301
|
Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z. Overexpression of a Functional Vicia sativa PCS1 Homolog Increases Cadmium Tolerance and Phytochelatins Synthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:107. [PMID: 29467781 PMCID: PMC5808204 DOI: 10.3389/fpls.2018.00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/19/2018] [Indexed: 05/05/2023]
Abstract
Phytochelatins (PCs) catalyzed by phytochelatin synthases (PCS) are important for the detoxification of metals in plants and other living organisms. In this study, we isolated a PCS gene (VsPCS1) from Vicia sativa and investigated its role in regulating cadmium (Cd) tolerance. Expression of VsPCS1 was induced in roots of V. sativa under Cd stress. Analysis of subcellular localization showed that VsPCS1 was localized in the cytoplasm of mesophyll protoplasts of V. sativa. Overexpression of VsPCS1 (35S::VsPCS1, in wild-type background) in Arabidopsis thaliana could complement the defects of Cd tolerance of AtPCS1-deficent mutant (atpcs1). Compared with atpcs1 mutants, 35S::VsPCS1/atpcs1 (in AtPCS1-deficent mutant background) transgenic plants significantly lowered Cd-fluorescence intensity in mesophyll cytoplasm, accompanied with enhanced Cd-fluorescence intensity in the vacuoles, demonstrating that the increased Cd tolerance may be attributed to the increased PC-based sequestration of Cd into the vacuole. Furthermore, overexpressing VsPCS1 could enhance the Cd tolerance in 35S::VsPCS1, but have no effect on Cd accumulation and distribution, showing the same level of Cd-fluorescence intensity between 35S::VsPCS1 and wild-type (WT) plants. Further analysis indicated this increased tolerance in 35S::VsPCS1 was possibly due to the increased PCs-chelated Cd in cytosol. Taken together, a functional PCS1 homolog from V. sativa was identified, which hold a strong catalyzed property for the synthesis of high-order PCs that retained Cd in the cytosol rather the vacuole. These findings enrich the original model of Cd detoxification mediated by PCS in higher plants.
Collapse
Affiliation(s)
- Xingxing Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Haiyun Rui
- College of Pharmacy and Chemistry and Chemical Engineering, Taizhou University, Taizhou, China
| | - Fenqin Zhang
- College of Agriculture and Biotechnology, Hexi University, Zhangye, China
| | - Zhubing Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yan Xia,
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
302
|
Papierniak A, Kozak K, Kendziorek M, Barabasz A, Palusińska M, Tiuryn J, Paterczyk B, Williams LE, Antosiewicz DM. Contribution of NtZIP1-Like to the Regulation of Zn Homeostasis. FRONTIERS IN PLANT SCIENCE 2018; 9:185. [PMID: 29503658 PMCID: PMC5820362 DOI: 10.3389/fpls.2018.00185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/31/2018] [Indexed: 05/20/2023]
Abstract
Tobacco has frequently been suggested as a candidate plant species for use in phytoremediation of metal contaminated soil but knowledge on the regulation of its metal-homeostasis is still in the infancy. To identify new tobacco metal transport genes that are involved in Zn homeostasis a bioinformatics study using the tobacco genome information together with expression analysis was performed. Ten new tobacco metal transport genes from the ZIP, NRAMP, MTP, and MRP/ABCC families were identified with expression levels in leaves that were modified by exposure to Zn excess. Following exposure to high Zn there was upregulation of NtZIP11-like, NtNRAMP3, three isoforms of NtMTP2, three MRP/ABCC genes (NtMRP5-like, NtMRP10-like, and NtMRP14 like) and downregulation of NtZIP1-like and NtZIP4. This suggests their involvement in several processes governing the response to Zn-related stress and in the efficiency of Zn accumulation (uptake, sequestration, and redistribution). Further detailed analysis of NtZIP1-like provided evidence that it is localized at the plasma membrane and is involved in Zn but not Fe and Cd transport. NtZIP1-like is expressed in the roots and shoots, and is regulated developmentally and in a tissue-specific manner. It is highly upregulated by Zn deficiency in the leaves and the root basal region but not in the root apical zone (region of maturation and absorption containing root hairs). Thus NtZIP1-like is unlikely to be responsible for Zn uptake by the root apical region but rather in the uptake by root cells within the already mature basal zone. It is downregulated by Zn excess suggesting it is involved in a mechanism to protect the root and leaf cells from accumulating excess Zn.
Collapse
Affiliation(s)
- Anna Papierniak
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria Kendziorek
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Barabasz
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Palusińska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy Tiuryn
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Danuta M. Antosiewicz
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Danuta M. Antosiewicz,
| |
Collapse
|
303
|
Yamazaki S, Ueda Y, Mukai A, Ochiai K, Matoh T. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance. PLANT DIRECT 2018; 2:e00034. [PMID: 31245682 PMCID: PMC6508543 DOI: 10.1002/pld3.34] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) and arsenic (As) pollution in paddy soil and their accumulation in rice (Oryza sativa) pose serious threats to human health. Rice internally detoxifies these toxic metal and metalloid to some extent, resulting in their accumulation within the edible parts. However, the mechanisms of Cd and As detoxification in rice have been poorly elucidated. Plants synthesize thiol-rich metal-chelating peptides, termed phytochelatins (PCs). We characterized rice PC synthase (PCS) and investigated its contribution to Cd and As tolerance in rice. We identified two PCS homolog genes, OsPCS1 and OsPCS2, in the rice genome. The expression of OsPCS1 was upregulated by As(III) stress in the roots but that of OsPCS2 was not significantly affected. The expression level of OsPCS2 was higher than that of OsPCS1 in the shoots and roots. Recombinant OsPCS1 and OsPCS2 proteins differed in their metal activation. OsPCS1 was more strongly activated by As(III) than by Cd; however, OsPCS2 was more strongly activated by Cd than by As(III). Genetically engineered plants having their OsPCS2 expression silenced via RNA interference (OsPCS2 RNAi) contained less PCs and more glutathione (GSH), a substrate of PC synthesis, than wild-type plants, although there was no significant difference in OsPCS1 RNAi plants. OsPCS2 RNAi plants were sensitive to As(III) stress, but Cd tolerance was little affected. On the other hand, treatment with buthionine sulfoximine, an inhibitor of GSH biosynthesis, significantly decreased Cd and As tolerance of rice seedlings. These findings indicate that OsPCS2 is a major isozyme controlling PC synthesis, and that PCs are important for As tolerance in rice. However, PC synthesis may make a smaller contribution to Cd tolerance in rice, and GSH plays crucial roles, not only as a substrate of PC synthesis.
Collapse
Affiliation(s)
| | - Yosuke Ueda
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Aya Mukai
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kumiko Ochiai
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Toru Matoh
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
304
|
Ji Y, Sarret G, Schulin R, Tandy S. Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1322-1329. [PMID: 28935406 DOI: 10.1016/j.envpol.2017.08.105] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 05/16/2023]
Abstract
Antimony (Sb) is a contaminant of increased prevalence in the environment, but there is little knowledge about the mechanisms of its uptake and translocation within plants. Here, we applied for the synchrotron based X-ray absorption near-edge structure (XANES) spectroscopy to analyze the speciation of Sb in roots and shoots of rye grass (Lolium perenne L. Calibra). Seedlings were grown in nutrient solutions to which either antimonite (Sb(III)), antimonate (Sb(V)) or trimethyl-Sb(V) (TMSb) were added. While exposure to Sb(III) led to around 100 times higher Sb accumulation in the roots than the other two treatments, there was no difference in total Sb in the shoots. Antimony taken up in the Sb(III) treatment was mainly found as Sb-thiol complexes (roots: >76% and shoots: 60%), suggesting detoxification reactions with compounds such as glutathione and phytochelatins. No reduction of accumulated Sb(V) was found in the roots, but half of the translocated Sb was reduced to Sb(III) in the Sb(V) treatment. Antimony accumulated in the TMSb treatment remained in the methylated form in the roots. By synchrotron based XANES spectroscopy, we were able to distinguish the major Sb compounds in plant tissue under different Sb treatments. The results help to understand the translocation and transformation of different Sb species in plants after uptake and provide information for risk assessment of plant growth in Sb contaminated soils.
Collapse
Affiliation(s)
- Ying Ji
- ITES, Institute of Terrestrial Ecosystems, ETH Zürich, 8092 Zürich, Switzerland.
| | - Géraldine Sarret
- ISTerre, Institut des Sciences de la Terre, Univ. Grenoble Alpes & CNRS, 38058 Grenoble, France.
| | - Rainer Schulin
- ITES, Institute of Terrestrial Ecosystems, ETH Zürich, 8092 Zürich, Switzerland.
| | - Susan Tandy
- ITES, Institute of Terrestrial Ecosystems, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
305
|
Tan M, Cheng D, Yang Y, Zhang G, Qin M, Chen J, Chen Y, Jiang M. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC PLANT BIOLOGY 2017; 17:194. [PMID: 29115926 PMCID: PMC5678563 DOI: 10.1186/s12870-017-1143-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/30/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The migration of cadmium (Cd) from contaminated soil to rice is a cause for concern. However, the molecular mechanism underlying the response of rice roots to various Cd stresses remains to be clarified from the viewpoint of the co-expression network at a system-wide scale. RESULTS We employed a comparative RNAseq-based approach to identify early Cd-responsive differentially expressed genes (DEGs) in rice 'Nipponbare' seedling roots after 1 h of high-Cd treatment. A multiplicity of the identified 1772 DEGs were implicated in hormone signaling and transcriptional regulation, particularly NACs and WRKYs were all upregulated under Cd stress. All of the 6 Cd-upregulated ABC transporters were pleiotropic drug resistance proteins (PDRs), whereas all of the 6 ZRT/IRT-like proteins (ZIPs) were consistently downregulated by Cd treatment. To further confirm our results of this early transcriptomic response to Cd exposure, we then conducted weighted gene co-expression network analysis (WGCNA) to re-analyze our RNAseq data in combination with other 11 previously published RNAseq datasets for rice roots exposed to diverse concentrations of Cd for extended treatment periods. This integrative approach identified 271 transcripts as universal Cd-regulated DEGs that are key components of the Cd treatment coupled co-expression module. A global view of the 164 transcripts with annotated functions in pathway networks revealed several Cd-upregulated key functional genes, including transporter ABCG36/OsPDR9, 12-oxo-phytodienoic acid reductases (OPRs) for JA synthesis, and ZIM domain proteins JAZs in JA signaling, as well as OsWRKY10, NAC, and ZFP transcription factors. More importantly, 104 of these, including ABCG36/OsPDR9, OsNAC3, as well as several orthologs in group metalloendoproteinase, plastocyanin-like domain containing proteins and pectin methylesterase inhibitor, may respond specifically to various Cd pressures, after subtracting the 60 general stress-responsive genes reported to be commonly upregulated following multiple stresses. CONCLUSION An integrative approach was implemented to identify DEGs and co-expression network modules in response to various Cd pressures, and 104 of the 164 annotatable universal Cd-responsive DEGs may specifically respond to various Cd pressures. These results provide insight into the universal molecular mechanisms beneath the Cd response in rice roots, and suggest many promising targets for improving the rice acclimation process against Cd toxicity.
Collapse
Affiliation(s)
- Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dan Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuening Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guoqiang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengjie Qin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
306
|
Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L. OsMYB45 plays an important role in rice resistance to cadmium stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:1-8. [PMID: 28969789 DOI: 10.1016/j.plantsci.2017.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 08/06/2017] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal elements in nature, and it causes serious damage to plant cells. Here, we report that a transcription factor OsMYB45 is involved in Cd stress response in rice. OsMYB45 is highly expressed in rice leaves, husks, stamens, pistils, and lateral roots, and its expression is induced by Cd stress. OsMYB45 fused to green fluorescent protein localized to the cell nucleus in onion epidermal cells. Mutation of OsMYB45 resulted in hypersensitivity to Cd treatment, and the concentration of H2O2 in the leaves of mutant nearly doubled, while catalase (CAT) activity was halved compared with the wild-type. Moreover, gene expression analysis indicated that OsCATA and OsCATC expression is significantly lower in the mutant than in the wild-type. In addition, overexpression of OsMYB45 in the mutant complemented the mutant phenotype. Taken together, OsMYB45 plays an important role in tolerance to Cd stress in rice.
Collapse
Affiliation(s)
- Shubao Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuhong Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangmao Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
307
|
Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY. Responses of Plant Proteins to Heavy Metal Stress-A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1492. [PMID: 28928754 PMCID: PMC5591867 DOI: 10.3389/fpls.2017.01492] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 05/17/2023]
Abstract
Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Horticulture, Zhejiang UniversityHangzhou, China
- Department of Agricultural Chemistry, Sylhet Agricultural UniversitySylhet, Bangladesh
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Xian-Yao Chu
- Zhejiang Institute of Geological Survey, Geological Research Center for Agricultural Applications, China Geological SurveyBeijing, China
| | | | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang UniversityHangzhou, China
| |
Collapse
|
308
|
Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci Rep 2017; 7:8034. [PMID: 28808314 PMCID: PMC5556115 DOI: 10.1038/s41598-017-08515-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
Contamination by mercury (Hg) is a worldwide concern because of Hg toxicity and biomagnification in aquatic food webs. Nevertheless, bioavailability and cellular toxicity pathways of inorganic (IHg) and methyl-Hg (MeHg) remain poorly understood. We analyzed the uptake, transcriptomic, and physiological responses in the microalga Chlamydomonas reinhardtii exposed to IHg or MeHg. Bioavailability of MeHg was up to 27× higher than for IHg. Genes involved in cell processes, energy metabolism and transport were dysregulated by both Hg species. Physiological analysis revealed an impact on photosynthesis and reduction–oxidation reaction metabolism. Nevertheless, MeHg dysregulated a larger number of genes and with a stronger fold-change than IHg at equivalent intracellular concentration. Analysis of the perturbations of the cell’s functions helped to derive a detailed mechanistic understanding of differences in cellular handling of IHg and MeHg resulting in MeHg having a stronger impact. This knowledge is central for the prediction of impact of toxicants on organisms.
Collapse
|
309
|
Yu R, Li D, Du X, Xia S, Liu C, Shi G. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics 2017; 18:587. [PMID: 28789614 PMCID: PMC5549386 DOI: 10.1186/s12864-017-3973-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Background Cadmium translocation from roots to shoots is a complex biological process that is controlled by gene regulatory networks. Pak choi exhibits wide cultivar variations in Cd accumulation. However, the molecular mechanism involved in cadmium translocation and accumulation is still unclear. To isolate differentially expressed genes (DEGs) involved in transporter-mediated regulatory mechanisms of Cd translocation in two contrasting pak choi cultivars, Baiyewuyueman (B, high Cd accumulator) and Kuishan’aijiaoheiye (K, low Cd accumulator), eight cDNA libraries from the roots of two cultivars were constructed and sequenced by RNA-sequencing. Results A total of 244,190 unigenes were obtained. Of them, 6827 DEGs, including BCd10 vs. BCd0 (690), KCd10 vs. KCd0 (2733), KCd0 vs. BCd0 (2919), and KCd10 vs. BCd10 (3455), were identified. Regulatory roles of these DEGs were annotated and clarified through GO and KEEG enrichment analysis. Interestingly, 135 DEGs encoding ion transport (i.e. ZIPs, P1B-type ATPase and MTPs) related proteins were identified. The expression patterns of ten critical genes were validated using RT-qPCR analysis. Furthermore, a putative model of cadmium translocation regulatory network in pak choi was proposed. Conclusions High Cd cultivar (Baiyewuyueman) showed higher expression levels in plasma membrane-localized transport genes (i.e., ZIP2, ZIP3, IRT1, HMA2 and HMA4) and tonoplast-localized transport genes (i.e., CAX4, HMA3, MRP7, MTP3 and COPT5) than low Cd cultivar (Kuishan’aijiaoheiye). These genes, therefore, might be involved in root-to-shoot Cd translocation in pak choi. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3973-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Dan Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Shenglan Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Caifeng Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China.
| |
Collapse
|
310
|
Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
311
|
Bahmani R, Kim D, Lee BD, Hwang S. Over-expression of tobacco UBC1 encoding a ubiquitin-conjugating enzyme increases cadmium tolerance by activating the 20S/26S proteasome and by decreasing Cd accumulation and oxidative stress in tobacco (Nicotiana tabacum). PLANT MOLECULAR BIOLOGY 2017; 94:433-451. [PMID: 28508171 DOI: 10.1007/s11103-017-0616-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/26/2017] [Indexed: 05/11/2023]
Abstract
Ubiquitin (Ub)-conjugating enzyme (UBC, E2) receives Ub from Ub-activating enzyme (E1) and transfers it to target proteins, thereby playing a key role in Ub/26S proteasome-dependent proteolysis. UBC has been reported to be involved in tolerating abiotic stress in plants, including drought, salt, osmotic and water stresses. To isolate the genes involved in Cd tolerance, we transformed WT (wild-type) yeast Y800 with a tobacco cDNA expression library and isolated a tobacco cDNA, NtUBC1 (Ub-conjugating enzyme), that enhances cadmium tolerance. When NtUBC1 was over-expressed in tobacco, cadmium tolerance was enhanced, but the Cd level was decreased. Interestingly, 20S proteasome activity was increased and ubiquitinated protein levels were diminished in response to cadmium in NtUBC1 tobacco. By contrast, proteasome activity was decreased and ubiquitinated protein levels were slightly enhanced by Cd treatment in control tobacco, which is sensitive to Cd. Moreover, the oxidative stress level was induced to a lesser extent by Cd in NtUBC1 tobacco compared with control plants, which is ascribed to the higher activity of antioxidant enzymes in NtUBC1 tobacco. In addition, NtUBC1 tobacco displayed a reduced accumulation of Cd compared with the control, likely due to the higher expression of CAX3 (Ca2+/H+ exchanger) and the lower expression of IRT1 (iron-responsive transporter 1) and HMA-A and -B (heavy metal ATPase). In contrast, atubc1 and atubc1atubc2 Arabidopsis exhibited lower Cd tolerance and proteasome activity than WT. In conclusion, NtUBC1 expression promotes cadmium tolerance likely by removing cadmium-damaged proteins via Ub/26S proteasome-dependent proteolysis or the Ub-independent 20S proteasome and by diminishing oxidative stress through the activation of antioxidant enzymes and decreasing Cd accumulation due to higher CAX3 and lower IRT1 and HMA-A/B expression in response to 50 µM Cd challenge for 3 weeks.
Collapse
Affiliation(s)
- Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Byoung Doo Lee
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, South Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea.
| |
Collapse
|
312
|
Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance. Sci Rep 2017. [PMID: 28623252 PMCID: PMC5473843 DOI: 10.1038/s41598-017-03540-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50% of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0.
Collapse
|
313
|
Ziegler J, Schmidt S, Strehmel N, Scheel D, Abel S. Arabidopsis Transporter ABCG37/PDR9 contributes primarily highly oxygenated Coumarins to Root Exudation. Sci Rep 2017. [PMID: 28623273 PMCID: PMC5473935 DOI: 10.1038/s41598-017-03250-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chemical composition of root exudates strongly impacts the interactions of plants with microorganisms in the rhizosphere and the efficiency of nutrient acquisition. Exudation of metabolites is in part mediated by ATP-binding cassette (ABC) transporters. In order to assess the contribution of individual ABC transporters to root exudation, we performed an LC-MS based non-targeted metabolite profiling of semi-polar metabolites accumulating in root exudates of Arabidopsis thaliana plants and mutants deficient in the expression of ABCG36 (PDR8/PEN3), ABCG37 (PDR9) or both transporters. Comparison of the metabolite profiles indicated distinct roles for each ABC transporter in root exudation. Thymidine exudation could be attributed to ABCG36 function, whereas coumarin exudation was strongly reduced only in ABCG37 deficient plants. However, coumarin exudation was compromised in abcg37 mutants only with respect to certain metabolites of this substance class. The specificity of ABCG37 for individual coumarins was further verified by a targeted LC-MS based coumarin profiling method. The response to iron deficiency, which is known to strongly induce coumarin exudation, was also investigated. In either treatment, the distribution of individual coumarins between roots and exudates in the investigated genotypes suggested the involvement of ABCG37 in the exudation specifically of highly oxygenated rather than monohydroxylated coumarins.
Collapse
Affiliation(s)
- Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany.
| | - Stephan Schmidt
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle Wittenberg, D-06120, Halle (Saale), Germany.,Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
314
|
Ferri A, Lancilli C, Maghrebi M, Lucchini G, Sacchi GA, Nocito FF. The Sulfate Supply Maximizing Arabidopsis Shoot Growth Is Higher under Long- than Short-Term Exposure to Cadmium. FRONTIERS IN PLANT SCIENCE 2017; 8:854. [PMID: 28588602 PMCID: PMC5439006 DOI: 10.3389/fpls.2017.00854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 05/23/2023]
Abstract
The processes involved in cadmium detoxification in plants deeply affect sulfate uptake and thiol homeostasis and generate increases in the plant nutritional request for sulfur. Here, we present an analysis of the dependence of Arabidopsis growth on the concentration of sulfate in the growing medium with the aim of providing evidence on how plants optimize growth at a given sulfate availability. Results revealed that short-term (72 h) exposure to a broad range of Cd concentrations (0.1, 1, and 10 μM) inhibited plant growth but did not produce any significant effects on the growth pattern of both shoots and roots in relation to the external sulfate. Conversely, long-term (22 days) exposure to 0.1 μM Cd significantly changed the pattern of fresh weight accumulation of the shoots in relation to the external sulfate, without affecting that of the roots, although their growth was severely inhibited by Cd. Moreover, under long-term exposure to Cd, increasing the sulfate external concentration up to the critical value progressively reduced the inhibitory effects exerted by Cd on shoot growth, indicating the existence of sulfate-dependent adaptive responses protecting the shoot tissues against Cd injury. Transcriptional induction of the high-affinity sulfate transporter genes (SULTR1; 1 and SULTR1; 2) involved in sulfate uptake by roots was a common adaptive response to both short- and long-term exposure to Cd. Such a response was closely related to the total amount of non-protein thiols accumulated by a single plant under short-term exposure to Cd, but did not showed any clear relation with thiols under long-term exposure to Cd. In this last condition, Cd exposure did not change the level of non-protein thiols per plant and thus did not alter the nutritional need for sulfur. In conclusion, our results indicate that long term-exposure to Cd, although it induces sulfate uptake, decreases the capacity of the Arabidopsis roots to efficiently absorb the sulfate ions available in the growing medium making the adaptive response of SULTR1; 1 and SULTR1; 2 "per se" not enough to optimize the growth at sulfate external concentrations lower than the critical value.
Collapse
Affiliation(s)
- Alessandro Ferri
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| | - Clarissa Lancilli
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
- Istituto d’Istruzione Superiore di CodognoCodogno, Italy
| | - Moez Maghrebi
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| | - Giorgio Lucchini
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| | - Gian Attilio Sacchi
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| | - Fabio F. Nocito
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| |
Collapse
|
315
|
Sharma SS, Yamamoto K, Hamaji K, Ohnishi M, Anegawa A, Sharma S, Thakur S, Kumar V, Uemura T, Nakano A, Mimura T. Cadmium-induced changes in vacuolar aspects of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:29-37. [PMID: 28257948 DOI: 10.1016/j.plaphy.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
We have examined the changes due to Cd treatment in the vacuolar form in root tip cortical cells in Arabidopsis thaliana employing a transformant with GFP fused to a tonoplast protein. A Cd-induced enhancement in complexity with general expansion of vacuolar system within 24 h was evident. The changes in the vacuolar form were dependent on the applied Cd concentrations. Concomitantly, as revealed through dithizone staining, Cd accumulated in the seedling roots exhibiting abundance of Cd-dithizone complexes in root tip, root hairs and vasculature. To get insight into the involvement of SNARE protein-mediated vesicle fusion in Cd detoxification, the magnitude of Cd toxicity in a couple of knock out mutants of the vacuolar Qa-SNARE protein VAM3/SYP22 was compared with that in the wild type. The Cd toxicity appeared to be comparable in the mutants and the wild type. In order to analyze the Cd effects at cellular level, we treated the Arabidopsis suspension-cultured cells with Cd. Cd, however, did not induce a change in the vacuolar form in suspension-cultured cells although Cd measured with ICP-MS was obviously taken up into the cell. The V-ATPase activity in the microsomal fractions from vacuoles isolated from A. thaliana suspension cultured cells remained unaffected by Cd. Changes in the levels of certain metabolites of Cd-treated cells were also not so distinct except for those of glutathione. The significance of findings is discussed.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Kotaro Yamamoto
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Kohei Hamaji
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Aya Anegawa
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan; Agilent Technologies Japan. Ltd., Hachioji, Tokyo 192-8510, Japan
| | - Shashi Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Sveta Thakur
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Tomohiro Uemura
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akihiko Nakano
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan; Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan.
| |
Collapse
|
316
|
Wang Y, Wang X, Wang C, Peng F, Wang R, Xiao X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. Transcriptomic Profiles Reveal the Interactions of Cd/Zn in Dwarf Polish Wheat ( Triticum polonicum L.) Roots. Front Physiol 2017; 8:168. [PMID: 28386232 PMCID: PMC5362637 DOI: 10.3389/fphys.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Different intra- or interspecific wheat show different interactions of Cd/Zn. Normally, Zn has been/being widely utilized to reduce the Cd toxicity. In the present study, the DPW seedlings exhibited strong Cd tolerance. Zn and Cd mutually inhibited their uptake in the roots, showed antagonistic Cd/Zn interactions. However, Zn promoted the Cd transport from the roots to shoots, showed synergistic. In order to discover the interactive molecular responses, a transcriptome, including 123,300 unigenes, was constructed using RNA-Sequencing (RNA-Seq). Compared with CK, the expression of 1,269, 820, and 1,254 unigenes was significantly affected by Cd, Zn, and Cd+Zn, respectively. Only 381 unigenes were co-induced by these three treatments. Several metal transporters, such as cadmium-transporting ATPase and plant cadmium resistance 4, were specifically regulated by Cd+Zn. Other metal-related unigenes, such as ABC transporters, metal chelator, nicotianamine synthase (NAS), vacuolar iron transporters (VIT), metal-nicotianamine transporter YSL (YSL), and nitrate transporter (NRT), were regulated by Cd, but were not regulated by Cd+Zn. These results indicated that these transporters participated in the mutual inhibition of the Cd/Zn uptake in the roots, and also participated in the Cd transport, accumulation and detoxification. Meanwhile, some unigenes involved in other processes, such as oxidation-reduction, auxin metabolism, glutathione (GSH) metabolism nitrate transport, played different and important roles in the detoxification of these heavy metals.
Collapse
Affiliation(s)
- Yi Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xiaolu Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Fan Peng
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Ruijiao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University Wenjiang, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| |
Collapse
|
317
|
Guo H, Feng X, Hong C, Chen H, Zeng F, Zheng B, Jiang D. Malate secretion from the root system is an important reason for higher resistance of Miscanthus sacchariflorus to cadmium. PHYSIOLOGIA PLANTARUM 2017; 159:340-353. [PMID: 27787914 DOI: 10.1111/ppl.12526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 05/03/2023]
Abstract
Miscanthus is a vigorous perennial Gramineae genus grown throughout the world as a promising bioenergy crop and generally regarded as heavy metal tolerant due to its ability to absorb heavy metals. However, little is known about the mechanism for heavy metal tolerance in Miscanthus. In this study, two Miscanthus species (Miscanthus sacchariflorus and Miscanthus floridulus) exhibiting different cadmium (Cd) sensitivity were used to address the mechanisms of Cd tolerance. Under the same Cd stress, M. sacchariflorus showed higher Cd tolerance with better growth and lower Cd accumulation in both shoots and roots than M. floridulus. The malate (MA) content significantly increased in root exudates of M. sacchariflorus following Cd treatment while it was almost unchanged in M. floridulus. Cellular Cd analysis and flux data showed that exogenous MA application markedly restricted Cd influx and accumulation while an anion-channel inhibitor (phenylglyoxal) effectively blocked Cd-induced MA secretion and increased Cd influx in M. sacchariflorus, indicating that MA secretion could alleviate Cd toxicity by reducing Cd uptake. The genes of malate dehydrogenases (MsMDHs) and Al-activated malate transporter 1 (MsALMT1) in M. sacchariflorus were highly upregulated under Cd stress, compared with that in M. floridulus. The results indicate that Cd-induced MA synthesis and secretion efficiently alleviate Cd toxicity by reducing Cd influx in M. sacchariflorus.
Collapse
Affiliation(s)
- Haipeng Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chuntao Hong
- Department of Forestry, Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Houming Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bingsong Zheng
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
318
|
Khare D, Mitsuda N, Lee S, Song W, Hwang D, Ohme‐Takagi M, Martinoia E, Lee Y, Hwang J. Root avoidance of toxic metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:1257-1273. [PMID: 27768815 PMCID: PMC5248625 DOI: 10.1111/nph.14242] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/30/2016] [Indexed: 05/20/2023]
Abstract
Plants reorganize their root architecture to avoid growth into unfavorable regions of the rhizosphere. In a screen based on chimeric repressor gene-silencing technology, we identified the Arabidopsis thaliana GeBP-LIKE 4 (GPL4) transcription factor as an inhibitor of root growth that is induced rapidly in root tips in response to cadmium (Cd). We tested the hypothesis that GPL4 functions in the root avoidance of Cd by analyzing root proliferation in split medium, in which only half of the medium contained toxic concentrations of Cd. The wild-type (WT) plants exhibited root avoidance by inhibiting root growth in the Cd side but increasing root biomass in the control side. By contrast, GPL4-suppression lines exhibited nearly comparable root growth in the Cd and control sides and accumulated more Cd in the shoots than did the WT. GPL4 suppression also altered the root avoidance of toxic concentrations of other essential metals, modulated the expression of many genes related to oxidative stress, and consistently decreased reactive oxygen species concentrations. We suggest that GPL4 inhibits the growth of roots exposed to toxic metals by modulating reactive oxygen species concentrations, thereby allowing roots to colonize noncontaminated regions of the rhizosphere.
Collapse
Affiliation(s)
- Deepa Khare
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Nobukata Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Seungchul Lee
- School of Interdisciplinary Bioscience and BioengineeringPOSTECHPohang37673Korea
| | - Won‐Yong Song
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and BioengineeringPOSTECHPohang37673Korea
- Department of New Biology and Center for Plant Aging ResearchDGISTDaegu42988Korea
| | - Masaru Ohme‐Takagi
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
- Division of Strategic Research and DevelopmentGraduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Enrico Martinoia
- Department of Plant and Microbial BiologyUniversity ZurichZollikerstrasse 107CH‐8008ZürichSwitzerland
| | - Youngsook Lee
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Jae‐Ung Hwang
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| |
Collapse
|
319
|
Shen C, Huang YY, He CT, Zhou Q, Chen JX, Tan X, Mubeen S, Yuan JG, Yang ZY. Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatica Forsk. cultivars with different cadmium accumulation capacities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:329-339. [PMID: 27992771 DOI: 10.1016/j.plaphy.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/10/2016] [Accepted: 12/11/2016] [Indexed: 05/27/2023]
Abstract
In plants, microRNAs (miRNAs) play regulatory roles in response to various environmental stresses. In order to illustrate the regulation mechanisms of miRNAs involving the different Cd accumulation abilities between a low-shoot-Cd cultivar (QLQ) and a high-shoot-Cd cultivar (T308) of water spinach (Ipomoea aquatic Forsk.), six sRNA libraries at 3 different time points were constructed. Only 5 miRNAs were exclusively regulated in QLQ, among them, miRNA395 was up-regulated, which was supposed to enhance the Cd retention and detoxification in root. Also, the alterations of miRNA5139, miRNA1511 and miRNA8155 contributed to the attenuation of Cd translocation into the shoot of QLQ. More differentially expressed miRNAs were observed in T308, indicating more complex response was adopted by T308 under Cd stress. miRNA397 exclusively regulated in T308 has enhanced the Cd influx of T308 under Cd treatments. Besides, the Cd translocation of T308 was strengthened due to the up-regulation of MATE efflux family, which was targeted by miRNA3627. Our results unraveled the effects of the cultivar-dependent expression of these specific miRNAs on the different Cd accumulation and translocation abilities of QLQ and T308. These findings provide a new perspective for the molecular assisted breeding of low-Cd cultivars for leaf-vegetables.
Collapse
Affiliation(s)
- Chuang Shen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Ying-Ying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Qian Zhou
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Jing-Xin Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Xiao Tan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Jian-Gang Yuan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| |
Collapse
|
320
|
Beauvais-Flück R, Chaumot A, Gimbert F, Quéau H, Geffard O, Slaveykova VI, Cosio C. Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:401-407. [PMID: 27585272 DOI: 10.1016/j.jhazmat.2016.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) represents an important risk for human health through the food webs contamination. Macrophytes bioaccumulate Hg and play a role in Hg transfer to food webs in shallow aquatic ecosystems. Nevertheless, the compartmentalization of Hg within macrophytes, notably major accumulation in the cell wall and its impact on trophic transfer to primary consumers are overlooked. The present work focusses on the trophic transfer of inorganic Hg (IHg) and monomethyl-Hg (MMHg) from the intracellular and cell wall compartments of the macrophyte Elodea nuttallii - considered a good candidate for phytoremediation - to the crustacean Gammarus fossarum. The results demonstrated that Hg accumulated in both compartments was trophically bioavailable to gammarids. Besides IHg from both compartments were similarly transferred to G. fossarum, while for MMHg, uptake rates were ∼2.5-fold higher in G. fossarum fed with the cell wall vs the intracellular compartment. During the depuration phase, Hg concentrations in G. fossarum varied insignificantly suggesting that both IHg and MMHg were strongly bound to biological ligands in the crustacean. Our data imply that cell walls have to be considered as an important source of Hg to consumers in freshwater food webs when developing procedures for enhancing aquatic environment protection during phytoremediation programs.
Collapse
Affiliation(s)
- Rebecca Beauvais-Flück
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1205 Geneva, Switzerland.
| | - Arnaud Chaumot
- Irstea, UR MALY Milieux Aquatiques, ÿcologie et Pollutions, Centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| | - Frédéric Gimbert
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR UFC/CNRS 6249 USC INRA, 16 route de Gray, F-25030 Besançon Cedex, France.
| | - Hervé Quéau
- Irstea, UR MALY Milieux Aquatiques, ÿcologie et Pollutions, Centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| | - Olivier Geffard
- Irstea, UR MALY Milieux Aquatiques, ÿcologie et Pollutions, Centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1205 Geneva, Switzerland.
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 bd Carl-Vogt, CH-1205 Geneva, Switzerland.
| |
Collapse
|
321
|
Zhu J, Wang WS, Ma D, Zhang LY, Ren F, Yuan TT. A role for CK2 β subunit 4 in the regulation of plant growth, cadmium accumulation and H 2O 2 content under cadmium stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:240-247. [PMID: 27750098 DOI: 10.1016/j.plaphy.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 05/26/2023]
Abstract
Protein kinase CK2, which consists of two α and two β subunits, plays an essential role in plant development and is implicated in plant responses to abiotic stresses, including salt and heat. However, the function of CK2 in response to heavy metals such as cadmium (Cd) has not yet been established. In this study, the transgenic line CKB4ox, which overexpresses CKB4 encoding the CK2β subunit and has elevated CK2 activity, was used to investigate the potential role of CK2 in response to Cd stress in Arabidopsis thaliana. Under Cd stress, CKB4ox showed reduced root growth and biomass accumulation as well as decreased chlorophyll and proline contents compared with wild type. Furthermore, increased Cd accumulation and a higher H2O2 content were found in CKB4ox, possibly contributing to the inhibition of CKB4ox growth under Cd stress. Additionally, altered levels of Cd and H2O2 were found to be associated with decreased expression of genes involved in Cd efflux, Cd sequestration and H2O2 scavenging. Taken together, these results suggest that elevated expression of CKB4 and increased CK2 activity enhance the sensitivity of plants to Cd stress by affecting Cd and H2O2 accumulation, including the modulation of genes involved in Cd transport and H2O2 scavenging. This study provides direct evidence for the involvement of plant CK2 in the response to Cd stress.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Shu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin-Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
322
|
Rámila CDP, Contreras SA, Di Domenico C, Molina-Montenegro MA, Vega A, Handford M, Bonilla CA, Pizarro GE. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:476-484. [PMID: 27322905 DOI: 10.1016/j.jhazmat.2016.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.
Collapse
Affiliation(s)
- Consuelo D P Rámila
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Samuel A Contreras
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Camila Di Domenico
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Marco A Molina-Montenegro
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca, Chile
| | - Andrea Vega
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Michael Handford
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile, Avenida Las Palmeras 3425, 7800024 Santiago, Chile
| | - Carlos A Bonilla
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Gonzalo E Pizarro
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile.
| |
Collapse
|
323
|
Luo ZB, He J, Polle A, Rennenberg H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 2016; 34:1131-1148. [DOI: 10.1016/j.biotechadv.2016.07.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
|
324
|
Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 2016; 61:291-302. [PMID: 27264631 DOI: 10.1111/jpi.12346] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification.
Collapse
Affiliation(s)
- Meng-Qi Li
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Md Kamrul Hasan
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Cai-Xia Li
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | | | - Xiao-Jian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Yan-Hong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jing-Quan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Ming-Xing Xu
- Geological Research Center for Agricultural Applications, China Geological Survey, Hangzhou, China
- Zhejiang Institute of Geological Survey, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China.
| |
Collapse
|
325
|
Hasan MK, Liu C, Wang F, Ahammed GJ, Zhou J, Xu MX, Yu JQ, Xia XJ. Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. CHEMOSPHERE 2016; 161:536-545. [PMID: 27472435 DOI: 10.1016/j.chemosphere.2016.07.053] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 05/12/2023]
Abstract
Glutathione (GSH) plays a critical role in plant growth, development and responses to stress. However, the mechanism by which GSH regulates tolerance to cadmium (Cd) stress still remains unclear. Here we show that inhibition of GSH biosynthesis by buthionine sulfoximine (BSO) aggravated Cd toxicity by increasing accumulation of reactive oxygen species (ROS) and reducing contents of nitric oxide (NO) and S-nitrosothiol (SNO) in tomato roots. In contrast, exogenous GSH alleviated Cd toxicity by substantially minimizing ROS accumulation and increasing contents of NO and SNO, and activities of antioxidant enzymes that eventually reduced oxidative stress. GSH-induced enhancement in Cd tolerance was closely associated with the upregulation of transcripts of several transcription factors such as ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR 1 (ERF1), ERF2, MYB1 TRANSCRIPTION FACTOR- AIM1 and R2R3-MYB TRANSCRIPTION FACTOR- AN2, and some stress response genes. In addition, GSH modulated the cellular redox balance through maintaining increased GSH: GSSG and AsA: DHA ratios, and also increased phytochelatins contents. Nonetheless, GSH-induced alleviation of Cd phytotoxicity was also associated with increased sequestration of Cd into cell walls and vacuoles but not with Cd accumulation. Under Cd stress, while treatment with BSO slightly decreased vacuolar fraction of Cd, combined treatment with BSO and GSH noticeably increased that fraction. Our results suggest that GSH increases tomato tolerance to Cd stress not only by promoting the chelation and sequestration of Cd but also by stimulating NO, SNO and the antioxidant system through a redox-dependent mechanism.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Congcong Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Fanan Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China.
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Ming-Xing Xu
- Geological Research Center for Agricultural Applications, China Geological Survey, Xiaojin Road 508, Hangzhou 311203, PR China; Zhejiang Institute of Geological Survey, Xiaojin Road 508, Hangzhou 311203, PR China.
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
326
|
Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang CF, Salt DE, Zhao FJ. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. PLANT, CELL & ENVIRONMENT 2016; 39:1941-54. [PMID: 27038090 DOI: 10.1111/pce.12747] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Excessive cadmium (Cd) accumulation in rice poses a risk to food safety. OsHMA3 plays an important role in restricting Cd translocation from roots to shoots. A non-functional allele of OsHMA3 has been reported in some Indica rice cultivars with high Cd accumulation, but it is not known if OsHMA3 allelic variation is associated with Cd accumulation in Japonica cultivars. In this study, we identified a Japonica cultivar with consistently high Cd accumulation in shoots and grain in both field and greenhouse experiments. The cultivar possesses an OsHMA3 allele with a predicted amino acid mutation at the 380(th) position from Ser to Arg. The haplotype had no Cd transport activity when the gene was expressed in yeast, and the allele did not complement a known nonfunctional allele of OsHMA3 in F1 test. The allele is present only in temperate Japonica cultivars among diversity panels of 1483 rice cultivars. Different cultivars possessing this allele showed greatly increased root-to-shoot Cd translocation and a shift in root Cd speciation from Cd-S to Cd-O bonding determined by synchrotron X-ray absorption spectroscopy. Our study has identified a new loss-of-function allele of OsHMA3 in Japonica rice cultivars leading to high Cd accumulation in shoots and grain.
Collapse
Affiliation(s)
- Jiali Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peitong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Meng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, UK
| | - Fang Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
327
|
Abstract
ATP-binding cassette (ABC) proteins form a large and ubiquitous family, most members of which are membrane-associated primary transporters. Plant genomes code for a particularly large number of these ABC proteins, with more than 120 genes present in both Arabidopsis thaliana and Oryza sativa (rice). Although plant ABC transporters were initially identified as detoxifiers, sequestering xenobitotics into the vacuole, they were later found to be involved in a wide range of essential physiological processes. Currently, the exact substrates transported by most of these transporters are still unknown and we therefore cannot exclude that a single substrate (e.g. a hormone) is responsible for the diversity of physiological roles. This gap in our knowledge is mainly due to the fact that only a few studies have used direct methods to identify the substrates of these membrane transporters. To address this issue, transport assays involving isolated cells, vesicular membranes or reconstituted liposomes are essential. In this review, we will highlight the importance of the direct biochemical characterization of plant ABC transporters and give some insights into the current status of the homologous and heterologous expression of such proteins.
Collapse
|
328
|
Fan T, Yang L, Wu X, Ni J, Jiang H, Zhang Q, Fang L, Sheng Y, Ren Y, Cao S. The PSE1 gene modulates lead tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4685-95. [PMID: 27335453 PMCID: PMC4973742 DOI: 10.1093/jxb/erw251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40.
Collapse
Affiliation(s)
- Tingting Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Libo Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xi Wu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jiaojiao Ni
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Haikun Jiang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Qi'an Zhang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ling Fang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Yibao Sheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongbing Ren
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shuqing Cao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
329
|
Chen M, Yin H, Bai P, Miao P, Deng X, Xu Y, Hu J, Yin J. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells. Toxicol Appl Pharmacol 2016; 303:11-20. [DOI: 10.1016/j.taap.2016.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/04/2016] [Accepted: 04/26/2016] [Indexed: 12/26/2022]
|
330
|
Pantoja Munoz L, Purchase D, Jones H, Raab A, Urgast D, Feldmann J, Garelick H. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:56-72. [PMID: 26994369 DOI: 10.1016/j.aquatox.2016.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The response of Chlorella vulgaris when challenged by As(III), As(V) and dimethylarsinic acid (DMA) was assessed through experiments on adsorption, efflux and speciation of arsenic (reduction, oxidation, methylation and chelation with glutathione/phytochelatin [GSH/PC]). Our study indicates that at high concentrations of phosphate (1.62mM of HPO4(2-)), upon exposure to As(V), cells are able to shift towards methylation of As(V) rather than PC formation. Treatment with As(V) caused a moderate decrease in intracellular pH and a strong increase in the concentration of free thiols (GSH). Passive surface adsorption was found to be negligible for living cells exposed to DMA and As(V). However, adsorption of As(III) was observed to be an active process in C. vulgaris, because it did not show saturation at any of the exposure periods. Chelation of As(III) with GS/PC and to a lesser extent hGS/hPC is a major detoxification mechanism employed by C. vulgaris cells when exposed to As(III). The increase of bound As-GS/PC complexes was found to be strongly related to an increase in concentration of As(III) in media. C. vulgaris cells did not produce any As-GS/PC complex when exposed to As(V). This may indicate that a reduction step is needed for As(V) complexation with GSH/PC. C. vulgaris cells formed DMAS(V)-GS upon exposure to DMA independent of the exposure period. As(III) triggers the formation of arsenic complexes with PC and homophytochelatins (hPC) and their compartmentalisation to vacuoles. A conceptual model was devised to explain the mechanisms involving ABCC1/2 transport. The potential of C. vulgaris to bio-remediate arsenic from water appeared to be highly selective and effective without the potential hazard of reducing As(V) to As(III), which is more toxic to humans.
Collapse
Affiliation(s)
- L Pantoja Munoz
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
| | - D Purchase
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
| | - H Jones
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
| | - A Raab
- College of Physical Sciences - Chemistry, Trace Element Speciation Laboratory (TESLA), University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - D Urgast
- College of Physical Sciences - Chemistry, Trace Element Speciation Laboratory (TESLA), University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - J Feldmann
- College of Physical Sciences - Chemistry, Trace Element Speciation Laboratory (TESLA), University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom
| | - H Garelick
- Department of Natural Sciences, School of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom.
| |
Collapse
|
331
|
Sharma SS, Dietz KJ, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. PLANT, CELL & ENVIRONMENT 2016; 39:1112-26. [PMID: 26729300 DOI: 10.1111/pce.12706] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 05/02/2023]
Abstract
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501, Bielefeld, Germany
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
332
|
Clemens S, Ma JF. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:489-512. [PMID: 27128467 DOI: 10.1146/annurev-arplant-043015-112301] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arsenic, cadmium, lead, and mercury are toxic elements that are almost ubiquitously present at low levels in the environment because of anthropogenic influences. Dietary intake of plant-derived food represents a major fraction of potentially health-threatening human exposure, especially to arsenic and cadmium. In the interest of better food safety, it is important to reduce toxic element accumulation in crops. A molecular understanding of the pathways responsible for this accumulation can enable the development of crop varieties with strongly reduced concentrations of toxic elements in their edible parts. Such understanding is rapidly progressing for arsenic and cadmium but is in its infancy for lead and mercury. Basic discoveries have been made in Arabidopsis, rice, and other models, and most advances in crops have been made in rice. Proteins mediating the uptake of arsenic and cadmium have been identified, and the speciation and biotransformations of arsenic are now understood. Factors controlling the efficiency of root-to-shoot translocation and the partitioning of toxic elements through the rice node have also been identified.
Collapse
Affiliation(s)
- Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| |
Collapse
|
333
|
Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinoia E, Lee Y. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle. MOLECULAR PLANT 2016; 9:338-355. [PMID: 26902186 DOI: 10.1016/j.molp.2016.02.003] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 05/17/2023]
Abstract
Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions. Examining the literature on plant ABC transporters from this viewpoint led us to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Won-Yong Song
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea
| | - Daewoong Hong
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Donghwi Ko
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sojeong Yim
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Eunjung Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Deepa Khare
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Kyungyoon Kim
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Michael Palmgren
- Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, Zurich, 8008 Zurich, Switzerland
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea; Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
334
|
Zhang Z, Xie Q, Jobe TO, Kau AR, Wang C, Li Y, Qiu B, Wang Q, Mendoza-Cózatl DG, Schroeder JI. Identification of AtOPT4 as a Plant Glutathione Transporter. MOLECULAR PLANT 2016; 9:481-484. [PMID: 26283048 PMCID: PMC5139274 DOI: 10.1016/j.molp.2015.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/03/2015] [Accepted: 07/26/2015] [Indexed: 05/20/2023]
Affiliation(s)
- Zhongchun Zhang
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093-0116, USA; School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, P.R. China; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, P.R. China
| | - Qingqing Xie
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093-0116, USA; Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Timothy O Jobe
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Andrew R Kau
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Cun Wang
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Yunxia Li
- School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, P.R. China; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, P.R. China
| | - Baosheng Qiu
- School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, P.R. China; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, P.R. China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - David G Mendoza-Cózatl
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
335
|
Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D'Angeli S, Della Rovere F, Cardarelli M, Barbieri M, Sanità di Toppi L, Degola F, Lindberg S, Altamura MM, Falasca G. Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. PLANTA 2016; 243:605-22. [PMID: 26563149 PMCID: PMC4757632 DOI: 10.1007/s00425-015-2428-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION The heterologous expression of AtPCS1 in tobacco plants exposed to arsenic plus cadmium enhances phytochelatin levels, root As/Cd accumulation and pollutants detoxification, but does not prevent root cyto-histological damages. High phytochelatin (PC) levels may be involved in accumulation and detoxification of both cadmium (Cd) and arsenic (As) in numerous plants. Although polluted environments are frequently characterized by As and Cd coexistence, how increased PC levels affect the adaptation of the entire plant and the response of its cells/tissues to a combined contamination by As and Cd needs investigation. Consequently, we analyzed tobacco seedlings overexpressing Arabidopsis phytochelatin synthase1 gene (AtPCS1) exposed to As and/or Cd, to evaluate the levels of PCs and As/Cd, the cyto-histological modifications of the roots and the Cd/As leaf extrusion ability. When exposed to As and/or Cd the plants overexpressing AtPCS1 showed higher PC levels, As plus Cd root accumulation, and detoxification ability than the non-overexpressing plants, but a blocked Cd-extrusion from the leaf trichomes. In all genotypes, As, and Cd in particular, damaged lateral root apices, enhancing cell-vacuolization, causing thinning and stretching of endodermis initial cells. Alterations also occurred in the primary structure region of the lateral roots, i.e., cell wall lignification in the external cortex, cell hypertrophy in the inner cortex, crushing of endodermis and stele, and nuclear hypertrophy. Altogether, As and/or Cd caused damage to the lateral roots (and not to the primary one), with such damage not counteracted by AtPCS1 overexpression. The latter, however, positively affected accumulation and detoxification to both pollutants, highlighting that Cd/As accumulation and detoxification due to PCS1 activity do not reduce the cyto-histological damage.
Collapse
Affiliation(s)
- Letizia Zanella
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Patrizia Brunetti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, "Sapienza" University of Rome, Rome, Italy
| | - Enrica Roccotiello
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Polo Botanico Hanbury, University of Genoa, Genoa, Italy
| | - Laura Cornara
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Polo Botanico Hanbury, University of Genoa, Genoa, Italy
| | - Simone D'Angeli
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | | | - Maura Cardarelli
- Istituto di Biologia Medicina Molecolare e Nanobiotecnologie Consiglio Nazionale delle Ricerche, "Sapienza" University of Rome, Rome, Italy
| | - Maurizio Barbieri
- Dipartimento di Scienze della Terra, "Sapienza" University of Rome, Rome, Italy
| | | | | | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Giuseppina Falasca
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
336
|
Liu X, Wu FH, Li JX, Chen J, Wang GH, Wang WH, Hu WJ, Gao LJ, Wang ZL, Chen JH, Simon M, Zheng HL. Glutathione homeostasis and Cd tolerance in the Arabidopsis sultr1;1-sultr1;2 double mutant with limiting sulfate supply. PLANT CELL REPORTS 2016; 35:397-413. [PMID: 26581950 DOI: 10.1007/s00299-015-1892-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Cadmium sensitivity in sultr1;1 - sultr1;2 double mutant with limiting sulfate supply is attributed to the decreased glutathione content that affected oxidative defense but not phytochelatins' synthesis. In plants, glutathione (GSH) homeostasis plays pivotal role in cadmium (Cd) detoxification. GSH is synthesized by sulfur (S) assimilation pathway. Many studies have tried to investigate the role of GSH homeostasis on Cd tolerance using mutants; however, most of them have focused on the last few steps of S assimilation. Until now, mutant evidence that explored the relationship between GSH homeostasis on Cd tolerance and S absorption is rare. To further reveal the role of GSH homeostasis on Cd stress, the wild-type and a sultr1;1-sultr1;2 double mutant which had a defect in two distinct high-affinity sulfate transporters were used in this study. Growth parameters, biochemical or zymological indexes and S assimilation-related genes' expression were compared between the mutant and wild-type Arabidopsis plants. It was found that the mutations of SULTR1;1 and SULTR1;2 did not affect Cd accumulation. Compared to the wild-type, the double mutant was more sensitive to Cd under limited sulfate supply and suffered from stronger oxidative damage. More importantly, under the same condition, lower capacity of S assimilation resulted in decreased GSH content in mutant. Faced to the limited GSH accumulation, mutant seedlings consumed a large majority of GSH in pool for the synthesis of phytochelatins rather than participating in the antioxidative defense. Therefore, homeostasis of GSH, imbalance between antioxidative defense and severe oxidative damage led to hypersensitivity of double mutant to Cd under limited sulfate supply.
Collapse
Affiliation(s)
- Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
- Colleges of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Jing-Xi Li
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Guang-Hui Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Wen-Hua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361005, Fujian, People's Republic of China
| | - Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Li-Jie Gao
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Zong-Ling Wang
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Jun-Hui Chen
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Martin Simon
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
337
|
Wei YF, Li T, Li LF, Wang JL, Cao GH, Zhao ZW. Functional and transcript analysis of a novel metal transporter gene EpNramp from a dark septate endophyte (Exophiala pisciphila). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:363-368. [PMID: 26595509 DOI: 10.1016/j.ecoenv.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 05/13/2023]
Abstract
Various metal transporters mediate sub-cellular sequestration of diverse metal ions, contribute to cellular metal tolerance, and control metal partitioning, particularly under conditions of high rates of metal influx into organisms. In the current study, a ubiquitous and evolutionary conserved metal transporter gene, homology to natural resistance associated macrophage protein (Nramp), was cloned from a metal-tolerant isolate of dark septate endophyte (DSE, Exophiala pisciphila), and its functional and transcript characterization were analyzed. The full-length Nramp gene from E. pisciphila (named EpNramp) was 1716 bp and expected to encode a polypeptide of 571 amino acid residues. EpNramp fused to green fluorescent protein suggested that EpNramp was a plasma membrane metal transporter, which was consistent with the results of bioinformatics analysis with 11 transmembrane domains. Yeast functional complementation revealed that EpNramp could complement the growth defect of Fe-uptake yeast mutant (fet3fet4 double mutant) by mediating the transport of Fe(2+). Expression of EpNramp increased Cd(2+) sensitivity and Cd(2+) accumulation in yeast. In addition, qPCR data revealed that E. pisciphila significantly down-regulated EpNramp expression with elevated Cd(2+) exposure. Altogether, EpNramp is a bivalent cation transporter localized in cell membrane, which is necessary for efficient translocation of both Fe and Cd, and its activities partly attributed to the tolerance of DSE to toxic and excessive Cd(2+) supplements.
Collapse
Affiliation(s)
- Yun-Fang Wei
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, PR China; Kunming Police Dog Base of the Ministry of Public Security, Kunming, 650204 Yunnan, PR China.
| | - Tao Li
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, PR China.
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 Yunnan, PR China.
| | - Jun-Ling Wang
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, PR China.
| | - Guan-Hua Cao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, PR China.
| | - Zhi-Wei Zhao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, PR China.
| |
Collapse
|
338
|
Yu P, Yuan J, Zhang H, Deng X, Ma M, Zhang H. Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:275-285. [PMID: 26476315 DOI: 10.1016/j.jhazmat.2015.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The periplasmic protein CusF acts as a metallochaperone to mediate Cu resistance in Escherichia coli. CusF does not contain cysteine residues and barely binds to divalent cations. Here, we addressed effects of cysteine-substitution mutant (named as mCusF) of CusF on zinc/cadmium (Zn/Cd) accumulation and resistance. We targeted mCusF to different subcellular compartments in Arabidopsis. We found that plants expressing vacuole-targeted mCusF were more resistant to excess Zn than WT and plants with cell wall-targeted or cytoplasmic mCusF. Under long-term exposure to excess Zn, all transgenic lines accumulated more Zn (up to 2.3-fold) in shoots than the untransformed plants. Importantly, plants with cytoplasmic mCusF showed higher efficiency of Zn translocation from root to shoot than plants with secretory pathway-targeted-mCusF. Furthermore, the transgenic lines exhibited enhanced resistance to Cd and significant increase in root-to-shoot Cd translocation. We also found all transgenic plants greatly improved manganese (Mn) and iron (Fe) homeostasis under Cd exposure. Our results demonstrate heterologous expression of mCusF could be used to engineer a new phytoremediation strategy for Zn/Cd and our finding also deepen our insights into mechanistic basis for relieving Cd toxicity in plants through proper root/shoot partitioning mechanism and homeostatic accumulation of Mn and Fe.
Collapse
Affiliation(s)
- Pengli Yu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinhong Yuan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, United States
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Haiyan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
339
|
Li N, Wang J, Song WY. Arsenic Uptake and Translocation in Plants. PLANT & CELL PHYSIOLOGY 2016; 57:4-13. [PMID: 26454880 DOI: 10.1093/pcp/pcv143] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/20/2015] [Indexed: 05/02/2023]
Abstract
Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation RCBB, College of Resources and Environment, Southwest University, Beibei Dist., Chongqing, 400715, PR China
| | - Jingchao Wang
- Research Center of Bioenergy and Bioremediation RCBB, College of Resources and Environment, Southwest University, Beibei Dist., Chongqing, 400715, PR China
| | - Won-Yong Song
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
340
|
He F, Liu Q, Zheng L, Cui Y, Shen Z, Zheng L. RNA-Seq Analysis of Rice Roots Reveals the Involvement of Post-Transcriptional Regulation in Response to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1136. [PMID: 26734039 PMCID: PMC4685130 DOI: 10.3389/fpls.2015.01136] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/30/2015] [Indexed: 05/20/2023]
Abstract
Widely-spread cadmium (Cd) pollution in the soil threatens both crop production and human health. How plants deal with the excess Cd are largely unknown. To evaluate the molecular mechanism by which plants respond to Cd stress, rice seedlings were treated with two concentrations of Cd and subjected to deep RNA sequencing. Comprehensive RNA-Seq analysis of rice roots under two gradients of Cd treatment revealed 1169 Cd toxicity-responsive genes. These genes were involved in the reactive oxygen species scavenging system, stress response, cell wall formation, ion transport, and signal transduction. Nine out of 93 predicted long non-coding RNAs (lncRNAs) were detected as Cd-responsive lncRNAs due to their high correlation with the Cd stress response. In addition, we analyzed alternative splicing (AS) events under different Cd concentrations. Four hundred and seventy-six differential alternatively spliced genes with 542 aberrant splicing events were identified. GO analysis indicated that these genes were highly enriched in oxidation reduction and cellular response to chemical stimulus. Real-time qRT-PCR validation analysis strengthened the reliability of our RNA-Seq results. The results suggest that post-transcriptional AS regulation may also be involved in plant responses to high Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
341
|
Shi YZ, Zhu XF, Wan JX, Li GX, Zheng SJ. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:830-7. [PMID: 25404058 DOI: 10.1111/jipb.12312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/17/2014] [Indexed: 05/16/2023]
Abstract
Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu + Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu + Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that compartmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increasing Cd fixation in the root cell wall and sequestration into the vacuoles.
Collapse
Affiliation(s)
- Yuan-Zhi Shi
- Tea Research Institute of the Chinese Academy of Agricultural Sciences and the Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou, 310008, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, China Institute of Soil Science, the Chinese Academy of Science, Nanjing, 210008, China
| | - Jiang-Xue Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shao-Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
342
|
Yang J, Li K, Zheng W, Zhang H, Cao X, Lan Y, Yang C, Li C. Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudana Koidz. BMC Genomics 2015; 16:705. [PMID: 26381125 PMCID: PMC4573677 DOI: 10.1186/s12864-015-1923-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 09/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salix matsudana Koidz. is a fast growing tree species. It has a high cadmium (Cd) tolerance capacity, making it potentially suitable for phytoremediation. Presently, transcriptomic and physiological Cd response mechanisms are poorly understood. Transcriptomic analysis in early response to high (50 μM) Cd levels was investigated in leaf and root of Cd-resistant S. matsudana Koidz.. RESULTS Analysis of the response profiles demonstrate the existence of a complex transcriptional network in the root and leaf when exposed to Cd. The main response in the root involved up-regulation of genes associated with defence response via callose deposition in the cell wall and cell wall thickening. In the leaf, transcripts related to biotic stress signalling and secondary metabolism were activated. Additionally, many lignin and brassinosteroids synthesis pathway genes were induced mainly in the leaf, indicating that gene response to Cd was tissue-specific. The Cd transcriptome results were consistent with observed physiological changes. CONCLUSION The sub-localization, transcriptional network, and physiological regulation demonstrate the tissue-specific manner of Cd response, and provide a novel insight into in early response of tree species to Cd exposure.
Collapse
Affiliation(s)
- Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Kun Li
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Wei Zheng
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, 150076, China.
| | - Haizhen Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Xudong Cao
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Yunxiang Lan
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Chuanping Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
343
|
Yoneyama T, Ishikawa S, Fujimaki S. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification. Int J Mol Sci 2015; 16:19111-29. [PMID: 26287170 PMCID: PMC4581289 DOI: 10.3390/ijms160819111] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022] Open
Abstract
Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Satoru Ishikawa
- Soil Environment Division, National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan.
| | - Shu Fujimaki
- Quantum, Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan.
| |
Collapse
|
344
|
Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. FRONTIERS IN PLANT SCIENCE 2015; 6:601. [PMID: 26322055 PMCID: PMC4531246 DOI: 10.3389/fpls.2015.00601] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 05/17/2023]
Abstract
Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H(+)-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production.
Collapse
Affiliation(s)
| | | | - Lingling Yin
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Kai Shi
- Department of Horticulture, Zhejiang University, HangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, HangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, HangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of ChinaHangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, HangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of ChinaHangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, HangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
345
|
Zlobin IE, Kholodova VP, Rakhmankulova ZF, Kuznetsov VV. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization. PHOTOSYNTHESIS RESEARCH 2015; 125:141-50. [PMID: 25361533 DOI: 10.1007/s11120-014-0054-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/27/2014] [Indexed: 05/12/2023]
Abstract
In the present study, the influence of 50 and 100 µM CuSO4 was investigated starting from 3 h till 72 h treatment of 4-weeks Brassica napus plants. High CuSO4 concentrations in nutrient medium resulted in the rapid copper accumulation in plants, especially in roots, much slower and to lower degree in leaves. Copper excess induced early decrease in the leaf water content and temporary leaf wilting. The decrease in content of photosynthetic pigments became significant to 24 h of excessive copper treatments and reached 35 % decrease to 72 h, but there were no significant changes in maximum quantum efficiency of photosystem II photochemistry. The copper excess affected the expression of ten genes involved in heavy metal homeostasis and copper detoxification. The results showed the differential and organ-specific expression of most genes. The potential roles of copper-activated genes encoding heavy metal transporters (ZIP5, NRAMP4, YSL2, and MRP1), metallothioneins (MT1a and MT2b), low-molecular chelator synthesis enzymes (PCS1 and NAS2), and metallochaperones (CCS and HIPP06) in heavy metal homeostasis and copper ion detoxification were discussed. The highest increase in gene expression was shown for NRAMP4 in leaves in spite of relatively moderate Cu accumulation there. The opinion was advanced that the NRAMP4 activation can be considered among the early reactions in the defense of the photosystem II against copper excess.
Collapse
Affiliation(s)
- I E Zlobin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, 127276, Moscow, Russia
| | | | | | | |
Collapse
|
346
|
Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3815-29. [PMID: 25900618 PMCID: PMC4473984 DOI: 10.1093/jxb/erv185] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance. The cellular distribution of Cd was analysed in protoplasts from abcc3 mutants and AtABCC3 overexpressors grown in the presence of Cd, by means of the Cd-specific fluorochromes 5-nitrobenzothiazole coumarin (BTC-5N) and Leadmium™ Green AM dye. This analysis revealed that Cd is mostly localized in the cytosol of abcc3 mutant protoplasts whereas there is an increase in vacuolar Cd in protoplasts from AtABCC3ox plants. Overexpression of AtABCC3 in cad1-3 mutant seedlings defective in PC production and in plants treated with l-buthionine sulphoximine (BSO), an inhibitor of PC biosynthesis, had no effect on Cd tolerance, suggesting that AtABCC3 acts via PCs. In addition, overexpression of AtABCC3 in atabcc1 atabcc2 mutant seedlings defective in the Cd transporters AtABCC1 and AtABCC2 complements the Cd sensitivity of double mutants, but not in the presence of BSO. Accordingly, the level of AtABCC3 transcript in wild type seedlings was lower than that of AtABCC1 and AtABCC2 in the absence of Cd but higher after Cd exposure, and even higher in atabcc1 atabcc2 mutants. The results point to AtABCC3 as a transporter of PC-Cd complexes, and suggest that its activity is regulated by Cd and is co-ordinated with the activity of AtABCC1/AtABCC2.
Collapse
Affiliation(s)
- Patrizia Brunetti
- Istituto di Biologia e Patologia Molecolari, CNR, Sapienza Università di Roma, Rome, Italy Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Letizia Zanella
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari, CNR, Lecce, Italy
| | - Davide Di Litta
- Istituto di Biologia e Patologia Molecolari, CNR, Sapienza Università di Roma, Rome, Italy
| | - Valentina Cecchetti
- Istituto di Biologia e Patologia Molecolari, CNR, Sapienza Università di Roma, Rome, Italy Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Giuseppina Falasca
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Maurizio Barbieri
- Dipartimento di Scienze della Terra, Sapienza Università di Roma, Rome, Italy
| | | | - Paolo Costantino
- Istituto di Biologia e Patologia Molecolari, CNR, Sapienza Università di Roma, Rome, Italy Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Maura Cardarelli
- Istituto di Biologia e Patologia Molecolari, CNR, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
347
|
Isaure MP, Huguet S, Meyer CL, Castillo-Michel H, Testemale D, Vantelon D, Saumitou-Laprade P, Verbruggen N, Sarret G. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3201-14. [PMID: 25873676 DOI: 10.1093/jxb/erv131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant.
Collapse
Affiliation(s)
- Marie-Pierre Isaure
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (LCABIE/IPREM-UMR 5254), Université de Pau et des Pays de l'Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 PAU Cedex 9, France
| | - Stéphanie Huguet
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des sciences analytiques et de physico-chimie pour l'environnement et les matériaux (LCABIE/IPREM-UMR 5254), Université de Pau et des Pays de l'Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 PAU Cedex 9, France
| | - Claire-Lise Meyer
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes (LPGMP), Université Libre de Bruxelles, Campus Plaine-ULB, CP 242, Bd du Triomphe, B-1050 Brussels, Belgium
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility (ESRF), ID21 Beamline, BP 220, 38043 Grenoble, France
| | - Denis Testemale
- Université Grenoble Alpes, Institut Néel, 38000 Grenoble, France CNRS, Institut Néel, 38042 Grenoble France
| | - Delphine Vantelon
- SOLEIL Synchrotron, LUCIA Beamline, BP48, 91192 Gif sur Yvette, France
| | - Pierre Saumitou-Laprade
- Laboratoire de Génétique et Evolution des Populations Végétales (GEPV-UMR 8198), Université des Sciences et Technologies de Lille and CNRS- Lille 1, 59655 Villeneuve d'Ascq Cedex, France
| | - Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes (LPGMP), Université Libre de Bruxelles, Campus Plaine-ULB, CP 242, Bd du Triomphe, B-1050 Brussels, Belgium
| | - Géraldine Sarret
- Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
348
|
Cahoon RE, Lutke WK, Cameron JC, Chen S, Lee SG, Rivard RS, Rea PA, Jez JM. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance. J Biol Chem 2015; 290:17321-30. [PMID: 26018077 DOI: 10.1074/jbc.m115.652123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 11/06/2022] Open
Abstract
Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation.
Collapse
Affiliation(s)
- Rebecca E Cahoon
- From the Department of Biology, Washington University, St. Louis, Missouri 63130, the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - W Kevin Lutke
- the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Jeffrey C Cameron
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Sixue Chen
- the Donald Danforth Plant Science Center, St. Louis, Missouri 63132, the Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida 32610, and
| | - Soon Goo Lee
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Rebecca S Rivard
- the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Philip A Rea
- the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph M Jez
- From the Department of Biology, Washington University, St. Louis, Missouri 63130, the Donald Danforth Plant Science Center, St. Louis, Missouri 63132, the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
349
|
Wang ZQ, Li GZ, Gong QQ, Li GX, Zheng SJ. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC PLANT BIOLOGY 2015; 15:123. [PMID: 25990386 PMCID: PMC4438481 DOI: 10.1186/s12870-015-0500-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/21/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mercury (Hg) is not only a threat to public health but also a growth risk factor to plants, as it is readily accumulated by higher plants. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development; however, the detoxification and tolerance mechanisms of plants to Hg stress are still not fully understood. Exposure to toxic Hg also occurs in some crops cultivated under anoxic conditions, such as rice (Oryza sativa L.), a model organism and one of the most important cultivated plants worldwide. In this study, we functionally characterized a rice translationally controlled tumor protein gene (Os11g43900, OsTCTP) involved in Hg stress tolerance. RESULTS OsTCTP was ubiquitously expressed in all examined plant tissues, especially in actively dividing and differentiating tissues, such as roots and nodes. OsTCTP was found to localize both the cytosol and the nucleus. OsTCTP was induced by mercuric chloride, cupric sulfate, abscisic acid, and hydrogen peroxide at the protein level in a time-dependent manner. Overexpression of OsTCTP potentiated the activities of several antioxidant enzymes, reduced the Hg-induced H2O2 levels, and promoted Hg tolerance in rice, whereas knockdown of OsTCTP produced opposite effects. And overexpression of OsTCTP did not prevent Hg absorption and accumulation in rice. We also demonstrated that Asn 48 and Asn 97 of OsTCTP amino acids were not the potential N-glycosylation sites. CONCLUSIONS Our results suggest that OsTCTP is capable of decreasing the Hg-induced reactive oxygen species (ROS), therefore, reducing the damage of ROS and enhancing the tolerance of rice plants to Hg stress. Thus, OsTCTP is a valuable gene for genetic engineering to improve rice performance under Hg contaminated paddy soils.
Collapse
Affiliation(s)
- Zhan Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ge Zi Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao Qiao Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
350
|
Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2901-11. [PMID: 25750419 DOI: 10.1093/jxb/erv063] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.
Collapse
Affiliation(s)
- Luis E Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Juan Sobrino-Plata
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - M Belén Montero-Palmero
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - Sandra Carrasco-Gil
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain † Present address: Aula Dei Experimental Research Station-CSIC, Avd. Montañana, ES- 50059 Zaragoza, Spain
| | - M Laura Flores-Cáceres
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Carolina Escobar
- Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| |
Collapse
|