301
|
Hyperglycemia and aberrant O-GlcNAcylation: contributions to tumor progression. J Bioenerg Biomembr 2018; 50:175-187. [DOI: 10.1007/s10863-017-9740-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
|
302
|
Li Y, Wu Y, Sun Z, Wang R, Ma D. MicroRNA‑376a inhibits cell proliferation and invasion in glioblastoma multiforme by directly targeting specificity protein 1. Mol Med Rep 2018; 17:1583-1590. [PMID: 29257212 PMCID: PMC5780098 DOI: 10.3892/mmr.2017.8089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM), a World Health Organization grade IV glioma, is the most common and aggressive primary brain tumor in humans. microRNAs (miRNAs) are aberrantly expressed in numerous cancer types, including GBM. Abnormally expressed miRNAs are commonly associated with malignant characteristics of GBM, including malignant growth, proliferation, apoptosis, invasion, metastasis and resistance to chemotherapy. miRNA (miR)‑376a is abnormally expressed in multiple human cancers; however, the expression pattern and role of miR‑376a in GBM, and the underlying molecular mechanisms by which miR‑376a exerts its functions remain to be elucidated. Therefore, the aim of this study was to measure miR‑376a expression and determine its biological roles in GBM as well as its associated molecular mechanism. In the present study, miR‑376a expression was markedly downregulated in GBM tissues and cell lines. Overexpression of miR‑376a markedly decreased the proliferation and invasion of GBM cells in vitro. In the present study, specificity protein 1 (SP1) was demonstrated to be a direct target of miR‑376a. In addition, a negative association between SP1 mRNA and miR‑376a expression was observed in GBM tissues. SP1 upregulation reduced the effects of miR‑376a overexpression on GBM cell proliferation and invasion. miR‑376a may be a therapeutic target for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276000, P.R. China
| | - Yunxia Wu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276000, P.R. China
| | - Zhigang Sun
- Central Laboratory, Linyi Central Hospital, Linyi, Shandong 276000, P.R. China
| | - Ruiyu Wang
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276000, P.R. China
| | - Deliang Ma
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
303
|
Im E, Yeo C, Lee HJ, Lee EO. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells. Life Sci 2018; 192:286-292. [PMID: 29128513 DOI: 10.1016/j.lfs.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
AIMS Dihydroartemisinin (DHA) is a semi-synthetic derivative of artemisinin, well known for a safe and effective first-line antimalarial agent. This study investigated whether and how DHA induces apoptosis focusing on the specificity protein 1 (Sp1) pathway in hepatocellular carcinoma (HCC) SK-Hep-1 cells. MAIN METHODS The cell viability was evaluated by MTT assay. Cell cycle analysis was performed after PI staining by flow cytometry system. Apoptosis was confirmed by DAPI staining and by detecting cytoplasmic histone-associated-DNA-fragments using a cell death detection ELISAPLUS kit. The expression of proteins involved in apoptosis was evaluated by Western blot. The nuclear localization of Sp1 was evaluated by immunofluorescence assay. KEY FINDINGS DHA exerted potent cytotoxicity against HCC SK-Hep-1 cells compared with normal hepatocyte AML12 cells. The sub-G1 DNA content and apoptosis index were increased by DHA, which was accompanied by nuclei condensation and fragmentation. DHA activated caspase 3, caspase 8, and caspase 9 and cleaved poly (ADP-ribose) polymerase (PARP). DHA-induced apoptotic cell death, activation of caspases and cleavage of PARP were dramatically inhibited by pan caspase inhibitor Z-VAD-FMK. DHA down-regulated protein expression and nuclear localization of Sp1, which in turn decreased Sp1 downstream target protein, X-linked inhibitor of apoptosis. Decreased Sp1 protein expression by DHA was restored by proteasome inhibitor MG132. DHA led to a down-regulation of phospho-ERK, -p38 and -JNK without affecting their total forms. SIGNIFICANCE These results demonstrate that DHA induces caspase-dependent apoptosis in HCC SK-Hep-1 cells by proteasome-dependent degradation of Sp1, which is involved in mitogen-activate protein kinase pathway.
Collapse
Affiliation(s)
- Eunji Im
- Department of Cancer Preventive Material Development, Graduate school, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Changhwan Yeo
- Department of Cancer Preventive Material Development, Graduate school, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Cancer Preventive Material Development, Graduate school, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun-Ok Lee
- Department of Cancer Preventive Material Development, Graduate school, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
304
|
Torabi B, Flashner S, Beishline K, Sowash A, Donovan K, Bassett G, Azizkhan-Clifford J. Caspase cleavage of transcription factor Sp1 enhances apoptosis. Apoptosis 2018; 23:65-78. [PMID: 29236199 DOI: 10.1007/s10495-017-1437-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sp1 is a ubiquitous transcription factor that regulates many genes involved in apoptosis and senescence. Sp1 also has a role in the DNA damage response; at low levels of DNA damage, Sp1 is phosphorylated by ATM and localizes to double-strand break sites where it facilitates DNA double-strand-break repair. Depletion of Sp1 increases the sensitivity of cells to DNA damage, whereas overexpression of Sp1 can drive cells into apoptosis. In response to a variety of stimuli, Sp1 can be regulated through proteolytic cleavage by caspases and/or degradation. Here, we show that activation of apoptosis through DNA damage or TRAIL-mediated activation of the extrinsic apoptotic pathway induces caspase-mediated cleavage of Sp1. Cleavage of Sp1 was coincident with the appearance of cleaved caspase 3, and produced a 70 kDa Sp1 product. In vitro analysis revealed a novel caspase cleavage site at aspartic acid 183. Mutation of aspartic acid 183 to alanine conferred resistance to cleavage, and ectopic expression of the Sp1 D183A rendered cells resistant to apoptotic stimuli, indicating that Sp1 cleavage is involved in the induction of apoptosis. The 70 kDa product resulting from caspase cleavage of Sp1 comprises amino acids 184-785. This truncated form, designated Sp1-70C, which retains transcriptional activity, induced apoptosis when overexpressed in normal epithelial cells, whereas Sp1D183A induced significantly less apoptosis. Together, these data reveal a new caspase cleavage site in Sp1 and demonstrate for the first time that caspase cleavage of Sp1 promotes apoptosis.
Collapse
Affiliation(s)
- Behzad Torabi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Samuel Flashner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Aislinn Sowash
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kelly Donovan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Garrett Bassett
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
305
|
Huang L, Qin Y, Zuo Q, Bhatnagar K, Xiong J, Merlino G, Yu Y. Ezrin mediates both HGF/Met autocrine and non-autocrine signaling-induced metastasis in melanoma. Int J Cancer 2017; 142:1652-1663. [PMID: 29210059 DOI: 10.1002/ijc.31196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/23/2017] [Accepted: 11/23/2017] [Indexed: 12/23/2022]
Abstract
Aberrant HGF/Met signaling promotes tumor migration, invasion, and metastasis through both autocrine and non-autocrine mechanisms; however, the molecular downstream signaling mechanisms by which HGF/Met induces metastasis are incompletely understood. We here report that Ezrin expression is stimulated by HGF and correlates with activated HGF/Met, indicating that HGF/Met signaling regulates the expression of Ezrin. We show that HGF/Met signaling activates the transcription factor Sp1 through the MAPK pathway, and activated Sp1 can in turn directly bind to the promoter of Ezrin gene and regulate its transcription. Notably, knockdown of Ezrin expression by shRNAs inhibits the metastasis induced by either HGF/Met autocrine or non-autocrine signaling in syngeneic wildtype and HGF transgenic mouse hosts. We also used small molecule drugs in preclinical mouse models to confirm that Ezrin is one of the downstream molecules mediating HGF/Met signaling-induced metastasis in melanoma. We conclude that Ezrin is a key downstream factor involved in the regulation of HGF/Met signaling-induced metastasis and demonstrate a link between Ezrin and HGF/Met/MAPK/Sp1 activation in the metastatic process. Our data indicate that Ezrin represents a promising therapeutic target for patients bearing tumors with activated HGF/Met signaling.
Collapse
Affiliation(s)
- Liping Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yifei Qin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Qiang Zuo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Kavita Bhatnagar
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Jingbo Xiong
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| |
Collapse
|
306
|
Zhang ZY, Lu YX, Zhang ZY, Chang YY, Zheng L, Yuan L, Zhang F, Hu YH, Zhang WJ, Li XN. Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget 2017; 7:22639-49. [PMID: 27009809 PMCID: PMC5008388 DOI: 10.18632/oncotarget.8141] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in kinds of human diseases, including colorectal cancer (CRC). TINCR, a 3.7 kb long non coding RNA, was associated with cell differentiation in keratinocyte and gastric cancer cells. However, little is known about the role of TINCR in regulation CRC progression. Here, we showed that lncRNA TINCR was associated with CRC proliferation and metastasis. TINCR was statistically downregulated in CRC tissues and metastatic CRC cell lines compared with their counterparts. TINCR was reversely correlated with CRC progression and promoted tumor cells growth, metastasis in vivo and in vitro. While overexpression of TINCR had opposite effect. In addition, we also found that TINCR specifically bound to EpCAM through RNA IP and RNA pull down assays. Loss of TINCR promoted hydrolysis of EpCAM and then released EpICD, subsequently, activated the Wnt/β-catenin pathway. Further studies shown that c-Myc repressed the expression of TINCR through repressing sp1 transcriptive activity, which established a positive feedback loop controlling c-Myc and TINCR expression. These findings elucidate that loss of TINCR expression promotes proliferation and metastasis in CRC and it could be considered as a potential cancer suppressor gene.
Collapse
Affiliation(s)
- Zuo-Yang Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhe-Ying Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ya-Ya Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li Yuan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou 510515, China
| | - Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
307
|
Hasegawa S, Imai M, Yamasaki M, Takahashi N, Fukui T. Transcriptional regulation of acetoacetyl-CoA synthetase by Sp1 in neuroblastoma cells. Biochem Biophys Res Commun 2017; 495:652-658. [PMID: 29137983 DOI: 10.1016/j.bbrc.2017.11.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
Acetoacetyl-CoA synthetase (AACS) is the enzyme responsible for cholesterol and fatty acid synthesis in the cytosol. We have previously shown that AACS has an important role in normal neuronal development and that knockdown of SREBP-2, which orchestrates cholesterol synthesis, resulted in the downregulation of AACS mRNA levels. In this study, we investigated the transcriptional mechanism of AACS in Neuro-2a, neuroblastoma cells. Luciferase assay showed that the minimal core promoter of the mouse AACS gene is located in a region with 110 bps upstream from the transcription start site. Mutagenesis studies showed that the Sp1 binding site was crucial for AACS promoter activity. ChIP assay and DNA affinity precipitation assay showed that Sp1 binds to the Sp1 binding site on the promoter region of AACS. Moreover, overexpression of Sp1 increased AACS mRNA levels. Knockdown of AACS resulted in a decrease in histone deacetylase 9, associated with gene silencing. These results suggest that Sp1 regulates gene expression of AACS in Neuro-2a cells and ketone body utilization affects the balance of histone acetylation.
Collapse
Affiliation(s)
- Shinya Hasegawa
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan.
| | - Masahiko Imai
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Masahiro Yamasaki
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Noriko Takahashi
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Tetsuya Fukui
- Department of Health Chemistry, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| |
Collapse
|
308
|
Brown AJ, Gibson SJ, Hatton D, James DC. In silico design of context-responsive mammalian promoters with user-defined functionality. Nucleic Acids Res 2017; 45:10906-10919. [PMID: 28977454 PMCID: PMC5737543 DOI: 10.1093/nar/gkx768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Comprehensive de novo-design of complex mammalian promoters is restricted by unpredictable combinatorial interactions between constituent transcription factor regulatory elements (TFREs). In this study, we show that modular binding sites that do not function cooperatively can be identified by analyzing host cell transcription factor expression profiles, and subsequently testing cognate TFRE activities in varying homotypic and heterotypic promoter architectures. TFREs that displayed position-insensitive, additive function within a specific expression context could be rationally combined together in silico to create promoters with highly predictable activities. As TFRE order and spacing did not affect the performance of these TFRE-combinations, compositions could be specifically arranged to preclude the formation of undesirable sequence features. This facilitated simple in silico-design of promoters with context-required, user-defined functionalities. To demonstrate this, we de novo-created promoters for biopharmaceutical production in CHO cells that exhibited precisely designed activity dynamics and long-term expression-stability, without causing observable retroactive effects on cellular performance. The design process described can be utilized for applications requiring context-responsive, customizable promoter function, particularly where co-expression of synthetic TFs is not suitable. Although the synthetic promoter structure utilized does not closely resemble native mammalian architectures, our findings also provide additional support for a flexible billboard model of promoter regulation.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | - Suzanne J Gibson
- Biopharmaceutical Development, MedImmune, Cambridge CB21 6GH, UK
| | - Diane Hatton
- Biopharmaceutical Development, MedImmune, Cambridge CB21 6GH, UK
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| |
Collapse
|
309
|
Deng R, Mo F, Chang B, Zhang Q, Ran H, Yang S, Zhu Z, Hu L, Su Q. Glucose-derived AGEs enhance human gastric cancer metastasis through RAGE/ERK/Sp1/MMP2 cascade. Oncotarget 2017; 8:104216-104226. [PMID: 29262634 PMCID: PMC5732800 DOI: 10.18632/oncotarget.22185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/25/2017] [Indexed: 12/01/2022] Open
Abstract
Advanced glycation end products (AGEs) have been reported to take part in many cancer processes. Whether AGEs contribute to gastric cancer (GC) course and the underlying mechanism are still unclear. Here, glucose-derived AGEs are detected to be accumulated in tumor tissues and blood of patients with GC. As the receptor for AGEs, RAGE is highly expressed in cancer tissues, and closely associated with the depth of cancer invasion, lymph node metastasis and TNM stage. Both in vivo and in vitro treatment of AGEs accelerate the tumor invasion and metastasis, with upregualtion of RAGE, Specificity Protein 1 (Sp1), and MMP2 protein expression, as well as enhancement of MMP2 activity. Either RAGE-blocking antibody or Sp1-knockdown can partially block the AGEs-induced effects. Moreover, AGEs increased the phosphorylation of ERK, and reducing the phosphorylation level of ERK by MEK1/2 inhibitor decreased the expression of Sp1. These results indicate that accumulation of glucose-derived AGEs may act as one of potential risk factors for GC progression and promote the invasion and metastasis of gastric cancer partially through the activation of RAGE/ERK/Sp1/MMP2 pathway.
Collapse
Affiliation(s)
- Ruyuan Deng
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengbo Mo
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Surgery and Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bowen Chang
- Department of General Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuhua Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Lei Hu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China.,Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
310
|
Scroggins BT, Burkeen J, White AO, Chung EJ, Wei D, Chung SI, Valle LF, Patil SS, McKay-Corkum G, Hudak KE, Linehan WM, Citrin DE. Mithramycin A Enhances Tumor Sensitivity to Mitotic Catastrophe Resulting From DNA Damage. Int J Radiat Oncol Biol Phys 2017; 100:344-352. [PMID: 29157749 DOI: 10.1016/j.ijrobp.2017.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Specificity protein 1 (SP1) is involved in the transcription of several genes implicated in tumor maintenance. We investigated the effects of mithramycin A (MTA), an inhibitor of SP1 DNA binding, on radiation response. METHODS AND MATERIALS Clonogenic survival after irradiation was assessed in 2 tumor cell lines (A549, UM-UC-3) and 1 human fibroblast line (BJ) after SP1 knockdown or MTA treatment. DNA damage repair was evaluated using γH2AX foci formation, and mitotic catastrophe was assessed using nuclear morphology. Gene expression was evaluated using polymerase chain reaction arrays. In vivo tumor growth delay was used to evaluate the effects of MTA on radiosensitivity. RESULTS Targeting of SP1 with small interfering RNA or MTA sensitized A549 and UM-UC-3 to irradiation, with no effect on the BJ radiation response. MTA did not alter γH2AX foci formation after irradiation in tumor cells but did enhance mitotic catastrophe. Treatment with MTA suppressed transcription of genes involved in cell death. MTA administration to mice bearing A549 and UM-UC-3 xenografts enhanced radiation-induced tumor growth delay. CONCLUSIONS These results support SP1 as a target for radiation sensitization and confirm MTA as a radiation sensitizer in human tumor models.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Burkeen
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Eun Joo Chung
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Darmood Wei
- Urologic Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Su I Chung
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Luca F Valle
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Shilpa S Patil
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Grace McKay-Corkum
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Kathryn E Hudak
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - W Marston Linehan
- Urologic Oncology Branch, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
311
|
Recent progress in the research of cold-inducible RNA-binding protein. Future Sci OA 2017; 3:FSO246. [PMID: 29134130 PMCID: PMC5674272 DOI: 10.4155/fsoa-2017-0077] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is a cold-shock protein which can be induced after exposure to a moderate cold-shock in different species ranging from amphibians to humans. Expression of CIRP can also be regulated by hypoxia, UV radiation, glucose deprivation, heat stress and H2O2, suggesting that CIRP is a general stress-response protein. In response to stress, CIRP can migrate from the nucleus to the cytoplasm and regulate mRNA stability through its binding site on the 3'-UTR of its targeted mRNAs. Through the regulation of its targets, CIRP has been implicated in multiple cellular process such as cell proliferation, cell survival, circadian modulation, telomere maintenance and tumor formation and progression. In addition, CIRP can also exert its functions by directly interacting with intracellular signaling proteins. Moreover, CIRP can be secreted out of cells. Extracellular CIRP functions as a damage-associated molecular pattern to promote inflammatory responses and plays an important role in both acute and chronic inflammatory diseases. Here, we summarize novel findings of CIRP investigation and hope to provide insights into the role of CIRP in cell biology and diseases.
Collapse
|
312
|
Chuang TD, Khorram O. Glucocorticoids regulate MiR-29c levels in vascular smooth muscle cells through transcriptional and epigenetic mechanisms. Life Sci 2017; 186:87-91. [DOI: 10.1016/j.lfs.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/28/2022]
|
313
|
Lopes-Ramos CM, Paulson JN, Chen CY, Kuijjer ML, Fagny M, Platig J, Sonawane AR, DeMeo DL, Quackenbush J, Glass K. Regulatory network changes between cell lines and their tissues of origin. BMC Genomics 2017; 18:723. [PMID: 28899340 PMCID: PMC5596945 DOI: 10.1186/s12864-017-4111-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell lines are an indispensable tool in biomedical research and often used as surrogates for tissues. Although there are recognized important cellular and transcriptomic differences between cell lines and tissues, a systematic overview of the differences between the regulatory processes of a cell line and those of its tissue of origin has not been conducted. The RNA-Seq data generated by the GTEx project is the first available data resource in which it is possible to perform a large-scale transcriptional and regulatory network analysis comparing cell lines with their tissues of origin. RESULTS We compared 127 paired Epstein-Barr virus transformed lymphoblastoid cell lines (LCLs) and whole blood samples, and 244 paired primary fibroblast cell lines and skin samples. While gene expression analysis confirms that these cell lines carry the expression signatures of their primary tissues, albeit at reduced levels, network analysis indicates that expression changes are the cumulative result of many previously unreported alterations in transcription factor (TF) regulation. More specifically, cell cycle genes are over-expressed in cell lines compared to primary tissues, and this alteration in expression is a result of less repressive TF targeting. We confirmed these regulatory changes for four TFs, including SMAD5, using independent ChIP-seq data from ENCODE. CONCLUSIONS Our results provide novel insights into the regulatory mechanisms controlling the expression differences between cell lines and tissues. The strong changes in TF regulation that we observe suggest that network changes, in addition to transcriptional levels, should be considered when using cell lines as models for tissues.
Collapse
Affiliation(s)
- Camila M. Lopes-Ramos
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Joseph N. Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Cho-Yi Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Marieke L. Kuijjer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Maud Fagny
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - John Platig
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Abhijeet R. Sonawane
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Kimberly Glass
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
| |
Collapse
|
314
|
Zheng F, Wu J, Tang Q, Xiao Q, Wu W, Hann SS. The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1. J Cell Mol Med 2017; 22:600-612. [PMID: 28840963 PMCID: PMC5742731 DOI: 10.1111/jcmm.13347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Berberine (BBR), one of active alkaloid found in the rhizome, exhibited anti‐cancer properties. We have showed that BBR inhibited growth of non‐small cell lung cancer (NSCLC) cells through mitogen‐activated protein kinase (MAPK)‐mediated increase in forkhead box O3a (FOXO3a). However, the in‐depth mechanism underlying the anti‐tumor effects still remained to be elucidated. Herein, we further confirmed that BBR not only induced cell cycle arrest, but also reduced migration and invasion of NSCLC cells. Mechanistically, we observed that BBR reduced 3‐phosphoinositide‐dependent protein kinase‐1 (PDPK1) and transcription factor SP1 protein expressions. Exogenously expressed SP1 overcame BBR‐inhibited PDPK1 expression. Moreover, BBR inhibited DNA methyltransferase 1 (DNMT1) gene expression and overexpressed DNMT1 resisted BBR‐inhibited cell growth. Intriguingly, overexpressed PDPK1 antagonized BBR‐inhibited SP1 and DNMT1 expressions. Finally, metformin enhanced the effects of BBR both in vitro and in vivo. Collectively, we observe that BBR inhibits proliferation of NSCLC cells through inhibition of SP1 and PDPK1; this results in a reduction of DNMT1 expression. The interplay of PDPK1 and SP1 contributes to the inhibition of DNMT1 in response to BBR. In addition, there is a synergy of BBR and metformin. This study uncovers a new mechanism of BBR in combination with metformin for NSCLC‐associated therapy.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qian Xiao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - WanYin Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Swei Sunny Hann
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
315
|
Hou MF, Luo CW, Chang TM, Hung WC, Chen TY, Tsai YL, Chai CY, Pan MR. The NuRD complex-mediated p21 suppression facilitates chemoresistance in BRCA-proficient breast cancer. Exp Cell Res 2017; 359:458-465. [PMID: 28842166 DOI: 10.1016/j.yexcr.2017.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
The Mi-2/nucleosome remodeling and deacetylase (NuRD) complex play a role in silencing gene expression. CHD4, the core component of the NuRD complex, which cooperates with histone deacetylase in reducing tumor suppressor genes (TSGs). To dissect the mechanisms underlying cancer promotion, we clarify the role of CHD4 in cyclin-dependent kinase inhibitor protein p21. Here, our data indicates that CHD4 deficiency impairs the recruitments of HDAC1 to the p21 promoter. ~ 300bp proximal promoter region is responsible for CHD4-HDAC1 axis-mediated p21 transcriptional activity. For identifying the role of anti-cancer drug response, knockdown of p21 overcomes cisplatin and poly-(ADP-ribose) polymerase (PARP) inhibitor-mediated growth suppression in CHD4-depleted cells. Consistent with in vitro data, tissue of patients and bioinformatics approach also showed positive correlation between CHD4 and p21. Overall, our findings not only identify that CHD4 deficiency preferentially impairs cell survival via increasing the level of p21, but also establishes targeting CHD4 as a potential therapeutic implication in BRCA-proficient breast cancer treatment.
Collapse
Affiliation(s)
- Ming-Feng Hou
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan; Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
316
|
Yang D, Xiao CX, Su ZH, Huang MW, Qin M, Wu WJ, Jia WW, Zhu YZ, Hu JF, Liu XH. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-α-mediated inflammation response in endothelial cells by blocking the MAPK/NF-κB and activating Nrf2/HO-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:15-23. [PMID: 28732803 DOI: 10.1016/j.phymed.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Endothelial inflammation is an increasingly prevalent condition in the pathogenesis of many cardiovascular diseases. (-)-7(S)-hydroxymatairesinol (7-HMR), a naturally occurring plant lignan, possesses both antioxidant and anti-cancer properties and therefore would be a good strategy to suppress tumor necrosis factor-α (TNF-α)-mediated inflammation in vascular endothelial cells (VECs). PURPOSE The objective of this study is to evaluate for its anti-inflammatory effect on TNF-α-stimulated VECs and underling mechanisms. STUDY DESIGN/METHODS The effect of the 7-HMR on suppression of TNF-α-induced inflammation mediators in VECs were determined by qRT-PCR and Western blot. MAPKs and phosphorylation of Akt, HO-1 and NF-κB p65 were examined using Western blot. Nuclear localisation of NF-κB was also examined using Western blot and immunofluorescence. RESULTS Here we found that 7-HMR could suppress TNF-α-induced inflammatory mediators, such as vascularcelladhesion molecule-1, interleukin-6 and inducible nitric oxide synthase expression both in mRNA and protein levels, and concentration-dependently attenuated reactive oxidase species generation. We further identified that 7-HMR remarkably induced superoxide dismutase and heme oxygenase-1 expression associated with degradation of Kelch-like ECH-associated protein 1 (keap1) and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, 7-HMR time- and concentration-dependently attenuated TNF-α-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) and Akt, but not p38, or c-Jun N-terminal kinase 1/2. Moreover, 7-HMR significantly suppressed TNF-α-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. CONCLUSION Our results demonstrated that 7-HMR inhibited TNF-α-stimulated endothelial inflammation, at least in part, through inhibition of NF-κB activation and upregulation of Nrf2-antioxidant response element signaling pathway, suggesting 7-HMR might be used as a promising vascular protective drug.
Collapse
Affiliation(s)
- Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen-Xi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng-Hua Su
- Department of Pharmaceutical Chemistry, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Meng-Wei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei-Jun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wan-Wan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xin-Hua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
317
|
Malsy M, Graf B, Almstedt K. Interaction between NFATc2 and the transcription factor Sp1 in pancreatic carcinoma cells PaTu 8988t. BMC Mol Biol 2017; 18:20. [PMID: 28774282 PMCID: PMC5543739 DOI: 10.1186/s12867-017-0097-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nuclear factors of activated T-cells (NFATs) have been mainly characterized in the context of immune response regulation because, as transcription factors, they have the ability to induce gene transcription. NFAT proteins are found in several types of tumors, for instance, pancreatic carcinoma. The role of NFATs in carcinogenesis is regulating central genes in cell differentiation and cell growth. NFAT proteins are primarily located in cytoplasm and only transported to the cell nucleus after activation. Here, they interact with other transcription factors cooperating with NFAT proteins, thus influencing the selection and regulation of NFAT-controlled genes. To identify and characterize possible interaction partners of the transcription factor NFATc2 in pancreatic carcinoma cells PaTu 8988t. METHODS NFATc2 expression and the mode of action of Ionomycin in the pancreatic tumor cell lines PaTu 8988t were shown with Western blotting and immunofluorescence tests. Potential partner proteins were verified by means of immunoprecipitation and binding partners, their physical interactions with DNA pull-down assays, siRNA technologies, and GST pull-down assays. Functional evidence was complemented by reporter-promoter analyses. RESULTS NFATc2 and Sp1 are co-localized in cell nuclei and physically interact at the NFAT target sequence termed NFAT-responsive promotor construct. Sp1 increases the functional activity of its binding partner NFATc2. This interaction is facilitated by Ionomycin in the early stimulation phase (up to 60 min). CONCLUSIONS Oncological therapy concepts are becoming more and more specific, aiming at the efficient modulation of specific signal and transcription pathways. The oncogenic transcription partner Sp1 is important for the transcriptional and functional activity of NFATc2 in pancreatic carcinoma. The binding partners interact in cells. Further studies are necessary to identify the underlying mechanisms and establish future therapeutic options for treating this aggressive type of tumor.
Collapse
Affiliation(s)
- Manuela Malsy
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Bernhard Graf
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Katrin Almstedt
- Department of Obstetrics and Gynecology, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
318
|
Muramoto K, Tange R, Ishii T, Miyauchi K, Sato T. Downregulation of Transcription Factor Sp1 Suppresses Malignant Properties of A549 Human Lung Cancer Cell Line with Decreased β4-Galactosylation of Highly Branched N-Glycans. Biol Pharm Bull 2017; 40:1282-1288. [PMID: 28529241 DOI: 10.1248/bpb.b17-00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Dramatic changes in the glycan structures of cell surface proteins have been observed upon malignant transformation of cells as induced by the altered expression levels of glycosyltransferases. Such changes are closely associated with the malignant properties of cancer cells. Transcription factor Sp1 regulates the gene expression of various molecules including glycosyltransferases. Herein, we investigated whether or not Sp1-downregulation affects to N-glycosylation of glycoproteins and malignant properties of A549 human lung cancer cell line. We established a stable clone whose Sp1-expression level was reduced to 50% of a control clone by RNA interference. Lectin blotting revealed that the β4-galactosylation of highly branched N-glycans decreases mainly in cell adhesion molecule, E-cadherin. The analysis of underlying mechanism for decreased β4-galactosylation of N-glycans showed that the gene expression level of β4-galactosyltransferase (β4GalT) 1 decreases dramatically by downregulation of Sp1 without changes in those of β4GalT2 and N-acetylglucosaminyltransferase V. Mutations in the Sp1-binding sites of the β4GalT1 gene promoter showed that the promoter activity decreases significantly, indicating that the gene expression is regulated by Sp1. These results indicate that the β4-galactosylation of highly branched N-glycans decreases by downregulation of Sp1 through the reduced expression of the β4GalT1 gene. Furthermore, the Sp1-downregulated cells showed the suppression of the anchorage-independent growth in soft agar and migratory activity when compared to the control cells. The present study demonstrates that downregulation of Sp1 suppresses the malignant properties of A549 cells through the decreased β4-galactosylation of highly branched N-glycans.
Collapse
Affiliation(s)
- Kodai Muramoto
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Riho Tange
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takayuki Ishii
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Kana Miyauchi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
319
|
Liu XJ, Li L, Liu XJ, Li Y, Zhao CY, Wang RQ, Zhen YS. Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma. Int J Nanomedicine 2017; 12:5255-5269. [PMID: 28769562 PMCID: PMC5533565 DOI: 10.2147/ijn.s139507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown that mithramycin A (MIT) is a promising candidate for the treatment of pancreatic carcinoma through inhibiting transcription factor Sp1. However, systemic toxicities may limit its clinical application. Here, we report a rationally designed formulation of MIT-loaded nanoparticles (MIT-NPs) with a small size and sustained release for improved passive targeting and enhanced therapeutic efficacy. Nearly spherical MIT-NPs with a mean particle size of 25.0±4.6 nm were prepared by encapsulating MIT into methoxy poly(ethylene glycol)-block-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (NPs) with drug loading of 2.11%±0.51%. The in vitro release of the MIT-NPs lasted for >48 h with a sustained-release pattern. The cytotoxicity of MIT-NPs to human pancreatic cancer BxPC-3 and MIA Paca-2 cells was comparable to that of free MIT. Determined by flow cytometry and confocal microscopy, the NPs internalized into the cells quickly and efficiently, reaching the peak level at 1-2 h. In vivo fluorescence imaging showed that the prepared NPs were gradually accumulated in BxPC-3 and MIA Paca-2 xenografts and retained for 168 h. The fluorescence intensity in both BxPC-3 and MIA Paca-2 tumors was much stronger than that of various tested organs. Therapeutic efficacy was evaluated with the poorly permeable BxPC-3 pancreatic carcinoma xenograft model. At a well-tolerated dose of 2 mg/kg, MIT-NPs suppressed BxPC-3 tumor growth by 96%. Compared at an equivalent dose, MIT-NPs exerted significantly higher therapeutic effect than free MIT (86% versus 51%, P<0.01). Moreover, the treatment of MIT and MIT-NPs reduced the expression level of oncogene c-Myc regulated by Sp1, and notably, both of them decreased the protein level of CD47. In summary, the novel formulation of MIT-NPs shows highly therapeutic efficacy against pancreatic carcinoma xenograft. In addition, MIT-NPs can downregulate CD47 expression, implying that it might play a positive role in cancer immunotherapy.
Collapse
Affiliation(s)
- Xu-Jie Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chun-Yan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Rui-Qi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
320
|
Citron F, Armenia J, Franchin G, Polesel J, Talamini R, D'Andrea S, Sulfaro S, Croce CM, Klement W, Otasek D, Pastrello C, Tokar T, Jurisica I, French D, Bomben R, Vaccher E, Serraino D, Belletti B, Vecchione A, Barzan L, Baldassarre G. An Integrated Approach Identifies Mediators of Local Recurrence in Head and Neck Squamous Carcinoma. Clin Cancer Res 2017; 23:3769-3780. [PMID: 28174235 PMCID: PMC7309652 DOI: 10.1158/1078-0432.ccr-16-2814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 01/06/2023]
Abstract
Purpose: Head and neck squamous cell carcinomas (HNSCCs) cause more than 300,000 deaths worldwide each year. Locoregional and distant recurrences represent worse prognostic events and accepted surrogate markers of patients' overall survival. No valid biomarker and salvage therapy exist to identify and treat patients at high-risk of recurrence. We aimed to verify if selected miRNAs could be used as biomarkers of recurrence in HNSCC.Experimental Design: A NanoString array was used to identify miRNAs associated with locoregional recurrence in 44 patients with HNSCC. Bioinformatic approaches validated the signature and identified potential miRNA targets. Validation experiments were performed using an independent cohort of primary HNSCC samples and a panel of HNSCC cell lines. In vivo experiments validated the in vitro results.Results: Our data identified a four-miRNA signature that classified HNSCC patients at high- or low-risk of recurrence. These miRNAs collectively impinge on the epithelial-mesenchymal transition process. In silico and wet lab approaches showed that miR-9, expressed at high levels in recurrent HNSCC, targets SASH1 and KRT13, whereas miR-1, miR-133, and miR-150, expressed at low levels in recurrent HNSCC, collectively target SP1 and TGFβ pathways. A six-gene signature comprising these targets identified patients at high risk of recurrences, as well. Combined pharmacological inhibition of SP1 and TGFβ pathways induced HNSCC cell death and, when timely administered, prevented recurrence formation in a preclinical model of HNSCC recurrence.Conclusions: By integrating different experimental approaches and competences, we identified critical mediators of recurrence formation in HNSCC that may merit to be considered for future clinical development. Clin Cancer Res; 23(14); 3769-80. ©2017 AACR.
Collapse
Affiliation(s)
- Francesca Citron
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Joshua Armenia
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Giovanni Franchin
- Oncologic Radiotherapy, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Jerry Polesel
- Cancer Epidemiology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Renato Talamini
- Cancer Epidemiology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Sara D'Andrea
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Sandro Sulfaro
- Division of Pathology, Azienda Ospedaliera Santa Maria degli Angeli, Pordenone, Italy
| | - Carlo M Croce
- Department of Cancer Biology and Genetics/CCC, The Ohio State University, Columbus, Ohio
| | - William Klement
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Otasek
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Deborah French
- Faculty of Medicine and Psicology, Department of Clinical and molecular Medicine, University of Rome "La Sapienza," Santo Andrea Hospital, Rome, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Emanuela Vaccher
- Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Diego Serraino
- Cancer Epidemiology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Cancer Biology and Genetics/CCC, The Ohio State University, Columbus, Ohio.
- Faculty of Medicine and Psicology, Department of Clinical and molecular Medicine, University of Rome "La Sapienza," Santo Andrea Hospital, Rome, Italy
| | - Luigi Barzan
- Department of Surgery, CRO Aviano, National Cancer Institute, Aviano, Italy.
| | - Gustavo Baldassarre
- Division of Molecular Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
321
|
Kang TH, Seo JH, Oh H, Yoon G, Chae JI, Shim JH. Licochalcone A Suppresses Specificity Protein 1 as a Novel Target in Human Breast Cancer Cells. J Cell Biochem 2017; 118:4652-4663. [PMID: 28498645 DOI: 10.1002/jcb.26131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
Licochalcone A (LCA), isolated from the root of Glycyrrhiza inflata, are known to have medicinal effect such as anti-oxidant, anti-bacterial, anti-viral, and anti-cancer. Though, as a pharmacological mechanism regulator, anti-cancer studies on LCA were not investigated in human breast cancer. We investigated the anti-proliferative and apoptotic effect of LCA in human breast cancer cells MCF-7 and MDA-MB-231 through MTS assay, PI staining, Annexin-V/7-AAD assay, mitochondrial membrane potential assay, multi-caspase assay, RT-PCR, Western blot analysis, and anchorage-independent cell transformation assay. Our results showed the little difference between two cells, as MCF-7 cell is both estrogen/progesterone receptor positive, there were only effect on Sp1 protein level, but not in mRNA level. Adversely, estrogen/progesterone/human epidermal growth factor receptor 2 triple negative, MDA-MB-231 showed decreased Sp1 mRNA, and protein levels. To confirm the participation of Sp1 in breast cancer cell viability, siRNA techniques were introduced. Both cells showed dysfunction of mitochondrial membrane potential and mitochondrial ROS production, which reflects it passed intracellular mitochondrial apoptosis pathway. Additionally, LCA showed the anti-proliferative and apoptotic effect in breast cancer cells through regulating Sp1 and apoptosis-related proteins in a dose- and a time-dependent manner. Consequently, LCA might be a potential anti-breast cancer drug substitute. J. Cell. Biochem. 118: 4652-4663, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Hana Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Republic of Korea.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
322
|
Survive or thrive: tradeoff strategy for cellular senescence. Exp Mol Med 2017; 49:e342. [PMID: 28572574 PMCID: PMC5519021 DOI: 10.1038/emm.2017.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 12/12/2022] Open
Abstract
Aging-dependent cellular behaviors toward extrinsic stress are characterized by the confined localization of certain molecules to either nuclear or perinuclear regions. Although most growth factors can activate downstream signaling in aging cells, they do not in fact have any impact on the cells because the signals cannot reach their genetic targets in the nucleus. For the same reason, varying apoptotic stress factors cannot stimulate the apoptotic pathway in senescent cells. Thus, the operation of a functional nuclear barrier in an aging-dependent manner has been investigated. To elucidate the mechanism for this process, the housekeeping transcription factor Sp1 was identified as a general regulator of nucleocytoplasmic trafficking (NCT) genes, including various nucleoporins, importins, exportins and Ran GTPase cycle-related genes. Interestingly, the posttranslational modification of Sp1 is readily influenced by extrinsic stress, including oxidative and metabolic stress. The decrease in SP1 O-GlcNAcylation under oxidative stress or during replicative senescence makes it susceptible to proteosomal degradation, resulting in defective NCT functions and leading to nuclear barrier formation. The operation of the nuclear barrier in aging provides a fundamental mechanism for cellular protection against stress and promotes survival at the expense of growth via stress-sensitive transcriptional control.
Collapse
|
323
|
Chuang JY, Lo WL, Ko CY, Chou SY, Chen RM, Chang KY, Hung JJ, Su WC, Chang WC, Hsu TI. Upregulation of CYP17A1 by Sp1-mediated DNA demethylation confers temozolomide resistance through DHEA-mediated protection in glioma. Oncogenesis 2017; 6:e339. [PMID: 28530704 PMCID: PMC5523064 DOI: 10.1038/oncsis.2017.31] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
Steroidogenesis-mediated production of neurosteroids is important for brain homeostasis. Cytochrome P450 17A1 (CYP17A1), which converts pregnenolone to dehydroepiandrosterone (DHEA) in endocrine organs and the brain, is required for prostate cancer progression and acquired chemotherapeutic resistance. However, whether CYP17A1-mediated DHEA synthesis is involved in brain tumor malignancy, especially in glioma, the most prevalent brain tumor, is unknown. To investigate the role of CYP17A1 in glioma, we determined that CYP17A1 expression is significantly increased in gliomas, which secrete more DHEA than normal astrocytes. We found that as gliomas became more malignant, both CYP17A1 and DHEA were significantly upregulated in temozolomide (TMZ)-resistant cells and highly invasive cells. In particular, the increase of CYP17A1 was caused by Sp1-mediated DNA demethylation, whereby Sp1 competed with DNMT3a for binding to the CYP17A1 promoter in TMZ-resistant glioma cells. CYP17A1 was required for the development of glioma cell invasiveness and resistance to TMZ-induced cytotoxicity. In addition, DHEA markedly attenuated TMZ-induced DNA damage and apoptosis. Together, our results suggest that components of the Sp1-CYP17A1-DHEA axis, which promotes the development of TMZ resistance, may serve as potential biomarkers and therapeutic targets in recurrent glioma.
Collapse
Affiliation(s)
- J-Y Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - W-L Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, Taipei, Taiwan
| | - C-Y Ko
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - S-Y Chou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - R-M Chen
- Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - K-Y Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - J-J Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - W-C Su
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - W-C Chang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - T-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
324
|
Inhibition of Sp1 prevents ER homeostasis and causes cell death by lysosomal membrane permeabilization in pancreatic cancer. Sci Rep 2017; 7:1564. [PMID: 28484232 PMCID: PMC5431512 DOI: 10.1038/s41598-017-01696-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress initiates an important mechanism for cell adaptation and survival, named the unfolded protein response (UPR). Severe or chronic/prolonged UPR can breach the threshold for survival and lead to cell death. There is a fundamental gap in knowledge on the molecular mechanism of how chronic ER stress is stimulated and leads to cell death in pancreatic ductal adenocarcinoma (PDAC). Our study shows that downregulating specificity protein 1 (Sp1), a transcription factor that is overexpressed in pancreatic cancer, activates UPR and results in chronic ER stress. In addition, downregulation of Sp1 results in its decreased binding to the ER stress response element present in the promoter region of Grp78, the master regulator of ER stress, thereby preventing homeostasis. We further show that inhibition of Sp1, as well as induction of ER stress, leads to lysosomal membrane permeabilization (LMP), a sustained accumulation of cytosolic calcium, and eventually cell death in pancreatic cancer.
Collapse
|
325
|
Suske G. NF-Y and SP transcription factors — New insights in a long-standing liaison. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:590-597. [DOI: 10.1016/j.bbagrm.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
326
|
Bajpai R, Nagaraju GP. Specificity protein 1: Its role in colorectal cancer progression and metastasis. Crit Rev Oncol Hematol 2017; 113:1-7. [PMID: 28427500 DOI: 10.1016/j.critrevonc.2017.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 01/20/2023] Open
Abstract
Specificity protein 1 (Sp1) is a widely expressed transcription factor that plays an important role in the promotion of oncogenes required for tumor survival, progression and metastasis. Sp1 is highly expressed in several cancers including colorectal cancer (CRC) and is related to poor prognosis. Therefore, targeting Sp1 is a rational for CRC therapy. In this review, we will recapitulate the current understanding of Sp1 signaling, its molecular mechanisms, and its potential involvement in CRC growth, progression and metastasis. We will also discuss the current therapeutic drugs for CRC and their mechanism of action via Sp1.
Collapse
Affiliation(s)
- Richa Bajpai
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
327
|
Deng R, Wu H, Ran H, Kong X, Hu L, Wang X, Su Q. Glucose-derived AGEs promote migration and invasion of colorectal cancer by up-regulating Sp1 expression. Biochim Biophys Acta Gen Subj 2017; 1861:1065-1074. [PMID: 28237576 DOI: 10.1016/j.bbagen.2017.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/29/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Abstract
It is well established that the risk of colorectal cancer (CRC) is significantly increased in diabetic patients. As one of main forms of the advanced glycation end products (AGEs) that accumulate in vivo, glucose-derived AGEs play an important role in the pathogenesis of diabetic complications and may contribute to CRC progression. However, to date, both the contribution of glucose-derived AGEs to the course of CRC and the underlying mechanism are unclear. In the present study, the concentration of glucose-derived AGEs in the serum and tumor tissue of patients with CRC increased. A clinical data analysis demonstrated that the expression of the receptor for AGEs (RAGE), Specificity Protein 1 (Sp1), and matrix metallopeptidase -2 (MMP2) was significantly higher in cancerous tissues compared with non-tumor tissue in Chinese Han patients with CRC and that RAGE expression was closely associated with lymph node metastasis and TNM stage. Furthermore, in vivo and in vitro experiments showed that AGEs promoted invasion and migration of colorectal cancer, and the AGEs treatment increased the expression of RAGE, Sp1, and MMP2 in a dose-dependent manner. A RAGE blocking antibody and an Sp1-specific siRNA attenuated the AGE-induced effects. Moreover, the AGEs treatment increased the phosphorylation of ERK, and reducing the phosphorylation level of ERK by MEK1/2 inhibitor decreased the expression of Sp1. In conclusion, glucose-derived AGEs promote the invasion and metastasis of CRC partially through the RAGE/ERK/SP1/MMP2 cascade. These findings may provide an explanation for the poor prognoses of colorectal cancer in diabetic patients.
Collapse
Affiliation(s)
- Ruyuan Deng
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665, Kong Jiang Road, Shanghai 200092, China
| | - Huo Wu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665, Kong Jiang Road, Shanghai 200092, China
| | - Xiang Kong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665, Kong Jiang Road, Shanghai 200092, China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665, Kong Jiang Road, Shanghai 200092, China.
| |
Collapse
|
328
|
Abstract
CpG islands (CGI) are critical genomic regulatory elements that support transcriptional initiation and are associated with the promoters of most human genes. CGI are distinguished from the bulk genome by their high CpG density, lack of DNA methylation, and euchromatic features. While CGI are canonically known as strong promoters, thousands of 'orphan' CGI lie far from any known transcript, leaving their function an open question. We undertook a comprehensive analysis of the epigenetic state of orphan CGI across over 100 cell types. Here we show that most orphan CGI display the chromatin features of active enhancers (H3K4me1, H3K27Ac) in at least one cell type. Relative to classical enhancers, these enhancer CGI (ECGI) are stronger, as gauged by chromatin state and in functional assays, are more broadly expressed, and are more highly conserved. Likewise, ECGI engage in more genomic contacts and are enriched for transcription factor binding relative to classical enhancers. In human cancers, these epigenetic differences between ECGI vs. classical enhancers manifest in distinct alterations in DNA methylation. Thus, ECGI define a class of highly active enhancers, strengthened by the broad transcriptional activity, CpG density, hypomethylation, and chromatin features they share with promoter CGI. In addition to indicating a role for thousands of orphan CGI, these findings suggests that enhancer activity may be an intrinsic function of CGI in general and provides new insights into the evolution of enhancers and their epigenetic regulation during development and tumorigenesis.
Collapse
Affiliation(s)
- Joshua S K Bell
- a Department of Radiation Oncology , Emory University School of Medicine , Atlanta , GA , USA.,b Winship Cancer Institute of Emory University , Atlanta , GA , USA.,c Graduate Program in Genetics & Molecular Biology , Emory University , Atlanta , GA, USA
| | - Paula M Vertino
- a Department of Radiation Oncology , Emory University School of Medicine , Atlanta , GA , USA.,b Winship Cancer Institute of Emory University , Atlanta , GA , USA
| |
Collapse
|
329
|
Jiang B, Wu ZY, Zhu ZC, Ke GJ, Wen YC, Sun SQ. Expression and role of specificity protein 1 in the sclera remodeling of experimental myopia in guinea pigs. Int J Ophthalmol 2017; 10:550-554. [PMID: 28503426 DOI: 10.18240/ijo.2017.04.08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/06/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To study the expression of collagen I and transcription factor specificity protein 1 (Sp1), a transforming growth factor-β1 (TGF-β1) downstream target, and reveal the impact of the TGF-β1-Sp1 signaling pathway on collagen remodeling in myopic sclera. METHODS Seventy-five 1-week-old guinea pigs were randomly divided into normal control, form deprivation myopia (FDM), and self-control groups. FDM was induced for different times using coverage with translucent latex balloons and FDM recovery was performed for 1wk after 4wk treatment; then, changes in refractive power and axial length were measured. Immunohistochemistry and reverse transcription-polymerase chain reaction were used to evaluate dynamic changes in collagen I and Sp1 expression in the sclera of guinea pigs with emmetropia and experimental myopia, and the relationship between collagen I and Sp1 levels was analyzed. RESULTS In the FDM group, the refractive power was gradually changed (from 2.09±0.30 D at week 0 to -1.23±0.69 D, -4.17±0.59 D, -7.07±0.56 D, and -4.30±0.58 D at weeks 2, 4, 6, and 1wk after 4wk, respectively; P<0.05), indicating deepening of myopia. The axial length was increased (from 5.92±0.39 mm at week 0 to 6.62±0.36 mm, 7.30±0.34 mm, 7.99±0.32 mm, and 7.41±0.36 mm at weeks 2, 4, 6, and 1wk after 4wk; P<0.05). The mRNA and protein expression of Sp1 and collagen I in the sclera of the FDM group was lower than that of the control groups (P<0.05), and the reduction was eye-coverage time-dependent. Furthermore, correlation between Sp1 and collagen I down-regulation in the myopic sclera was observed. CONCLUSION Our data indicate that transcription factor Sp1 may be involved in the regulation of type I collagen synthesis/degradation during myopic sclera remodeling, suggesting that TGF-β1 signaling plays a role in the development and progression of myopia.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Zhang-You Wu
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Zi-Cheng Zhu
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Gen-Jie Ke
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Yue-Chun Wen
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Si-Qin Sun
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| |
Collapse
|
330
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
331
|
Shelake S, Sankpal UT, Paul Bowman W, Wise M, Ray A, Basha R. Targeting specificity protein 1 transcription factor and survivin using tolfenamic acid for inhibiting Ewing sarcoma cell growth. Invest New Drugs 2017; 35:158-165. [PMID: 28025760 DOI: 10.1007/s10637-016-0417-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
Transcription factor Specificity protein 1 (Sp1) and its downstream target survivin (inhibitor of apoptosis protein), play major roles in the pathogenesis of various cancers. Ewing Sarcoma (ES) is a common soft tissue/bone tumor in adolescent and young adults. Overexpression of survivin is also linked to the aggressiveness and poor prognosis of ES. Small molecule Tolfenamic acid (TA) inhibits Sp1 and survivin in cancer cells. In this investigation, we demonstrate a strategy to target Sp1 and survivin using TA and positive control Mithramycin A (Mit) to inhibit ES cell growth. Knock down of Sp1 using small interfering RNA (siRNA) resulted in significant (p < 0.05) inhibition of CHLA-9 and TC-32 cell growth as assessed by CellTiter-Glo assay kit. TA or Mit treatment caused dose/time-dependent inhibition of cell viability, and this inhibition was correlated with a decrease in Sp1 and survivin protein levels in ES cells. Quantitative PCR results showed that Mit treatment decreased the mRNA expression of both survivin and Sp1, whereas TA diminished only survivin but not Sp1. Proteasome inhibitor restored TA-induced inhibition of Sp1 protein expression suggesting that TA might cause proteasome-dependent degradation. Gel shift assay using ES cell nuclear extract and biotinylated Sp1 consensus oligonucleotides confirmed that both TA and Mit decreased DNA-binding activity of Sp1. These results demonstrate that both Mit and TA reduce expression of Sp1 and survivin, disrupt Sp1 DNA-binding and inhibit ES cell proliferation. This investigation suggests that targeting Sp1 and survivin could be an effective strategy for inhibiting ES cell growth.
Collapse
Affiliation(s)
- Sagar Shelake
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Umesh T Sankpal
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - W Paul Bowman
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA
| | - Matthew Wise
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Anish Ray
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA.
| | - Riyaz Basha
- Department of Pediatrics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, 76104, USA.
| |
Collapse
|
332
|
Abstract
Gastric cancer is the third leading cause of cancer-related mortality worldwide. Despite progress in understanding its development, challenges with treatment remain. Gastrin, a peptide hormone, is trophic for normal gastrointestinal epithelium. Gastrin also has been shown to play an important role in the stimulation of growth of several gastrointestinal cancers including gastric cancer. We sought to review the role of gastrin and its pathway in gastric cancer and its potential as a therapeutic target in the management of gastric cancer. In the normal adult stomach, gastrin is synthesized in the G cells of the antrum; however, gastrin expression also is found in many gastric adenocarcinomas of the stomach corpus. Gastrin's actions are mediated through the G-protein-coupled receptor cholecystokinin-B (CCK-B) on parietal and enterochromaffin cells of the gastric body. Gastrin blood levels are increased in subjects with type A atrophic gastritis and in those taking high doses of daily proton pump inhibitors for acid reflux disease. In experimental models, proton pump inhibitor-induced hypergastrinemia and infection with Helicobacter pylori increase the risk of gastric cancer. Understanding the gastrin:CCK-B signaling pathway has led to therapeutic strategies to treat gastric cancer by either targeting the CCK-B receptor with small-molecule antagonists or targeting the peptide with immune-based therapies. In this review, we discuss the role of gastrin in gastric adenocarcinoma, and strategies to block its effects to treat those with unresectable gastric cancer.
Collapse
|
333
|
Tao LH, Zhou XR, Li FC, Chen Q, Meng FY, Mao Y, Li R, Hua D, Zhang HJ, Wang WP, Chen WC. A polymorphism in the promoter region of PD-L1 serves as a binding-site for SP1 and is associated with PD-L1 overexpression and increased occurrence of gastric cancer. Cancer Immunol Immunother 2017; 66:309-318. [PMID: 27889799 PMCID: PMC11028453 DOI: 10.1007/s00262-016-1936-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/19/2016] [Indexed: 12/17/2022]
Abstract
PD-L1 is a member of the B7 family co-inhibitory molecules and plays a critical role in tumor immune escape. In this study, we found a polymorphism rs10815225 in the PD-L1 promoter region was significantly associated with the occurrence of gastric cancer. The GG homozygous frequency was higher in the cancer patients than that in the precancerous lesions, which was higher than that in the health controls. This polymorphism locates in the binding-site of Sp1 transcription factor (SP1). The expression level of PD-L1 mRNA in the GG homozygous cancer patients was apparently higher than that in the GC heterozygotes. Luciferase reporter results showed that SP1 bonded to rs10815225 G-allelic PD-L1 promoter instead of C-allelic. Upregulation and knockdown of SP1 resulted in elevation and attenuation of PD-L1 in SGC-7901 cells, respectively. The chromatin immunoprecipitation results further confirmed the binding of SP1 to the promoter of PD-L1. Additionally, rs10815225 was found to be in disequilibrium with a functional polymorphism rs4143815 in the PD-L1 3'-UTR, and the haplotypes of these two polymorphisms were also markedly related to gastric cancer risk. These results revealed a novel mechanism underlying genetic polymorphisms influencing PD-L1 expression modify gastric cancer susceptibility.
Collapse
Affiliation(s)
- Li-Hua Tao
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Ren-ai Road 199, Suzhou, 215123, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China
| | - Xin-Ru Zhou
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Ren-ai Road 199, Suzhou, 215123, China
| | - Fu-Chao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China
| | - Qi Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Ren-ai Road 199, Suzhou, 215123, China
| | - Fan-Yi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Ren-ai Road 199, Suzhou, 215123, China
| | - Yong Mao
- Department of Oncology, The Fourth Affiliated Hospital of Soochow University, Wuxi, 214062, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China
| | - Dong Hua
- Department of Oncology, The Fourth Affiliated Hospital of Soochow University, Wuxi, 214062, China
| | - Hong-Jian Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Ren-ai Road 199, Suzhou, 215123, China
| | - Wei-Peng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Ren-ai Road 199, Suzhou, 215123, China.
| | - Wei-Chang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China.
| |
Collapse
|
334
|
Sankpal UT, Goodison S, Jones-Pauley M, Hurtado M, Zhang F, Basha R. Tolfenamic acid-induced alterations in genes and pathways in pancreatic cancer cells. Oncotarget 2017; 8:14593-14603. [PMID: 28099934 PMCID: PMC5362428 DOI: 10.18632/oncotarget.14651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are being tested extensively for their role in the treatment and prevention of several cancers. Typically NSAIDs exhibit anti-tumor activities via modulation of cyclooxygenase (COX)-dependent mechanisms, however, an anti-cancer NSAID tolfenamic acid (TA) is believed to work through COX-independent pathways. Results from our laboratory and others have demonstrated the anti-cancer activity of TA in various cancer models including pancreatic cancer. TA has been shown to modulate certain cellular processes including, apoptosis, reactive oxygen species and signaling. In this study, molecular profiling was performed to precisely understand the mode of action of TA. Three pancreatic cancer cell lines, L3.6pl, MIA PaCa-2, and Panc1 were treated with TA (50 μM for 48 h) and the changes in gene expression was evaluated using the Affymetrix GeneChip Human Gene ST Array platform. Microarray results were further validated using quantitative PCR for seven genes altered by TA treatment in all three cell lines. Functional analysis of differentially expressed genes (2 fold increase or decrease, p < 0.05) using Ingenuity Pathway Analysis software, revealed that TA treatment predominantly affected the genes involved in cell cycle, cell growth and proliferation, and cell death and survival. Promoter analysis of the differentially expressed genes revealed that they are enriched for Sp1 binding sites, suggesting that Sp1 could be a major contributor in mediating the effect of TA. The gene expression studies identified new targets involved in TA's mode of action, while supporting the hypothesis about the association of Sp1 in TA mediated effects in pancreatic cancer.
Collapse
Affiliation(s)
- Umesh T. Sankpal
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, TX, USA
| | - Steve Goodison
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Michelle Jones-Pauley
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, TX, USA
| | - Myrna Hurtado
- Institute for Molecular Medicine, University of North Texas Health Science Center, TX, USA
| | - Fan Zhang
- Institute for Molecular Medicine, University of North Texas Health Science Center, TX, USA
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, TX, USA
- Institute for Molecular Medicine, University of North Texas Health Science Center, TX, USA
| |
Collapse
|
335
|
Sugiyama A, Fukushima N, Sato T. Transcriptional Mechanism of the β4-Galactosyltransferase 4 Gene in SW480 Human Colon Cancer Cell Line. Biol Pharm Bull 2017; 40:733-737. [PMID: 28228616 DOI: 10.1248/bpb.b17-00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased expression of β4-galactosyltransferase (β4GalT) 4 has been shown to be associated with metastatic ability and poor prognosis of colon cancer cells. To solve the up-regulation of β4GalT4 in colon cancer cells at transcriptional level, we examined the transcriptional mechanism of the β4GalT4 gene in SW480 human colon cancer cell line. Luciferase assay using the deletion constructs revealed that the promoter activity of the β4GalT4 gene is associated with the region between nucleotides -122 and -55 relative to the transcriptional start site, which contained one Specificity protein 1 (Sp1)-binding site. The mutation into the Sp1-binding site resulted in dramatic decreased promoter activity. Meanwhile, ectopic Sp1 expression stimulated the promoter activity significantly. The present study suggests that the expression of the β4GalT4 gene is controlled by Sp1, and Sp1 plays a key role in the activation of the β4GalT4 gene in colon cancer cells.
Collapse
Affiliation(s)
- Atena Sugiyama
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Naomichi Fukushima
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
336
|
Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, De W, Wang C, Ji G. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer 2017; 16:39. [PMID: 28209170 PMCID: PMC5314465 DOI: 10.1186/s12943-017-0588-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although the prognosis of gastric cancer patients have a favorable progression, there are some patients with unusual patterns of locoregional and systemic recurrence. Therefore, a better understanding of early molecular events of the disease is needed. Current evidences demonstrate that long noncoding RNAs (lncRNAs) may be an important class of functional regulators involved in human gastric cancers development. Our previous studies suggest that HOTAIR contributes to gastric cancer development, and the overexpression of HOTAIR predicts a poor prognosis. In this study, we investigated the characteristic of the LncRNA FEZF1-AS1 in gastric cancer. METHODS QRT-PCR was used to detect the expression of FEZF1-AS1 in gastric cancer tissues and cells. MTT assays, clonogenic survival assays and nude mouse xenograft model were used to examine the tumorigenesis function of FEZF1-AS1 in vitro and in vivo. Bioinformatics analysis were used to select downstream target genes of FEZF1-AS1. Cell cycle analysis, ChIP, RIP,RNA Pulldown assays were examined to dissect molecular mechanisms. RESULTS In this study, we reported that FEZF1-AS1, a 2564 bp RNA, was overexpressed in gastric cancer, and upregulated FEZF1-AS1 expression indicated larger tumor size and higher clinical stage; additional higher expression of FEZF1-AS1 predicted poor prognosis. Further experiments revealed that knockdown FEZF1-AS1 significantly inhibited gastric cancer cells proliferation by inducing G1 arrest and apoptosis, whereas endogenous expression FEZF1-AS1 promoted cell growth. Additionally, RIP assay and RNA-pulldown assay evidenced that FEZF1-AS1 could epigenetically repress the expression of P21 via binding with LSD1, the first discovered demethylase. ChIP assays demonstrated that LSD1 could directly bind to the promoter of P21, inducing H3K4me2 demethylation. CONCLUSION In summary, these data demonstrated that FEZF1-AS1 could act as an "oncogene" for gastric cancer partly through suppressing P21 expression; FEZF1-AS1 may be served as a candidate prognostic biomarker and target for new therapies of gastric cancer patients.
Collapse
Affiliation(s)
- Yan-Wen Liu
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Xia
- Department of Laboratory, Affiliated Chest Hospital of southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Kai Lu
- Department of surgery, Affiliated the second hospital of Bengbu Medical College, Lianyungang, jiangsu, People's Republic of China
| | - Min Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Fen Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China.
| | - Guozhong Ji
- Department of Gastroenterology Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
337
|
Mihara N, Chiba T, Yamaguchi K, Sudo H, Yagishita H, Imai K. Minimal essential region for krüppel-like factor 5 expression and the regulation by specificity protein 3-GC box binding. Gene 2017; 601:36-43. [PMID: 27940107 DOI: 10.1016/j.gene.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/28/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
Krüppel-like factor 5 (KLF5) transcriptionally controls the proliferation-differentiation balance of epithelium and is overexpressed in carcinomas. Although genomic region modifying KLF5 expression is widespread in different types of cells, the region that commonly regulates basal expression of the genes across cell-types is uncertain. In this study we determined the minimal essential region for the expression and its regulatory transcription factors using oral carcinoma cells. A reporter assay defined a 186bp region downstream of the transcription start site and a cluster of six GC boxes (GC1-GC6) as the minimal essential region. Mutation in the GC1 or GC6 regions but not other GC boxes significantly decreased the reporter expression. The decrease by the GC1 mutation was reproduced in the 2kbp full-length promoter, but not by the GC6 mutation. Additionally, specificity proteins (Sp) that can be expressed in epithelial cells and bind GC box, Sp3 co-localized with KLF5 in oral epithelium and carcinomas and chromatin immunoprecipitation analyses showed Sp3 as the prime GC1-binding protein. Inhibition of Sp-GC box binding by mithramycin A and knockdown of Sp3 by the short interfering RNA decreased expression of the reporter gene and endogenous KLF5. These data demonstrate that a 186bp region is the minimal essential region and that Sp3-GC1 binding is essential to the basal expression of KLF5.
Collapse
Affiliation(s)
- Nozomi Mihara
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Tadashige Chiba
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Kosuke Yamaguchi
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Haruka Sudo
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Hisao Yagishita
- Division of Oral Diagnosis, Dental and Maxillofacial Radiology and Oral Pathology Diagnostic Services, The Nippon Dental University Hospital, Tokyo, Japan.
| | - Kazushi Imai
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| |
Collapse
|
338
|
Arora N, Alsaied O, Dauer P, Majumder K, Modi S, Giri B, Dudeja V, Banerjee S, Von Hoff D, Saluja A. Downregulation of Sp1 by Minnelide leads to decrease in HSP70 and decrease in tumor burden of gastric cancer. PLoS One 2017; 12:e0171827. [PMID: 28192510 PMCID: PMC5305197 DOI: 10.1371/journal.pone.0171827] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is the third leading cause of cancer related mortality worldwide with poor survival rates. Even though a number of chemotherapeutic compounds have been used against this disease, stomach cancer has not been particularly sensitive to these drugs. In this study we have evaluated the effect of triptolide, a naturally derived diterpene triepoxide and its water soluble pro-drug Minnelide on several gastric adenocarcinoma cell lines both as monotherapy and in combination with CPT-11. METHODS Gastric cancer cell lines MKN28 and MKN45 were treated with varying doses of triptolide in vitro. Cell viability was measured using MTT based assay kit. Apoptotic cell death was assayed by measuring caspase activity. Effect of the triptolide pro-drug, Minnelide, was evaluated by implanting the gastric cancer cells subcutaneously in athymic nude mice. RESULTS Gastric cancer cell lines MKN28 and MKN45 cells exhibited decreased cell viability and increased apoptosis when treated with varying doses of triptolide in vitro. When implanted in athymic nude mice, treatment with Minnelide reduced tumor burden in both MKN28 derived tumors as well as MKN45 derived tumors. Additionally, we also evaluated Minnelide as a single agent and in combination with CPT-11 in the NCI-N87 human gastric tumor xenograft model. CONCLUSION Our results indicated that the combination of Minnelide with CPT-11 resulted in significantly smaller tumors compared to control. These studies are extremely encouraging as Minnelide is currently undergoing phase 1 clinical trials for gastrointestinal cancers.
Collapse
Affiliation(s)
- Nivedita Arora
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
| | - Osama Alsaied
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
| | - Patricia Dauer
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
- Div. of Surgical Oncology Dept. of Surgery University of Miami, Miami, FL, United States of America
| | - Kaustav Majumder
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
| | - Shrey Modi
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
- Div. of Surgical Oncology Dept. of Surgery University of Miami, Miami, FL, United States of America
| | - Bhuwan Giri
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
- Div. of Surgical Oncology Dept. of Surgery University of Miami, Miami, FL, United States of America
| | - Vikas Dudeja
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
- Div. of Surgical Oncology Dept. of Surgery University of Miami, Miami, FL, United States of America
| | - Sulagna Banerjee
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
- Div. of Surgical Oncology Dept. of Surgery University of Miami, Miami, FL, United States of America
| | - Daniel Von Hoff
- TGen/Virginia G. Piper Cancer Ctr, Suite 600, Phoenix, AZ United States of America
| | - Ashok Saluja
- Div. of Basic and Translational Research Dept. of Surgery University of Minnesota, Minneapolis MN, United States of America
- Div. of Surgical Oncology Dept. of Surgery University of Miami, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
339
|
Decreased Sp1 Expression Mediates Downregulation of SHIP2 in Gastric Cancer Cells. Int J Mol Sci 2017; 18:ijms18010220. [PMID: 28117748 PMCID: PMC5297849 DOI: 10.3390/ijms18010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023] Open
Abstract
Past studies have shown that the Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) is commonly downregulated in gastric cancer, which contributes to elevated activation of PI3K/Akt signaling, proliferation and tumorigenesis of gastric cancer cells. However, the mechanisms underlying the reduced expression of SHIP2 in gastric cancer remain unclear. While gene copy number variation analysis and exon sequencing indicated the absence of genomic alterations of SHIP2, bisulfite genomic sequencing (BGS) showed promoter hypomethylation of SHIP2 in gastric cancer cells. Analysis of transcriptional activity of SHIP2 promoter revealed Specificity protein 1 (Sp1) was responsible for the regulation of SHIP2 expression in gastric cancer cells. Furthermore, Sp1 expression, but not Sp3, was frequently downregulated in gastric cancer compared with normal gastric mucosa, which was associated with a paralleled reduction in SHIP2 levels in gastric cancer. Moreover, overexpression of Sp1 inhibited cell proliferation, induced apoptosis, suppressed cell motility and invasion in gastric cancer cells in vitro, which was, at least in part, due to transcriptional activation of SHIP2 mediated by Sp1, thereby inactivating Akt. Collectively, these results indicate that decreased expression of transcription factor Sp1 contributes to suppression of SHIP2 in gastric cancer cells.
Collapse
|
340
|
Bioinformatic identification of prognostic signature defined by copy number alteration and expression of CCNE1 in non-muscle invasive bladder cancer. Exp Mol Med 2017; 49:e282. [PMID: 28082741 PMCID: PMC5291834 DOI: 10.1038/emm.2016.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) patients frequently fail to respond to treatment and experience disease progression because of their clinical and biological diversity. In this study, we identify a prognostic molecular signature for predicting the heterogeneity of NMIBC by using an integrative analysis of copy number and gene expression data. We analyzed the copy number and gene expression profiles of 404 patients with bladder cancer obtained from The Cancer Genome Atlas (TCGA) consortium. Of the 14 molecules with significant copy number alterations that were previously reported, 13 were significantly correlated with copy number and expression changes. Prognostic gene sets based on the 13 genes were developed, and their prognostic values were verified in three independent patient cohorts (n=501). Among them, a signature of CCNE1 and its coexpressed genes was significantly associated with disease progression and validated in the independent cohorts. The CCNE1 signature was an independent risk factor based on the result of a multivariate analysis (hazard ratio=6.849, 95% confidence interval=1.613–29.092, P=0.009). Finally, gene network and upstream regulator analyses revealed that NMIBC progression is potentially mediated by CCND1-CCNE1-SP1 pathways. The prognostic molecular signature defined by copy number and expression changes of CCNE1 suggests a novel diagnostic tool for predicting the likelihood of NMIBC progression.
Collapse
|
341
|
Barnes R, Eckert K. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases. Genes (Basel) 2017; 8:genes8010019. [PMID: 28067843 PMCID: PMC5295014 DOI: 10.3390/genes8010019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.
Collapse
Affiliation(s)
- Ryan Barnes
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kristin Eckert
- Departments of Pathology and Biochemistry & Molecular Biology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
342
|
Zhang HW, Wang EW, Li LX, Yi SH, Li LC, Xu FL, Wang DL, Wu YZ, Nian WQ. A regulatory loop involving miR-29c and Sp1 elevates the TGF-β1 mediated epithelial-to-mesenchymal transition in lung cancer. Oncotarget 2016; 7:85905-85916. [PMID: 27829234 PMCID: PMC5349884 DOI: 10.18632/oncotarget.13137] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
Specificity protein1 (Sp1) is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) which has been demonstrated to aggravate the progression of cancer including lung cancer. microRNA-29c (miR-29c) is identified to inhibit EMT, but the correlation between miR-29c and Sp1 in human lung cancer remain incompletely clarified. Here, we confirmed decreased expression of miR-29c and enhanced expression of Sp1 in lung cancer tissues (n = 20) and found that Sp1 could be targeted and inhibited by miR-29c. Besides, the expression of miR-29c was down-regulated in high-metastatic lung cancer cell lines and TGF-β1-treated cells. The inhibition of miR-29c or overexpression of Sp1 in 95C and A549 cells dramatically enhanced the cell migration and invasion, and also induced the decrease in the expression of epithelial markers, e.g. thyroid transcription factor 1 (TTF-1) and E-cadherin, together with an increase in mesenchymal markers including vimentin, α-smooth muscle actin (α-SMA), which could be restored by overexpression of miR-29c mimics during the TGF-β-induced EMT. Moreover, dual-luciferase reporter assay was performed and the results indicated that miR-29c/Sp1 could form an auto-regulatory loop with TGF-β1, which impaired TGFB1 transcription. Furthermore, miR-29c overexpression could abrogate the tumor progression and inhibit the Sp1/TGF-β expressions in vivo, indicating that miR-29c could be a tumor suppressor and repress the Sp1/TGF-β axis-induced EMT in lung cancer.
Collapse
Affiliation(s)
- Hai-wei Zhang
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| | - En-wen Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing, China
| | - Li-xian Li
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| | - Shou-hui Yi
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| | - Lu-chun Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing, China
| | - Fa-liang Xu
- Center of Breast Cancer, Chongqing Cancer Institute, Chongqing, China
| | - Dong-lin Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing, China
| | - Yong-zhong Wu
- Department of Radiotherapy, Chongqing Cancer Institute, Chongqing, China
| | - Wei-qi Nian
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| |
Collapse
|
343
|
Zhao Q, Cai W, Zhang X, Tian S, Zhang J, Li H, Hou C, Ma X, Chen H, Huang B, Chen D. RYBP Expression Is Regulated by KLF4 and Sp1 and Is Related to Hepatocellular Carcinoma Prognosis. J Biol Chem 2016; 292:2143-2158. [PMID: 28028181 DOI: 10.1074/jbc.m116.770727] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
The expression of Ring1- and YY1-binding protein (RYBP) is reduced in several human cancers, but the molecular mechanism(s) have remained elusive. In this study, we used human hepatocellular carcinoma (HCC) cell lines and tissue specimens to study the mechanism and herein report several new findings. First, we cloned and characterized the basal promoter region of the human RYBP gene. We found that the decreased RYBP expression in HCC tissues was not due to promoter sequence variation/polymorphisms or CpG dinucleotide methylation. We identified two transcription factors, KLF4 and Sp1, which directly bind the promoter region of RYBP to induce and suppress RYBP transcription, respectively. We mapped the binding sites of KLF4 and Sp1 on the RYBP promoter. Studies in vitro showed that KLF4 suppresses whereas Sp1 promotes HCC cell growth through modulating RYBP expression. Deregulated KLF4 and Sp1 contributed to decreased expression of RYBP in HCC tumor tissues. Our studies of human HCC tissues indicated that a diminished RYBP level in the tumor (in association with altered KLF4 and Sp1 expression) was statistically associated with a larger tumor size, poorer differentiation, and an increased susceptibility to distant metastasis. These findings help to clarify why RYBP is decreased in HCC and indicate that deregulated KLF4, Sp1, and RYBP may lead to a poorer prognosis. Our findings support the idea that RYBP may represent a target for cancer therapy and suggest that it may be useful as a prognostic biomarker for HCC, either alone or in combination with KLF4 and Sp1.
Collapse
Affiliation(s)
- Qiaojiajie Zhao
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Weihua Cai
- the Department of Hepatobiliary Surgery, Nantong Third Hospital, Nantong University, Nantong, Jiangsu 226006, China, and
| | - Xuan Zhang
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Shuo Tian
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Junwen Zhang
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Haibo Li
- the Department of Clinical Laboratory Medicine, Nantong Maternal and Child Health Hospital, Nantong, Jiangsu 226018, China
| | - Congcong Hou
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoli Ma
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hong Chen
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Bingren Huang
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China,
| | - Deng Chen
- From the State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China,
| |
Collapse
|
344
|
Tokay E, Kockar F. SP1 is a transcriptional regulator of URG-4/URGCP gene in hepatocytes. Mol Cell Biochem 2016; 423:75-83. [PMID: 27766531 DOI: 10.1007/s11010-016-2826-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/22/2016] [Indexed: 12/25/2022]
Abstract
URG-4/URGCP gene was implicated as an oncogene that contributes hepatocarcinogenesis regulated by Hepatitis-B-virus-encoded X antigen. However, the mechanism of transcriptional regulation of this gene remains largely unknown. For this reason, we focused on the functional analyses of URG4/URGCP promoter site. First, 545 bp of URG-4/URGCP, -482/+63, and three different 5'-truncated constructs, -109/+63, -261/+63, -344/+63 were cloned by PCR-based approach into pMetLuc luciferase reporter vector. Transient transfection assay showed that, -109/+63 construct has the highest activity. The promoter of URG-4/URGCP gene contained a CpG island region spanning 400 bp from translation start site. Many SP1/GC boxes, named GC-1 to GC-10 are present in 545 bp of URG-4/URGCP promoter. Because of presence of multiple SP1/GC boxes, promoter constructs were transiently co-transfected with SP1 expression vector to determine the effect of SP1 on URG-4/URGCP promoter activity. Co-transfection analyses induced the basal activity of -268/+63, -344/+63 and -482/+63 constructs. EMSA analysis of GC-4, GC-5, GC-6 and GC-7 binding sites located in -128/-148 bases, showed two DNA-protein binding complexes. Competition assay and super-shifted complexes indicated these complexes are resulted from SP1 binding. Also, site-directed mutagenesis of potential SP1 binding sites diminished both DNA-protein complexes and SP1-mediated upregulation of URG-4 promoter activity. These findings are valuable for understanding transcriptional regulation of URG4/URGCP that has a pivotal role in cancer progression.
Collapse
Affiliation(s)
- Esra Tokay
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balikesir University, Balıkesir, Turkey
| | - Feray Kockar
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balikesir University, Balıkesir, Turkey.
| |
Collapse
|
345
|
Chenette EJ. The FEBS Journalpast … and present. FEBS J 2016; 283:4408-4411. [DOI: 10.1111/febs.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
346
|
Chen Y, Huang Y, Hou P, Zhang Z, Zhang Y, Wang W, Sun G, Xu L, Zhou J, Bai J, Zheng J. ING4 suppresses tumor angiogenesis and functions as a prognostic marker in human colorectal cancer. Oncotarget 2016; 7:79017-79031. [PMID: 27806345 PMCID: PMC5346695 DOI: 10.18632/oncotarget.12984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/22/2016] [Indexed: 12/27/2022] Open
Abstract
ING4, a potential tumor suppressor, is implicated in cell cycle arrest, apoptosis, cell migration and angiogenesis. Here, we investigated the clinical value of ING4 and its impact on angiogenesis in colorectal cancer (CRC). In this study, we found that ING4 expression was significantly reduced in CRC tissues versus paired normal colon tissues. Moreover, low ING4 expression was significantly associated with increased lymph node metastasis, advanced TNM stage and poor overall survival. Multivariate Cox regression analysis showed that ING4 expression was an independent favourable prognostic factor for CRC (hazard ratio = 0.45, P = 0.001). In addition, we found that ING4 strongly inhibited CRC angiogenesis by suppressing Sp1 expression and transcriptional activity through ubiquitin degradation and down-regulating the expressions of Sp1 downstream pro-angiogenic genes, MMP-2 and COX-2. Moreover, ING4 might inhibit phosphorylation activity of cyclin/CDK2 complexes to trigger Sp1 degradation by inducing p21 expression in despite of p53 status. Our findings imply that reduced ING4 expression in CRC resulted in increased angiogenesis and contributed to CRC metastasis and poor prognosis. Restoration of ING4 may be a novel strategy for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Yansu Chen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Yefei Huang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Pingfu Hou
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Zhe Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Yafei Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Weimin Wang
- Department of Oncology, Yixing People's Hospital, Yixing 214200, Jiangsu Province, China
| | - Guixiang Sun
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Lichun Xu
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| |
Collapse
|
347
|
Bat-Erdene A, Miki H, Oda A, Nakamura S, Teramachi J, Amachi R, Tenshin H, Hiasa M, Iwasa M, Harada T, Fujii S, Sogabe K, Kagawa K, Yoshida S, Endo I, Aihara K, Abe M. Synergistic targeting of Sp1, a critical transcription factor for myeloma cell growth and survival, by panobinostat and proteasome inhibitors. Oncotarget 2016; 7:79064-79075. [PMID: 27738323 PMCID: PMC5346698 DOI: 10.18632/oncotarget.12594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Panobinostat, a pan-deacetylase inhibitor, synergistically elicits cytotoxic activity against myeloma (MM) cells in combination with the proteasome inhibitor bortezomib. Because precise mechanisms for panobinostat's anti-MM action still remain elusive, we aimed to clarify the mechanisms of anti-MM effects of panobinostat and its synergism with proteasome inhibitors. Although the transcription factor Sp1 was overexpressed in MM cells, the Sp1 inhibitor terameprocol induced MM cell death in parallel with reduction of IRF4 and cMyc. Panobinostat induced activation of caspase-8, which was inversely correlated with reduction of Sp1 protein levels in MM cells. The panobinostat-mediated effects were further potentiated to effectively induce MM cell death in combination with bortezomib or carfilzomib even at suboptimal concentrations as a single agent. Addition of the caspase-8 inhibitor z-IETD-FMK abolished the Sp1 reduction not only by panobinostat alone but also by its combination with bortezomib, suggesting caspase-8-mediated Sp1 degradation. The synergistic Sp1 reduction markedly suppressed Sp1-driven prosurvival factors, IRF4 and cMyc. Besides, the combinatory treatment reduced HDAC1, another Sp1 target, in MM cells, which may potentiate HDAC inhibition. Collectively, caspase-8-mediated post-translational Sp1 degradation appears to be among major mechanisms for synergistic anti-MM effects of panobinostat and proteasome inhibitors in combination.
Collapse
Affiliation(s)
- Ariunzaya Bat-Erdene
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Asuko Oda
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
- Department of Histology and Oral Histology, Tokushima University Graduate School of Oral Sciences, Tokushima, Japan
| | - Ryota Amachi
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima, Japan
| | - Hirofumi Tenshin
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima, Japan
| | - Masami Iwasa
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Kenichi Aihara
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| |
Collapse
|
348
|
Engel T, Brennan GP, Sanz-Rodriguez A, Alves M, Beamer E, Watters O, Henshall DC, Jimenez-Mateos EM. A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:255-266. [PMID: 27840225 DOI: 10.1016/j.bbamcr.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
Cells have developed complex transcriptional regulatory mechanisms to maintain intracellular homeostasis and withstand pathophysiological stressors. Feed-forward loops comprising transcription factors that drive expression of both target gene and a microRNA as negative regulator, are gaining increasing recognition as key regulatory elements of cellular homeostasis. The ATP-gated purinergic P2X7 receptor (P2X7R) is an important driver of inflammation and has been implicated in the pathogenesis of numerous brain diseases including epilepsy. Changes in P2X7R expression have been reported in both experimental models and in epilepsy patients but the mechanism(s) controlling P2X7R levels remain incompletely understood. The specificity protein 1 (Sp1) has been shown to induce P2X7R transcription in vitro and recent data has identified microRNA-22 as a post-transcriptional repressor of P2X7R expression after seizures. In the present study we show that Sp1 can induce the transcription of both microRNA-22 and P2X7R in vitro during increased neuronal activity and in vivo in a mouse model of status epilepticus. We further show that Sp1-driven microRNA-22 transcription is calcium-sensitive and Sp1 occupancy of the microRNA-22 promoter region is blocked under conditions of seizure activity sufficient to elicit neuronal death. Taken together, our results suggest a neuronal activity-dependent P2X7R expression which is induced by the transcription factor Sp1 and repressed in a calcium-dependent manner by microRNA-22.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Gary P Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
349
|
Liu Y, Zhou J, Hu Y, Wang J, Yuan C. Curcumin inhibits growth of human breast cancer cells through demethylation of DLC1 promoter. Mol Cell Biochem 2016; 425:47-58. [DOI: 10.1007/s11010-016-2861-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/22/2016] [Indexed: 12/01/2022]
|
350
|
|