301
|
Sindhu T, Venkatesan T, Prabhu D, Jeyakanthan J, Gracy GR, Jalali SK, Rai A. Insecticide-resistance mechanism of Plutella xylostella (L.) associated with amino acid substitutions in acetylcholinesterase-1: A molecular docking and molecular dynamics investigation. Comput Biol Chem 2018; 77:240-250. [DOI: 10.1016/j.compbiolchem.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 01/22/2023]
|
302
|
Xu T, Wang X, Zhang Q, Fan J, Liu L, Liu M, Zhang H, Li J, Guo Y. Iodine-mediated oxidative cyclization for one pot synthesis of new 8-hydroxyquinaldine derivatives containing a N-phenylpyrazole moiety as pesticidal agents. Bioorg Med Chem Lett 2018; 28:3376-3380. [DOI: 10.1016/j.bmcl.2018.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/19/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022]
|
303
|
Ward CM, Baxter SW. Assessing Genomic Admixture between Cryptic Plutella Moth Species following Secondary Contact. Genome Biol Evol 2018; 10:2973-2985. [PMID: 30321345 PMCID: PMC6250210 DOI: 10.1093/gbe/evy224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Cryptic species are genetically distinct taxa without obvious variation in morphology and are occasionally discovered using molecular or sequence data sets of populations previously thought to be a single species. The world-wide Brassica pest, Plutella xylostella (diamondback moth), has been a problematic insect in Australia since 1882, yet a morphologically cryptic species with apparent endemism (P. australiana) was only recognized in 2013. Plutella xylostella and P. australiana are able to hybridize under laboratory conditions, and it was unknown whether introgression of adaptive traits could occur in the field to improve fitness and potentially increase pressure on agriculture. Phylogenetic reconstruction of 29 nuclear genomes confirmed P. xylostella and P. australiana are divergent, and molecular dating with 13 mitochondrial genes estimated a common Plutella ancestor 1.96 ± 0.175 Ma. Sympatric Australian populations and allopatric Hawaiian P. xylostella populations were used to test whether neutral or adaptive introgression had occurred between the two Australian species. We used three approaches to test for genomic admixture in empirical and simulated data sets including 1) the f3 statistic at the level of the population, 2) pairwise comparisons of Nei's absolute genetic divergence (dXY) between populations, and 3) changes in phylogenetic branch lengths between individuals across 50-kb genomic windows. These complementary approaches all supported reproductive isolation of the Plutella species in Australia, despite their ability to hybridize. Finally, we highlight the most divergent genomic regions between the two cryptic Plutella species and find they contain genes involved with processes including digestion, detoxification, and DNA binding.
Collapse
Affiliation(s)
- Christopher M Ward
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Australia
| | - Simon W Baxter
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Australia
| |
Collapse
|
304
|
Reil JB, Doorenweerd C, San Jose M, Sim SB, Geib SM, Rubinoff D. Transpacific coalescent pathways of coconut rhinoceros beetle biotypes: Resistance to biological control catalyses resurgence of an old pest. Mol Ecol 2018; 27:4459-4474. [DOI: 10.1111/mec.14879] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/07/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Jonathan Bradley Reil
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| | - Camiel Doorenweerd
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| | - Michael San Jose
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| | - Sheina B. Sim
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
- Tropical Crop and Commodity Protection Research Unit; Daniel K Inouye U.S. Pacific Basin Agricultural Research Center; USDA, Agricultural Research Services; Hilo Hawaii
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research Unit; Daniel K Inouye U.S. Pacific Basin Agricultural Research Center; USDA, Agricultural Research Services; Hilo Hawaii
| | - Daniel Rubinoff
- Department of Plant and Environmental Protection Sciences; University of Hawaii at Manoa; Honolulu Hawaii
| |
Collapse
|
305
|
Li C, Wong AYP, Wang S, Jia Q, Chuang WP, Bendena WG, Tobe SS, Yang SH, Chung G, Chan TF, Lam HM, Bede JC, Hui JHL. miRNA-Mediated Interactions in and between Plants and Insects. Int J Mol Sci 2018; 19:E3239. [PMID: 30347694 PMCID: PMC6213987 DOI: 10.3390/ijms19103239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Our understanding of microRNA (miRNA) regulation of gene expression and protein translation, as a critical area of cellular regulation, has blossomed in the last two decades. Recently, it has become apparent that in plant-insect interactions, both plants and insects use miRNAs to regulate their biological processes, as well as co-opting each others' miRNA systems. In this review article, we discuss the current paradigms of miRNA-mediated cellular regulation and provide examples of plant-insect interactions that utilize this regulation. Lastly, we discuss the potential biotechnological applications of utilizing miRNAs in agriculture.
Collapse
Affiliation(s)
- Chade Li
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Annette Y P Wong
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shuang Wang
- Key Laboratory of Soil Environment and Plant Nutrition of Heilongjiang Province, Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan.
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| | - Ting-Fung Chan
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hon-Ming Lam
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada.
| | - Jerome H L Hui
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
306
|
Liu J, Li Y, Tian Z, Sun H, Chen X, Zheng S, Zhang Y. Identification of Key Residues Associated with the Interaction between Plutella xylostella Sigma-Class Glutathione S-Transferase and the Inhibitor S-Hexyl Glutathione. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10169-10178. [PMID: 30207467 DOI: 10.1021/acs.jafc.8b03967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glutathione S-transferases (GSTs) are important detoxification enzymes involved in the development of metabolic resistance in Plutella xylostella. Uncovering the interactions between representative PxGSTs and the inhibitor S-hexyl glutathione (GTX), helps in the development of effective PxGST inhibitors for resistance management. As the PxGST most severely inhibited by GTX, PxGSTσ (sigma-class PxGST) adopts the canonical fold of insect GSTs. The formation of the PxGSTσ-GTX complex is mainly driven by H-bond and hydrophobic interactions derived from the side chains of favorable residues. Of the residues composing the active site of PxGSTσ, Lys43 and Arg99 are two hot spots, first reported in the binding of GSH derivatives to GSTs. Such differences indicate the metabolism discrimination of different insect GSTs. Unfavorable interactions between the PxGSTσ active site and GTX are depicted as well. The research guides the discovery and optimization of PxGSTσ inhibitors.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Zhen Tian
- College of Horticulture and Plant Protection , Yangzhou University , Wenhui East Road, Number 48 , Yangzhou , Jiangsu 225009 , China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Xi'en Chen
- Department of Entomology, College of Agriculture, Food and Environment , University of Kentucky , Lexington , Kentucky 40546 , United States
| | - Shengli Zheng
- College of Chemistry & Pharmacy , Northwest A&F University , Number 3 Taicheng Road , Yangling , Shaanxi 712100 , China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| |
Collapse
|
307
|
Fitness parameters of Plutella xylostella (L.) (Lepidoptera; Plutellidae) at four constant temperatures by using age-stage, two-sex life tables. Saudi J Biol Sci 2018; 26:1661-1667. [PMID: 31762641 PMCID: PMC6864165 DOI: 10.1016/j.sjbs.2018.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/07/2018] [Accepted: 08/25/2018] [Indexed: 01/26/2023] Open
Abstract
Different temperature zones have significant impact on the population dynamics of Plutella xylostella. Effective management of P. xylostella requires the knowledge of temperature tolerance by different life stages. In the current study, fitness parameters of diamondback moth were reported by using age-stage, two-sex life table traits at four constant temperatures (15, 20, 25 and 30 °C). The life cycle of P. xylostella was significantly longer at 15 °C. The 20 °C level of temperature was found optimal for fecundity, gross reproductive rate (51.74 offspring) and net reproductive rate (44.35 offspring per individual). The adult pre-oviposition period was statistically at par at all four level of temperatures. However, the survival was maximum at 20 °C as compared to other three temperature ranges. Based on the current study, it was concluded that temperature has a great role in population build-up of P. xylostella and effective management tactics should be applied to prevent significant damage to cabbage and other cruciferous crops when the temperature in the field is near 20 °C.
Collapse
|
308
|
Etebari K, Afrad MH, Tang B, Silva R, Furlong MJ, Asgari S. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella. INSECT MOLECULAR BIOLOGY 2018; 27:478-491. [PMID: 29573306 DOI: 10.1111/imb.12387] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diamondback moth, Plutella xylostella, has developed extremely high levels of resistance to chlorantraniliprole and other classes of insecticides in the field. As microRNAs (miRNAs) play important roles in various biological processes through gene regulation, we examined the miRNA profile of P. xylostella in response to chlorantraniliprole exposure. RNA sequencing analysis showed that insecticide treatment caused significant changes in the abundance of some miRNAs. Increasing exposure time and insecticide concentration induced more dysregulated miRNAs in P. xylostella larvae. We also screened potential target genes for some of the differentially expressed miRNAs (such as miR-2b-3p, miR-14b-5p and let-7-5p), which may play important roles in insecticide resistance development. Exposure of P. xylostella larvae to chlorantraniliprole caused considerable overexpression in the transcript levels of potential target genes cytochrome P450 9f2 (CYP9F2) and 307a1 (CYP307a1). Application of miR-2b-3p and miR-14b-5p mimics significantly suppressed the relative transcript levels of CYP9F2 and CYP307a1, respectively, in a P. xylostella cell line. Furthermore, enrichment of P. xylostella diet with miR-2b-3p mimics significantly increased mortality in deltamethrin-resistant larvae when exposed to deltamethrin. The results suggest that miR-2b-3p may suppress CYP9F2 transcript levels in P. xylostella and consequently inhibit larval detoxification pathways. The findings provide an insight into possible role of miRNAs in regulation of metabolic resistance of insects to insecticides.
Collapse
Affiliation(s)
- K Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - M H Afrad
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - B Tang
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - R Silva
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - M J Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - S Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
309
|
Zhu L, Li Z, Zhang S, Xu B, Zhang Y, Zalucki MP, Wu Q, Yin X. Population dynamics of the diamondback moth, Plutella xylostella (L.), in northern China: the effects of migration, cropping patterns and climate. PEST MANAGEMENT SCIENCE 2018; 74:1845-1853. [PMID: 29419932 DOI: 10.1002/ps.4885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/03/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The diamondback moth, Plutella xylostella (L.), is the most widely distributed pest of Brassica vegetables. Control of P. xylostella has relied on insecticides and it has developed resistance to most insecticides. Although research has clarified the resistance status of P. xylostella and the mechanisms of its resistance in northern China, little work has been conducted on long-term population dynamics in the key vegetable-growing areas of the region. RESULTS We reviewed and summarized the history of P. xylostella field management practices in northern China (Haidian, Changping, Xuanhua and Zhangbei). Moths were caught in pheromone traps throughout the cropping season and P. xylostella phenology and the general trends in abundance were analysed using DYMEX modelling software. The initial input in the spring determined population size in all years. The seasonal phenology and variation in abundance in most years and sites were simulated, suggesting that the suitable climate creates the conditions for population outbreaks, and growers' actual management level (spraying and crop hygiene) influenced population abundance. CONCLUSION Based on climate and using the timing of the initial peak in pheromone trap captures as a biofix, the timing of emergence of the next generation can be forecast, and more effective scouting and regional management strategies against this pest can be developed. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuhong Zhu
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenyu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Myron P Zalucki
- School of Biological Sciences, the University of Queensland, Brisbane, Australia
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianhui Yin
- Institute of Crop Protection, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
310
|
Shao H, Xi N, Zhang Y. Microemulsion formulation of a new biopesticide to control the diamondback moth (Lepidoptera: Plutellidae). Sci Rep 2018; 8:10565. [PMID: 30002386 PMCID: PMC6043531 DOI: 10.1038/s41598-018-28626-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
This study was designed to develop a microemulsion formulation of norcantharidin for the control of the diamondback moth (DBM), Plutella xylostella (Linnaeus), a notorious pest of brassica crops worldwide. The oil phase was screened and selected based on norcantharidin solubility while the surfactants were selected on the basis of their efficiency to form microemulsion. Optimized batches were selected using pseudo ternary phase diagrams. The microemulsion system were stabilized using mixtures composed of norcantharidin, surfactants (Tx13 and Tw80), and cosurfactant (ethanol). Its physicochemical characteristics were also demonstrated to have a higher cloud point than 72 °C as well as good thermodynamic and dilution stability. In additon, a subsequent insecticidal bioassay indicated that the acute LC50 for norcantharidin microemulsion to P. xylostella was estimated to be 12.477 mg/L (11.58-13.41, 95% CL). Our results provide an environment-friendly promising alternative to control P. xylostella and possibly contribute to ameliorating any pesticide resistance in P. xylostella.
Collapse
Affiliation(s)
- Hainan Shao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Xi
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
311
|
Nouri-Ganbalani G, Borzoui E, Shahnavazi M, Nouri A. Induction of Resistance Against Plutella xylostella (L.) (Lep.: Plutellidae) by Jasmonic Acid and Mealy Cabbage Aphid Feeding in Brassica napus L. Front Physiol 2018; 9:859. [PMID: 30050454 PMCID: PMC6052903 DOI: 10.3389/fphys.2018.00859] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), has become the most destructive insect pest of cruciferous plants, such as B. napus throughout the world including Iran. In this study, the induction of resistance was activated in oilseed rape plants (Brassica napus L.) using foliar application of jasmonic acid (JA) and mealy cabbage aphid either individually or in combination against diamondback moth. Induced resistance by inducers significantly reduced the population growth parameters, as well as the survival rate of immature P. xylostella. Also, the nutritional indices of P. xylostella were studied to evaluate the potential impact of induced resistance on the insect feeding behavior. The values of the efficiency of conversion of ingested food, the efficiency of conversion of digested food, relative consumption rate, and relative growth rate of P. xylostella on JA-treated plants were significantly reduced compared to control. These are because glucosinolates and proteinase inhibitors are induced following treatment of plants. Also, we found a significantly higher glucose oxidase activity in the salivary gland extracts of larvae fed on JA treatment. These results express that JA and/or Aphid application induces systemic defenses in oilseed rape that have a negative effect on P. xylostella fitness. These findings develop our knowledge the effects of induced defenses on P. xylostella.
Collapse
Affiliation(s)
- Gadir Nouri-Ganbalani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ehsan Borzoui
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Maryam Shahnavazi
- Department of Oral and Maxillofacial Radiology, Faculty of Density, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Nouri
- Institute of Higher Education of Sabalan Ardabil, Ardabil, Iran
| |
Collapse
|
312
|
Zhou L, Alphey N, Walker AS, Travers LM, Hasan F, Morrison NI, Bonsall MB, Raymond B. Combining the high-dose/refuge strategy and self-limiting transgenic insects in resistance management-A test in experimental mesocosms. Evol Appl 2018; 11:727-738. [PMID: 29875814 PMCID: PMC5979637 DOI: 10.1111/eva.12573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
The high-dose/refuge strategy has been the primary approach for resistance management in transgenic crops engineered with Bacillus thuringiensis toxins. However, there are continuing pressures from growers to reduce the size of Bt toxin-free refugia, which typically suffer higher damage from pests. One complementary approach is to release male transgenic insects with a female-specific self-limiting gene. This technology can reduce population sizes and slow the evolution of resistance by introgressing susceptible genes through males. Theory predicts that it could be used to facilitate smaller refugia or reverse the evolution of resistance. In this study, we used experimental evolution with caged insect populations to investigate the compatibility of the self-limiting system and the high-dose/refuge strategy in mitigating the evolution of resistance in diamondback moth, Plutella xylostella. The benefits of the self-limiting system were clearer at smaller refuge size, particularly when refugia were inadequate to prevent the evolution of resistance. We found that transgenic males in caged mesocosms could suppress population size and delay resistance development with 10% refugia and 4%-15% initial resistance allele frequency. Fitness costs in hemizygous transgenic insects are particularly important for introgressing susceptible alleles into target populations. Fitness costs of the self-limiting gene in this study (P. xylostella OX4139 line L) were incompletely dominant, and reduced fecundity and male mating competitiveness. The experimental evolution approach used here illustrates some of the benefits and pitfalls of combining mass release of self-limiting insects and the high-dose/refuge strategy, but does indicate that they can be complementary.
Collapse
Affiliation(s)
- Liqin Zhou
- Imperial College LondonLondonUK
- University of ExeterExeterUK
| | - Nina Alphey
- Imperial College LondonLondonUK
- Department of ZoologyUniversity of OxfordOxfordUK
- The Pirbright InstituteSurreyUK
| | | | | | | | | | - Michael B. Bonsall
- Imperial College LondonLondonUK
- Department of ZoologyUniversity of OxfordOxfordUK
| | - Ben Raymond
- Imperial College LondonLondonUK
- University of ExeterExeterUK
| |
Collapse
|
313
|
Li X, Li R, Zhu B, Gao X, Liang P. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2018; 74:1386-1393. [PMID: 29194968 DOI: 10.1002/ps.4816] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/31/2017] [Accepted: 11/24/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. RESULTS The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. CONCLUSIONS Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
314
|
Perry KD, Baker GJ, Powis KJ, Kent JK, Ward CM, Baxter SW. Cryptic Plutella species show deep divergence despite the capacity to hybridize. BMC Evol Biol 2018; 18:77. [PMID: 29843598 PMCID: PMC5975261 DOI: 10.1186/s12862-018-1183-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Background Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world’s most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. Results The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1.5% of P. xylostella. Conclusions Despite sympatric distributions and the capacity to hybridize, strong genomic and phenotypic divergence exists between these Plutella species that is consistent with contrasting colonization histories and reproductive isolation after secondary contact. Although P. australiana is a potential pest of brassicaceous crops, it is of secondary importance to P. xylostella. Electronic supplementary material The online version of this article (10.1186/s12862-018-1183-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kym D Perry
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, 5005, Australia. .,South Australian Research and Development Institute, Adelaide, 5001, Australia.
| | - Gregory J Baker
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Kevin J Powis
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Joanne K Kent
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Christopher M Ward
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Simon W Baxter
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
315
|
Houjun T, Lin S, Chen Y, Chen Y, Zhao J, Gu X, Wei H. Electroantennogram Responses to Plant Volatiles Associated with Fenvalerate Resistance in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1354-1360. [PMID: 29474734 DOI: 10.1093/jee/toy022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 06/08/2023]
Abstract
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the main destructive insect pest of brassica vegetables around the world, and has developed resistance to numerous insecticides. Although host plant volatiles are important in pest control, the mechanism of low-level insecticide resistance in P. xylostella due to plant volatiles has not been examined. Here, electroantennograms (EAGs) were used to compare the responses of adult male and female DBMs of a susceptible strain (S-strain) and a derived resistant strain, Fen-R-strain (6.52-fold more resistant than the S-strain), to different concentrations of nine plant volatiles. We found significantly different relative EAG responses between S-strain and Fen-R-strain males to different concentrations of methyl jasmonate, methyl salicylate, and octanal. The relative EAG responses of S-strain and Fen-R-strain females to different concentrations of β-myrcene, methyl jasmonate, methyl salicylate, and allyl isothiocyanate were significantly different. Fen-R-strain females showed lower EAG responses to most of the tested plant volatiles (at concentrations of 1:10) than males, except for allyl isothiocyanate. A larger difference in relative EAG response to α-farnesene and β-myrcene was found between S-strain and Fen-R-strain females than between males of the two strains. A larger difference in relative EAG response to octanal, nonanal, and octan-1-ol was found between S-strain and Fen-R-strain males than between females of the two strains. These results illustrate the relationship between the function of plant volatiles and resistance in an insect pest species, and provide a scientific basis for resistance evolutionary theory in pest management research.
Collapse
Affiliation(s)
- Tian Houjun
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Shuo Lin
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Yong Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Yixin Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Jianwei Zhao
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
316
|
Stratton CA, Hodgdon EA, Zuckerman SG, Shelton AM, Chen YH. A Single Swede Midge (Diptera: Cecidomyiidae) Larva Can Render Cauliflower Unmarketable. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5040085. [PMID: 29924332 PMCID: PMC6007560 DOI: 10.1093/jisesa/iey062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), is an invasive pest causing significant damage on Brassica crops in the Northeastern United States and Eastern Canada. Heading brassicas, like cauliflower, appear to be particularly susceptible. Swede midge is difficult to control because larvae feed concealed inside meristematic tissues of the plant. In order to develop damage and marketability thresholds necessary for integrated pest management, it is important to determine how many larvae render plants unmarketable and whether the timing of infestation affects the severity of damage. We manipulated larval density (0, 1, 3, 5, 10, or 20) per plant and the timing of infestation (30, 55, and 80 d after seeding) on cauliflower in the lab and field to answer the following questions: 1) What is the swede midge damage threshold? 2) How many swede midge larvae can render cauliflower crowns unmarketable? and 3) Does the age of cauliflower at infestation influence the severity of damage and marketability? We found that even a single larva can cause mild twisting and scarring in the crown rendering cauliflower unmarketable 52% of the time, with more larvae causing more severe damage and additional losses, regardless of cauliflower age at infestation.
Collapse
Affiliation(s)
- Chase A Stratton
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT
| | - Elisabeth A Hodgdon
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT
| | - Samuel G Zuckerman
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT
| | - Anthony M Shelton
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT
| |
Collapse
|
317
|
Harvey JA, Gols R. Effects of plant-mediated differences in host quality on the development of two related endoparasitoids with different host-utilization strategies. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:110-115. [PMID: 29555347 DOI: 10.1016/j.jinsphys.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Among parasitoids that develop inside the bodies of feeding, growing hosts (so-called 'koinobiont' endoparasitoids), two strategies have evolved to dispose of host resources. The larvae of one group consumes most host tissues before pupation, whereas in the other the parasitoid larvae consume only host hemolymph and fat body and at maturity emerge through the host cuticle to pupate externally. Here we compared development and survival (to adult emergence) of two related larval endoparasitoids (Braconidae: Microgastrinae) of the diamondback moth, Plutella xylostella. Larvae of Dolichogenidea sicaria are tissue feeders whereas larvae of Cotesia vestalis are hemolymph feeders. Here, development of P. xylostella and the two parasitoids was compared on three populations (one cultivar [Cyrus], two wild, [Winspit and Kimmeridge]) of cabbage that have been shown to vary in direct defense and hence quality. Survival of P. xylostella and C. vestalis (to adult eclosion) did not vary with cabbage population, but did so in D. sicaria, where survival was lower when reared on the wild populations than on the cultivar. Furthermore, adult herbivore mass was significantly higher and development was significantly shorter in moths reared on the cultivar. The tissue-feeing D. sicaria was larger but took longer to develop than the hemolymph-feeder C. vestalis. The performance of both parasitoids was better on the cabbage cultivar than on the wild populations, although the effects were less apparent than in the host. Our results show that (1) differences in plant quality are diffused up the food chain, and (2) the effects of host quality are reflected on the development of both parasitoids.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6700 EH Wageningen, The Netherlands; Department of Ecological Sciences - Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
318
|
Zeng Z, Wang Y, Johnson NAN, Wang GD, Yao Q, Chen KP. Identification and Phylogenetic Analysis of Basic Helix-Loop-Helix Genes in the Diamondback Moth. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5036101. [PMID: 29901738 PMCID: PMC6007555 DOI: 10.1093/jisesa/iey057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 06/08/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play essential roles in regulating eukaryotic developmental and physiological processes such as neuron generation, myocyte formation, intestinal tissue development, and response to environmental stress. In this study, the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), genome was found to encode 52 bHLH genes. All 52 P. xylostella bHLH (PxbHLH) genes were classified into correspondent bHLH families according to their orthology with bHLHs from fruit fly and other insect species. Among these 52 PxbHLH genes, 19 have been annotated consistently with our classification in GenBank database. The remaining 33 PxbHLH genes are either annotated as general bHLH genes or as hypothetical genes. Therefore, our data provide useful information for updating annotations to PxbHLH genes. P. xylostella has four stem cell leukemia (SCL) genes (one of them has three copies), two Dys genes, two copies of MyoR, Mitf, and Sima genes, and three copies of Sage genes. Further studies may be conducted to elucidate functions of these specific bHLH genes in regulating P. xylostella growth and development.
Collapse
Affiliation(s)
- Zhen Zeng
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Guang-Dong Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
319
|
Alphey N, Bonsall MB. Genetics-based methods for agricultural insect pest management. AGRICULTURAL AND FOREST ENTOMOLOGY 2018; 20:131-140. [PMID: 29937693 PMCID: PMC5993313 DOI: 10.1111/afe.12241] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/10/2017] [Accepted: 05/21/2017] [Indexed: 06/01/2023]
Abstract
The sterile insect technique is an area-wide pest control method that reduces agricultural pest populations by releasing mass-reared sterile insects, which then compete for mates with wild insects. Contemporary genetics-based technologies use insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation.Engineered strains of agricultural pest species, including moths such as the diamondback moth Plutella xylostella and fruit flies such as the Mediterranean fruit fly Ceratitis capitata, have been developed with lethality that only operates on females.Transgenic crops expressing insecticidal toxins are widely used; the economic benefits of these crops would be lost if toxin resistance spread through the pest population. The primary resistance management method is a high-dose/refuge strategy, requiring toxin-free crops as refuges near the insecticidal crops, as well as toxin doses sufficiently high to kill wild-type insects and insects heterozygous for a resistance allele.Mass-release of toxin-sensitive engineered males (carrying female-lethal genes), as well as suppressing populations, could substantially delay or reverse the spread of resistance. These transgenic insect technologies could form an effective resistance management strategy.We outline some policy considerations for taking genetic insect control systems through to field implementation.
Collapse
Affiliation(s)
- Nina Alphey
- Mathematical Ecology Research Group, Department of Zoology, South Parks RoadOxford OX1 3PSU.K.
- Department of Life SciencesImperial College London, Silwood Park Campus, Buckhurst RoadAscot SL5 7PYU.K.
- The Pirbright Institute, Ash RoadPirbirght GU24 0NFU.K.
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, South Parks RoadOxford OX1 3PSU.K.
- Department of Life SciencesImperial College London, Silwood Park Campus, Buckhurst RoadAscot SL5 7PYU.K.
- St Peter's College, New Inn Hall StreetOxford OX1 2DLU.K.
| |
Collapse
|
320
|
Liu Y, Liu Y, Jiang X, Wang G. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:14-22. [PMID: 29438663 DOI: 10.1016/j.jinsphys.2018.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingchuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
321
|
Hu X, Zhang X, Zhong J, Liu Y, Zhang C, Xie Y, Lin M, Xu C, Lu L, Zhu Q, Liu X. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis. Int J Biol Macromol 2018; 111:822-831. [DOI: 10.1016/j.ijbiomac.2017.12.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/15/2017] [Accepted: 12/25/2017] [Indexed: 01/16/2023]
|
322
|
Li X, Luo L, Karthi S, Zhang K, Luo J, Hu Q, Weng Q. Effects of 200 Gy 60Co-γ Radiation on the Regulation of Antioxidant Enzymes, Hsp70 Genes, and Serum Molecules of Plutella xylostella (Linnaeus). Molecules 2018; 23:molecules23051011. [PMID: 29701645 PMCID: PMC6099622 DOI: 10.3390/molecules23051011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
The diamondback moth, Plutella xylostella (Linnaeus), is one of the notorious pests causing substantial loses to many cruciferous vegetables across the nations. The effects of 60Co-γ radiation on physiology of P. xylostella were investigated and the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella. First, in our research, we detected Oxidase system and stress response mechanism of irradiated pupae, the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella. The levels of superoxide dismutase (SOD) and catalase (CAT) were increased significantly in contrast the level of peroxidase (POD) and glutathione S-transferase (GST) were decreased in 12–24 h post-treatment. The heat shock proteins (Hsps) gene expression level was significant increasing, maximum > 2-folds upregulation of genes were observed in peak. However, they also had a trend of gradual recovery with development. Second, we detected the testis lactate dehydrogenase (LDH) and acid phosphatase (ACP) activity found that in male adults testis they increased significantly than control during its development. Thus the present research investigation highlights that the 60Co-γ radiation treatments alters the physiological development of diamondback moth. The results showed that 200 Gy dosage resulted in stress damage to the body and reproductive system of the diamondback moth.
Collapse
Affiliation(s)
- Xiaoxue Li
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, Guangzhou 510642, China.
| | - Lingyan Luo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, Guangzhou 510642, China.
| | - Sengodan Karthi
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, Guangzhou 510642, China.
| | - Ke Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, Guangzhou 510642, China.
| | - Jianjun Luo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, Guangzhou 510642, China.
| | - Qiongbo Hu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, Guangzhou 510642, China.
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou 510642, China.
| | - Qunfang Weng
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, Guangzhou 510642, China.
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, Guangzhou 510642, China.
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
323
|
Cao HH, Zhang ZF, Wang XF, Liu TX. Nutrition versus defense: Why Myzus persicae (green peach aphid) prefers and performs better on young leaves of cabbage. PLoS One 2018; 13:e0196219. [PMID: 29684073 PMCID: PMC5912751 DOI: 10.1371/journal.pone.0196219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Plant leaves of different ages differ in nutrients and toxic metabolites and thus exhibit various resistance levels against insect herbivores. However, little is known about the influence of leaf ontogeny on plant resistance to phloem-feeding insects. In this study, we found that the green peach aphid, Myzus persicae, preferred to settle on young cabbage leaves compared with mature or old leaves, although young leaves contained the highest concentration of glucosinolates. Furthermore, aphids feeding on young leaves had higher levels of glucosinolates in their body, but aphids performed better on young leaves in terms of body weight and population growth. Phloem sap of young leaves had higher amino acid:sugar molar ratio than mature leaves, and aphids feeding on young leaves showed two times longer phloem feeding time and five times more honeydew excretion than on other leaves. These results indicate that aphids acquired the highest amount of nutrients and defensive metabolites when feeding on young cabbage leaves that are strong natural plant sinks. Accordingly, we propose that aphids generally prefer to obtain more nutrition rather than avoiding host plant defense, and total amount of nutrition that aphids could obtain is significantly influenced by leaf ontogeny or source-sink status of feeding sites.
Collapse
Affiliation(s)
- He-He Cao
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhan-Feng Zhang
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Feng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
324
|
You Y, Xie M, Vasseur L, You M. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.). Genome 2018; 61:349-358. [PMID: 29620473 DOI: 10.1139/gen-2017-0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.
Collapse
Affiliation(s)
- Yanchun You
- a State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,b Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,c Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China.,d Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou 350002, China
| | - Miao Xie
- a State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,b Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,c Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China.,d Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou 350002, China
| | - Liette Vasseur
- a State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,b Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,e Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Minsheng You
- a State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,b Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,d Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou 350002, China
| |
Collapse
|
325
|
Ravindran K, Sivaramakrishnan S, Hussain M, Dash CK, Bamisile BS, Qasim M, Liande W. Investigation and molecular docking studies of Bassianolide from Lecanicillium lecanii against Plutella xylostella (Lepidoptera: Plutellidae). Comp Biochem Physiol C Toxicol Pharmacol 2018; 206-207:65-72. [PMID: 29551387 DOI: 10.1016/j.cbpc.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 01/29/2023]
Abstract
Entomopathogenic fungi are rich sources of bioactive secondary metabolites that possess insecticidal properties. The present study reported a novel approach for the identification of insecticidal compounds produced by Lecanicillium lecanii 09 and to assess their toxicity against the diamondback moth Plutella xylostella L. The cyclic peptides groups of toxic substances were separated from L. lecanii 09 through submerged liquid state fermentation. The most abundant toxic metabolite, Bassianolide was purified by high-performance liquid chromatography (HPLC) and its molecular weight and purity were determined by Liquid chromatography - mass spectroscopy (LC-MS), Fourier transformed infrared spectroscopy (FT-IR), and H1 nuclear magnetic resonance (NMR) respectively. Subsequently, the toxicity of bassianolide was tested against third instar larvae of P. xylostella at three different concentrations (0.01, 0.1, 0.5 mg/ml). The results showed that higher concentration of 0.5 mg/ml had significant maximum mortality at 120 hour post inoculation. Furthermore, we investigated the ligand-target interaction of secondary metabolite binding with target insect immune receptor proteins and predicted the role of toxicity against insect host. This is the first study to report the infection process and the interaction of fungal mediated cyclicdepsipeptide compound (bassianolide) from L. lecanii 09 against the insect host P. xylostella. This novel approach provides a potential impact on biological control using natural toxic compound which acts as good inhibitor on pest insect and prevents toxicity hazards, pollution as well as ecocidal effects killing several beneficial insects.
Collapse
MESH Headings
- Animals
- Biological Control Agents/chemistry
- Biological Control Agents/isolation & purification
- Biological Control Agents/metabolism
- Biological Control Agents/pharmacology
- China
- Chromatography, High Pressure Liquid
- Cordyceps/chemistry
- Cordyceps/growth & development
- Cordyceps/physiology
- Fermentation
- Host-Pathogen Interactions
- Insect Proteins/antagonists & inhibitors
- Insect Proteins/chemistry
- Insect Proteins/metabolism
- Insecticides/chemistry
- Insecticides/isolation & purification
- Insecticides/metabolism
- Insecticides/pharmacology
- Larva/drug effects
- Larva/growth & development
- Larva/microbiology
- Ligands
- Models, Molecular
- Molecular Docking Simulation
- Molecular Structure
- Molecular Weight
- Moths/drug effects
- Moths/growth & development
- Moths/microbiology
- Nuclear Magnetic Resonance, Biomolecular
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/isolation & purification
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacology
- Spectrometry, Mass, Electrospray Ionization
- Spectroscopy, Fourier Transform Infrared
Collapse
Affiliation(s)
- Keppanan Ravindran
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sivaperumal Sivaramakrishnan
- Department of Biotechnology and Genetic Engineering, School of Life Sciences, Bharathidasan University, Tamil Nadu, India
| | - Mubasher Hussain
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chandra Kanta Dash
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bamisope Steve Bamisile
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wang Liande
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
326
|
Li X, Shi H, Gao X, Liang P. Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2018; 74:695-704. [PMID: 29027758 DOI: 10.1002/ps.4765] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/03/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Uridine diphosphate-glucuronosyltransferases (UGTs), as multifunctional detoxification enzymes, play important roles in the biotransformation of various compounds. However, their roles in insecticide resistance are still unclear. This study presents a genome-wide identification of the UGTs in diamondback moth, Plutella xylostella (L.), a notorious insect pest of cruciferous crops worldwide. The possible roles of these UGTs in insecticide resistance were evaluated. RESULTS A total of 21 putative UGTs in P. xylostella were identified. Quantitative real-time polymerase chain reaction (PCR)-based analyses showed that all the UGT genes were expressed in all tested developmental stages and tissues. Bioassay results indicated that a field-collected population (BL) was resistant to 9 of 10 commonly used insecticides, and 10 of 21 UGT mRNAs were upregulated in the BL population. Exposure to the LC50 of each insecticide affected the expression of most UGT genes. Among these, the expression levels of UGT40V1, UGT45B1 and UGT33AA4 were induced by more than five insecticides, whereas indoxacarb and metaflumizone significantly repressed the expression of most UGT genes. CONCLUSION UGTs may play important roles in the metabolism of commonly used insecticides in P. xylostella. These findings provide valuable information for further research on the physiological and toxicological functions of specific UGT genes in P. xylostella. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Haiyan Shi
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
327
|
van Langevelde F, Braamburg-Annegarn M, Huigens ME, Groendijk R, Poitevin O, van Deijk JR, Ellis WN, van Grunsven RHA, de Vos R, Vos RA, Franzén M, WallisDeVries MF. Declines in moth populations stress the need for conserving dark nights. GLOBAL CHANGE BIOLOGY 2018; 24:925-932. [PMID: 29215778 DOI: 10.1111/gcb.14008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/25/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Given the global continuous rise, artificial light at night is often considered a driving force behind moth population declines. Although negative effects on individuals have been shown, there is no evidence for effects on population sizes to date. Therefore, we compared population trends of Dutch macromoth fauna over the period 1985-2015 between moth species that differ in phototaxis and adult circadian rhythm. We found that moth species that show positive phototaxis or are nocturnally active have stronger negative population trends than species that are not attracted to light or are diurnal species. Our results indicate that artificial light at night is an important factor in explaining declines in moth populations in regions with high artificial night sky brightness. Our study supports efforts to reduce the impacts of artificial light at night by promoting lamps that do not attract insects and reduce overall levels of illumination in rural areas to reverse declines of moth populations.
Collapse
Affiliation(s)
| | - Marijke Braamburg-Annegarn
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
- De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Martinus E Huigens
- De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Rob Groendijk
- De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Olivier Poitevin
- De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Jurriën R van Deijk
- De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Willem N Ellis
- Working Group Lepidoptera Faunistics, Section Entomology, Zoological Museum, Amsterdam, The Netherlands
| | - Roy H A van Grunsven
- De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Rob de Vos
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Rutger A Vos
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Markus Franzén
- Department of Community Ecology, UFZ Helmholtz Centre for Environmental Research, Halle, Germany
- Center for Ecology and Evolution in Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Michiel F WallisDeVries
- De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
328
|
Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection. Gene 2018; 647:21-30. [DOI: 10.1016/j.gene.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
|
329
|
Zhan MY, Yang PJ, Rao XJ. Cloning and analysis of peptidoglycan recognition protein-LC and immune deficiency from the diamondback moth, Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21436. [PMID: 29193237 DOI: 10.1002/arch.21436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptidoglycan (PGN) exists in both Gram-negative and Gram-positive bacteria as a component of the cell wall. PGN is an important target to be recognized by the innate immune system of animals. PGN recognition proteins (PGRP) are responsible for recognizing PGNs. In Drosophila melanogaster, PGRP-LC and IMD (immune deficiency) are critical for activating the Imd pathway. Here, we report the cloning and analysis of PGRP-LC and IMD (PxPGRP-LC and PxIMD) from diamondback moth, Plutella xylostella (L.), the insect pest of cruciferous vegetables. PxPGRP-LC gene consists of six exons encoding a polypeptide of 308 amino acid residues with a transmembrane region and a PGRP domain. PxIMD cDNA encodes a polypeptide of 251 amino acid residues with a death domain. Sequence comparisons indicate that they are characteristic of Drosophila PGRP-LC and IMD homologs. PxPGRP-LC and PxIMD were expressed in various tissues and developmental stages. Their mRNA levels were affected by bacterial challenges. The PGRP domain of PxPGRP-LC lacks key residues for the amidase activity, but it can recognize two types of PGNs. Overexpression of full-length and deletion mutants in Drosophila S2 cells induced expression of some antimicrobial peptide genes. These results indicate that PxPGRP-LC and PxIMD may be involved in the immune signaling of P. xylostella. This study provides a foundation for further studies of the immune system of P. xylostella.
Collapse
Affiliation(s)
- Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
330
|
Synthesis and larvicidal activity of 1,3,4-oxadiazole derivatives containing a 3-chloropyridin-2-yl-1H-pyrazole scaffold. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-2060-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
331
|
Lin L, Liu C, Qin J, Wang J, Dong S, Chen W, He W, Gao Q, You M, Yuchi Z. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 92:73-83. [PMID: 29191465 DOI: 10.1016/j.ibmb.2017.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Ryanodine receptors (RyRs) are large calcium-release channels located in sarcoplasmic reticulum membrane. They play a central role in excitation-contraction coupling of muscle cells. Three commercialized insecticides targeting pest RyRs generate worldwide sales over 2 billion U.S. dollars annually, but the structure of insect RyRs remains elusive, hindering our understanding of the mode of action of RyR-targeting insecticides and the development of insecticide resistance in pests. Here we present the crystal structure of RyR N-terminal domain (NTD) (residue 1-205) at 2.84 Å resolution from the diamondback moth (DBM), Plutella xylostella, a destructive pest devouring cruciferous crops all over the world. Similar to its mammalian homolog, DBM RyR NTD consists of a beta-trefoil folding motif and a flanking alpha helix. Interestingly, two regions in NTD interacting with neighboring domains showed distinguished conformations in DBM relative to mammalian RyRs. Using homology modeling and molecular dynamics simulation, we created a structural model of the N-terminal three domains, showing two unique binding pockets that could be targeted by potential species-specific insecticides. Thermal melt experiment showed that the stability of DBM RyR NTD was higher than mammalian RyRs, probably due to a stable intra-domain disulfide bond observed in the crystal structure. Previously DBM NTD was shown to be one of the two critical regions to interact with insecticide flubendiamide, but isothermal titration calorimetry experiments negated DBM NTD alone as a major binding site for flubendiamide.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shengjie Dong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Chen
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
332
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
333
|
Heringer P, Dias GB, Kuhn GCS. A Horizontally Transferred Autonomous Helitron Became a Full Polydnavirus Segment in Cotesia vestalis. G3 (BETHESDA, MD.) 2017; 7:3925-3935. [PMID: 29042411 PMCID: PMC5714489 DOI: 10.1534/g3.117.300280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Bracoviruses associate symbiotically with thousands of parasitoid wasp species in the family Braconidae, working as virulence gene vectors, and allowing the development of wasp larvae within hosts. These viruses are composed of multiple DNA circles that are packaged into infective particles, and injected together with wasp's eggs during parasitization. One of the viral segments of Cotesia vestalis bracovirus contains a gene that has been previously described as a helicase of unknown origin. Here, we demonstrate that this gene is a Rep/Helicase from an intact Helitron transposable element that covers the viral segment almost entirely. We also provide evidence that this element underwent at least two horizontal transfers, which appear to have occurred consecutively: first from a Drosophila host ancestor to the genome of the parasitoid wasp C. vestalis and its bracovirus, and then from C. vestalis to a lepidopteran host (Bombyx mori). Our results reinforce the idea of parasitoid wasps as frequent agents of horizontal transfers in eukaryotes. Additionally, this Helitron-bracovirus segment is the first example of a transposable element that effectively became a whole viral circle.
Collapse
Affiliation(s)
- Pedro Heringer
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Guilherme B Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gustavo C S Kuhn
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
334
|
Yan XZ, Deng CP, Xie JX, Wu LJ, Sun XJ, Hao C. Distribution patterns and morphology of sensilla on the antennae of Plutella xylostella (L.)—A scanning and transmission electron microscopic study. Micron 2017; 103:1-11. [DOI: 10.1016/j.micron.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
|
335
|
Chen DS, Dai JQ, Han SC. Identification of the pheromone biosynthesis genes from the sex pheromone gland transcriptome of the diamondback moth, Plutella xylostella. Sci Rep 2017; 7:16255. [PMID: 29176628 PMCID: PMC5701256 DOI: 10.1038/s41598-017-16518-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
The diamondback moth was estimated to increase costs to the global agricultural economy as the global area increase of Brassica vegetable crops and oilseed rape. Sex pheromones traps are outstanding tools available in Integrated Pest Management for many years and provides an effective approach for DBM population monitoring and control. The ratio of two major sex pheromone compounds shows geographical variations. However, the limitation of our information in the DBM pheromone biosynthesis dampens our understanding of the ratio diversity of pheromone compounds. Here, we constructed a transcriptomic library from the DBM pheromone gland and identified genes putatively involved in the fatty acid biosynthesis, pheromones functional group transfer, and β-oxidation enzymes. In addition, odorant binding protein, chemosensory protein and pheromone binding protein genes encoded in the pheromone gland transcriptome, suggest that female DBM moths may receive odors or pheromone compounds via their pheromone gland and ovipositor system. Tissue expression profiles further revealed that two ALR, three DES and one FAR5 genes were pheromone gland tissue biased, while some chemoreception genes expressed extensively in PG, pupa, antenna and legs tissues. Finally, the candidate genes from large-scale transcriptome information may be useful for characterizing a presumed biosynthetic pathway of the DBM sex pheromone.
Collapse
Affiliation(s)
- Da-Song Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jian-Qing Dai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| | - Shi-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| |
Collapse
|
336
|
Peres LLS, Sobreiro AI, Couto IFS, Silva RM, Pereira FF, Heredia-Vieira SC, Cardoso CAL, Mauad M, Scalon SPQ, Verza SS, Mussury RM. Chemical Compounds and Bioactivity of Aqueous Extracts of Alibertia spp. in the Control of Plutella xylostella L. (Lepidoptera: Plutellidae). INSECTS 2017; 8:insects8040125. [PMID: 29165339 PMCID: PMC5746808 DOI: 10.3390/insects8040125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
Successive applications of insecticides to control Plutella xylostella L. (Lepidoptera: Plutellidae) have resulted in the emergence of resistant populations of this insect. A novel control measure for this target insect could be the use of botanical insecticides derived from plant tissues. Hence, we experimentally tested aqueous extracts of Alibertia edulis (Rich.), Alibertia intermedia (Mart.), and Alibertia sessilis (Vell.) K. Schum. found in the Brazilian savannah in order to investigate their potential to disrupt the life cycle of P. xylostella. Aqueous extracts of the leaves of A. intermedia and A. sessilis negatively affected the development of P. xylostella in all stages of the life cycle, prolonging the larval stage and causing mortality in the larval or pupal stages. Treatments with A. intermedia and A. sessilis extracts caused the lowest fecundity and the number of hatched larvae. The harmful effects of these aqueous extracts on the life cycle of P. xylostella may be attributable to the flavonoids and other phenolic compounds present in A. intermedia and A. sessilis. These aqueous botanical extracts are low in toxicity when compared to non-aqueous pesticides, and may emerge as an effective approach for control of populations of P. xylostella.
Collapse
Affiliation(s)
- Lucas L S Peres
- Laboratory of Insect-Plant Interaction, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil.
| | - Ana I Sobreiro
- Laboratory of Insect-Plant Interaction, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil.
| | - Irys F S Couto
- Laboratory of Insect-Plant Interaction, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil.
| | - Rosicléia M Silva
- Laboratory of Insect-Plant Interaction, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil.
| | - Fabricio F Pereira
- Laboratory of Biological Control, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil.
| | - Silvia C Heredia-Vieira
- Laboratory of Chemistry, State University of Mato Grosso do Sul, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso Do Sul, Brazil.
| | - Claudia A L Cardoso
- Laboratory of Chemistry, State University of Mato Grosso do Sul, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso Do Sul, Brazil.
| | - Munir Mauad
- Laboratory of Vegetables Production, Faculty of Agricultural Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso Do Sul, Brazil.
| | - Silvana P Q Scalon
- Laboratory of Vegetables Production, Faculty of Agricultural Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso Do Sul, Brazil.
| | - Sandra S Verza
- Laboratory of Social Insects-Pest, Department of Vegetal Production, Phytosanitary Defense, Faculty of Agronomic Sciences, São Paulo State University, Street José Barbosa de Barros, 18610-307, Botucatu, São Paulo 18610-307, Brazil.
| | - Rosilda M Mussury
- Laboratory of Insect-Plant Interaction, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil.
| |
Collapse
|
337
|
Liu F, Guo D, Yuan Z, Chen C, Xiao H. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella. Sci Rep 2017; 7:15870. [PMID: 29158595 PMCID: PMC5696462 DOI: 10.1038/s41598-017-16057-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.
Collapse
Affiliation(s)
- Feiling Liu
- College of Life Sciences and Resource Environment, Yichun University, Yichun, 336000, China
| | - Dianhao Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuting Yuan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Chen
- College of Life Sciences and Resource Environment, Yichun University, Yichun, 336000, China
| | - Huamei Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun, 336000, China.
- The Center for Translational Medicine, Yichun University, Yichun, 336000, China.
| |
Collapse
|
338
|
Zhao Q, Ma D, Huang Y, He W, Li Y, Vasseur L, You M. Genome-wide investigation of transcription factors provides insights into transcriptional regulation in Plutella xylostella. Mol Genet Genomics 2017; 293:435-449. [PMID: 29147778 DOI: 10.1007/s00438-017-1389-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Dongna Ma
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yuping Huang
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
339
|
Draft Genome Assembly of a Wolbachia Endosymbiont of Plutella australiana. GENOME ANNOUNCEMENTS 2017; 5:5/43/e01134-17. [PMID: 29074653 PMCID: PMC5658491 DOI: 10.1128/genomea.01134-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolbachia spp. are endosymbiotic bacteria that infect around 50% of arthropods and cause a broad range of effects, including manipulating host reproduction. Here, we present the annotated draft genome assembly of Wolbachia strain wAus, which infects Plutella australiana, a cryptic ally of the major Brassica pest Plutella xylostella (diamondback moth).
Collapse
|
340
|
Yang S, Cao D, Wang G, Liu Y. Identification of Genes Involved in Chemoreception in Plutella xyllostella by Antennal Transcriptome Analysis. Sci Rep 2017; 7:11941. [PMID: 28931846 PMCID: PMC5607341 DOI: 10.1038/s41598-017-11646-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Perception of environmental and habitat cues is of significance for insect survival and reproduction. Odor detection in insects is mediated by a number of proteins in antennae such as odorant receptors (ORs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), sensory neuron membrane proteins (SNMPs) and odorant degrading enzymes. In this study, we sequenced and assembled the adult male and female antennal transcriptomes of a destructive agricultural pest, the diamondback moth Plutella xyllostella. In these transcriptomes, we identified transcripts belonging to 6 chemoreception gene families related to ordor detection, including 54 ORs, 16 IRs, 7 gustatory receptors (GRs), 15 CSPs, 24 OBPs and 2 SNMPs. Semi-quantitative reverse transcription PCR analysis of expression patterns indicated that some of these ORs and IRs have clear sex-biased and tissue-specific expression patterns. Our results lay the foundation for future characterization of the functions of these P. xyllostella chemosensory receptors at the molecular level and development of novel semiochemicals for integrated control of this agricultural pest.
Collapse
Affiliation(s)
- Shiyong Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Depan Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
341
|
Peng L, Wang L, Yang YF, Zou MM, He WY, Wang Y, Wang Q, Vasseur L, You MS. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis. Gene 2017; 637:90-99. [PMID: 28916376 DOI: 10.1016/j.gene.2017.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. RESULTS Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. CONCLUSIONS Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest management.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Fan Yang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
342
|
Lin CL, Yeh SC, Feng HT, Dai SM. Inheritance and stability of mevinphos-resistance in Plutella xylostella (L.), with special reference to mutations of acetylcholinesterase 1. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:65-70. [PMID: 28911742 DOI: 10.1016/j.pestbp.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 06/07/2023]
Abstract
Diamondback moth (Plutella xylostella L.) causes enormous damage on cruciferous vegetables and can rapidly develop resistance to all kinds of insecticides. To effectively manage the insecticide resistance of P. xylostella, an understanding of its inheritance and stability is essential. Here we investigated the phenotypic and genotypic basis of mevinphos resistance by crossing two genetically pure lines of P. xylostella, an SHggt wild-type strain and an SHMTCN resistant strain carrying 892T/T, 971C/C, and 1156T/G (TCN) mutations of the acetylcholinesterase 1 gene (Pxace1). Similar median lethal concentrations and degrees of dominance in the reciprocal cross progeny, and no plateau on the log concentration-probit line of F1 backcross and self-cross progeny, suggest that the mevinphos-resistance in P. xylostella is inherited as an autosomal and incomplete dominant trait governed by more than one gene. In the absence of mevinphos exposure, the resistance ratio and Pxace1 mutation frequency declined concomitantly in the SHMTCN strain. After 20-generation relaxation, the mevinphos resistance decreased from 52- to 6-fold and the Pxace1 mutation frequency of the TCN haplotype pair decreased from 100% to 0%. A good correlation was found between the resistance ratio and TCN frequency within the range of 12.5- to 25-fold resistance. Since there was no TCN haplotype pair detected below a resistance level of 12.5-fold, we speculate that resistance mechanisms other than target site insensitivity may exist. These observations are important for the prediction and management of mevinphos and related organophosphate resistance in field populations of P. xylostella.
Collapse
Affiliation(s)
- Chia-Li Lin
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan ROC
| | - Shih-Chia Yeh
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan ROC
| | - Hai-Tung Feng
- Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, 11, Guangming Rd., Wufong, Taichung 41358, Taiwan ROC
| | - Shu-Mei Dai
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan ROC.
| |
Collapse
|
343
|
Wang Y, Xu T, He W, Shen X, Zhao Q, Bai J, You M. Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.). Genomics 2017; 110:35-42. [PMID: 28789862 DOI: 10.1016/j.ygeno.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Tingting Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Xiujing Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
| |
Collapse
|
344
|
Zhang LJ, Chen JL, Yang BL, Kong XG, Bourguet D, Wu G. Thermotolerance, oxidative stress, apoptosis, heat-shock proteins and damages to reproductive cells of insecticide-susceptible and -resistant strains of the diamondback moth Plutella xylostella. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:513-526. [PMID: 28137318 DOI: 10.1017/s0007485317000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we investigated thermotolerance, several physiological responses and damage to reproductive cells in chlorpyrifos-resistant (Rc) and -susceptible (Sm) strains of the diamondback moth, Plutella xylostella subjected to heat stress. The chlorpyrifos resistance of these strains was mediated by a modified acetylcholinesterase encoded by an allele, ace1R, of the ace1 gene. Adults of the Rc strain were less heat resistant than those of the Sm strain; they also had lower levels of enzymatic activity against oxidative damage, higher reactive oxygen species contents, weaker upregulation of two heat shock protein (hsp) genes (hsp69s and hsp20), and stronger upregulation of two apoptotic genes (caspase-7 and -9). The damage to sperm and ovary cells was greater in Rc adults than in Sm adults and was temperature sensitive. The lower fitness of the resistant strain, compared with the susceptible strain, is probably due to higher levels of oxidative stress and apoptosis, which also have deleterious effects on several life history traits. The greater injury observed in conditions of heat stress may be due to both the stronger upregulation of caspase genes and weaker upregulation of hsp genes in resistant than in susceptible individuals.
Collapse
Affiliation(s)
- L J Zhang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - J L Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - B L Yang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - X G Kong
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou 350002,China
| | - D Bourguet
- Inra, UMR CBGP (Centre de Biologie pour la Gestion des Populations),Montferrier-sur-Lez,France
| | - G Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou 350002,China
| |
Collapse
|
345
|
Zhang S, Zhang X, Shen J, Li D, Wan H, You H, Li J. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:85-89. [PMID: 28755699 DOI: 10.1016/j.pestbp.2017.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Indoxacarb belongs to a class of insecticides known as oxadiazines and is the first commercialized pyrazoline-type voltage-dependent sodium channel blocker. A moderate level of resistance to indoxacarb has evolved in field populations of Plutella xylostella from Central China. In the present study, cross-resistance, resistance stability and metabolic mechanisms of indoxacarb resistance were investigated in this moth species. A P. xylostella strain with a high level of resistance to indoxacarb was obtained through continuous selection in the laboratory. The strain showed cross-resistance to metaflumizone, beta-cypermethrin and chlorfenapyr, but no resistance to cyantraniliprole, chlorantraniliprole, abamectin, chlorfluazuron, spinosad and diafenthiuron compared with the susceptible strain. Synergism tests revealed that piperonyl butoxide (PBO) (synergistic ratio, SR=7.8) and diethyl maleate (DEF) (SR=3.5) had considerable synergistic effects on indoxacarb toxicity in the resistant strain (F58). Enzyme activity data showed there was an approximate 5.8-fold different in glutathione S-transferase (GST) and a 6.8-fold different in cytochrome P450 monooxygenase between the resistant strain (F58) and susceptible strain, suggesting that the increased activity of these two enzymes is likely the main detoxification mechanism responsible for the species' resistance to indoxacarb. These results will be helpful for insecticide resistance management strategies to delay the development of indoxacarb resistance in fields.
Collapse
Affiliation(s)
- Shuzhen Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaolei Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jun Shen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dongyang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong You
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
346
|
Hwang KS, Kim YK, Park KW, Kim YT. Piperolein B and piperchabamide D isolated from black pepper (Piper nigrum L.) as larvicidal compounds against the diamondback moth (Plutella xylostella). PEST MANAGEMENT SCIENCE 2017; 73:1564-1567. [PMID: 28349654 DOI: 10.1002/ps.4580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND There is growing demand for the development of alternative pest control agents that are effective as well as non-toxic to human health and the environment. Plant protection products derived from plant extracts are an eco-friendly alternative to synthetic pesticides. The aim of this study was to identify larvicidal compounds isolated from a natural source against Plutella xylostella L. In a larvicidal activity assay, several solvent fractions from the methanol extract of Piper nigrum L. fruit showed larvicidal effects against P. xylostella. RESULTS Screening results indicated that chloroform extract was the most effective against P. xylostella larvae. Two compounds with insecticidal activity in the chloroform fraction were identified as piperolein B and piperchabamide D by spectroscopic analyses, including mass spectrometry and NMR, and by comparison to published data. At applications of 0.1 mg mL-1 concentration, piperolein B and piperchabamide D, respectively, induced 96.7 ± 5.8% and 79.2 ± 16.6% mortality rates of P. xylostella larvae 4 days post-application. CONCLUSION Our results demonstrate that piperolein B and piperchabamide D isolated from P. nigrum are the major constituents of the extract demonstrating insecticidal properties for the control of P. xylostella larvae. These plant-derived compounds should become useful alternatives to synthetic chemicals after studying their insecticidal mechanisms. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ki Seon Hwang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Young Kook Kim
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Kee Woong Park
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Young Tae Kim
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
347
|
Robin AHK, Hossain MR, Park JI, Kim HR, Nou IS. Glucosinolate Profiles in Cabbage Genotypes Influence the Preferential Feeding of Diamondback Moth ( Plutella xylostella). FRONTIERS IN PLANT SCIENCE 2017; 8:1244. [PMID: 28769953 PMCID: PMC5513964 DOI: 10.3389/fpls.2017.01244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/30/2017] [Indexed: 05/09/2023]
Abstract
Diamondback moth (DBM), Plutella xylostella L., is a devastating pest of cabbage worldwide whose feeding attributes are influenced by glucosinolate profiles of the plant. Identifying the specific glucosinolates associated with plants' resistance mechanism can provide cues to novel points of intervention in developing resistant cultivars. We studied the DBM larval feeding preference and extent of damage on cabbage leaves via controlled glass-house and in vitro multiple- and two-choice feeding tests. These feeding attributes were associated with the individual glucosinolate profiles, analyzed by HPLC, of each of the eight cabbage genotypes using multivariate analytical approach to identify the glucosinolates that may have roles in resistance. Both the glass-house and in vitro multiple-choice feeding tests identified the genotype BN4303, BN4059, and BN4072 as the least preferred (resistant) and Rubra, YR Gold and BN3383 as most preferred (susceptible) genotypes by DBM larvae. The principal component analysis separated the genotypes based on lower feeding scores in association with higher contents of glucobrassicin, glucoiberin, glucoiberverin in one direction and 4-hydroxyglucobrassicin, glucoerucin, glucoraphanin, and progoitrin in opposite direction in a way to explain the major variation in resistant versus susceptible genotypes based on their extent of preference and leaf area damage. The simultaneous presence (or higher contents) of glucobrassicin, glucoiberin, and glucoiberverin and the absence (or lower contents) of 4-hydroxyglucobrassicin, glucoerucin, glucoraphanin, and progoitrin in the least preferred genotypes and vice-versa in most preferred genotypes indicated their apparent role as putative repellents and attractants of DBM larvae in cabbage genotypes, respectively. These novel findings add to the current knowledgebase on the roles of glucosinolates in plant-herbivore interactions and will be helpful in setting breeding priorities for improving the resistance against DBM in cabbage using conventional and biotechnological approaches.
Collapse
Affiliation(s)
- Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Jong-In Park
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
| | - Hye R. Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
| |
Collapse
|
348
|
Wang X, Puinean AM, O Reilly AO, Williamson MS, Smelt CLC, Millar NS, Wu Y. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:50-57. [PMID: 28576654 DOI: 10.1016/j.ibmb.2017.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Abamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3. To compare the effects of these mutations in a single system, A309V/I/G and G315E (corresponding to G323 in TuGluCl1 and G326 in TuGluCl3) substitutions were introduced individually into the PxGluCl channel. Functional analysis using Xenopus oocytes showed that the A309V and G315E mutations reduced the sensitivity to abamectin by 4.8- and 493-fold, respectively. In contrast, the substitutions A309I/G show no significant effects on the response to abamectin. Interestingly, the A309I substitution increased the channel sensitivity to glutamate by one order of magnitude (∼12-fold). Analysis of PxGluCl homology models indicates that the G315E mutation interferes with abamectin binding through a steric hindrance mechanism. In contrast, the structural consequences of the A309 mutations are not so clear and an allosteric modification of the binding site is the most likely mechanism. Overall the results show that both A309V and G315E mutations may contribute to target-site resistance to abamectin and may be important for the future prediction and monitoring of abamectin resistance in P. xylostella and other arthropod pests.
Collapse
Affiliation(s)
- Xingliang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Alin M Puinean
- Rothamsted Research, Biological Chemistry and Crop Protection Department, Harpenden, UK.
| | - Andrias O O Reilly
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.
| | - Martin S Williamson
- Rothamsted Research, Biological Chemistry and Crop Protection Department, Harpenden, UK.
| | - Charles L C Smelt
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| | - Neil S Millar
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
349
|
Li X, Zhu B, Gao X, Liang P. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2017; 73:1402-1409. [PMID: 27786405 DOI: 10.1002/ps.4469] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND UDP-glycosyltransferases (UGTs) are phase II detoxification enzymes widely distributed within living organisms. Their involvement in the biotransformation of various lipophilic endogenous compounds and phytoalexins in insects has been documented. However, the roles of this enzyme family in insecticide resistance have rarely been reported. Here, the functions of UGTs in chlorantraniliprole resistance in Plutella xylostella were investigated. RESULTS Treatment with sulfinpyrazone and 5-nitrouracil (both inhibitors of UGT enzymes) significantly increased the toxicity of chlorantraniliprole against the third instar larvae of P. xylostella. Among the 23 UGT transcripts examined, only UGT2B17 was found to be over-expressed (with a range from 30.7- to 77.3-fold) in all four chlorantraniliprole-resistant populations compared to the susceptible one (CHS). The knock-down of UGT2B17 by RNA interference (RNAi) dramatically increased the toxicity of chlorantraniliprole by 27.4% and 29.8% in the CHS and CHR (resistant) populations, respectively. In contrast, exposure to phenobarbital significantly increased the relative expression of UGT2B17 while decreasing the toxicity of chlorantraniliprole to the larvae by 14.0%. CONCLUSION UGT2B17 is involved in the detoxification of chlorantraniliprole, and its over-expression may play an important role in chlorantraniliprole resistance in P. xylostella. These results shed some light upon and further our understanding of the mechanisms of diamide insecticide resistance in insects. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
350
|
Hiroyoshi S, Harvey JA, Nakamatsu Y, Nemoto H, Mitsuhashi J, Mitsunaga T, Tanaka T. Potential Host Range of the Larval Endoparasitoid Cotesia vestalis ( =plutellae) (Hymenoptera: Braconidae). INTERNATIONAL JOURNAL OF INSECT SCIENCE 2017; 9:1179543317715623. [PMID: 35241962 PMCID: PMC8848047 DOI: 10.1177/1179543317715623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/17/2017] [Indexed: 06/08/2023]
Abstract
Many parasitoid wasps are highly specialized in nature, attacking only one or a few species of hosts. Host range is often determined by a range of biological and ecological characteristics of the host including diet, growth potential, immunity, and phylogeny. The solitary koinobiont endoparasitoid wasp, Cotesia vestalis, mainly parasitizes diamondback moth (DBM) larvae in the field, although it has been reported that to possess a relatively wide lepidopteran host range. To better understand the biology of C vestalis as a potential biological control of hosts other than the DBM, it is necessary to determine suitability for potential hosts. In this study, the potential host range of the wasp and its developmental capacity in each host larva were examined under laboratory conditions using 27 lepidopteran species from 10 families. The wasp was able to parasitize 15 of the 27 species successfully. Some host species were not able to exclude C vestalis via their internal physiological defenses. When parasitization was unsuccessful, most hosts killed the parasitoid at the egg stage or early first-instar stage using encapsulation, but some host species disturbed the development of the parasitoid at various stages. No phylogenetic relationships were found among suitable and unsuitable hosts, revealing that host range in some endoparasitoids is not constrained by relatedness among hosts based on immunity.
Collapse
Affiliation(s)
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | | | - Hisashi Nemoto
- Saitama Agriculture and Forestry Research Center, Saitama, Japan
| | | | - Takayuki Mitsunaga
- Central Region of Agricultural Research Center, National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Toshiharu Tanaka
- Nagoya University in Royal University of Agriculture, Cambodia Satellite Campus, Cambodia
| |
Collapse
|