301
|
Abstract
Immunotherapeutic interventions are showing effectiveness across a wide range of cancer types, but only a subset of patients shows clinical response to therapy. Responsiveness to checkpoint blockade immunotherapy is favoured by the presence of a local, CD8+ T cell-based immune response within the tumour microenvironment. As molecular analyses of tumours containing or lacking a productive CD8+ T cell infiltrate are being pursued, increasing evidence is indicating that activation of oncogenic pathways in tumour cells can impair induction or execution of a local antitumour immune response. This Review summarizes our current knowledge of the influence of oncogenic effects on evasion of antitumour immunity.
Collapse
Affiliation(s)
- Stefani Spranger
- The Koch Institute for Integrative Cancer Research at MIT and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
302
|
Cheong JE, Sun L. Targeting the IDO1/TDO2–KYN–AhR Pathway for Cancer Immunotherapy – Challenges and Opportunities. Trends Pharmacol Sci 2018; 39:307-325. [PMID: 29254698 DOI: 10.1016/j.tips.2017.11.007] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
303
|
Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 2018; 11:31. [PMID: 29482595 PMCID: PMC6389077 DOI: 10.1186/s13045-018-0578-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immunotherapy, especially checkpoint inhibitor-based immunotherapy, has provided novel and powerful weapons against cancer. Because only a subset of cancer patients exhibit durable responses, further exploration of the mechanisms underlying the resistance to immunotherapy in the bulk of cancer patients is merited. Such efforts may help to identify which patients could benefit from immune checkpoint blockade. Given the existence of a great number of pathways by which cancer can escape immune surveillance, and the complexity of tumor-immune system interaction, development of various combination therapies, including those that combine with conventional therapies, would be necessary. In this review, we summarize the current understanding of the mechanisms by which resistance to checkpoint blockade immunotherapy occurs, and outline how actionable combination strategies may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Weidong Han
- Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
304
|
Schafer CC, Wang Y, Hough KP, Sawant A, Grant SC, Thannickal VJ, Zmijewski J, Ponnazhagan S, Deshane JS. Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget 2018; 7:75407-75424. [PMID: 27705910 PMCID: PMC5340181 DOI: 10.18632/oncotarget.12249] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) has been implicated in immune evasion by tumors. Upregulation of this tryptophan (Trp)-catabolizing enzyme, in tumor cells and myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME), leads to Trp depletion that impairs cytotoxic T cell responses and survival; however, exact mechanisms remain incompletely understood. We previously reported that a combination therapy of gemcitabine and a superoxide dismutase mimetic promotes anti-tumor immunity in a mouse model of lung cancer by inhibiting MDSCs, enhancing polyfunctional response of CD8+ memory T cells, and extending survival. Here, we show that combination therapy targets IDO signaling, specifically in MDSCs, tumor cells, and CD8+ T cells infiltrating the TME. Deficiency of IDO caused significant reduction in tumor burden, tumor-infiltrating MDSCs, GM-CSF, MDSC survival and infiltration of programmed death receptor-1 (PD-1)-expressing CD8+ T cells compared to controls. IDO−/− MDSCs downregulated nutrient-sensing AMP-activated protein kinase (AMPK) activity, but IDO−/− CD8+ T cells showed AMPK activation associated with enhanced effector function. Our studies provide proof-of-concept for the efficacy of this combination therapy in inhibiting IDO and T cell exhaustion in a syngeneic model of lung cancer and provide mechanistic insights for IDO-dependent metabolic reprogramming of MDSCs that reduces T cell exhaustion and regulates anti-tumor immunity.
Collapse
Affiliation(s)
- Cara C Schafer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth P Hough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anandi Sawant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefan C Grant
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaroslaw Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
305
|
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Ekkati
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
306
|
Marconcini R, Spagnolo F, Stucci LS, Ribero S, Marra E, Rosa FD, Picasso V, Di Guardo L, Cimminiello C, Cavalieri S, Orgiano L, Tanda E, Spano L, Falcone A, Queirolo P. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 2018; 9:12452-12470. [PMID: 29552325 PMCID: PMC5844761 DOI: 10.18632/oncotarget.23746] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
Metastatic melanoma was the first malignancy in which immune checkpoint inhibitors demonstrated their successful efficacy. Currently, the knowledge on the interaction between the immune system and malignant disease is steadily increasing and new drugs and therapeutic strategies are overlooking in the clinical scenario. To provide a comprehensive overview of immune modulating drugs currently available in the treatment of melanoma as well as to discuss of possible future strategies in the metastatic melanoma setting, the present review aims at analyzing controversial aspects about the optimal immunomodulating treatment sequences, the search for biomarkers of efficacy of immunocheckpoint inhibitors, and innovative combinations of drugs currently under investigation.
Collapse
Affiliation(s)
- Riccardo Marconcini
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Luigia Stefania Stucci
- Medical Oncology Unit, Department of Biomedical Sciences and
Clinical Oncology, University of Bari, Bari, Italy
| | - Simone Ribero
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
| | - Elena Marra
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
| | - Francesco De Rosa
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei
Tumori, IRST IRCCS, Meldola, Italy
| | - Virginia Picasso
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | - Laura Orgiano
- AOU Cagliari, Department of Medical Oncology, University of
Cagliari, Cagliari, Italy
| | - Enrica Tanda
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Laura Spano
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - for the Italian Melanoma Intergroup (IMI)
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
- Medical Oncology Unit, Department of Biomedical Sciences and
Clinical Oncology, University of Bari, Bari, Italy
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei
Tumori, IRST IRCCS, Meldola, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
- AOU Cagliari, Department of Medical Oncology, University of
Cagliari, Cagliari, Italy
| |
Collapse
|
307
|
Xue W, Brentville VA, Symonds P, Cook KW, Yagita H, Metheringham RL, Durrant LG. SCIB1, a huIgG1 antibody DNA vaccination, combined with PD-1 blockade induced efficient therapy of poorly immunogenic tumors. Oncotarget 2018; 7:83088-83100. [PMID: 27825115 PMCID: PMC5347755 DOI: 10.18632/oncotarget.13070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023] Open
Abstract
Purpose We have previously shown that supraoptimal signaling of high avidity T cells leads to high expression of PD-1 and inhibition of proliferation. This study was designed to see if this effect could be mitigated by combining a vaccine that stimulates high avidity T cells with PD-1 blockade. Experimental Design We investigated the anti-tumor effect of a huIgG1 antibody DNA vaccine (SCIB1) and PD-1 blockade. Results Vaccination of HLA-DR4 transgenic mice with SCIB1 induced high frequency and avidity T cell responses that resulted in survival (40%) of mice with established B16F1-DR4 tumors. SCIB1 vaccination was associated with increased infiltration of CD4 and CD8 T cells within the tumor but was also associated with upregulation of PD-L1 within the tumor environment. PD-1 blockade also resulted in increased CD8 T cell infiltration and an anti-tumor response with 50% of mice showing long term survival. In line with our hypothesis that PD-1/PD-L1 signaling results in inhibition of proliferation of high avidity T cells at the tumor site, the combination of PD-1 blockade with vaccination, enhanced the number and proliferation of the CD8 tumor infiltrate. This resulted in a potent anti-tumor response with 80% survival of the mice. Conclusions There is a benefit in combining PD-1 blockade with vaccines that induce high avidity T cell responses and in particular with SCIB1.
Collapse
Affiliation(s)
- Wei Xue
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK
| | - Peter Symonds
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Rachael L Metheringham
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK.,Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Nottingham, UK
| |
Collapse
|
308
|
Taggart D, Andreou T, Scott KJ, Williams J, Rippaus N, Brownlie RJ, Ilett EJ, Salmond RJ, Melcher A, Lorger M. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 + T cell trafficking. Proc Natl Acad Sci U S A 2018; 115:E1540-E1549. [PMID: 29386395 PMCID: PMC5816160 DOI: 10.1073/pnas.1714089115] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inhibition of immune checkpoints programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) on T cells results in durable antitumor activity in melanoma patients. Despite high frequency of melanoma brain metastases (BrM) and associated poor prognosis, the activity and mechanisms of immune checkpoint inhibitors (ICI) in metastatic tumors that develop within the "immune specialized" brain microenvironment, remain elusive. We established a melanoma tumor transplantation model with intracranial plus extracranial (subcutaneous) tumor, mimicking the clinically observed coexistence of metastases inside and outside the brain. Strikingly, intracranial ICI efficacy was observed only when extracranial tumor was present. Extracranial tumor was also required for ICI-induced increase in CD8+ T cells, macrophages, and microglia in brain tumors, and for up-regulation of immune-regulatory genes. Combined PD-1/CTLA-4 blockade had a superior intracranial efficacy over the two monotherapies. Cell depletion studies revealed that NK cells and CD8+ T cells were required for intracranial anti-PD-1/anti-CTLA-4 efficacy. Rather than enhancing CD8+ T cell activation and expansion within intracranial tumors, PD-1/CTLA-4 blockade dramatically (∼14-fold) increased the trafficking of CD8+ T cells to the brain. This was mainly through the peripheral expansion of homing-competent effector CD8+ T cells and potentially further enhanced through up-regulation of T cell entry receptors intercellular adhesion molecule 1 and vascular adhesion molecule 1 on tumor vasculature. Our study indicates that extracranial activation/release of CD8+ T cells from PD-1/CTLA-4 inhibition and potentiation of their recruitment to the brain are paramount to the intracranial anti-PD-1/anti-CTLA-4 activity, suggesting augmentation of these processes as an immune therapy-enhancing strategy in metastatic brain cancer.
Collapse
Affiliation(s)
- David Taggart
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
| | - Tereza Andreou
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Karen J Scott
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Jennifer Williams
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Nora Rippaus
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Rebecca J Brownlie
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Elizabeth J Ilett
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Robert J Salmond
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Alan Melcher
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
| | - Mihaela Lorger
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom;
| |
Collapse
|
309
|
Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer. Oncotarget 2018; 7:66540-66557. [PMID: 27572319 PMCID: PMC5341819 DOI: 10.18632/oncotarget.11658] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 12/28/2022] Open
Abstract
Renal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC. Here we show indolamine-2,3-dioxygenase-1 (IDO1) expression, a kynurenine pathway enzyme, is increased not only in tumor cells but also in the microenvironment of human RCC compared to normal kidney tissues. Neither kynurenine metabolites nor IDO inhibitors affected the survival or proliferation of human RCC or murine renal cell adenocarcinoma (RENCA) cells in vitro. However, interferon-gamma (IFNγ) induced high levels of IDO1 in both RCC and RENCA cells, concomitant with enhanced kynurenine levels in conditioned media. Induction of IDO1 by IFNα was weaker than by IFNγ. Neither the IDO1 inhibitor methyl-thiohydantoin-DL-tryptophan (MTH-trp) nor IFNα alone inhibited RENCA tumor growth, however the combination of MTH-trp and IFNα reduced tumor growth compared to IFNα. Thus, the failure of IFNα therapy for human RCC is likely due to its inability to overcome the immunosuppressive environment created by increased IDO1. Based on our data, and given that IDO inhibitors are already in clinical trials for other malignancies, IFNα therapy with an IDO inhibitor should be revisited for RCC.
Collapse
|
310
|
Huang F, Wang B, Zeng J, Sang S, Lei J, Lu Y. MicroRNA-374b inhibits liver cancer progression via down regulating programmed cell death-1 expression on cytokine-induced killer cells. Oncol Lett 2018; 15:4797-4804. [PMID: 29552119 PMCID: PMC5840577 DOI: 10.3892/ol.2018.7951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Programmed cell death-1 (PD-1) is an oncogene associated with suppressing proliferation and cytokine production of T cells in the progression of liver cancer. microRNAs (miRs) regulate gene expression via specific binding to the target 3′untranslated region of mRNA. In the present study, miR-374b was indicated to interact with PD-1 and affect the tumor-targeting capacity of cytokine-induced killer (CIK) cells. miR-374b inhibitor significantly increased PD-1 expression in CIK cells. A synthetic small interfering (si)RNA targeting PD-1 was employed to silence the expression level of PD-1 in CIK cells. Then, the antitumor effect of siPD-1 in CIK cells was investigated. In vitro study demonstrated that IFN-γ secretion and the concentration of lactate dehydrogenase were significantly increased in the PD-1 knockdown group; however, the viability of HepG2 cells in the PD-1 knockdown group had significantly decreased, compared with the HepG2 cells in the negative control group. In vivo study indicated that mice inoculated with HepG2 cells and CIK cells with PD-1 knocked down had a significantly smaller tumor volume, compared with the control group. To conclude, human CIK cells transfected with siPD-1 can target liver cancer cells and enhance immunotherapy efficacy, and therefore they have potential in the immunotherapy of liver cancer.
Collapse
Affiliation(s)
- Fen Huang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Bo Wang
- Department of Emergency, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Jiangzheng Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Shenggang Sang
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Junhua Lei
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yanda Lu
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
311
|
Griglio A, Torre E, Serafini M, Bianchi A, Schmid R, Coda Zabetta G, Massarotti A, Sorba G, Pirali T, Fallarini S. A multicomponent approach in the discovery of indoleamine 2,3-dioxygenase 1 inhibitors: Synthesis, biological investigation and docking studies. Bioorg Med Chem Lett 2018; 28:651-657. [PMID: 29398544 DOI: 10.1016/j.bmcl.2018.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/24/2023]
Abstract
Indoleamine 2,3-dioxygenase plays a crucial role in immune tolerance and has emerged as an attractive target for cancer immunotherapy. In this study, the Passerini and Ugi multicomponent reactions have been employed to assemble a small library of imidazothiazoles that target IDO1. While the p-bromophenyl and the imidazothiazole moieties have been kept fixed, a full SAR study has been performed on the side-chain, leading to the discovery of nine compounds with sub-micromolar IC50 values in the enzyme-based assay. Compound 7d, displaying a α-acyloxyamide substructure, is the most potent compound, with an IC50 value of 0.20 µM, but a low activity in a cell-based assay. Compound 6o, containing a α-acylaminoamide moiety, shows an IC50 value of 0.81 µM in the IDO1-based assay, a full biocompatibility at 10 µM, together with a modest inhibitory activity in A375 cells. Molecular docking studies show that both 7d and 6o display a unique binding mode in the IDO1 active site, with the side-chain protruding in an additional pocket C, where a crucial hydrogen bond is formed with Lys238. Overall, this work describes an isocyanide based-multicomponent approach as a straightforward and versatile tool to rapidly access IDO1 inhibitors, providing a new direction for their future design and development.
Collapse
Affiliation(s)
- Alessia Griglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Enza Torre
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Marta Serafini
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Alice Bianchi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Roberta Schmid
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Giulia Coda Zabetta
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Giovanni Sorba
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Tracey Pirali
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy.
| | - Silvia Fallarini
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| |
Collapse
|
312
|
Tang H, Liang Y, Anders RA, Taube JM, Qiu X, Mulgaonkar A, Liu X, Harrington SM, Guo J, Xin Y, Xiong Y, Nham K, Silvers W, Hao G, Sun X, Chen M, Hannan R, Qiao J, Dong H, Peng H, Fu YX. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest 2018; 128:580-588. [PMID: 29337303 PMCID: PMC5785245 DOI: 10.1172/jci96061] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) expression on tumor cells is essential for T cell impairment, and PD-L1 blockade therapy has shown unprecedented durable responses in several clinical studies. Although higher expression of PD-L1 on tumor cells is associated with a better immune response after Ab blockade, some PD-L1-negative patients also respond to this therapy. In the current study, we explored whether PD-L1 on tumor or host cells was essential for anti-PD-L1-mediated therapy in 2 different murine tumor models. Using real-time imaging in whole tumor tissues, we found that anti-PD-L1 Ab accumulates in tumor tissues, regardless of the status of PD-L1 expression on tumor cells. We further observed that, while PD-L1 on tumor cells was largely dispensable for the response to checkpoint blockade, PD-L1 in host myeloid cells was essential for this response. Additionally, PD-L1 signaling in defined antigen-presenting cells (APCs) negatively regulated and inhibited T cell activation. PD-L1 blockade inside tumors was not sufficient to mediate regression, as limiting T cell trafficking reduced the efficacy of the blockade. Together, these findings demonstrate that PD-L1 expressed in APCs, rather than on tumor cells, plays an essential role in checkpoint blockade therapy, providing an insight into the mechanisms of this therapy.
Collapse
Affiliation(s)
- Haidong Tang
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Liang
- Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janis M. Taube
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Dermatopathology and the Bloomberg-Kimmel Institute of Cancer Immunotherapy and
| | - Xiangyan Qiu
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Aditi Mulgaonkar
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Liu
- Departments of Urology and Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Susan M. Harrington
- Departments of Urology and Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jingya Guo
- Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Xin
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yahong Xiong
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kien Nham
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - William Silvers
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Guiyang Hao
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xiankai Sun
- Department of Radiology and Advanced Imaging Research Center and
| | - Mingyi Chen
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Raquibul Hannan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jian Qiao
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Haidong Dong
- Departments of Urology and Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hua Peng
- Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
- Chinese Academy of Sciences Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
313
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
314
|
Chiarella P, Vermeulen M, Montagna DR, Vallecorsa P, Strazza AR, Meiss RP, Bustuoabad OD, Ruggiero RA, Prehn RT. Improvement of Antitumor Therapies Based on Vaccines and Immune-Checkpoint Inhibitors by Counteracting Tumor-Immunostimulation. Front Oncol 2018; 8:6. [PMID: 29435437 PMCID: PMC5790794 DOI: 10.3389/fonc.2018.00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR) evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors), counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.
Collapse
Affiliation(s)
- Paula Chiarella
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Mónica Vermeulen
- Department of Immunology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Daniela R. Montagna
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Pablo Vallecorsa
- Department of Pathology, Instituto de Estudios Oncológicos, Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Ariel Ramiro Strazza
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Roberto P. Meiss
- Department of Pathology, Instituto de Estudios Oncológicos, Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | | | - Raúl A. Ruggiero
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Richmond T. Prehn
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
315
|
Belzile O, Huang X, Gong J, Carlson J, Schroit AJ, Brekken RA, Freimark BD. Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer. Immunotargets Ther 2018; 7:1-14. [PMID: 29417044 PMCID: PMC5788995 DOI: 10.2147/itt.s134834] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid in all eukaryotic cells that is actively sequestered to the inner leaflet of the cell membrane. Exposure of PS on apoptotic cells is a normal physiological process that triggers their rapid removal by phagocytic engulfment under noninflammatory conditions via receptors primarily expressed on immune cells. PS is aberrantly exposed in the tumor microenvironment and contributes to the overall immunosuppressive signals that antagonize the development of local and systemic antitumor immune responses. PS-mediated immunosuppression in the tumor microenvironment is further exacerbated by chemotherapy and radiation treatments that result in increased levels of PS on dying cells and necrotic tissue. Antibodies targeting PS localize to tumors and block PS-mediated immunosuppression. Targeting exposed PS in the tumor microenvironment may be a novel approach to enhance immune responses to cancer.
Collapse
Affiliation(s)
- Olivier Belzile
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xianming Huang
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Jian Gong
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Jay Carlson
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| | - Alan J Schroit
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bruce D Freimark
- Department of Preclinical Research.,Department of Antibody Discovery, Peregrine Pharmaceuticals, Inc., Tustin, CA, USA
| |
Collapse
|
316
|
Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, Grenga I, Kim YS, Brechbiel MW, Gulley JL, Madan RA, Heery CR, Hodge JW, Newton R, Schlom J, Tsang KY. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget 2018; 7:37762-37772. [PMID: 27192116 PMCID: PMC5122347 DOI: 10.18632/oncotarget.9326] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We investigated the effects of epacadostat on (a) human dendritic cells (DCs) with respect to maturation and ability to activate human tumor antigen-specific cytotoxic T-cell (CTL) lines, and subsequent T-cell lysis of tumor cells, (b) human regulatory T cells (Tregs), and (c) human peripheral blood mononuclear cells (PBMCs) in vitro. Simultaneous treatment with epacadostat and IFN-γ plus lipopolysaccharide (LPS) did not change the phenotype of matured human DCs, and as expected decreased the tryptophan breakdown and kynurenine production. Peptide-specific T-cell lines stimulated with DCs pulsed with peptide produced significantly more IFN-γ, TNFα, GM-CSF and IL-8 if the DCs were treated with epacadostat. These T cells also displayed higher levels of tumor cell lysis on a per cell basis. Epacadostat also significantly decreased Treg proliferation induced by IDO production from IFN-γ plus LPS matured human DCs, although the Treg phenotype did not change. Multicolor flow cytometry was performed on human PBMCs treated with epacadostat; analysis of 123 discrete immune cell subsets revealed no changes in major immune cell types, an increase in activated CD83+ conventional DCs, and a decrease in immature activated Tim3+ NK cells. These studies show for the first time several effects of epacadostat on human DCs, and subsequent effects on CTL and Tregs, and provide a rationale as to how epacadostat could potentially increase the efficacy of immunotherapeutics, including cancer vaccines.
Collapse
Affiliation(s)
- Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Fantini
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Romaine I Fernando
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Young-Seung Kim
- Radioimmune Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin W Brechbiel
- Radioimmune Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kwong Y Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
317
|
Ariyan CE, Brady MS, Siegelbaum RH, Hu J, Bello DM, Rand J, Fisher C, Lefkowitz RA, Panageas KS, Pulitzer M, Vignali M, Emerson R, Tipton C, Robins H, Merghoub T, Yuan J, Jungbluth A, Blando J, Sharma P, Rudensky AY, Wolchok JD, Allison JP. Robust Antitumor Responses Result from Local Chemotherapy and CTLA-4 Blockade. Cancer Immunol Res 2018; 6:189-200. [PMID: 29339377 DOI: 10.1158/2326-6066.cir-17-0356] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/26/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022]
Abstract
Clinical responses to immunotherapy have been associated with augmentation of preexisting immune responses, manifested by heightened inflammation in the tumor microenvironment. However, many tumors have a noninflamed microenvironment, and response rates to immunotherapy in melanoma have been <50%. We approached this problem by utilizing immunotherapy (CTLA-4 blockade) combined with chemotherapy to induce local inflammation. In murine models of melanoma and prostate cancer, the combination of chemotherapy and CTLA-4 blockade induced a shift in the cellular composition of the tumor microenvironment, with infiltrating CD8+ and CD4+ T cells increasing the CD8/Foxp3 T-cell ratio. These changes were associated with improved survival of the mice. To translate these findings into a clinical setting, 26 patients with advanced melanoma were treated locally by isolated limb infusion with the nitrogen mustard alkylating agent melphalan followed by systemic administration of CTLA-4 blocking antibody (ipilimumab) in a phase II trial. This combination of local chemotherapy with systemic checkpoint blockade inhibitor resulted in a response rate of 85% at 3 months (62% complete and 23% partial response rate) and a 58% progression-free survival at 1 year. The clinical response was associated with increased T-cell infiltration, similar to that seen in the murine models. Together, our findings suggest that local chemotherapy combined with checkpoint blockade-based immunotherapy results in a durable response to cancer therapy. Cancer Immunol Res; 6(2); 189-200. ©2018 AACR.
Collapse
Affiliation(s)
- Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Mary Sue Brady
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert H Siegelbaum
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jian Hu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danielle M Bello
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamie Rand
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles Fisher
- Department of Anesthesia, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert A Lefkowitz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathleen S Panageas
- Department of Statistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Pulitzer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | | - Taha Merghoub
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jianda Yuan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge Blando
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas
| | - Alexander Y Rudensky
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James P Allison
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
318
|
Williams DK, Markwalder JA, Balog AJ, Chen B, Chen L, Donnell J, Haque L, Hart AC, Mandal SK, Nation A, Shan W, Vite GD, Covello K, Hunt JT, Jure-Kunkel MN, Seitz SP. Development of a series of novel o-phenylenediamine-based indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg Med Chem Lett 2018; 28:732-736. [PMID: 29398543 DOI: 10.1016/j.bmcl.2018.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/15/2022]
Abstract
A novel series of o-phenylenediamine-based inhibitors of indoleamine 2,3-dioxygenase (IDO) has been identified. IDO is a heme-containing enzyme, overexpressed in the tumor microenvironment of many cancers, which can contribute to the suppression of the host immune system. Synthetic modifications to a previously described diarylether series resulted in an additional degree of molecular diversity which was exploited to afford compounds that demonstrated significant potency in the HeLa human cervical cancer IDO1 assay. .
Collapse
Affiliation(s)
- David K Williams
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States.
| | - Jay A Markwalder
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Aaron J Balog
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Bin Chen
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Libing Chen
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Jennifer Donnell
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Lauren Haque
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Amy C Hart
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Sunil K Mandal
- Biocon BMS Research and Development Center (BBRC), Syngene International Ltd, Plat No. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Andrew Nation
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Weifang Shan
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Gregory D Vite
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - Kelly Covello
- Oncology Biology, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | - John T Hunt
- Oncology Biology, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| | | | - Steven P Seitz
- Oncology Chemistry, Bristol-Myers Squibb Research and Development, Princeton, NJ 08543-5400, United States
| |
Collapse
|
319
|
Hu Z, Ye L, Xing Y, Hu J, Xi T. Combined SEP and anti-PD-L1 antibody produces a synergistic antitumor effect in B16-F10 melanoma-bearing mice. Sci Rep 2018; 8:217. [PMID: 29317734 PMCID: PMC5760644 DOI: 10.1038/s41598-017-18641-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
The increased PD-L1 induces poorer prognosis in melanoma. The treatment with PD-1/PD-L1 antibodies have a low response rate. The combination immunotherapies are the encouraging drug development strategy to receive maximal therapeutic benefit. In this study, we investigated the enhanced antitumor and immunomodulatory activity of combined SEP and αPD-L1 in B16-F10 melanoma-bearing mice. The results shown that combined SEP and αPD-L1 presented significant synergistic antitumor effects, increased the frequency of CD8+ and CD4+ T cells in spleen and tumor, cytotoxic activity of CTL in spleen, and IL-2 and IFN-γ levels in splenocytes and tumor. The combination treatment also produced synergistic increase in P-ERK1/2 level in spleen. Immunohistochemistry shown that SEP induced the PD-L1 expression in melanoma tissue possibly by promoting IFN-γ excretion, which led to the synergistic anti-tumor effects of aPD-L1 and SEP. Furthermore, in the purified T lymphocyte from the naive mice, the combination of SEP and αPD-L1 had more potent than SEP or αPD-L1 in promoting T lymphocyte proliferation and cytokines secretion including IL-2 and IFN-γ, at least partially by activating MEK/ERK pathway. Our study provides the scientific basis for a clinical trial that would involve combination of anti-PD-L1 mAb and SEP for sustained melanoma control.
Collapse
Affiliation(s)
- Zhengping Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jinhang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
320
|
Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Res 2018; 77:6795-6811. [PMID: 29247038 DOI: 10.1158/0008-5472.can-17-2285] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/23/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Small-molecule inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) are emerging at the vanguard of experimental agents in oncology. Here, pioneers of this new drug class provide a bench-to-bedside review on preclinical validation of IDO1 as a cancer therapeutic target and on the discovery and development of a set of mechanistically distinct compounds, indoximod, epacadostat, and navoximod, that were first to be evaluated as IDO inhibitors in clinical trials. As immunometabolic adjuvants to widen therapeutic windows, IDO inhibitors may leverage not only immuno-oncology modalities but also chemotherapy and radiotherapy as standards of care in the oncology clinic. Cancer Res; 77(24); 6795-811. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - James B DuHadaway
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania
| | | |
Collapse
|
321
|
Davar D, Bahary N. Modulating Tumor Immunology by Inhibiting Indoleamine 2,3-Dioxygenase (IDO): Recent Developments and First Clinical Experiences. Target Oncol 2018; 13:125-140. [DOI: 10.1007/s11523-017-0547-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
322
|
Srinivasan P, Wu X, Basu M, Rossi C, Sandler AD. PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease. PLoS Med 2018; 15:e1002497. [PMID: 29377881 PMCID: PMC5788338 DOI: 10.1371/journal.pmed.1002497] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 12/27/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Adaptive immune resistance induces an immunosuppressive tumor environment that enables immune evasion. This phenomenon results in tumor escape with progression and metastasis. Programmed cell death-ligand 1 (PD-L1) expressed on tumors is thought to inhibit tumor-infiltrating lymphocytes (TILs) through programmed cell death 1 (PD1), enabling adaptive immune resistance. This study investigates the role of PD-L1 in both mouse and human neuroblastoma immunity. The consequence of PD-L1 inhibition is characterized in the context of an established whole tumor cell vaccine. METHODS AND FINDINGS A mouse model of neuroblastoma was investigated using an Id2 knockdown whole cell vaccine in combination with checkpoint inhibition. We show that immunogenic mouse neuroblastoma acquires adaptive immune resistance by up-regulating PD-L1 expression, whereas PD-L1 is of lesser consequence in nonimmunogenic neuroblastoma tumors. Combining PD-L1 checkpoint inhibition with whole tumor cell/anti-CTLA-4 vaccination enhanced tumor cell killing, cured mice with established tumors, and induced long-term immune memory (6 months). From an evaluation of patient neuroblastoma tumors, we found that the inflammatory environment of the mouse neuroblastoma mimicked human disease in which PD-L1 expression was associated directly with TILs and lower-risk tumors. High-risk patient tumors were lacking both TILs and PD-L1 expression. Although a correlation in immunity seems to exist between the mouse model and human findings, the mouse tumor model is induced and not spontaneously occurring, and furthermore, the number of both mouse and human correlates is limited. CONCLUSIONS This study demonstrates the role PD-L1 plays in neuroblastoma's resistance to immunity and defines the nonredundant effect of combination checkpoint inhibition with vaccine therapy in a mouse model. High-risk, nonimmunogenic human tumors display both diminished PD-L1 expression and adaptive immune resistance. Paradoxically, high-risk tumors may be more responsive to effective vaccine therapy because of their apparent lack of adaptive immune resistance.
Collapse
Affiliation(s)
- Priya Srinivasan
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Xiaofang Wu
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Mousumi Basu
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Christopher Rossi
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Anthony D. Sandler
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
323
|
Qiao M, Jiang T, Ren S, Zhou C. Combination Strategies on the Basis of Immune Checkpoint Inhibitors in Non–Small-Cell Lung Cancer: Where Do We Stand? Clin Lung Cancer 2018; 19:1-11. [DOI: 10.1016/j.cllc.2017.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/30/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
|
324
|
Horton BL, Williams JB, Cabanov A, Spranger S, Gajewski TF. Intratumoral CD8 + T-cell Apoptosis Is a Major Component of T-cell Dysfunction and Impedes Antitumor Immunity. Cancer Immunol Res 2018; 6:14-24. [PMID: 29097422 PMCID: PMC5754226 DOI: 10.1158/2326-6066.cir-17-0249] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/05/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Abstract
Subsets of human tumors are infiltrated with tumor antigen-specific CD8+ T cells [tumor-infiltrating lymphocytes (TILs)] despite tumor progression. These TILs are thought to be inactivated by the immunosuppressive tumor microenvironment, through the engagement of inhibitory receptors such as CTLA-4 and PD-1. However, antigen-specific CD8+ TILs are not functionally inert but are undergoing activation in situ Here, we show that antigen-specific CD8+ TILs are actively proliferating, yet also undergo high rates of apoptosis, leading to a vicious cycle of activation and death that limits immune efficacy. Preventing CD8+ TIL apoptosis by Bcl-xL overexpression enabled accumulation and improved tumor control. Effective combination immunotherapy with an agonist 4-1BB mAb plus either CTLA-4 or PD-L1 neutralization led to a marked accumulation of specific CD8+ TILs through decreased apoptosis rather than increased T-cell entry or proliferation. Our data suggest that antigen-driven apoptosis of CD8+ TILs is a barrier to effective spontaneous antitumor immunity and should be considered as a critical factor in the development of cancer immunotherapies. Cancer Immunol Res; 6(1); 14-24. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Apoptosis/genetics
- Apoptosis/immunology
- Biomarkers
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- DNA Damage
- Disease Models, Animal
- Disease Progression
- Gene Expression Profiling
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Melanoma, Experimental
- Mice
- Mice, Knockout
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
Collapse
Affiliation(s)
- Brendan L Horton
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jason B Williams
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Alexandra Cabanov
- The Committee on Immunology, University of Chicago, Chicago, Illinois
| | - Stefani Spranger
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, Chicago, Illinois.
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
325
|
|
326
|
|
327
|
Bonavida B, Chouaib S. Resistance to anticancer immunity in cancer patients: potential strategies to reverse resistance. Ann Oncol 2017; 28:457-467. [PMID: 27864216 DOI: 10.1093/annonc/mdw615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the 1990s, the application of immunotherapy approaches to target cancer cells resulted in significant clinical responses in patients with advanced malignancies who were refractory to conventional therapies. While early immunotherapeutics were focused on T cell-mediated cytotoxic activity, subsequent efforts were centered on targeted antibody-mediated anticancer therapy. The initial success with antibody therapy encouraged further studies and, consequently, there are now more than 25 FDA-approved antibodies directed against a range of targets. Although both T cell and antibody therapies continue to result in significant clinical responses with minimal toxicity, a significant subset of patients does not respond to immunotherapy and another subset develops resistance following an initial response. This review is focused on describing examples showing that cancer resistance to immunotherapies indeed occurs. In addition, it reviews the mechanisms being used to overcome the resistance to immunotherapies by targeting the tumor cell directly and/or the tumor microenvironment.
Collapse
Affiliation(s)
- B Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, USA
| | - S Chouaib
- Institut de Cancérologie Gustave Roussy, Inserm U1186, Immunologie Intégrative et Oncogénétique, Institut Gustave Roussy, Université Paris-Sud, Université Paris-Saclay Villejuif, France
| |
Collapse
|
328
|
Inflammatory Reprogramming with IDO1 Inhibitors: Turning Immunologically Unresponsive 'Cold' Tumors 'Hot'. Trends Cancer 2017; 4:38-58. [PMID: 29413421 DOI: 10.1016/j.trecan.2017.11.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023]
Abstract
We discuss how small-molecule inhibitors of the tryptophan (Trp) catabolic enzyme indoleamine 2,3-dioxygenase (IDO) represent a vanguard of new immunometabolic adjuvants to safely enhance the efficacy of cancer immunotherapy, radiotherapy, or 'immunogenic' chemotherapy by leveraging responses to tumor neoantigens. IDO inhibitors re-program inflammatory processes to help clear tumors by blunting tumor neovascularization and restoring immunosurveillance. Studies of regulatory and effector pathways illuminate IDO as an inflammatory modifier. Recent work suggests that coordinate targeting of the Trp catabolic enzymes tryptophan 2,3-dioxygenase (TDO) and IDO2 may also safely broaden efficacy. Understanding IDO inhibitors as adjuvants to turn immunologically 'cold' tumors 'hot' can seed new concepts in how to improve the efficacy of cancer therapy while limiting collateral damage.
Collapse
|
329
|
Chae YK, Oh MS, Giles FJ. Molecular Biomarkers of Primary and Acquired Resistance to T-Cell-Mediated Immunotherapy in Cancer: Landscape, Clinical Implications, and Future Directions. Oncologist 2017; 23:410-421. [PMID: 29242279 DOI: 10.1634/theoncologist.2017-0354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
The emergence of immunotherapy has revolutionized cancer treatment in recent years. Inhibitors of immune checkpoints, including antibodies against cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1, and programmed death ligand 1, have demonstrated notable efficacy in certain advanced cancers. Unfortunately, many patients do not benefit from these therapies and either exhibit primary resistance to treatment or develop acquired mechanisms of resistance after initially responding to therapy. Here, we review the genomic and immune traits that may promote resistance to T-cell-mediated immunotherapy, with a focus on identifying potential biomarkers that could eventually be used in the clinical setting to guide treatment selection. We summarize the clinical evidence for these markers and discuss how current understanding of resistance mechanisms can inform future studies and aid clinical decision-making in order to derive maximum benefit from immunotherapy. IMPLICATIONS FOR PRACTICE Immunotherapy has rapidly progressed as a treatment modality for multiple cancers, but it is still unclear which patients are likely to benefit from these therapies. Studies of resistance mechanisms have only recently started to identify biomarkers that can help predict patient outcomes. This review summarizes the available clinical data in regard to immunotherapy resistance, with a focus on molecular biomarkers that may be useful in guiding clinical decision-making. It discusses possible applications of these biomarkers and highlights opportunities for further clinical discovery.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of Division of Hematology Oncology, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Michael S Oh
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francis J Giles
- Developmental Therapeutics Program of Division of Hematology Oncology, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
330
|
|
331
|
Migrating into the Tumor: a Roadmap for T Cells. Trends Cancer 2017; 3:797-808. [DOI: 10.1016/j.trecan.2017.09.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
|
332
|
Yong CS, Abba Moussa D, Cretenet G, Kinet S, Dardalhon V, Taylor N. Metabolic orchestration of T lineage differentiation and function. FEBS Lett 2017; 591:3104-3118. [PMID: 28901530 DOI: 10.1002/1873-3468.12849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
T cells are stimulated by the engagement of antigen, cytokine, pathogen, and hormone receptors. While research performed over many years has focused on deciphering the molecular components of these pathways, recent data underscore the importance of the metabolic environment in conditioning responses to receptor engagement. The ability of T cells to undergo a massive proliferation and cytokine secretion in response to receptor signals requires alterations to their bioenergetic homeostasis, allowing them to meet new energetic and biosynthetic demands. The metabolic reprogramming of activated T cells is regulated not only by changes in intracellular nutrient uptake and utilization but also by nutrient and oxygen concentrations in the extracellular environment. Notably, the extracellular environment can be profoundly altered by pathological conditions such as infections and tumors, thereby perturbing the metabolism and function of antigen-specific T lymphocytes. This review highlights the interplay between diverse metabolic networks and the transcriptional/epigenetic states that condition T-cell differentiation, comparing the metabolic features of T lymphocytes with other immune cells. We further address recent discoveries in the metabolic pathways that govern T-cell function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carmen S Yong
- IGMM, CNRS, Univ. Montpellier, Montpellier, France
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | | | | | | | | | - Naomi Taylor
- IGMM, CNRS, Univ. Montpellier, Montpellier, France
| |
Collapse
|
333
|
Muroyama Y, Nirschl TR, Kochel CM, Lopez-Bujanda Z, Theodros D, Mao W, Carrera-Haro MA, Ghasemzadeh A, Marciscano AE, Velarde E, Tam AJ, Thoburn CJ, Uddin M, Meeker AK, Anders RA, Pardoll DM, Drake CG. Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment. Cancer Immunol Res 2017; 5:992-1004. [PMID: 28970196 DOI: 10.1158/2326-6066.cir-17-0040] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 01/21/2023]
Abstract
Radiotherapy (RT) enhances innate and adaptive antitumor immunity; however, the effects of radiation on suppressive immune cells, such as regulatory T cells (Treg), in the tumor microenvironment (TME) are not fully elucidated. Although previous reports suggest an increased Treg infiltration after radiation, whether these Tregs are functionally suppressive remains undetermined. To test the hypothesis that RT enhances the suppressive function of Treg in the TME, we selectively irradiated implanted tumors using the small animal radiation research platform (SARRP), which models stereotactic radiotherapy in human patients. We then analyzed tumor-infiltrating lymphocytes (TIL) with flow-cytometry and functional assays. Our data showed that RT significantly increased tumor-infiltrating Tregs (TIL-Treg), which had higher expression of CTLA-4, 4-1BB, and Helios compared with Tregs in nonirradiated tumors. This observation held true across several tumor models (B16/F10, RENCA, and MC38). We found that TIL-Tregs from irradiated tumors had equal or improved suppressive capacity compared with nonirradiated tumors. Our data also indicated that after RT, Tregs proliferated more robustly than other T-cell subsets in the TME. In addition, after RT, expansion of Tregs occurred when T-cell migration was inhibited using Fingolimod, suggesting that the increased Treg frequency was likely due to preferential proliferation of intratumoral Treg after radiation. Our data also suggested that Treg expansion after irradiation was independent of TGFβ and IL33 signaling. These data demonstrate that RT increased phenotypically and functionally suppressive Tregs in the TME. Our results suggest that RT might be combined effectively with Treg-targeting agents to maximize antitumor efficacy. Cancer Immunol Res; 5(11); 992-1004. ©2017 AACR.
Collapse
Affiliation(s)
- Yuki Muroyama
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina M Kochel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zoila Lopez-Bujanda
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Carrera-Haro
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ariel E Marciscano
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada J Tam
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J Thoburn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muniza Uddin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
334
|
Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 336:175-203. [PMID: 29413890 PMCID: PMC6054468 DOI: 10.1016/bs.ircmb.2017.07.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tryptophan catabolic enzyme indoleamine 2,3-dioxygenase-1 (IDO1) has attracted enormous attention in driving cancer immunosuppression, neovascularization, and metastasis. IDO1 suppresses local CD8+ T effector cells and natural killer cells and induces CD4+ T regulatory cells (iTreg) and myeloid-derived suppressor cells (MDSC). The structurally distinct enzyme tryptophan dioxygenase (TDO) also has been implicated recently in immune escape and metastatic progression. Lastly, emerging evidence suggests that the IDO1-related enzyme IDO2 may support IDO1-mediated iTreg and contribute to B-cell inflammed states in certain cancers. IDO1 and TDO are upregulated widely in neoplastic cells but also variably in stromal, endothelial, and innate immune cells of the tumor microenviroment and in tumor-draining lymph nodes. Pharmacological and genetic proofs in preclinical models of cancer have validated IDO1 as a cancer therapeutic target. IDO1 inhibitors have limited activity on their own but greatly enhance "immunogenic" chemotherapy or immune checkpoint drugs. IDO/TDO function is rooted in inflammatory programming, thereby influencing tumor neovascularization, MDSC generation, and metastasis beyond effects on adaptive immune tolerance. Discovery and development of two small molecule enzyme inhibitors of IDO1 have advanced furthest to date in Phase II/III human trials (epacadostat and navoximod, respectively). Indoximod, a tryptophan mimetic compound with a different mechanism of action in the IDO pathway has also advanced in multiple Phase II trials. Second generation combined IDO/TDO inhibitors may broaden impact in cancer treatment, for example, in addressing IDO1 bypass (inherent resistance) or acquired resistance to IDO1 inhibitors. This review surveys knowledge about IDO1 function and how IDO1 inhibitors reprogram inflammation to heighten therapeutic responses in cancer.
Collapse
Affiliation(s)
- George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | | | - Arpita Mondal
- Lankenau Institute for Medical Research, Wynnewood, PA, United States; Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peggy Scherle
- Incyte Corporation Inc., Wilmington, DE, United States
| | - Alexander J Muller
- Lankenau Institute for Medical Research, Wynnewood, PA, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
335
|
Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L. Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity 2017; 44:1255-69. [PMID: 27332730 DOI: 10.1016/j.immuni.2016.06.001] [Citation(s) in RCA: 750] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Inhibition of immune regulatory checkpoints, such as CTLA-4 and the PD-1-PD-L1 axis, is at the forefront of immunotherapy for cancers of various histological types. However, such immunotherapies fail to control neoplasia in a significant proportion of patients. Here, we review how a range of cancer-cell-autonomous cues, tumor-microenvironmental factors, and host-related influences might account for the heterogeneous responses and failures often encountered during therapies using immune-checkpoint blockade. Furthermore, we describe the emerging evidence of how the strong interrelationship between the immune system and the host microbiota can determine responses to cancer therapies, and we introduce a concept by which prior or concomitant modulation of the gut microbiome could optimize therapeutic outcomes upon immune-checkpoint blockade.
Collapse
Affiliation(s)
- Jonathan M Pitt
- Institut de Cancérologie, Gustave Roussy Cancer Campus, 94800 Villejuif, France; INSERM U1015, 94800 Villejuif, France; Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94276 Le Kremlin Bicêtre, France
| | - Marie Vétizou
- Institut de Cancérologie, Gustave Roussy Cancer Campus, 94800 Villejuif, France; INSERM U1015, 94800 Villejuif, France; Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94276 Le Kremlin Bicêtre, France
| | - Romain Daillère
- Institut de Cancérologie, Gustave Roussy Cancer Campus, 94800 Villejuif, France; INSERM U1015, 94800 Villejuif, France; Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94276 Le Kremlin Bicêtre, France
| | - María Paula Roberti
- Institut de Cancérologie, Gustave Roussy Cancer Campus, 94800 Villejuif, France; INSERM U1015, 94800 Villejuif, France
| | - Takahiro Yamazaki
- Institut de Cancérologie, Gustave Roussy Cancer Campus, 94800 Villejuif, France; INSERM U1015, 94800 Villejuif, France
| | - Bertrand Routy
- Institut de Cancérologie, Gustave Roussy Cancer Campus, 94800 Villejuif, France; INSERM U1015, 94800 Villejuif, France; Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94276 Le Kremlin Bicêtre, France
| | - Patricia Lepage
- Micalis UMR 1319, Institut National de la Recherche Agronomique, 78360 Jouy-en-Josas, France
| | - Ivo Gomperts Boneca
- Unit of Biology and Genetics of the Bacterial Cell Wall, Institut Pasteur, 75015 Paris, France; Equipe Avenir, INSERM, 75015 Paris, France
| | - Mathias Chamaillard
- Université de Lille, Centre National de la Recherche Scientifique, INSERM, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Guido Kroemer
- INSERM U848, 94800 Villejuif, France; Metabolomics Platform, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Equipe 11 Labellisée Ligue contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75005 Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Laurence Zitvogel
- Institut de Cancérologie, Gustave Roussy Cancer Campus, 94800 Villejuif, France; INSERM U1015, 94800 Villejuif, France; Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94276 Le Kremlin Bicêtre, France; Center of Clinical Investigations CICBT1428, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex 05, France.
| |
Collapse
|
336
|
Day D, Monjazeb AM, Sharon E, Ivy SP, Rubin EH, Rosner GL, Butler MO. From Famine to Feast: Developing Early-Phase Combination Immunotherapy Trials Wisely. Clin Cancer Res 2017; 23:4980-4991. [PMID: 28864726 PMCID: PMC5736967 DOI: 10.1158/1078-0432.ccr-16-3064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/08/2017] [Accepted: 07/07/2017] [Indexed: 12/29/2022]
Abstract
Not until the turn of this century has immunotherapy become a fundamental component of cancer treatment. While monotherapy with immune modulators, such as immune checkpoint inhibitors, provides a subset of patients with durable clinical benefit and possible cure, combination therapy offers the potential for antitumor activity in a greater number of patients. The field of immunology has provided us with a plethora of potential molecules and pathways to target. This abundance makes it impractical to empirically test all possible combinations efficiently. We recommend that potential immunotherapy combinations be chosen based on sound rationale and available data to address the mechanisms of primary and acquired immune resistance. Novel trial designs may increase the proportion of patients receiving potentially efficacious treatments and, at the same time, better define the balance of clinical activity and safety. We believe that implementing a strategic approach in the early development of immunotherapy combinations will expedite the delivery of more effective therapies with improved safety and durable outcomes.
Collapse
Affiliation(s)
- Daphne Day
- Drug Development Program, Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Arta M Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | - S Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | - Eric H Rubin
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey
| | - Gary L Rosner
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Marcus O Butler
- Drug Development Program, Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
337
|
Ding Q, Mohib K, Kuchroo VK, Rothstein DM. TIM-4 Identifies IFN-γ-Expressing Proinflammatory B Effector 1 Cells That Promote Tumor and Allograft Rejection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2585-2595. [PMID: 28848066 DOI: 10.4049/jimmunol.1602107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/24/2017] [Indexed: 11/19/2022]
Abstract
B cells give rise to polarized subsets, including B effector 1 (Be1) cells and regulatory B cells, which can promote or inhibit immune responses through expression of IFN-γ and IL-10, respectively. Such subsets likely explain why B cell depletion can either ameliorate or exacerbate inflammatory diseases; however, these cells remain poorly understood because of the absence of specific markers. Although T cell Ig and mucin domain-containing molecule (TIM)-1 broadly identifies IL-10+ regulatory B cells, no similar markers for Be1 cells have been described. We now show that TIM-4 is expressed by a subset of B cells distinct from those expressing TIM-1. Although TIM-1+ B cells are enriched for IL-10, TIM-4+ B cells are enriched for IFN-γ. TIM-1+ B cells enhanced the growth of B16-F10 melanoma. In contrast, TIM-4+ B cells decreased B16-F10 metastasis and s.c. tumor growth, and this was IFN-γ dependent. TIM-1+ B cells prolonged islet allograft survival in B-deficient mice, whereas TIM-4+ B cells accelerated rejection in an IFN-γ-dependent manner. Moreover, TIM-4+ B cells promoted proinflammatory Th differentiation in vivo, increasing IFN-γ while decreasing IL-4, IL-10, and Foxp3 expression by CD4+ T cells-effects that are opposite from those of TIM-1+ B cells. Importantly, a monoclonal anti-TIM-4 Ab promoted allograft tolerance, and this was dependent on B cell expression of TIM-4. Anti-TIM-4 downregulated T-bet and IFN-γ expression by TIM-4+ B cells and indirectly increased IL-10 expression by TIM-1+ B cells. Thus, TIM-4+ B cells are enriched for IFN-γ-producing proinflammatory Be1 cells that enhance immune responsiveness and can be specifically targeted with anti-TIM-4.
Collapse
Affiliation(s)
- Qing Ding
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; and.,Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261;
| |
Collapse
|
338
|
Flynn MJ, Larkin JM. Novel combination strategies for enhancing efficacy of immune checkpoint inhibitors in the treatment of metastatic solid malignancies. Expert Opin Pharmacother 2017; 18:1477-1490. [DOI: 10.1080/14656566.2017.1369956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael J. Flynn
- Department of Medical Oncology, Royal Marsden Hospital, London, United Kingdom
| | - James M.G. Larkin
- Department of Medical Oncology, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
339
|
Aris M, Mordoh J, Barrio MM. Immunomodulatory Monoclonal Antibodies in Combined Immunotherapy Trials for Cutaneous Melanoma. Front Immunol 2017; 8:1024. [PMID: 28970830 PMCID: PMC5609554 DOI: 10.3389/fimmu.2017.01024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
In the last few years, there has been a twist in cancer treatment toward immunotherapy thanks to the impressive results seen in advanced patients from several tumor pathologies. Cutaneous melanoma is a highly mutated and immunogenic tumor that has been a test field for the development of immunotherapy. However, there is still a way on the road to achieving complete and long-lasting responses in most patients. It is desirable that immunotherapeutic strategies induce diverse immune reactivity specific to tumor antigens, including the so-called neoantigens, as well as the blockade of immunosuppressive mechanisms. In this review, we will go through the role of promising monoclonal antibodies in cancer immunotherapy with immunomodulatory function, especially blocking of the inhibitory immune checkpoints CTLA-4 and PD-1, in combination with different immunotherapeutic strategies such as vaccines. We will discuss the rational basis for these combinatorial approaches as well as different schemes currently under study for cutaneous melanoma in the clinical trials arena. In this way, the combination of "push and release" immunomodulatory therapies can contribute to achieving a more robust and durable antitumor immune response in patients.
Collapse
Affiliation(s)
- Mariana Aris
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina.,Instituto Médico Especializado Alexander Fleming, Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina
| |
Collapse
|
340
|
Hu-Lieskovan S, Ribas A. New Combination Strategies Using Programmed Cell Death 1/Programmed Cell Death Ligand 1 Checkpoint Inhibitors as a Backbone. Cancer J 2017; 23:10-22. [PMID: 28114250 PMCID: PMC5844278 DOI: 10.1097/ppo.0000000000000246] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of immune checkpoints and subsequent clinical development of checkpoint inhibitors have revolutionized the field of oncology. The durability of the antitumor immune responses has raised the hope for long-term patient survival and potential cure; however, currently, only a minority of patients respond. Combination strategies to help increase antigen release and T-cell priming, promote T-cell activation and homing, and improve the tumor immune microenvironment, all guided by predictive biomarkers, can help overcome the tumor immune-evasive mechanisms and maximize efficacy to ultimately benefit the majority of patients. Great challenges remain because of the complex underlying biology, unpredictable toxicity, and accurate assessment of response. Carefully designed clinical trials guided by translational studies of paired biopsies will be key to develop reliable predictive biomarkers to choose which patients would most likely benefit from each strategy.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- From the Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center at the University of California Los Angeles, Los Angeles, CA
| | | |
Collapse
|
341
|
Merlano MC, Granetto C, Fea E, Ricci V, Garrone O. Heterogeneity of colon cancer: from bench to bedside. ESMO Open 2017; 2:e000218. [PMID: 29209524 PMCID: PMC5703395 DOI: 10.1136/esmoopen-2017-000218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
The large bowel shows biomolecular, anatomical and bacterial changes that proceed from the proximal to the distal tract. These changes account for the different behaviour of colon cancers arising from the diverse sides of the colon-rectum as well as for the sensitivity to the therapy, including immunotherapy. The gut microbiota plays an important role in the modulation of the immune response and differs between the right colon cancer and the left colorectal cancer. The qualitative and quantitative difference of the commensal bacteria between the right side and the left side induces epigenetic changes in the intestinal epithelial cells as well as in the resident immune population. The second player in the pathological homeostasis of colorectal cancer is the differences of the genetic features of cancer cells and the different effects that microsatellite instability, chromosomal instability and the CpG island methylator phenotype induce on the immunological organisation of the tumour microenvironment. The third player is the immunological composition of the tumour microenvironment, which changes under the influence of both genetic structures and gut microbiota. All these three players influence each other. This review describes these three aspects, highlights their interactions and discusses data from reported clinical trials.
Collapse
Affiliation(s)
- Marco C Merlano
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Cristina Granetto
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Elena Fea
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Vincenzo Ricci
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Ornella Garrone
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| |
Collapse
|
342
|
Targeted Therapies in Combination With Immune Therapies for the Treatment of Metastatic Melanoma. Cancer J 2017; 23:59-62. [PMID: 28114256 DOI: 10.1097/ppo.0000000000000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, the field of oncology has witnessed many breakthroughs in the treatment of advanced malignancies, particularly in patients with advanced melanoma. Targeted and immune checkpoint therapies have emerged as the primary treatment strategies for these patients. Molecular profiling of melanoma is incorporated into routine practice to identify potential therapeutic targets, and patients are offered either a targeted or immune checkpoint inhibitor therapy approach. Both strategies have limitations where not all patients experience durable responses. Preclinical data have demonstrated the ability of targeted therapy to enhance activity of effector T cells, reduce immunosuppressive cytokine production, and increase tumor cell antigen presentation, which can augment antitumor immunity. In vivo models have shown synergy with improved tumor control when targeted and immune checkpoint agents are combined. Therefore, combination strategies with targeted and immune checkpoint therapy may improve patient outcomes. Early clinical data with anti-programmed cell-death protein 1/programmed cell-death ligand 1 agents in combination with targeted inhibitors appear to have acceptable toxicity rates and the potential for enhanced antitumor activity. This review explores the current status of preclinical and clinical development for these combination approaches in patients with advanced melanoma.
Collapse
|
343
|
Martin JL, Julovi SM, Lin MZ, de Silva HC, Boyle FM, Baxter RC. Inhibition of basal-like breast cancer growth by FTY720 in combination with epidermal growth factor receptor kinase blockade. Breast Cancer Res 2017; 19:90. [PMID: 28778177 PMCID: PMC5545026 DOI: 10.1186/s13058-017-0882-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New molecular targets are needed for women with triple-negative breast cancer (TNBC). This pre-clinical study investigated the combination of the EGFR inhibitor gefitinib with the sphingosine kinase (SphK) inhibitor FTY720 (Fingolimod), aiming to block tumorigenic signaling downstream of IGFBP-3, which is abundantly expressed in basal-like TNBC. METHODS In studies of breast cancer cell growth in culture, proliferation was monitored by IncuCyte live-cell imaging, and protein abundance was determined by western blotting. In vivo studies of mammary tumor growth used two models: orthotopic xenograft tumors derived from three basal-like TNBC cell lines, grown in immune-deficient mice, and syngeneic murine 4T1 tumors grown in immune-competent mice. Protein abundance in tumor tissue was assessed by immunohistochemistry. RESULTS Quantitated by live-cell imaging, the inhibitor combination showed synergistic cytostatic activity in basal-like cell lines across several TNBC molecular subtypes, the synergy being decreased by IGFBP-3 downregulation. Suppression of the tumorigenic mediator CD44 by gefitinib was potentiated by FTY720, consistent with CD44 involvement in the targeted pathway. In MDA-MB-468 and HCC1806 orthotopic TNBC xenograft tumors in nude mice, the drug combination inhibited tumor growth and prolonged mouse survival, although this effect was not significant for the gefitinib-resistant cell line HCC70. Combination treatment of murine 4T1 TNBC tumors in syngeneic BALB/c mice was more effective in immune-competent than immune-deficient (nude) mice, and a relative loss of tumor CD3 (T-cell) immunoreactivity caused by FTY720 treatment alone was alleviated by the drug combination, suggesting that, even at an FTY720 dose causing relative lymphopenia, the combination is still effective in an immune-competent setting. Immunohistochemistry of xenograft tumors showed significant enhancement of caspase-3 cleavage and suppression of Ki67 and phospho-EGFR by the drug combination, but SphK1 downregulation occurred only in MDA-MB-468 tumors, so is unlikely to be integral to treatment efficacy. CONCLUSIONS Our data indicate that targeting IGFBP-3-dependent signaling pathways through gefitinib-FTY720 co-therapy may be effective in many basal-like breast cancers, and suggest tissue IGFBP-3 and CD44 measurement as potential biomarkers of treatment efficacy.
Collapse
Affiliation(s)
- Janet L Martin
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Sohel M Julovi
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Mike Z Lin
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Present address: Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Hasanthi C de Silva
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Frances M Boyle
- Patricia Ritchie Centre for Cancer Care and Research, Mater Hospital, North Sydney, NSW, 2065, Australia
| | - Robert C Baxter
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
344
|
Ernstoff MS, Gandhi S, Pandey M, Puzanov I, Grivas P, Montero A, Velcheti V, Turk MJ, Diaz-Montero CM, Lewis LD, Morrison C. Challenges faced when identifying patients for combination immunotherapy. Future Oncol 2017; 13:1607-1618. [PMID: 28835114 DOI: 10.2217/fon-2017-0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
In 1996, Jim Allison demonstrated that blocking the immune regulatory molecule CTLA-4 with anit-CTLA4 antibody led to enhance tumor responses in mice. It would take an additional 15 years for human studies to confirm the potency and clinical efficacy of anti-CTLA4, ultimately leading to US FDA approval of the first checkpoint inhibitor, ipilimumab. Now with a plethora of immune-modulating agents demonstrating single agent safety and benefit across many tumor types, investigation on the optimal combination of immune-based therapies has begun in earnest. While there are many challenges, a central one is how to select which combination for which patient is the best. Here we review the current approaches that a practitioner can use to achieve this therapeutic goal.
Collapse
Affiliation(s)
- Marc S Ernstoff
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Manu Pandey
- Department of Medicine University of Buffalo Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Petros Grivas
- Departments of Hematology-Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alberto Montero
- Departments of Hematology-Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Vamsidhar Velcheti
- Departments of Hematology-Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mary Jo Turk
- Department of Immunology & Microbiology, Geisel School of Medicine, Lebanon, NH, USA
| | | | - Lionel D Lewis
- Department of Medicine, Geisel School of Medicine, Lebanon, NH, USA
| | - Carl Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
- OmniSeq, Buffalo, NY, USA
| |
Collapse
|
345
|
Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, Plaen ED, Van den Eynde B. Constitutive IDO1 Expression in Human Tumors Is Driven by Cyclooxygenase-2 and Mediates Intrinsic Immune Resistance. Cancer Immunol Res 2017; 5:695-709. [PMID: 28765120 DOI: 10.1158/2326-6066.cir-16-0400] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Tumors use various mechanisms to avoid immune destruction. Cyclooxygenase-2 (COX-2) expression may be a driver of immune suppression in melanoma, but the mechanisms involved remain elusive. Here, we show that COX-2 expression drives constitutive expression of indoleamine 2,3-dioxygenase 1 (IDO1) in human tumor cells. IDO1 is an immunosuppressive enzyme that degrades tryptophan. In a series of seven human tumor lines, constitutive IDO1 expression depends on COX-2 and prostaglandin E2 (PGE2), which, upon autocrine signaling through the EP receptor, activates IDO1 via the PKC and PI3K pathways. COX-2 expression itself depends on the MAPK pathway, which therefore indirectly controls IDO1 expression. Most of these tumors carry PI3K or MAPK oncogenic mutations, which may favor constitutive IDO1 expression. Celecoxib treatment promoted immune rejection of IDO1-expressing human tumor xenografts in immunodeficient mice reconstituted with human allogeneic lymphocytes. This effect was associated with a reduced expression of IDO1 in those ovarian SKOV3 tumors and an increased infiltration of CD3+ and CD8+ cells. Our results highlight the role of COX-2 in constitutive IDO1 expression by human tumors and substantiate the use of COX-2 inhibitors to improve the efficacy of cancer immunotherapy, by reducing constitutive IDO1 expression, which contributes to the lack of T-cell infiltration in "cold" tumors, which fail to respond to immunotherapy. Cancer Immunol Res; 5(8); 695-709. ©2017 AACR.
Collapse
Affiliation(s)
- Marc Hennequart
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stefania Cane
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium. .,de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
346
|
Anti-Tumor Activity and Immunotherapeutic Potential of a Bisphosphonate Prodrug. Sci Rep 2017; 7:5987. [PMID: 28729550 PMCID: PMC5519590 DOI: 10.1038/s41598-017-05553-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/31/2017] [Indexed: 01/20/2023] Open
Abstract
Bisphosphonates have benefits in breast cancer and multiple myeloma patients and have been used with adoptive immunotherapy with γδ T cells expressing Vγ2 Vδ2 TCRs. Although treatment with γδ T cells is safe, it has shown limited efficacy. Present bisphosphonates stimulate γδ T cells but were designed to inhibit bone resorption rather than treating cancer and have limited oral absorption, tumor cell entry, and cause bone side effects. The development of phosphate and phosphonate nucleotide prodrugs has led to important drugs for hepatitis C and HIV. Using a similar approach, we synthesized bisphosphonate prodrugs and found that they efficiently limit tumor cell growth. Pivoxil bisphosphonate esters enter cells where esterases convert them to their active acids. The bisphosphonate esters stimulated γδ T cells to secrete TNF-α in response to a variety of tumor cells more efficiently than their corresponding acids. The most active compound, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1- bisphosphonate (7), specifically expanded γδ T cells and stimulated them to secrete interferon-γ and kill tumor cells. In preclinical studies, combination therapy with compound 7 and γδ T cells prolonged survival of mice inoculated with either human bladder cancer or fibrosarcoma cells. Therefore, bisphosphonate prodrugs could enhance the effectiveness of adoptive cancer immunotherapy with γδ T cells.
Collapse
|
347
|
Langhammer S, Scheerer J. Breaking the crosstalk of the cellular tumorigenic network: Hypothesis for addressing resistances to targeted therapies in advanced NSCLC. Oncotarget 2017; 8:43555-43570. [PMID: 28402937 PMCID: PMC5522169 DOI: 10.18632/oncotarget.16674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
In the light of current treatment developments for non-small cell lung cancer (NSCLC), the idea of a plastic cellular tumorigenic network bound by key paracrine signaling pathways mediating resistances to targeted therapies is brought forward. Based on a review of available preclinical and clinical data in NSCLC combinational approaches to address drivers of this network with marketed drugs are discussed. Five criteria for selecting drug combination regimens aiming at its disruption and thereby overcoming resistances are postulated.
Collapse
|
348
|
Kosmides AK, Sidhom JW, Fraser A, Bessell CA, Schneck JP. Dual Targeting Nanoparticle Stimulates the Immune System To Inhibit Tumor Growth. ACS NANO 2017; 11:5417-5429. [PMID: 28589725 PMCID: PMC8635119 DOI: 10.1021/acsnano.6b08152] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We describe the development of a nanoparticle platform that overcomes the immunosuppressive tumor microenvironment. These nanoparticles are coated with two different antibodies that simultaneously block the inhibitory checkpoint PD-L1 signal and stimulate T cells via the 4-1BB co-stimulatory pathway. These "immunoswitch" particles significantly delay tumor growth and extend survival in multiple in vivo models of murine melanoma and colon cancer in comparison to the use of soluble antibodies or nanoparticles separately conjugated with the inhibitory and stimulating antibodies. Immunoswitch particles enhance effector-target cell conjugation and bypass the requirement for a priori knowledge of tumor antigens. The use of the immunoswitch nanoparticles resulted in an increased density, specificity, and in vivo functionality of tumor-infiltrating CD8+ T cells. Changes in the T cell receptor repertoire against a single tumor antigen indicate immunoswitch particles expand an effective set of T cell clones. Our data show the potential of a signal-switching approach to cancer immunotherapy that simultaneously targets two stages of the cancer immunity cycle resulting in robust antitumor activity.
Collapse
Affiliation(s)
- Alyssa K. Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - John-William Sidhom
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Andrew Fraser
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Catherine A. Bessell
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Jonathan P. Schneck
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Corresponding Author:
| |
Collapse
|
349
|
Mazzone R, Zwergel C, Mai A, Valente S. Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin Epigenetics 2017; 9:59. [PMID: 28572863 PMCID: PMC5450222 DOI: 10.1186/s13148-017-0358-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint factors, such as programmed cell death protein-1/2 (PD-1, PD-2) or cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) receptors, are targets for monoclonal antibodies (MAbs) developed for cancer immunotherapy. Indeed, modulating immune inhibitory pathways has been considered an important breakthrough in cancer treatment. Although immune checkpoint blockade therapy used to treat malignant diseases has provided promising results, both solid and haematological malignancies develop mechanisms that enable themselves to evade the host immune system. To overcome some major limitations and ensure safety in patients, recent strategies have shown that combining epigenetic modulators, such as inhibitors of histone deacetylases (HDACi) or DNA methyltransferases (DNMTi), with immunotherapeutics can be useful. Preclinical data generated using mouse models strongly support the feasibility and effectiveness of the proposed approaches. Indeed, co-treatment with pan- or class I-selective HDACi or DNMTi improved beneficial outcomes in both in vitro and in vivo studies. Based on the evidence of a pivotal role for HDACi and DNMTi in modulating various components belonging to the immune system, recent clinical trials have shown that both HDACi and DNMTi strongly augmented response to anti-PD-1 immunotherapy in different tumour types. This review describes the current strategies to increase immunotherapy responses, the effects of HDACi and DNMTi on immune modulation, and the advantages of combinatorial therapy over single-drug treatment.
Collapse
Affiliation(s)
- Roberta Mazzone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
350
|
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017; 168:707-723. [PMID: 28187290 DOI: 10.1016/j.cell.2017.01.017] [Citation(s) in RCA: 3375] [Impact Index Per Article: 482.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy can induce long lasting responses in patients with metastatic cancers of a wide range of histologies. Broadening the clinical applicability of these treatments requires an improved understanding of the mechanisms limiting cancer immunotherapy. The interactions between the immune system and cancer cells are continuous, dynamic, and evolving from the initial establishment of a cancer cell to the development of metastatic disease, which is dependent on immune evasion. As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology,The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jennifer A Wargo
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA.
| |
Collapse
|