall Protein Fractions from Pythium oligandrum Require SGT1, RAR1, NPR1 and JAR1. ACTA ACUST UNITED AC 2009; 50:924-34. [DOI: 10.1093/pcp/pcp044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
331
|
Zhang X, Li D, Zhang H, Wang X, Zheng Z, Song F. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses. Mol Biol Rep 2009; 37:653-60. [PMID: 19288292 DOI: 10.1007/s11033-009-9507-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
A rice gene, OsBIANK1, encoding a protein containing a typical ankyrin repeat domain, was cloned and identified. The OsBIANK1 protein, consisting of 329 amino acids, contains a conserved ankyrin repeat domain with two ankyrin repeats organized in tandem and was showed to be localized on cytoplasmic membrane during transient expression in onion epidermal cells. Expression of OsBIANK1 was induced by treatment with benzothiadiazole (BTH), a chemical inducer capable of inducing disease resistance response in rice. In BTH-treated rice seedlings, expression of OsBIANK1 was further induced by infection with Magnaporthe grisea, the rice blast fungus, as compared with those in water-treated seedlings. Our preliminary results confirm previous evidences that OsBIANK1 may be involved in regulation of disease resistance response in rice.
Collapse
Affiliation(s)
- Xinchun Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310029, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
332
|
Dong X, Hong Z, Chatterjee J, Kim S, Verma DPS. Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. PLANTA 2008; 229:87-98. [PMID: 18807070 DOI: 10.1007/s00425-008-0812-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 08/27/2008] [Indexed: 05/20/2023]
Abstract
Callose synthesis occurs at specific stages of plant cell wall development in all cell types, and in response to pathogen attack, wounding and physiological stresses. We determined the expression pattern of "upstream regulatory sequence" of 12 Arabidopsis callose synthase genes (CalS1-12) genes and demonstrated that different callose synthases are expressed specifically in different tissues during plant development. That multiple CalS genes are expressed in the same cell type suggests the possibility that CalS complex may be constituted by heteromeric subunits. Five CalS genes were induced by pathogen (Hyaloperonospora arabidopsis, previously known as Peronospora parasitica, the causal agent of downy mildew) or salicylic acid (SA), while the other seven CalS genes were not affected by these treatments. Among the genes that are induced, CalS1 and CalS12 showed the highest responses. In Arabidopsis npr1 mutant, impaired in response of pathogenesis related (PR) genes to SA, the induction of CalS1 and CalS12 genes by the SA or pathogen treatments was significantly reduced. The patterns of expression of the other three CalS genes were not changed significantly in the npr1 mutant. These results suggest that the high induction observed of CalS1 and CalS12 is Npr1 dependent while the weak induction of five CalS genes is Npr1 independent. In a T-DNA knockout mutant of CalS12, callose encasement around the haustoria on the infected leaves was reduced and the mutant was found to be more resistant to downy mildew as compared to the wild type plants.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Plant Biotechnology Center, Department of Plant Pathology and Department of Molecular Genetics, The Ohio State University, 240 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210-1002, USA
| | | | | | | | | |
Collapse
|
333
|
Wang L, Mitra RM, Hasselmann KD, Sato M, Lenarz-Wyatt L, Cohen JD, Katagiri F, Glazebrook J. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1408-1420. [PMID: 18842091 DOI: 10.1094/mpmi-21-11-1408] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Expression profiling of wild-type plants and mutants with defects in key components of the defense signaling network was used to model the Arabidopsis network 24 h after infection by Pseudomonas syringae pv. maculicola ES4326. Results using the Affymetrix ATH1 array revealed that expression levels of most pathogen-responsive genes were affected by mutations in coi1, ein2, npr1, pad4, or sid2. These five mutations defined a small number of different expression patterns displayed by the majority of pathogen-responsive genes. P. syringae pv. tomato strain DC3000 elicited a much weaker salicylic acid (SA) response than ES4326. Additional mutants were profiled using a custom array. Profiles of pbs3 and ndr1 revealed major effects of these mutations and allowed PBS3 and NDR1 to be placed between the EDS1/PAD4 node and the SA synthesis node in the defense network. Comparison of coi1, dde2, and jar1 profiles showed that many genes were affected by coi1 but very few were affected by dde2 or jar1. Profiles of coi1 plants infected with ES4326 were very similar to those of wild-type plants infected with bacteria unable to produce the phytotoxin coronatine, indicating that, essentially, all COI1-dependent gene expression changes in this system are caused by coronatine.
Collapse
Affiliation(s)
- Lin Wang
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1445 Gortner Avenue, St. Paul 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
334
|
Yaeno T, Iba K. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. PLANT PHYSIOLOGY 2008; 148:1032-41. [PMID: 18753285 PMCID: PMC2556844 DOI: 10.1104/pp.108.124529] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 08/25/2008] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is a primary factor responsible for exerting diverse immune responses in plants and is synthesized in response to attack by a wide range of pathogens. The Arabidopsis (Arabidopsis thaliana) sid2 mutant is defective in a SA biosynthetic pathway involving ISOCHORISMATE SYNTHASE1 (ICS1) and consequently contains reduced levels of SA. However, the sid2 mutant as well as ICS-suppressed tobacco (Nicotiana benthamiana) still accumulate a small but significant level of SA. These observations along with previous studies suggest that SA might also be synthesized by another pathway involving benzoic acid (BA). Here we isolated a benzoic acid hypersensitive1-Dominant (bah1-D) mutant that excessively accumulated SA after application of BA from activation-tagged lines. This mutant also accumulated higher levels of SA after inoculation with Pseudomonas syringae pv tomato DC3000. Analysis of the bah1-D sid2 double mutant suggested that the bah1-D mutation caused both ICS1-dependent and -independent accumulation. In addition, the bah1-D mutant showed SA-dependent localized cell death in response to P. syringae pv tomato DC3000. The T-DNA insertional mutation that caused the bah1-D phenotypes resulted in the suppression of expression of the NLA gene, which encodes a RING-type ubiquitin E3 ligase. These results suggest that BAH1/NLA plays crucial roles in the ubiquitination-mediated regulation of immune responses, including BA- and pathogen-induced SA accumulation, and control of cell death.
Collapse
Affiliation(s)
- Takashi Yaeno
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | | |
Collapse
|
335
|
Quilis J, Peñas G, Messeguer J, Brugidou C, San Segundo B. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1215-31. [PMID: 18700826 DOI: 10.1094/mpmi-21-9-1215] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nonexpressor of pathogenesis-related (PR) genes (NPR1) protein plays an important role in mediating defense responses activated by pathogens in Arabidopsis. In rice, a disease-resistance pathway similar to the Arabidopsis NPR1-mediated signaling pathway one has been described. Here, we show that constitutive expression of the Arabidopsis NPR1 (AtNPR1) gene in rice confers resistance against fungal and bacterial pathogens. AtNPR1 exerts its protective effects against fungal pathogens by priming the expression of salicylic acid (SA)-responsive endogenous genes, such as the PR1b, TLP (PR5), PR10, and PBZ1. However, expression of AtNPR1 in rice has negative effects on viral infections. The AtNPR1-expressing rice plants showed a higher susceptibility to infection by the Rice yellow mottle virus (RYMV) which correlated well with a misregulation of RYMV-responsive genes, including expression of the SA-regulated RNA-dependent RNA polymerase 1 gene (OsRDR1). Moreover, AtNPR1 negatively regulates the expression of genes playing a role in the plant response to salt and drought stress (rab21, salT, and dip1), which results in a higher sensitivity of AtNPR1 rice to the two types of abiotic stress. These observations suggest that AtNPR1 has both positive and negative regulatory roles in mediating defense responses against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jordi Quilis
- Consorcio CSIC-IRTA Laboratorio de Genética Molecular Vegetal, Jordi Girona 18, Barcelona, Spain
| | | | | | | | | |
Collapse
|
336
|
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 2008. [PMID: 18635760 DOI: 10.1126/science.1156970>] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Changes in redox status have been observed during immune responses in different organisms, but the associated signaling mechanisms are poorly understood. In plants, these redox changes regulate the conformation of NPR1, a master regulator of salicylic acid (SA)-mediated defense genes. NPR1 is sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. We report that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its oligomerization, which maintains protein homeostasis upon SA induction. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRXs). Mutations in both NPR1 cysteine-156 and TRX compromised NPR1-mediated disease resistance. Thus, the regulation of NPR1 is through the opposing action of GSNO and TRX. These findings suggest a link between pathogen-triggered redox changes and gene regulation in plant immunity.
Collapse
Affiliation(s)
- Yasuomi Tada
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
337
|
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 2008; 321:952-6. [PMID: 18635760 PMCID: PMC3833675 DOI: 10.1126/science.1156970] [Citation(s) in RCA: 750] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in redox status have been observed during immune responses in different organisms, but the associated signaling mechanisms are poorly understood. In plants, these redox changes regulate the conformation of NPR1, a master regulator of salicylic acid (SA)-mediated defense genes. NPR1 is sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. We report that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its oligomerization, which maintains protein homeostasis upon SA induction. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRXs). Mutations in both NPR1 cysteine-156 and TRX compromised NPR1-mediated disease resistance. Thus, the regulation of NPR1 is through the opposing action of GSNO and TRX. These findings suggest a link between pathogen-triggered redox changes and gene regulation in plant immunity.
Collapse
Affiliation(s)
- Yasuomi Tada
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | - Steven H. Spoel
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | | | - Zhonglin Mou
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | - Junqi Song
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | - Chun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| |
Collapse
|
338
|
Molecular cloning and characterization of GhNPR1, a gene implicated in pathogen responses from cotton (Gossypium hirsutum L.). Biosci Rep 2008; 28:7-14. [PMID: 18215146 DOI: 10.1042/bsr20070028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel gene, designated as GhNPR1 (Gossypium hirsutum non-expressor of pathogenesis-related genes 1), was isolated from G. hirsutum (cotton) by RT-PCR (reverse transcription-PCR) and RACE (rapid amplification of cDNA ends). The full-length cDNA was 2108 bp long and had an ORF (open reading frame) that putatively encoded a polypeptide of 592 amino acids, with a predicted molecular mass of 66 kDa. Comparison of this protein sequence with that of Arabidopsis thaliana, Brassica juncea and Nicotiana tabacum showed that the amino-acid homology was 52.98, 52.32 and 54.98% respectively. Analysis of the exon-intron structure of the GhNPR1 gene showed that GhNPR1 consisted of four exons and three introns. Southern-blot analysis revealed that the GhNPR1 was a single-copy gene in cotton. Northern-blot analysis indicated that GhNPR1 was constitutively expressed in all tested tissues, including roots, stems and leaves, with the high expression in stems and leaves. In addition, GhNPR1 was also found to be induced by signalling molecules for plant defence responses, such as methyl jasmonate, salicylic acid and ethylene, as well as attack by pathogens, such as Fusarium oxysporum and Xanthomonas campestris. These results suggest that GhNPR1 may play an important role in the response to pathogen infections in cotton plants.
Collapse
|
339
|
Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. PLANT PHYSIOLOGY 2008; 147:1358-68. [PMID: 18539774 PMCID: PMC2442557 DOI: 10.1104/pp.108.121392] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 04/29/2008] [Indexed: 05/18/2023]
Abstract
Cross talk between salicylic acid (SA) and jasmonic acid (JA) signaling pathways plays an important role in the regulation and fine tuning of induced defenses that are activated upon pathogen or insect attack. Pharmacological experiments revealed that transcription of JA-responsive marker genes, such as PDF1.2 and VSP2, is highly sensitive to suppression by SA. This antagonistic effect of SA on JA signaling was also observed when the JA pathway was biologically activated by necrotrophic pathogens or insect herbivores, and when the SA pathway was triggered by a biotrophic pathogen. Furthermore, all 18 Arabidopsis (Arabidopsis thaliana) accessions tested displayed SA-mediated suppression of JA-responsive gene expression, highlighting the potential significance of this phenomenon in induced plant defenses in nature. During plant-attacker interactions, the kinetics of SA and JA signaling are highly dynamic. Mimicking this dynamic response by applying SA and methyl jasmonate (MeJA) at different concentrations and time intervals revealed that PDF1.2 transcription is readily suppressed when the SA response was activated at or after the onset of the JA response, and that this SA-JA antagonism is long lasting. However, when SA was applied more than 30 h prior to the onset of the JA response, the suppressive effect of SA was completely absent. The window of opportunity of SA to suppress MeJA-induced PDF1.2 transcription coincided with a transient increase in glutathione levels. The glutathione biosynthesis inhibitor l-buthionine-sulfoximine strongly reduced PDF1.2 suppression by SA, suggesting that SA-mediated redox modulation plays an important role in the SA-mediated attenuation of the JA signaling pathway.
Collapse
Affiliation(s)
- Annemart Koornneef
- Graduate School Experimental Plant Sciences, Institute of Environmental Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
340
|
An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. PLANTA 2008; 228:61-78. [PMID: 18327607 PMCID: PMC2413075 DOI: 10.1007/s00425-008-0719-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/18/2008] [Indexed: 05/07/2023]
Abstract
Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonas campestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic Arabidopsis CaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants.
Collapse
Affiliation(s)
- Soo Hyun An
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| | - Kee Hoon Sohn
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
- Sainsbury Laboratory, John Innes Centre, Norwich, NR4 7UH UK
| | - Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| | - In Sun Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| | - Sung Chul Lee
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102 USA
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| |
Collapse
|
341
|
Liu PF, Wang YK, Chang WC, Chang HY, Pan RL. Regulation of Arabidopsis thaliana Ku genes at different developmental stages under heat stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:402-7. [PMID: 18515112 DOI: 10.1016/j.bbagrm.2008.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 11/17/2022]
Abstract
Ku, a heterodimeric protein consisting of 70- and 80-kDa subunits, is involved in many cellular processes, such as DNA replication, cell cycle regulation and heat shock response. Moreover, the expression of Arabidopsis thaliana Ku genes (AtKu) is modulated by certain plant hormones through several signal transduction pathways. This study investigated how AtKu are regulated by heat stress. AtKu expression in 3-week-old young seedlings was down-regulated by heat stress in a time-dependent manner, as examined using real-time quantitative PCR, GUS reporter systems, and western blotting analysis. Additionally, the heat-induced repression of AtKu was mediated through the abscisic acid (ABA) biosynthetic pathway, as shown by the reversal of AtKu suppression in the ABA biosynthesis mutant, aba3, and by an increase in the ABA level as analyzed by reverse-phase high performance liquid chromatography. Heat stress-induced regulation of AtKu repression also involved ethylene signaling, DNA repair pathways, and fatty acid synthesis. Furthermore, AtKu expression was repressed in stems, rosette leaves, and cauline leaves in 4-5-week-old plants under heat stress, whereas it remained unchanged in roots and primary inflorescence, indicating that heat differentially modulated AtKu expression in distinct tissues of Arabidopsis.
Collapse
Affiliation(s)
- Pei Feng Liu
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu, Taiwan 30013, ROC
| | | | | | | | | |
Collapse
|
342
|
Abstract
Land plants possess innate immune systems that can control resistance against pathogen infection. Conceptually, there are two branches of the plant innate immune system. One branch recognizes conserved features of microbial pathogens, while a second branch specifically detects the presence of pathogen effector proteins by plant resistance (R) genes. Innate immunity controlled by plant R genes is called effector-triggered immunity. Although R genes can recognize all classes of plant pathogens, the majority can be grouped into one large family, encoding proteins with a nucleotide binding site and C-terminal leucine rich repeat domains. Despite the importance and number of R genes present in plants, we are just beginning to decipher the signaling events required to initiate defense responses. Recent exciting discoveries have implicated dynamic nuclear trafficking of plant R proteins to achieve effector-triggered immunity. Furthermore, there are several additional lines of evidence implicating nucleo-cyctoplasmic trafficking in plant disease resistance, as mutations in nucleoporins and importins can compromise resistance signaling. Taken together, these data illustrate the importance of nuclear trafficking in the manifestation of disease resistance mediated by R genes.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, The University of California, Davis, CA, USA
| | | |
Collapse
|
343
|
Chern M, Canlas PE, Ronald PC. Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain. MOLECULAR PLANT 2008; 1:552-9. [PMID: 19825560 DOI: 10.1093/mp/ssn017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Systemic Acquired Resistance (SAR) in plants confers lasting broad-spectrum resistance to pathogens and requires the phytohormone salicylic acid (SA). Arabidopsis NPR1/NIM1 is a key regulator of the SAR response. Studies attempting to reveal the function of NPR1 and how it mediates SA signaling have led to isolation of two classes of proteins that interact with NPR1: the first class includes rice NRR, Arabidopsis NIMIN1, NIMIN2, and NIMIN3, and tobacco NIMIN2-like proteins; the second class belongs to TGA transcription factors. We have previously shown that overexpression of NRR in rice suppresses both basal and Xa21-mediated resistance. In order to test whether NRR affects SA-induced, NPR1-mediated SAR, we have transformed Arabidopsis with the rice NRR gene and tested its effects on the defense response. Expression of NRR in Arabidopsis results in suppression of PR gene induction by SAR inducer and resistance to pathogens. These phenotypes are even more severe than those of the npr1-1 mutant. The ability of NRR to suppress PR gene induction and disease resistance is correlated with its ability to bind to NPR1 because two point mutations in NRR, which reduce NPR1 binding, fail to suppress NPR1. In contrast, wild-type and a mutant NRR, which still binds to NPR1 strongly, retain the ability to suppress the SAR response. Replacing the C-terminal 79 amino acids of NRR with the VP16 activation domain turns the fusion protein into a transcriptional co-activator. These results indicate that NRR binds to NPR1 in vivo in a protein complex to inhibit transcriptional activation of PR genes and that NRR contains a transcription repression domain for active repression.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
344
|
Signaling and Integration of Defense Functions of Tocopherol, Ascorbate and Glutathione. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
345
|
Weech MH, Chapleau M, Pan L, Ide C, Bede JC. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2437-48. [PMID: 18487634 PMCID: PMC2423655 DOI: 10.1093/jxb/ern108] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana (L.) Heynh. genotypes limited in their ability to mount either octadecanoid-dependent induced resistance (IR(-)) or systemic acquired resistance (SAR(-)) were used to characterize the roles of these pathways in plant-herbivore interactions. Molecular and biochemical markers of IR were analysed in plants subject to herbivory by caterpillars of the beet armyworm, Spodoptera exigua Hübner, which had either intact or impaired salivary secretions since salivary enzymes, such as glucose oxidase, have been implicated in the ability of caterpillars to circumvent induced plant defences. Transcript expression of genes encoding laccase-like multicopper oxidase [AtLMCO4 (polyphenol oxidase)] and defensin (AtPDF1.2) showed salivary-specific patterns which were disrupted in the SAR(-) mutant plants. The activity of octadecanoid-associated anti-nutritive proteins, such as LMCO and trypsin inhibitor, showed similar patterns. Gene and protein changes parallel plant hormone levels where elevated jasmonic acid was observed in wild-type plants fed upon by caterpillars with impaired salivary secretions compared with plants subject to herbivory by normal caterpillars. This salivary-specific difference in jasmonic acid levels was alleviated in SAR(-) mutants. These results support the model that caterpillar saliva interferes with jasmonate-dependent plant defences by activating the SAR pathway.
Collapse
|
346
|
Xue C, Tada Y, Dong X, Heitman J. The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe 2007; 1:263-73. [PMID: 18005707 DOI: 10.1016/j.chom.2007.05.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/19/2007] [Accepted: 05/21/2007] [Indexed: 12/17/2022]
Abstract
Cryptococcus is a globally distributed human fungal pathogen that primarily afflicts immunocompromised individuals. How and why this human fungal pathogen associates with plants and how this environmental niche influences its life cycle remains a mystery. We established Cryptococcus-Arabidopsis and Cryptococcus-Eucalyptus systems and discovered that Cryptococcus proliferates and mates on plant surfaces. Mating efficiency of C. gattii was markedly enhanced on plants and myo-inositol and indole acetic acid were specific plant products that stimulated mating. On Arabidopsis, dwarfing and chlorosis were observed following infection with a fungal mixture of two opposite mating-type strains, but not with either mating-type alone. This infection process is countered by the plant jasmonate-mediated defense mechanism. These findings reveal that Cryptococcus can parasitically interact with plants to complete its sexual cycle, which may impact an understanding of the origin and evolution of both plant and animal fungal pathogens in nature.
Collapse
Affiliation(s)
- Chaoyang Xue
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
347
|
Choudhary DK, Prakash A, Johri BN. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 2007; 47:289-97. [PMID: 23100680 PMCID: PMC3450033 DOI: 10.1007/s12088-007-0054-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022] Open
Abstract
Plants possess a range of active defense apparatuses that can be actively expressed in response to biotic stresses (pathogens and parasites) of various scales (ranging from microscopic viruses to phytophagous insect). The timing of this defense response is critical and reflects on the difference between coping and succumbing to such biotic challenge of necrotizing pathogens/parasites. If defense mechanisms are triggered by a stimulus prior to infection by a plant pathogen, disease can be reduced. Induced resistance is a state of enhanced defensive capacity developed by a plant when appropriately stimulated. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defenses are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Selected strains of plant growth-promoting rhizobacteria (PGPR) suppress diseases by antagonism between the bacteria and soil-borne pathogens as well as by inducing a systemic resistance in plant against both root and foliar pathogens. Rhizobacteria mediated ISR resembles that of pathogen induced SAR in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Several rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface whereas other rhizobacteria trigger different signaling pathway independent of SA. The existence of SA-independent ISR pathway has been studied in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene signaling. Specific Pseudomonas strains induce systemic resistance in viz., carnation, cucumber, radish, tobacco, and Arabidopsis, as evidenced by an enhanced defensive capacity upon challenge inoculation. Combination of ISR and SAR can increase protection against pathogens that are resisted through both pathways besides extended protection to a broader spectrum of pathogens than ISR/SAR alone. Beside Pseudomonas strains, ISR is conducted by Bacillus spp. wherein published results show that several specific strains of species B. amyloliquifaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B.sphaericus elicit significant reduction in the incidence or severity of various diseases on a diversity of hosts.
Collapse
Affiliation(s)
| | - Anil Prakash
- Department of Biotechnology, Barkatullah University, Bhopal, 462 026 India
| | - B. N. Johri
- Department of Biotechnology, Barkatullah University, Bhopal, 462 026 India
| |
Collapse
|
348
|
Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1568-80. [PMID: 17990964 DOI: 10.1094/mpmi-20-12-1568] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The NPR1 gene plays a pivotal role in systemic acquired resistance in plants. Its overexpression in Arabidopsis and rice results in increased disease resistance and elevated expression of pathogenesis-related (PR) genes. An NPR1 homolog, MpNPR1-1, was cloned from apple (Malus x domestica) and overexpressed in two important apple cultivars, Galaxy and M26. Apple leaf pieces were transformed with the MpNPR1 cDNA under the control of the inducible Pin2 or constitutive Cauliflower mosaic virus (CaMV)35S promoter using Agrobacterium tumefaciens. Overexpression of MpNPR1 mRNA was shown by reverse transcriptase-polymerase chain reaction. Activation of some PR genes (PR2, PR5, and PR8) was observed. Resistance to fire blight was evaluated in a growth chamber by inoculation of the shoot tips of our own rooted 30-cm-tall plants with virulent strain Ea273 of Erwinia amylovora. Transformed Galaxy lines overexpressing MpNPR1 had 32 to 40% of shoot length infected, compared with 80% in control Galaxy plants. Transformed M26 lines overexpressing MpNPR1 under the control of the CaMV35S promoter also showed a significant reduction of disease compared with control M26 plants. Some MpNPR-overexpressing Galaxy lines also exhibited increased resistance to two important fungal pathogens of apple, Venturia inaequalis and Gymnosporangium juniperi-virginianae. Selected transformed lines have been propagated for field trials for disease resistance and fruit quality.
Collapse
Affiliation(s)
- M Malnoy
- Department of Plant Pathology, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | |
Collapse
|
349
|
Livaja M, Zeidler D, von Rad U, Durner J. Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology 2007; 213:161-71. [PMID: 18406364 DOI: 10.1016/j.imbio.2007.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/04/2007] [Accepted: 10/22/2007] [Indexed: 01/13/2023]
Abstract
Many plant-pathogen interactions are controlled by specific interactions between pathogen avirulence (avr) gene loci and the corresponding plant resistance R locus (gene-for-gene-hypothesis). Very often, this type of interaction culminates in a hypersensitive reaction (HR). However, recently pathogen-associated molecular patterns (PAMPs) such as flagellin or lipopolysaccharides (LPS) that are common to all bacteria have been shown to act as general elicitors of basal or innate immune responses in several plant species. Here, we summarize the genetic programs in Arabidopsis thaliana behind the LPS-induced basal response and the HR induced by harpin, respectively. Using Agilent Arabidopsis cDNA microarrays consisting of approximately 15,000 oligomers, changes in transcript accumulation of treated cells were monitored over a period of 24h after elicitor treatment. Analysis of the array data revealed significant responses to LPS (309 genes), harpin (951 genes) or both (313 genes). Concentrating our analysis on the genes encoding transcription factors, defence genes, cell wall biogenesis-related genes and signal transduction components we monitored interesting parallels, but also remarkably different expression patterns. Harpin and LPS induced an overlapping set of genes involved in cell wall biogenesis, cellular communication and signalling. The pattern of induced genes associated with cell rescue and general stress responses such as small heat-shock proteins was highly similar. In contrast, there is a striking difference regarding some of the most prominent, central components of plant defence such as WRKY transcription factors and oxidative burst-associated genes like NADPH oxidases, whose expression became apparent only after treatment with harpin. While both harpin and LPS can stimulate plant immunity in Arabidopsis, the PAMP LPS induces much more subtle host reactions at the transcriptome scale. The defence machinery induced by harpin resembles the known HR-type host responses leading to cell death after treatment with this elicitor. LPS is a weak inducer of basal resistance and induces a different pattern of genes. Strikingly the biggest overlap (40) of responding genes was found between the early harpin response (30min) and the late LPS response (24h).
Collapse
Affiliation(s)
- Maren Livaja
- Institute of Floriculture and Tree Sciences, Leibniz University of Hannover, 30419 Hannover, Germany
| | | | | | | |
Collapse
|
350
|
Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. THE NEW PHYTOLOGIST 2007; 177:301-318. [PMID: 18042205 DOI: 10.1111/j.1469-8137.2007.02292.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant development and stress responses are regulated by complex signalling networks that mediate specific and dynamic plant responses upon activation by various types of exogenous and endogenous signal. In this review, we focus on the latest published work on jasmonate (JA) signalling components and new regulatory nodes in the transcriptional network that regulates a number of diverse plant responses to developmental and environmental cues. Not surprisingly, the majority of the key revelations in the field have been made in Arabidopsis thaliana. However, for comparative reasons, we integrate information on Arabidopsis with recent reports for other plant species (when available). Recent findings on the regulation of plant responses to pathogens by JAs, as well as new evidence implicating JAs in the regulation of senescence, suggest a common mechanism of JA action in these responses via distinct groups of transcription factors. Moreover, a significant increase in the amount of evidence has allowed placing of specific mitogen-activated protein kinases (MAPKs) as crucial regulatory nodes in the defence signalling network. In addition, we report on new physiological scenarios for JA signalling, such as organogenesis of nitrogen-fixing nodules and anticancer therapy.
Collapse
Affiliation(s)
- Virginia Balbi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Alessandra Devoto
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| |
Collapse
|