301
|
Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR. Cellular Metabolic Profiling of CrFK Cells Infected with Feline Infectious Peritonitis Virus Using Phenotype Microarrays. Pathogens 2020; 9:E412. [PMID: 32466289 PMCID: PMC7281222 DOI: 10.3390/pathogens9050412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis. METHODS The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells. RESULTS The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells. CONCLUSION This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.
Collapse
Affiliation(s)
- Shing Wei Ng
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Farina Mustaffa Kamal
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
302
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
303
|
Yang F, Li S, Xiang J, Zhao X, Li F. Transcriptome analysis reveals the regulation of the shrimp STAT on host chitin-binding domain containing proteins and energy metabolism process during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2020; 100:345-357. [PMID: 32184190 DOI: 10.1016/j.fsi.2020.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
JAK/STAT signaling pathway is suggested to enhance the infection of WSSV in crustaceans. However, the regulation mechanism of this process is not quite clear. Here, comparative transcriptomic analysis was performed among shrimps before and after Litopenaeus vannamei STAT (LvSTAT) was silenced by dsRNA approach during WSSV infection. Differentially expressed genes (DEGs) common in the STAT-interfered groups and control groups at different times after WSSV infection were analyzed to acquire the genes probably regulated by LvSTAT. DEGs annotation and further GO terms enrichment analyses revealed that the identified DEGs mainly contained two categories, chitin-binding domain containing proteins and energy metabolism related genes. The former mainly included cuticle proteins, thrombospondins (TSPs) and peritrophin, while the later mainly included hexose catabolic process and glycolysis related genes. Two cuticle proteins and two TSPs were further studied to learn their expression changes during WSSV infection. They were significantly regulated during WSSV infection, implying the involvement of chitin-binding domain containing protein in the invasion process of WSSV. Systematic analysis on the glycolysis and lipid synthesis pathway demonstrated that silencing of LvSTAT could reduce the glycolysis efficiency and the production of lipids. It could be speculated that a favorable function of LvSTAT for WSSV replication existed by regulating the energy metabolism of the host. Through revealing the main category of genes and biological processes regulated by STAT, our study could shed new light on the roles of JAK/STAT signaling pathway in shrimp during virus infection.
Collapse
Affiliation(s)
- Feifei Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xingming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
304
|
Zhao C, Chen J, Cheng L, Xu K, Yang Y, Su X. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg Microbes Infect 2020; 9:691-706. [PMID: 32208814 PMCID: PMC7144238 DOI: 10.1080/22221751.2020.1742585] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infection of influenza A virus (IAV) can trigger exaggerated pulmonary inflammation and induce acute lung injury (ALI). Limiting IAV replication and alleviation of pulmonary inflammation are two important therapeutic strategies for influenza virus infection. Recent studies have shown that hypoxia inducible factor-1α (HIF-1α) is an essential factor for the development and repair of ALI; however, the role and the underlying mechanisms of HIF-1α in IAV-induced ALI remain elusive. Here, we demonstrated that lung epithelial cell-specific Hif1α knockout mice infected with IAV developed more lung IAV replication and severe lung inflammation, which led to increased mortality compared to IAV-infected control mice. Moreover, knockdown of HIF1A in A549 cells (human alveolar type II epithelial cell line) promoted IAV replication in vitro. Mechanistically, knockdown of HIF1A reduced glycolysis by regulating transcription of glycolysis-related enzymes, which subsequently activated the AMPKα-ULK1 signalling pathway. Interestingly, AMPKα-ULK1 signalling promoted autophagy and augmented IAV replication. Taken together, deficiency of HIF-1α in lung epithelial cells reduces glycolysis and enhances AMPKα-ULK1-mediated autophagy, which finally facilitates IAV replication. These findings have deepened our understanding of the role of HIF-1α in regulating IAV replication and provided us novel therapeutic targets for combating influenza infection.
Collapse
Affiliation(s)
- Caiqi Zhao
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China.,Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lianping Cheng
- Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kaifeng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yiyu Yang
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
305
|
Kennedy BE, Sadek M, Gujar SA. Targeted Metabolic Reprogramming to Improve the Efficacy of Oncolytic Virus Therapy. Mol Ther 2020; 28:1417-1421. [PMID: 32243836 DOI: 10.1016/j.ymthe.2020.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses (OVs) represent a promising new class of cancer therapeutics and cause antitumor effects by two major mechanisms: (1) directly killing cancer cells in a process known as oncolysis, or (2) initiating a powerful antitumor immune response. Interestingly, energy metabolism, within either cancer cells or immune cells, plays a pivotal role in defining the outcome of OV-mediated antitumor effects. Following therapeutic administration, OVs must hijack host cell metabolic pathways to acquire building blocks such as nucleotides, lipids, and amino acids for the process of replication that is necessary for oncolysis. Additionally, OV-stimulated antitumor immune responses are highly dependent on the metabolic state within the tumor microenvironment. Thus, metabolic reprogramming strategies bear the potential to enhance the efficacy of both OV-mediated oncolysis and antitumor immune responses.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Maryanne Sadek
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Shashi A Gujar
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
306
|
Delisle L, Pauletto M, Vidal-Dupiol J, Petton B, Bargelloni L, Montagnani C, Pernet F, Corporeau C, Fleury E. High temperature induces transcriptomic changes in Crassostrea gigas that hinders progress of Ostreid herpesvirus (OsHV-1) and promotes survival. J Exp Biol 2020; 223:jeb.226233. [PMID: 34005719 PMCID: PMC7578350 DOI: 10.1242/jeb.226233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.
Collapse
Affiliation(s)
- Lizenn Delisle
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Bruno Petton
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Fabrice Pernet
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Elodie Fleury
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
307
|
Laviada-Molina HA, Leal-Berumen I, Rodriguez-Ayala E, Bastarrachea RA. Working Hypothesis for Glucose Metabolism and SARS-CoV-2 Replication: Interplay Between the Hexosamine Pathway and Interferon RF5 Triggering Hyperinflammation. Role of BCG Vaccine? Front Endocrinol (Lausanne) 2020; 11:514. [PMID: 32733388 PMCID: PMC7358362 DOI: 10.3389/fendo.2020.00514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Irene Leal-Berumen
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Ernesto Rodriguez-Ayala
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Norte, Naucalpan de Juárez, México
| | - Raul A. Bastarrachea
- Population Health Program, Texas Biomedical Research Institute and Southwest National Primate Research Center (SNPRC), San Antonio, TX, United States
- *Correspondence: Raul A. Bastarrachea
| |
Collapse
|
308
|
Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Front Microbiol 2019; 10:2647. [PMID: 31798565 PMCID: PMC6868034 DOI: 10.3389/fmicb.2019.02647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses constitute a large family of disease-causing DNA viruses. Each herpesvirus strain is capable of infecting particular organisms with a specific cell tropism. Upon infection, pattern recognition receptors (PRRs) recognize conserved viral features to trigger signaling cascades that culminate in the production of interferons and pro-inflammatory cytokines. To invoke a proper immune response while avoiding collateral tissue damage, signaling proteins involved in these cascades are tightly regulated by post-translational modifications (PTMs). Herpesviruses have developed strategies to subvert innate immune signaling pathways in order to ensure efficient viral replication and achieve persistent infection. The ability of these viruses to control the proteins involved in these signaling cascades post-translationally, either directly via virus-encoded enzymes or indirectly through the deregulation of cellular enzymes, has been widely reported. This ability provides herpesviruses with a powerful tool to shut off or restrict host antiviral and inflammatory responses. In this review, we highlight recent findings on the herpesvirus-mediated post-translational control along PRR-mediated signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|