301
|
van Lenteren JC, Ruschioni S, Romani R, van Loon JJA, Qiu YT, Smid HM, Isidoro N, Bin F. Structure and electrophysiological responses of gustatory organs on the ovipositor of the parasitoid Leptopilina heterotoma. ARTHROPOD STRUCTURE & DEVELOPMENT 2007; 36:271-276. [PMID: 18089105 DOI: 10.1016/j.asd.2007.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 02/14/2007] [Indexed: 05/25/2023]
Abstract
Location, structure and histology of chemosensilla on the tip of the ovipositor of the parasitoid Leptopilina heterotoma are described based on SEM and TEM studies. Furthermore, we developed a method for recording extracellular action potentials from the gustatory neurons in response to host haemolymph. This method allowed us to record multi-unit recordings from a sensillum occurring singly on the unpaired ovipositor valve. The TEM study of the ovipositor tip revealed the presence of six dendrites, the electrophysiological recordings provided evidence for the activity of three or possibly four gustatory neurons in response to the complex stimulus offered, leaving other taste functions or a mechanoreceptor function open for the remaining neurons.
Collapse
Affiliation(s)
- Joop C van Lenteren
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Lu T, Qiu YT, Wang G, Kwon JY, Rutzler M, Kwon HW, Pitts RJ, van Loon JJ, Takken W, Carlson JR, Zwiebel LJ. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr Biol 2007; 17:1533-44. [PMID: 17764944 PMCID: PMC3113458 DOI: 10.1016/j.cub.2007.07.062] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO(2)) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. RESULTS Here, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO(2)-responsive and characterized by the coexpression of three receptors that confer CO(2) responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses. CONCLUSIONS Our results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria.
Collapse
Affiliation(s)
- Tan Lu
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology and Global Health, and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Yu Tong Qiu
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Guirong Wang
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology and Global Health, and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Jae Young Kwon
- Department of Molecular, Cellular, and Developmental, Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Michael Rutzler
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology and Global Health, and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Hyung-Wook Kwon
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology and Global Health, and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - R. Jason Pitts
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology and Global Health, and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Joop J.A. van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - John R. Carlson
- Department of Molecular, Cellular, and Developmental, Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Laurence J. Zwiebel
- Department of Biological Sciences, Center for Molecular Neuroscience, Institute of Chemical Biology and Global Health, and Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235
- Correspondence:
| |
Collapse
|
303
|
Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci U S A 2007; 104:14383-8. [PMID: 17761794 PMCID: PMC1964862 DOI: 10.1073/pnas.0705459104] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By using a functional genomics approach, we have identified a honey bee [Apis mellifera (Am)] odorant receptor (Or) for the queen substance 9-oxo-2-decenoic acid (9-ODA). Honey bees live in large eusocial colonies in which a single queen is responsible for reproduction, several thousand sterile female worker bees complete a myriad of tasks to maintain the colony, and several hundred male drones exist only to mate. The "queen substance" [also termed the queen retinue pheromone (QRP)] is an eight-component pheromone that maintains the queen's dominance in the colony. The main component, 9-ODA, acts as a releaser pheromone by attracting workers to the queen and as a primer pheromone by physiologically inhibiting worker ovary development; it also acts as a sex pheromone, attracting drones during mating flights. However, the extent to which social and sexual chemical messages are shared remains unresolved. By using a custom chemosensory-specific microarray and qPCR, we identified four candidate sex pheromone Ors (AmOr10, -11, -18, and -170) from the honey bee genome based on their biased expression in drone antennae. We assayed the pheromone responsiveness of these receptors by using Xenopus oocytes and electrophysiology. AmOr11 responded specifically to 9-ODA (EC50=280+/-31 nM) and not to any of the other seven QRP components, other social pheromones, or floral odors. We did not observe any responses of the other three Ors to any of the eight QRP pheromone components, suggesting 9-ODA is the only QRP component that also acts as a long-distance sex pheromone.
Collapse
Affiliation(s)
- Kevin W. Wanner
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Andrew S. Nichols
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kimberly K. O. Walden
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Axel Brockmann
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hugh M. Robertson
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
304
|
Colomb J, Grillenzoni N, Ramaekers A, Stocker RF. Architecture of the primary taste center ofDrosophila melanogasterlarvae. J Comp Neurol 2007; 502:834-47. [PMID: 17436288 DOI: 10.1002/cne.21312] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A simple nervous system combined with stereotypic behavioral responses to tastants, together with powerful genetic and molecular tools, have turned Drosophila larvae into a very promising model for studying gustatory coding. Using the Gal4/UAS system and confocal microscopy for visualizing gustatory afferents, we provide a description of the primary taste center in the larval central nervous system. Essentially, gustatory receptor neurons target different areas of the subesophageal ganglion (SOG), depending on their segmental and sensory organ origin. We define two major and two smaller subregions in the SOG. One of the major areas is a target of pharyngeal sensilla, the other one receives inputs from both internal and external sensilla. In addition to such spatial organization of the taste center, circumstantial evidence suggests a subtle functional organization: aversive and attractive stimuli might be processed in the anterior and posterior part of the SOG, respectively. Our results also suggest less coexpression of gustatory receptors than proposed in prior studies. Finally, projections of putative second-order taste neurons seem to cover large areas of the SOG. These neurons may thus receive multiple gustatory inputs. This suggests broad sensitivity of secondary taste neurons, reminiscent of the situation in mammals.
Collapse
Affiliation(s)
- Julien Colomb
- Department of Biology and Program in Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
305
|
Tunstall NE, Sirey T, Newcomb RD, Warr CG. Selective pressures on Drosophila chemosensory receptor genes. J Mol Evol 2007; 64:628-36. [PMID: 17541681 DOI: 10.1007/s00239-006-0151-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 02/28/2007] [Indexed: 01/06/2023]
Abstract
The evolution and patterns of selection of genes encoding 10 Drosophila odorant receptors (Or) and the sex pheromone receptor Gr68a were investigated by comparing orthologous sequences across five to eight ecologically diverse species of Drosophila. Using maximum likelihood estimates of dN/dS ratios we show that all 11 genes sampled are under purifying selection, indicating functional constraint. Four of these genes (Or33c, Or42a, Or85e, and Gr68a) may be under positive selection, and if so, there is good evidence that 12 specific amino acid sites may be under positive selection. All of these sites are predicted to be located either in loop regions or just inside membrane spanning regions, and interestingly one of the two sites in Gr68a is in a similar position to a previously described polymorphism in Gr5a that causes a shift in sensitivity to its ligand trehalose. For three Ors, possible evidence for positive selection was detected along a lineage. These include Or22a in the lineage leading to D. mauritiana and Or22b in the lineage leading to D. simulans. This is of interest in light of previous data showing a change in ligand response profile for these species in the sensory neuron (ab3A) which expresses both Or22a and Or22b in D. melanogaster. In summary, while the main chemosensory function and/or structural integrity of these 10 Or genes and Gr68a are evolutionarily preserved, positive selection appears to be acting on some of these genes, at specific sites and along certain lineages, and provides testable hypotheses for further functional experimentation.
Collapse
Affiliation(s)
- Narelle E Tunstall
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC, Australia
| | | | | | | |
Collapse
|
306
|
Ray A, van Naters WVDG, Shiraiwa T, Carlson JR. Mechanisms of odor receptor gene choice in Drosophila. Neuron 2007; 53:353-69. [PMID: 17270733 PMCID: PMC1986798 DOI: 10.1016/j.neuron.2006.12.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/05/2006] [Accepted: 12/07/2006] [Indexed: 11/24/2022]
Abstract
A remarkable problem in neurobiology is how olfactory receptor neurons (ORNs) select, from among a large odor receptor repertoire, which receptors to express. We use computational algorithms and mutational analysis to define positive and negative regulatory elements that are required for selection of odor receptor (Or) genes in the proper olfactory organ of Drosophila, and we identify an element that is essential for selection in one ORN class. Two odor receptors are coexpressed by virtue of the alternative splicing of a single gene, and we identify dicistronic mRNAs that each encode two receptors. Systematic analysis reveals no evidence for negative feedback regulation, but provides evidence that the choices made by neighboring ORNs of a sensillum are coordinated via the asymmetric segregation of regulatory factors from a common progenitor. We show that receptor gene choice in Drosophila also depends on a combinatorial code of transcription factors to generate the receptor-to-neuron map.
Collapse
Affiliation(s)
- Anandasankar Ray
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
307
|
McBride CS. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci U S A 2007; 104:4996-5001. [PMID: 17360391 PMCID: PMC1829253 DOI: 10.1073/pnas.0608424104] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our understanding of the genetic basis of host specialization in insects is limited to basic information on the number and location of genetic factors underlying changes in conspicuous phenotypes. We know nothing about general patterns of molecular evolution that may accompany host specialization but are not traceable to a single prominent phenotypic change. Here, I describe changes in the entire repertoire of 136 olfactory receptor (Or) and gustatory receptor (Gr) genes of the recently specialized vinegar fly Drosophila sechellia. I find that D. sechellia is losing Or and Gr genes nearly 10 times faster than its generalist sibling Drosophila simulans. Moreover, those D. sechellia receptors that remain intact have fixed amino acid replacement mutations at a higher rate relative to silent mutations than have their D. simulans orthologs. Comparison of these patterns with those observed in a random sample of genes indicates that the changes at Or and Gr loci are likely to reflect positive selection and/or relaxed constraint associated with the altered ecological niche of this fly.
Collapse
Affiliation(s)
- Carolyn S McBride
- Center for Population Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
308
|
Kwon JY, Dahanukar A, Weiss LA, Carlson JR. The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A 2007; 104:3574-8. [PMID: 17360684 PMCID: PMC1805529 DOI: 10.1073/pnas.0700079104] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Indexed: 11/18/2022] Open
Abstract
CO(2) elicits a response from many insects, including mosquito vectors of diseases such as malaria and yellow fever, but the molecular basis of CO(2) detection is unknown in insects or other higher eukaryotes. Here we show that Gr21a and Gr63a, members of a large family of Drosophila seven-transmembrane-domain chemoreceptor genes, are coexpressed in chemosensory neurons of both the larva and the adult. The two genes confer CO(2) response when coexpressed in an in vivo expression system, the "empty neuron system." The response is highly specific for CO(2) and dependent on CO(2) concentration. The response shows an equivalent dependence on the dose of Gr21a and Gr63a. None of 39 other chemosensory receptors confers a comparable response to CO(2). The identification of these receptors may now allow the identification of agents that block or activate them. Such agents could affect the responses of insect pests to the humans they seek.
Collapse
Affiliation(s)
- Jae Young Kwon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Anupama Dahanukar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Linnea A. Weiss
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - John R. Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
309
|
Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2007; 16:107-19. [PMID: 17257213 DOI: 10.1111/j.1365-2583.2007.00708.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Olfaction plays an important role in the life history of insects, including key behaviours such as host selection, oviposition and mate recognition. Odour perception by insects is primarily mediated by the large diverse family of odourant receptors (Ors) that are expressed on the dendrites of olfactory neurones housed within chemosensilla. However, few Or sequences have been identified from the Lepidoptera, an insect order that includes some of the most important pest species worldwide. We have identified 41 Or gene sequences from the silkworm (Bombyx mori) genome, more than double the number of published Or sequences from the Lepidoptera. Many silkworm Ors appear to be orthologs of the 17 published tobacco budworm (Heliothis virescens) Ors indicating that many Or lineages may be conserved within the Lepidoptera. The majority of the Or genes are expressed in adult female and male antennae (determined by quantitative real-time PCR analysis), supporting their probable roles in adult olfaction. Several Or genes are expressed at high levels in both male and female antennae, suggesting they mediate the perception of common host or conspecific volatiles important to both sexes. BmOrs 45-47 group together in the same phylogenetic branch and all three are expressed at moderate female-biased ratios, six to eight times higher in female compared to male moth antennae. Interestingly, BmOrs19 and 30 appear to be expressed predominantly in female antennae, opposite to that of the published silkworm pheromone receptors BmOrs 1 and 3 that are specific to male antennae. These results suggest that BmOr19 and 30 may detect odours critical to female behaviour, such as oviposition cues or male-produced courtship pheromones.
Collapse
Affiliation(s)
- K W Wanner
- Department of Entomology, University of Illinois, Urbana 61801, USA.
| | | | | | | | | | | |
Collapse
|
310
|
Abstract
Insects and vertebrates separately evolved remarkably similar mechanisms to process olfactory information. Odors are sampled by huge numbers of receptor neurons, which converge type-wise upon a much smaller number of principal neurons within glomeruli. There, odor information is transformed by inhibitory interneuron-mediated, cross-glomerular circuit interactions that impose slow temporal structures and fast oscillations onto the firing patterns of principal neurons. The transformations appear to improve signal-to-noise characteristics, define odor categories, achieve precise odor identification, extract invariant features, and begin the process of sparsening the neural representations of odors for efficient discrimination, memorization, and recognition.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, 940 E 57th St., Chicago, IL 60637, USA
| | | |
Collapse
|
311
|
Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genes Dev 2006; 16:1395-403. [PMID: 17065611 PMCID: PMC1626641 DOI: 10.1101/gr.5057506] [Citation(s) in RCA: 398] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 06/20/2006] [Indexed: 11/25/2022]
Abstract
The honey bee genome sequence reveals a remarkable expansion of the insect odorant receptor (Or) family relative to the repertoires of the flies Drosophila melanogaster and Anopheles gambiae, which have 62 and 79 Ors respectively. A total of 170 Or genes were annotated in the bee, of which seven are pseudogenes. These constitute five bee-specific subfamilies in an insect Or family tree, one of which has expanded to a total of 157 genes encoding proteins with 15%-99% amino acid identity. Most of the Or genes are in tandem arrays, including one with 60 genes. This bee-specific expansion of the Or repertoire presumably underlies their remarkable olfactory abilities, including perception of several pheromone blends, kin recognition signals, and diverse floral odors. The number of Apis mellifera Ors is approximately equal to the number of glomeruli in the bee antennal lobe (160-170), consistent with a general one-receptor/one-neuron/one-glomerulus relationship. The bee genome encodes just 10 gustatory receptors (Grs) compared with the D. melanogaster and A. gambiae repertoires of 68 and 76 Grs, respectively. A lack of Gr gene family expansion primarily accounts for this difference. A nurturing hive environment and a mutualistic relationship with plants may explain the lack of Gr family expansion. The Or family is the most dramatic example of gene family expansion in the bee genome, and characterizing their caste- and sex-specific gene expression may provide clues to their specific roles in detection of pheromone, kin, and floral odors.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
312
|
Gerber B, Stocker RF. The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 2006; 32:65-89. [PMID: 17071942 DOI: 10.1093/chemse/bjl030] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the relationship between brain and behavior is the fundamental challenge in neuroscience. We focus on chemosensation and chemosensory learning in larval Drosophila and review what is known about its molecular and cellular bases. Detailed analyses suggest that the larval olfactory system, albeit much reduced in cell number, shares the basic architecture, both in terms of receptor gene expression and neuronal circuitry, of its adult counterpart as well as of mammals. With respect to the gustatory system, less is known in particular with respect to processing of gustatory information in the central nervous system, leaving generalizations premature. On the behavioral level, a learning paradigm for the association of odors with food reinforcement has been introduced. Capitalizing on the knowledge of the chemosensory pathways, we review the first steps to reveal the genetic and cellular bases of olfactory learning in larval Drosophila. We argue that the simplicity of the larval chemosensory system, combined with the experimental accessibility of Drosophila on the genetic, electrophysiological, cellular, and behavioral level, makes this system suitable for an integrated understanding of chemosensation and chemosensory learning.
Collapse
Affiliation(s)
- Bertram Gerber
- Universität Würzburg, Biozentrum, Am Hubland, Lehrstuhl für Genetik und Neurobiologie, D-97074 Würzburg, Germany.
| | | |
Collapse
|