301
|
Palovuori R, Myrsky E, Eskelinen S. Membrane potential and endocytic activity control disintegration of cell-cell adhesion and cell fusion in vinculin-injected MDBK cells. J Cell Physiol 2004; 200:417-27. [PMID: 15254970 DOI: 10.1002/jcp.20024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell fusion occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. We have developed an experimental model for epithelial cell fusion which permits analysis of the processes during junction disintegration and formation of polykaryons (Palovuori and Eskelinen [2000] Eur. J. Cell. Biol. 79: 961-974). In the present work, we analyzed the process in detail. Cell fusion was achieved by microinjecting into the cytoplasm of kidney epithelial Madin-Darby bovine kidney (MDBK) cells TAMRA-tagged vinculin, which incorporated into lateral membranes, focal adhesions and nucleus, and, prior fusion, induced internalization of actin, cadherin and plakoglobin to small clusters in cytoplasm. Injected vinculin was still visible at lateral membranes after removal of junctional proteins indicating that it was tightly associated and perturbed the cell-cell contact sites resulting in membrane fragmentation. Injection of active Rac together with vinculin induced accumulation of cadherin to the membranes, but did not affect vinculin-membrane association. However, it hampered cell fusion probably by supporting adherens junctions. In order to stop endocytosis, we lowered intracellular pH of vinculin-injected cells to 5.5 with the aid of nigericin in KCl buffer. In acidified cells, injected vinculin delineated lateral membranes as thick layers, cadherin remained in situ, and cell fusion was completely inhibited. Since this treatment also leads to cell depolarization, we checked the vinculin incorporation in a KCl solution containing nigericin at neutral pH. In these circumstances, both endogenous and injected vinculin delineated lateral membranes as very thin discontinuous layers, but still fusion was hampered most likely due to perturbation in the initial vinculin-membrane association. We suggest that vinculin might function as a sensor of the environment triggering cell fusion during development in circumstances where membrane potential and local and transient pH gradients play a role.
Collapse
Affiliation(s)
- Riitta Palovuori
- Biocenter Oulu and the Department of Pathology, University of Oulu, University of Oulu, Finland
| | | | | |
Collapse
|
302
|
Zhang Z, Izaguirre G, Lin SY, Lee HY, Schaefer E, Haimovich B. The phosphorylation of vinculin on tyrosine residues 100 and 1065, mediated by SRC kinases, affects cell spreading. Mol Biol Cell 2004; 15:4234-47. [PMID: 15229287 PMCID: PMC515355 DOI: 10.1091/mbc.e04-03-0264] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Surgery and the Cancer Institute of New Jersey, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | | | | | | | | | | |
Collapse
|
303
|
Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC. Structural basis for vinculin activation at sites of cell adhesion. Nature 2004; 430:583-6. [PMID: 15195105 DOI: 10.1038/nature02610] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 04/29/2004] [Indexed: 01/12/2023]
Abstract
Vinculin is a highly conserved intracellular protein with a crucial role in the maintenance and regulation of cell adhesion and migration. In the cytosol, vinculin adopts a default autoinhibited conformation. On recruitment to cell-cell and cell-matrix adherens-type junctions, vinculin becomes activated and mediates various protein-protein interactions that regulate the links between F-actin and the cadherin and integrin families of cell-adhesion molecules. Here we describe the crystal structure of the full-length vinculin molecule (1,066 amino acids), which shows a five-domain autoinhibited conformation in which the carboxy-terminal tail domain is held pincer-like by the vinculin head, and ligand binding is regulated both sterically and allosterically. We show that conformational changes in the head, tail and proline-rich domains are linked structurally and thermodynamically, and propose a combinatorial pathway to activation that ensures that vinculin is activated only at sites of cell adhesion when two or more of its binding partners are brought into apposition.
Collapse
Affiliation(s)
- Constantina Bakolitsa
- Program on Cell Adhesion, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Witt S, Zieseniss A, Fock U, Jockusch BM, Illenberger S. Comparative biochemical analysis suggests that vinculin and metavinculin cooperate in muscular adhesion sites. J Biol Chem 2004; 279:31533-43. [PMID: 15159399 DOI: 10.1074/jbc.m314245200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metavinculin, the muscle-specific splice variant of the cell adhesion protein vinculin, is characterized by a 68-amino acid insert within the C-terminal tail domain. The findings that mutations within this region correlate with hereditary idiopathic dilated cardiomyopathy in man suggest a specific contribution of metavinculin to the molecular architecture of muscular actin-membrane attachment sites, the nature of which, however, is still unknown. In mice, metavinculin is expressed in smooth and skeletal muscle, where it co-localizes with vinculin in dense plaques and costameres, respectively, but is of conspicuously low abundance in the heart. Immunoprecipitates suggest that both isoforms are present in the same complex. On the molecular level, both vinculin isoforms are regulated via an intramolecular head-tail interaction, with the metavinculin tail domain having a lower affinity for the head as compared with the vinculin tail. In addition, metavinculin displays impaired binding to acidic phospholipids and reduced homodimerization. Only in the presence of phospholipid-activated vinculin tail, the metavinculin tail domain is readily incorporated into heterodimers. Mutational analysis revealed that the metavinculin insert significantly alters binding of the C-terminal hairpin loop to acidic phospholipids. In summary, our data lead to a model in which unfurling of the metavinculin tail domain is impaired by the negative charges of the 68-amino acid insert, thus requiring vinculin to fully activate the metavinculin molecule. As a consequence, microfilament anchorage may be modulated at muscular adhesion sites through heterodimer formation.
Collapse
Affiliation(s)
- Sebastian Witt
- Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
305
|
Siu MKY, Cheng CY. Extracellular matrix: recent advances on its role in junction dynamics in the seminiferous epithelium during spermatogenesis. Biol Reprod 2004; 71:375-91. [PMID: 15115723 DOI: 10.1095/biolreprod.104.028225] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
306
|
Abstract
Talin interactions with vinculin are essential for focal adhesions. Curiously, talin contains three noncontiguous vinculin binding sites (VBS) that can bind individually to the vinculin head (Vh) domain. Here we report the crystal structure of the human Vh.VBS1 complex, a validated model of the Vh.VBS2 structure, and biochemical studies that demonstrate that all of talin VBSs activate vinculin by provoking helical bundle conversion of the Vh domain, which displaces the vinculin tail (Vt) domain. Thus, helical bundle conversion is a structurally conserved response in talin-vinculin interactions. Furthermore, talin VBSs bind to Vh in a mutually exclusive manner but do differ in their affinity for Vh and in their ability to displace Vt, suggesting that the strengths of these interactions could lead to differences in signaling outcome. These findings support a model in which talin binds to and activates multiple vinculin molecules to provoke rapid reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tina Izard
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
307
|
Papp S, Fadel MP, Opas M. ER-to-cell surface signalling: calreticulin and cell adhesion. J Appl Biomed 2004. [DOI: 10.32725/jab.2004.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
308
|
Izard T, Evans G, Borgon RA, Rush CL, Bricogne G, Bois PRJ. Vinculin activation by talin through helical bundle conversion. Nature 2003; 427:171-5. [PMID: 14702644 DOI: 10.1038/nature02281] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 12/09/2003] [Indexed: 11/08/2022]
Abstract
Vinculin is a conserved component and an essential regulator of both cell-cell (cadherin-mediated) and cell-matrix (integrin-talin-mediated focal adhesions) junctions, and it anchors these adhesion complexes to the actin cytoskeleton by binding to talin in integrin complexes or to alpha-actinin in cadherin junctions. In its resting state, vinculin is held in a closed conformation through interactions between its head (Vh) and tail (Vt) domains. The binding of vinculin to focal adhesions requires its association with talin. Here we report the crystal structures of human vinculin in its inactive and talin-activated states. Talin binding induces marked conformational changes in Vh, creating a novel helical bundle structure, and this alteration actively displaces Vt from Vh. These results, as well as the ability of alpha-actinin to also bind to Vh and displace Vt from pre-existing Vh-Vt complexes, support a model whereby Vh functions as a domain that undergoes marked structural changes that allow vinculin to direct cytoskeletal assembly in focal adhesions and adherens junctions. Notably, talin's effects on Vh structure establish helical bundle conversion as a signalling mechanism by which proteins direct cellular responses.
Collapse
Affiliation(s)
- Tina Izard
- Department of Hematology-Oncology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | | | |
Collapse
|
309
|
Eigenthaler M, Engelhardt S, Schinke B, Kobsar A, Schmitteckert E, Gambaryan S, Engelhardt CM, Krenn V, Eliava M, Jarchau T, Lohse MJ, Walter U, Hein L. Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2003; 285:H2471-81. [PMID: 12933343 DOI: 10.1152/ajpheart.00362.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) and mammalian enabled (Mena) are actin cytoskeleton and signaling modulators. Ena-VASP proteins share an identical domain organization with an NH2-terminal Ena VASP homology (EVH1) domain, which mediates the binding of these proteins to FPPPP-motif containing partners such as zyxin and vinculin. VASP and Mena are abundantly expressed in the heart. However, previous studies showed that disruption by gene targeting of VASP or Mena genes in mice did not reveal any cardiac phenotype, whereas mice lacking both VASP and Mena died during embryonic development. To determine the in vivo function of Ena-VASP proteins in the heart, we used a dominant negative strategy with cardiac-specific expression of the VASP-EVH1 domain. Transgenic mice with cardiac myocyte-restricted, alpha-myosin heavy chain promoter-directed expression of the VASP-EVH1 domain were generated. Overexpression of the EVH1 domain resulted in specific displacement of both VASP and Mena from cardiac intercalated disks. VASP-EVH1 transgenic mice developed dilated cardiomyopathy with myocyte hypertrophy and bradycardia, which resulted in early postnatal lethality in mice with high levels of transgene expression. The results demonstrate that Ena-VASP proteins may play an important role in intercalated disk function at the interface between cardiac myocytes.
Collapse
Affiliation(s)
- Martin Eigenthaler
- Institut für Klinische Biochemie und Pathobiochemie, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Abstract
More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.
Collapse
Affiliation(s)
- Andrew J Copp
- Neural Development Unit, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | | | | |
Collapse
|
311
|
Cutler SM, García AJ. Engineering cell adhesive surfaces that direct integrin alpha5beta1 binding using a recombinant fragment of fibronectin. Biomaterials 2003; 24:1759-70. [PMID: 12593958 DOI: 10.1016/s0142-9612(02)00570-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrin receptors mediate cell adhesion to extracellular matrices and trigger signals that direct cell function. While many integrins bind to the arginine-glycine-aspartic acid (RGD) motif present in numerous extracellular proteins, integrin alpha(5)beta(1) requires both the PHSRN synergy site in the 9th and the RGD site in the 10th type III repeat of fibronectin (FN). Binding of alpha(5)beta(1) to FN is critical to many cellular processes, including osteoblast and myoblast differentiation. This work focused on engineering integrin-specific bioadhesive surfaces by immobilizing a recombinant FN fragment (FNIII(7-10)) encompassing the alpha(5)beta(1) binding domains of FN. Model hybrid surfaces were engineered by immobilizing FNIII(7-10) onto passively adsorbed, non-adhesive albumin. Homo- and hetero-bifunctional crosslinkers of varying spacer-arm length targeting either the cysteine or lysine groups on FNIII(7-10) were investigated in ELISA and cell adhesion assays to optimize immobilization densities and activity. FN-mimetic surfaces presenting controlled densities of FNIII(7-10) were generated by varying the concentration of FNIII(7-10) in the coupling solution at a constant crosslinker concentration. Cells adhered to these functionalized surfaces via integrin alpha(5)beta(1) and blocking with integrin-specific antibodies completely eliminated adhesion. In addition, adherent cells spread and assembled focal adhesions containing alpha(5)beta(1), vinculin, and talin. This biomolecular engineering strategy represents a robust approach to increase biofunctional activity and integrin specificity of biomimetic materials.
Collapse
Affiliation(s)
- Sarah M Cutler
- Wallace H Coulter School of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | | |
Collapse
|
312
|
DeMali KA, Barlow CA, Burridge K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 2002; 159:881-91. [PMID: 12473693 PMCID: PMC2173392 DOI: 10.1083/jcb.200206043] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell migration involves many steps, including membrane protrusion and the development of new adhesions. Here we have investigated whether there is a link between actin polymerization and integrin engagement. In response to signals that trigger membrane protrusion, the actin-related protein (Arp)2/3 complex transiently binds to vinculin, an integrin-associated protein. The interaction is regulated, requiring phosphatidylinositol-4,5-bisphosphate and Rac1 activation, and is sufficient to recruit the Arp2/3 complex to new sites of integrin aggregation. Binding of the Arp2/3 complex to vinculin is direct and does not depend on the ability of vinculin to associate with actin. We have mapped the binding site for the Arp2/3 complex to the hinge region of vinculin, and a point mutation in this region selectively blocks binding to the Arp2/3 complex. Compared with WT vinculin, expression of this mutant in vinculin-null cells results in diminished lamellipodial protrusion and spreading on fibronectin. The recruitment of the Arp2/3 complex to vinculin may be one mechanism through which actin polymerization and membrane protrusion are coupled to integrin-mediated adhesion.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
313
|
Abstract
To adhere and migrate, cells must be capable of applying cytoskeletal force to the extracellular matrix (ECM) through integrin receptors. However, it is unclear if connections between integrins and the ECM are immediately capable of transducing cytoskeletal contraction into migration force, or whether engagement of force transmission requires maturation of the adhesion. Here, we show that initial integrin-ECM adhesions become capable of exerting migration force with the recruitment of vinculin, a marker for focal complexes, which are precursors of focal adhesions. We are able to induce the development of focal complexes by the application of mechanical force to fibronectin receptors from inside or outside the cell, and we are able to extend focal complex formation to vitronectin receptors by the removal of c-Src. These results indicate that cells use mechanical force as a signal to strengthen initial integrin-ECM adhesions into focal complexes and regulate the amount of migration force applied to individual adhesions at localized regions of the advancing lamella.
Collapse
|
314
|
Gu JL, Müller S, Mancino V, Offermanns S, Simon MI. Interaction of G alpha(12) with G alpha(13) and G alpha(q) signaling pathways. Proc Natl Acad Sci U S A 2002; 99:9352-7. [PMID: 12077299 PMCID: PMC123144 DOI: 10.1073/pnas.102291599] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The G(12) subfamily of heterotrimeric G-proteins consists of two members, G(12) and G(13). Gene-targeting studies have revealed a role for G(13) in blood vessel development. Mice lacking the alpha subunit of G(13) die around embryonic day 10 as the result of an angiogenic defect. On the other hand, the physiological role of G(12) is still unclear. To address this issue, we generated G alpha(12)-deficient mice. In contrast to the G alpha(13)-deficient mice, G alpha(12)-deficient mice are viable, fertile, and do not show apparent abnormalities. However, G alpha(12) does not seem to be entirely redundant, because in the offspring generated from G alpha(12)+/- G alpha(13)+/- intercrosses, at least one intact G alpha(12) allele is required for the survival of animals with only one G alpha(13) allele. In addition, G alpha(12) and G alpha(13) showed a difference in mediating cell migratory response to lysophosphatidic acid in embryonic fibroblast cells. Furthermore, mice lacking both G alpha(12) and G alpha(q) die in utero at about embryonic day 13. These data indicate that the G alpha(12)-mediated signaling pathway functionally interacts not only with the G alpha(13)- but also with the G alpha(q/11)-mediated signaling systems.
Collapse
Affiliation(s)
- Jennifer L Gu
- Division of Biology, 147-75 California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
315
|
Schumacker PT. Straining to understand mechanotransduction in the lung. Am J Physiol Lung Cell Mol Physiol 2002; 282:L881-2. [PMID: 11943649 DOI: 10.1152/ajplung.00043.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
316
|
Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A. Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol 2002; 156:737-50. [PMID: 11839767 PMCID: PMC2174087 DOI: 10.1083/jcb.200106008] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of serum response factor (SRF), an essential transcription factor in mouse gastrulation, is regulated by changes in actin dynamics. Using Srf(-/-) embryonic stem (ES) cells, we demonstrate that SRF deficiency causes impairments in ES cell spreading, adhesion, and migration. These defects correlate with defective formation of cytoskeletal structures, namely actin stress fibers and focal adhesion (FA) plaques. The FA proteins FA kinase (FAK), beta1-integrin, talin, zyxin, and vinculin were downregulated and/or mislocalized in ES cells lacking SRF, leading to inefficient activation of the FA signaling kinase FAK. Reduced overall actin expression levels in Srf(-/-) ES cells were accompanied by an offset treadmilling equilibrium, resulting in lowered F-actin levels. Expression of active RhoA-V14 rescued F-actin synthesis but not stress fiber formation. Introduction of constitutively active SRF-VP16 into Srf(-/-) ES cells, on the other hand, strongly induced expression of FA components and F-actin synthesis, leading to a dramatic reorganization of actin filaments into stress fibers and lamellipodia. Thus, using ES cell genetics, we demonstrate for the first time the importance of SRF for the formation of actin-directed cytoskeletal structures that determine cell spreading, adhesion, and migration. Our findings suggest an involvement of SRF in cell migratory processes in multicellular organisms.
Collapse
Affiliation(s)
- Gerhard Schratt
- Interfakultäres Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
317
|
van Horck FPG, Lavazais E, Eickholt BJ, Moolenaar WH, Divecha N. Essential role of type I(alpha) phosphatidylinositol 4-phosphate 5-kinase in neurite remodeling. Curr Biol 2002; 12:241-5. [PMID: 11839279 DOI: 10.1016/s0960-9822(01)00660-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Rapid neurite remodeling is fundamental to nervous system development and plasticity and is regulated by Rho family GTPases that signal f-actin reorganization in response to various receptor ligands. Neuronal N1E-115 cells show dramatic neurite retraction and cell rounding in response to serum factors such as lysophosphatidic acid (LPA), sphingosine-1 phosphate (S1P), and thrombin, due to activation of the RhoA-Rho kinase pathway. Type I phosphatidylinositol 4-phosphate 5-kinases (PIPkinase), which regulate cellular levels of PtdIns(4,5)P(2), have been suggested as targets of the RhoA-Rho kinase pathway able to modulate cytoskeletal dynamics. Here, we show that the introduction of Type Ialpha PIPkinase into N1E-115 cells leads to cell rounding and complete inhibition of neurite outgrowth, perhaps through the dissociation of vinculin and the destabilization of focal adhesions. This occurs independently of RhoA, Rho kinase, and the activation of actomyosin contraction. Strikingly, expression of kinase-dead PIPkinase promotes the outgrowth of neurites, which fail to retract in response to LPA, S1P, thrombin, or active RhoA. Moreover, neurite retraction in response to an endogenous neuronal guidance cue, Semaphorin3A, was also dependent on Type Ialpha PIPkinase. Our results suggest an essential role for a Type I PIPkinase during neurite retraction in response to a number of diverse stimuli.
Collapse
Affiliation(s)
- Francis P G van Horck
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
318
|
Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A, Thomas SM. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 2002; 22:901-15. [PMID: 11784865 PMCID: PMC133539 DOI: 10.1128/mcb.22.3.901-915.2002] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The integrin family of cell adhesion receptors are important for a diverse set of biological responses during development. Although many integrins have been shown to engage a similar set of cytoplasmic effector proteins in vitro, the importance of these proteins in the biological events mediated by different integrin receptors and ligands is uncertain. We have examined the role of one of the best-characterized integrin effectors, the focal adhesion protein paxillin, by disruption of the paxillin gene in mice. Paxillin was found to be critically involved in regulating the development of mesodermally derived structures such as heart and somites. The phenotype of the paxillin(-/-) mice closely resembles that of fibronectin(-/-) mice, suggesting that paxillin is a critical transducer of signals from fibronectin receptors during early development. Paxillin was also found to play a critical role in fibronectin receptor biology ex vivo since cultured paxillin-null fibroblasts display abnormal focal adhesions, reduced cell migration, inefficient localization of focal adhesion kinase (FAK), and reduced fibronectin-induced phosphorylation of FAK, Cas, and mitogen-activated protein kinase. In addition, we found that paxillin-null fibroblasts show some defects in the cortical cytoskeleton and cell spreading on fibronectin, raising the possibility that paxillin could play a role in structures distinct from focal adhesions. Thus, paxillin and fibronectin regulate some common embryonic developmental events, possibly due to paxillin modulation of fibronectin-regulated focal adhesion dynamics and organization of the membrane cytoskeletal structures that regulate cell migration and spreading.
Collapse
Affiliation(s)
- Margit Hagel
- Beth Israel Deaconess Medical Center/Harvard Medical School, Vascular Research Division, Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Renfranz PJ, Beckerle MC. Doing (F/L)PPPPs: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr Opin Cell Biol 2002; 14:88-103. [PMID: 11792550 DOI: 10.1016/s0955-0674(01)00299-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actin filament assembly is a tightly regulated process that functions in many aspects of cell physiology. Members of the Ena/VASP (Drosophila Enabled/vasodilator-stimulated phosphoprotein) family are key players in regulating actin filament assembly, in many cases through their association with binding partners that display a particular proline-rich motif, FPPPP. Ena/VASP proteins interact with these partners via the highly conserved Ena/VASP homology 1 (EVH1) domain. The diverse array of binding partners for EVH1 domains, including cytoskeletal proteins such as zyxin, transmembrane guidance receptors such as Roundabout, and the T-cell signaling protein Fyb/SLAP, shows that these interactions are likely to be important in a number of cellular processes that require regulated actin filament assembly.
Collapse
Affiliation(s)
- Patricia J Renfranz
- Department of Biology and Huntsman Cancer Institute, 2000 East Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| | | |
Collapse
|
320
|
Olson TM, Illenberger S, Kishimoto NY, Huttelmaier S, Keating MT, Jockusch BM. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 2002; 105:431-7. [PMID: 11815424 DOI: 10.1161/hc0402.102930] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vinculin and its isoform metavinculin are protein components of intercalated discs, structures that anchor thin filaments and transmit contractile force between cardiac myocytes. We tested the hypothesis that heritable dysfunction of metavinculin may contribute to the pathogenesis of dilated cardiomyopathy (DCM). METHODS AND RESULTS We performed mutational analyses of the metavinculin-specific exon of vinculin in 350 unrelated patients with DCM. One missense mutation (Arg975Trp) and one 3-bp deletion (Leu954del) were identified. These mutations involved conserved amino acids, were absent in 500 control individuals, and significantly altered metavinculin-mediated cross-linking of actin filaments in an in vitro assay. Ultrastructural examination was performed in one patient (Arg975Trp), revealing grossly abnormal intercalated discs. A potential risk-conferring polymorphism (Ala934Val), identified in one DCM patient and one control individual, had a less pronounced effect on actin filament cross-linking. CONCLUSIONS These data provide genetic and functional evidence for vinculin as a DCM gene and suggest that metavinculin plays a critical role in cardiac structure and function. Disruption of force transmission at the thin filament-intercalated disc interface is the likely mechanism by which mutations in metavinculin may lead to DCM.
Collapse
Affiliation(s)
- Timothy M Olson
- Department of Pediatrics and the Division of Cardiology, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | | | |
Collapse
|
321
|
Chen H, Duncan IC, Bozorgchami H, Lo SH. Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proc Natl Acad Sci U S A 2002; 99:733-8. [PMID: 11792844 PMCID: PMC117374 DOI: 10.1073/pnas.022518699] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tensin is a focal adhesion molecule that binds to actin filaments and participates in signaling pathways. In this study, we have characterized a previously undocumented tensin family member, tensin2/KIAA 1075. Human tensin2 cDNA encodes a 1,285-aa sequence that shares extensive homology with tensin1 at its amino- and carboxyl-terminal ends, which include the actin-binding domain, the Src homology 2 (SH2) domain, and the phosphotyrosine binding (PTB) domain. Analysis of the genomic structures of tensin1 and tensin2 further confirmed that they represent a single gene family. Examination of tensin2 mRNA distribution revealed that heart, kidney, skeletal muscle, and liver were tissues of high expression. The endogenous and recombinant tensin2 were expressed as a 170-kDa protein in NIH 3T3 cells. The subcellular localization of tensin2 was determined by transfection of green fluorescence protein (GFP)-tensin2 fusion construct. The results indicated that tensin2 is also localized to focal adhesions. Finally, functional analysis of tensin genes has demonstrated that expression of tensin genes is able to promote cell migration on fibronectin, indicating that the tensin family plays a role in regulating cell motility.
Collapse
Affiliation(s)
- Huaiyang Chen
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
322
|
Goldmann WH, Ingber DE. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochem Biophys Res Commun 2002; 290:749-55. [PMID: 11785963 DOI: 10.1006/bbrc.2001.6243] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
323
|
Kim JK, Huh SO, Choi H, Lee KS, Shin D, Lee C, Nam JS, Kim H, Chung H, Lee HW, Park SD, Seong RH. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol Cell Biol 2001; 21:7787-95. [PMID: 11604513 PMCID: PMC99948 DOI: 10.1128/mcb.21.22.7787-7795.2001] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Accepted: 08/15/2001] [Indexed: 11/20/2022] Open
Abstract
Srg3 (SWI3-related gene product) is a mouse homolog of yeast SWI3, Drosophila melanogaster MOIRA (also named MOR/BAP155), and human BAF155 and is known as a core subunit of SWI/SNF complex. This complex is involved in the chromatin remodeling required for the regulation of transcriptional processes associated with development, cellular differentiation, and proliferation. We generated mice with a null mutation in the Srg3 locus to examine its function in vivo. Homozygous mutants develop in the early implantation stage but undergo rapid degeneration thereafter. An in vitro outgrowth study revealed that mutant blastocysts hatch, adhere, and form a layer of trophoblast giant cells, but the inner cell mass degenerates after prolonged culture. Interestingly, about 20% of heterozygous mutant embryos display defects in brain development with abnormal organization of the brain, a condition known as exencephaly. Histological examination suggests that exencephaly is caused by the failure in neural fold elevation, resulting in severe brain malformation. Our findings demonstrate that Srg3 is essential for early embryogenesis and plays an important role in the brain development of mice.
Collapse
Affiliation(s)
- J K Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-gu, Shinlim-dong, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001; 2:793-805. [PMID: 11715046 DOI: 10.1038/35099066] [Citation(s) in RCA: 1660] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Integrin-mediated cell adhesions provide dynamic, bidirectional links between the extracellular matrix and the cytoskeleton. Besides having central roles in cell migration and morphogenesis, focal adhesions and related structures convey information across the cell membrane, to regulate extracellular-matrix assembly, cell proliferation, differentiation, and death. This review describes integrin functions, mechanosensors, molecular switches and signal-transduction pathways activated and integrated by adhesion, with a unifying theme being the importance of local physical forces.
Collapse
Affiliation(s)
- B Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
325
|
Abstract
Neural tube defects (NTDs) are common congenital malformations that occur when the embryonic neural tube fails to close properly during early development. Although multifactorial in origin, NTDs appear to have a strong genetic component. Mouse NTD mutants provide useful models for the study of candidate genes involved in neural tube development and closure. Because maternal nutrition, specifically folate supplementation, is a significant modulator of NTD risk, genes involved in folate transport and metabolism are a focus of investigation. In addition, transcription factors, as well as genes involved in mitosis, actin regulation, and methylation appear to be implicated in the causes of NTDs. The heterogeneity of function of candidate genes suggests that alterations in multiple developmental pathways may lead to the same clinical malformation.
Collapse
Affiliation(s)
- J Gelineau-van Waes
- Department of Cell Biology & Anatomy, Center for Human Molecular Genetics, Nebraska Medical Center, Omaha 68198-5455, USA
| | | |
Collapse
|
326
|
Miller GJ, Ball EH. Conformational change in the vinculin C-terminal depends on a critical histidine residue (His-906). J Biol Chem 2001; 276:28829-34. [PMID: 11382765 DOI: 10.1074/jbc.m102561200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A phospholipid-controlled interaction between the N-terminal and C-terminal domains of vinculin is thought to be a major mechanism that regulates binding activities of the protein. To probe the mechanisms underlying these interactions we used chemical modification and site-directed mutagenesis directed at histidine residues. Diethylpyrocarbonate (DEPC) modification of the C-terminal, but not the N-terminal, domain greatly decreased affinity of the N-terminal-C-terminal binding, implicating histidine residues in the C-terminal. Mutation of either or both C-terminal histidines (at positions 906 and 1026), however, did not affect N-C binding at neutral pH. The H906A mutation did prevent DEPC effects and also prevented the normal decrease in binding affinity for the N-terminal at lower pH. We found that the wild type C-terminal domain, but not the H906A mutant, underwent a conformational change at pH 6.5, reflected in an altered circular dichroism spectrum and apparent oligomerization. Phospholipid also induced conformational changes in the wild type C-terminal domain but not in the H906A mutant, even though the mutant protein did bind to the phospholipid. Finally, the sensitivity of the N-C interaction to phospholipid was much reduced by the H906A mutation. These results show that H906 plays a key role in the conformational dynamics of the C-terminal domain and thus the regulation of vinculin.
Collapse
Affiliation(s)
- G J Miller
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
327
|
Kawauchi T, Ikeya M, Takada S, Ueda K, Shirai M, Takihara Y, Kioka N, Amachi T. Expression of vinexin alpha in the dorsal half of the eye and in the cardiac outflow tract and atrioventricular canal. Mech Dev 2001; 106:147-50. [PMID: 11472845 DOI: 10.1016/s0925-4773(01)00421-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vinexin, a recently identified cytoskeletal protein, contains three SH3 domains and plays important roles in regulation of cytoskeletal organization and signal transduction. Using whole-mount in situ hybridization, we showed here that expression of vinexin alpha, the longer vinexin transcript, is strictly regulated, although the shorter transcript, vinexin beta, is expressed almost ubiquitously during embryonic development in mice. Expression of vinexin alpha was limited to within part of the eye and heart in 10.5 dpc embryos. Analysis of cryosections of 10.5 dpc embryos showed that vinexin alpha was expressed in a dorsal half of the retinal pigment epithelium and in the outflow tract and atrioventricular canal of the heart. Furthermore, we also found that vinexin alpha was expressed in the gonad and in a ventral part of the pons of 12.5 dpc embryos. These results indicated that the expression of vinexin alpha is strictly regulated in a temporally and spatially restricted manner.
Collapse
Affiliation(s)
- T Kawauchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Abstract
Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge.
Collapse
Affiliation(s)
- R J Monti
- Department of Physiological Science, University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
329
|
Miller GJ, Dunn SD, Ball EH. Interaction of the N- and C-terminal domains of vinculin. Characterization and mapping studies. J Biol Chem 2001; 276:11729-34. [PMID: 11124946 DOI: 10.1074/jbc.m008646200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vinculin head to tail intramolecular self-association controls its binding sites for other components of focal adhesions. To study this interaction, the head and tail domains were expressed, purified, and assayed for various characteristics of complex formation. Analytical centrifugation demonstrated a strong interaction in solution and formation of a complex more asymmetric than either of the individual domains. A survey of binding conditions using a solid-phase binding assay revealed characteristics of both electrostatic and hydrophobic forces involved in the binding. In addition, circular dichroism of the individual domains and the complex demonstrated that conformational changes likely occur in both domains during association. The interaction sites were more closely mapped on the protein sequence by deletion mutagenesis. Amino acids 181-226, a basic region within the acidic head domain, were identified as a binding site for the vinculin tail, and residues 1009-1066 were identified as sufficient for binding the head. Moreover, mutation of an acidic patch in the tail (residues 1013-1015) almost completely eliminated its ability to interact with the head domain further supporting the significance of ionic interactions in the binding. Our data indicate that the interaction between the head and tail domains of vinculin occurs through oppositely charged contact sites and results in conformational changes in both domains.
Collapse
Affiliation(s)
- G J Miller
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
330
|
Keller RS, Shai SY, Babbitt CJ, Pham CG, Solaro RJ, Valencik ML, Loftus JC, Ross RS. Disruption of integrin function in the murine myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac performance. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1079-90. [PMID: 11238056 PMCID: PMC1850360 DOI: 10.1016/s0002-9440(10)64055-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular mechanisms that regulate the cardiac hypertrophic response and the progression from compensated hypertrophy to decompensated heart failure have not been thoroughly defined. Alteration in cardiac extracellular matrix is a distinguishing characteristic of these pathological processes. Integrins, cell surface receptors that mediate cellular adhesion to the extracellular matrix, are signaling molecules that possess mechanotransduction properties. Therefore, we hypothesized that integrins are likely candidates to play an important role in cardiac function. To test this hypothesis, transgenic mice were constructed in which normal integrin function was disrupted by expression of a chimeric molecule encoding the transmembrane and extracellular domains of the Tac subunit of the IL-2 receptor, fused to the cytoplasmic domain of beta(1A) integrin (Tacbeta(1A)). Using the alpha myosin heavy chain promoter to target expression of this chimera to the cardiac myocyte, transgenic mice were generated that had varied levels of transgene expression. Multiple transgenic founders that expressed the transgene at high levels, died perinatally and exhibited replacement fibrosis. Lines that survived showed 1) hypertrophic changes concordant with reduction in endogenous beta(1) integrin levels, or 2) reduced basal contractility and relaxation as well as alterations in components of integrin signaling pathways. These data support an important role for beta(1) integrin in normal cardiac function.
Collapse
Affiliation(s)
- R S Keller
- Department of Physiology, UCLA School of Medicine, Center for the Health Sciences, Los Angeles, CA 90095-1751, USA
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Abstract
Forward-genetic analyses in Drosophila and Caenorhabditis elegans have given us unprecedented insights into many developmental mechanisms. To study the formation of organs that contain cell types and structures not present in invertebrates, a vertebrate model system amenable to forward genetics would be very useful. Recent work shows that a newly initiated genetic approach in zebrafish is already making significant contributions to understanding the development of the vertebrate heart, an organ that contains several vertebrate-specific features. These and other studies point to the utility of the zebrafish system for studying a wide range of vertebrate-specific processes.
Collapse
Affiliation(s)
- D Y Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, 513 Parnassus Avenue, Box 0448, San Francisco, California 94143-0448, USA.
| |
Collapse
|
332
|
|
333
|
Palovuori R, Eskelinen S. Role of vinculin in the maintenance of cell-cell contacts in kidney epithelial MDBK cells. Eur J Cell Biol 2000; 79:961-74. [PMID: 11152287 DOI: 10.1078/0171-9335-00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microinjection of fluorophore-tagged cytoskeletal proteins has been a useful tool in studies of formation of focal adhesions (FA). We used this method to study the maintenance of adherens junctions (AJ) and tight junctions (TJ) of epithelial Madin-Darby bovine kidney cells. We chose alpha-actinin and vinculin as markers, because they are present both at adherens junctions and focal adhesions and their binding partners have been well characterized. Isolated FITC-labelled chicken alpha-actinin and vinculin were injected into confluent cells where they were rapidly incorporated both in FAs and AJs. The FAs remained unchanged, whereas cell-cell contacts began to fade within an hour after injection and the cells were joined to polykaryons having 5 to 13 nuclei. Short fragments of cell membranes containing injected proteins, actin, beta-catenin, cadherin, claudin, occludin and ZO-1 were visible inside the polykaryons indicating that both AJs and TJs were disintegrated as a single complex. Microinjected FITC-labelled vinculin head domain was also incorporated to both AJs and FAs, but instead of fusions it rapidly induced the detachment of the cells from the substratum probably due to high affinity of vinculin head to talin. Vinculin tail domain had no apparent effect on the cell morphology. Since small GTPases are involved in the building up of AJs, we injected active and inactive forms of cdc42 and rac proteins together with vinculin to see their effect. Active forms reduced the formation of polykaryons presumably by strengthening AJs, whereas inactive forms had no apparent effect. We suggest that excess alpha-actinin and vinculin uncouple the cell-cell adhesion junctions from the intracellular cytoskeleton which leads to fragmentation of junctional complexes and subsequent cell fusion. The results show that cell-cell adhesion sites are more dynamic and more sensitive than FAs to an imbalance in the amount of free alpha-actinin and intact vinculin.
Collapse
Affiliation(s)
- R Palovuori
- Biocenter Oulu and the Department of Pathology, University of Oulu, Finland
| | | |
Collapse
|
334
|
Brouns MR, Matheson SF, Hu KQ, Delalle I, Caviness VS, Silver J, Bronson RT, Settleman J. The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 2000; 127:4891-903. [PMID: 11044403 DOI: 10.1242/dev.127.22.4891] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rho GTPases direct actin rearrangements in response to a variety of extracellular signals. P190 RhoGAP (GTPase activating protein) is a potent Rho regulator that mediates integrin-dependent adhesion signaling in cultured cells. We have determined that p190 RhoGAP is specifically expressed at high levels throughout the developing nervous system. Mice lacking functional p190 RhoGAP exhibit several defects in neural development that are reminiscent of those described in mice lacking certain mediators of neural cell adhesion. The defects reflect aberrant tissue morphogenesis and include abnormalities in forebrain hemisphere fusion, ventricle shape, optic cup formation, neural tube closure, and layering of the cerebral cortex. In cells of the neural tube floor plate of p190 RhoGAP mutant mice, polymerized actin accumulates excessively, suggesting a role for p190 RhoGAP in the regulation of +Rho-mediated actin assembly within the neuroepithelium. Significantly, several of the observed tissue fusion defects seen in the mutant mice are also found in mice lacking MARCKS, the major substrate of protein kinase C (PKC), and we have found that p190 RhoGAP is also a PKC substrate in vivo. Upon either direct activation of PKC or in response to integrin engagement, p190 RhoGAP is rapidly translocated to regions of membrane ruffling, where it colocalizes with polymerized actin. Together, these results suggest that upon activation of neural adhesion molecules, the action of PKC and p190 RhoGAP leads to a modulation of Rho GTPase activity to direct several actin-dependent morphogenetic processes required for normal neural development.
Collapse
Affiliation(s)
- M R Brouns
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 2000; 275:22607-10. [PMID: 10801899 DOI: 10.1074/jbc.r900037199] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- D A Calderwood
- Department of Vascular Biology and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
336
|
Abstract
Integrins are essential for the development of the two genetically tractable invertebrate model organisms, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Just two integrins are present in C. elegans: one putative RGD binding integrin alphapat-2betapat-3, corresponding to Drosophila alphaPS2betaPS and vertebrate alpha5beta1, alphaVbeta1 and alpha8beta1, and one putative laminin binding integrin alphaina-1betapat-3, corresponding to Drosophila alphaPS1betaPS and vertebrate alpha3beta1, alpha6beta1 and alpha7beta1. In this review, the function of this minimal set of integrins during the development of these two invertebrates is compared. Despite the differences in bodyplan and developmental strategy, integrin adhesion to the extracellular matrix is required for similar processes: the formation of the link that translates muscle contraction into movement of the exoskeleton, cell migration, and morphogenetic interactions between epithelia. Other integrin functions, such as regulation of gene expression, have not yet been experimentally demonstrated in both organisms. Additional proteins have been characterised in each organism that are essential for integrin function, including extracellular matrix ligands and intracellular interacting proteins, but so far different proteins have been found in the two organisms. This in part represents the fact that the characterisation of the full set of interacting proteins is not complete in either system. However, in other cases different proteins appear to be used for similar functions in the two animals. The continued use of genetic approaches to identify proteins required for integrin function in these two model organisms should lead to the identification of the minimal set of conserved components that form integrin adhesive structures.
Collapse
Affiliation(s)
- N H Brown
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Tennis Court Rd, CB2 1QR, Cambridge, UK.
| |
Collapse
|
337
|
Rauch F, Prud'homme J, Arabian A, Dedhar S, St-Arnaud R. Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res 2000; 256:105-11. [PMID: 10739657 DOI: 10.1006/excr.2000.4818] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calreticulin is a ubiquitously expressed protein, which has been implicated in a large number of cellular functions, including calcium storage and signaling, protein folding, and cell attachment. To examine the role of calreticulin during in vivo development, mice deficient in calreticulin were generated by targeted inactivation of the calreticulin gene. Calreticulin-deficient mutants die in utero, mostly in late gestation. Half of these embryos had decreased cardiac cell mass, associated with increased apoptosis of cardiac myocytes. In vitro differentiation cultures of calreticulin-deficient embryonic stem cells resulted in fewer embryoid bodies with contractile activity than cultures derived from calreticulin +/- stem cells (P < 0.001). Sixteen percent of the mutants exhibited exencephaly secondary to a defect in neural tube closure. Embryos surviving until Embryonic Day 16.5 had omphalocele. Lack of calreticulin did not influence survival of embryonic fibroblasts under various endoplasmic reticulum stress conditions. However, calreticulin did influence cell migration in a calcium- and substrate-dependent manner. We conclude that calreticulin is not essential during the early stages of embryonic development, but is important for the development of heart and brain and for ventral body wall closure. The observed abnormalities are compatible with a role of calreticulin in the modulation of cellular calcium signaling.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Animals
- Brain/abnormalities
- Brain/embryology
- Brain/pathology
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/physiology
- Calreticulin
- Embryo, Mammalian/pathology
- Fetal Death
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Hernia, Umbilical/genetics
- Hernia, Umbilical/pathology
- Mice
- Mice, Knockout
- Molecular Chaperones/genetics
- Molecular Chaperones/physiology
- Ribonucleoproteins/deficiency
- Ribonucleoproteins/genetics
- Ribonucleoproteins/physiology
Collapse
Affiliation(s)
- F Rauch
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, H3G 1A6, Canada
| | | | | | | | | |
Collapse
|
338
|
Liliental J, Moon SY, Lesche R, Mamillapalli R, Li D, Zheng Y, Sun H, Wu H. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 2000; 10:401-4. [PMID: 10753747 DOI: 10.1016/s0960-9822(00)00417-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-kinase [2-5]. Pten has also been implicated in controlling cell migration [6], but the exact mechanism is not very clear. Using the isogenic Pten(+/+) and Pten(-/-) mouse fibroblast lines, here we show that Pten deficiency led to increased cell motility. Reintroducing the wild-type Pten, but not the catalytically inactive Pten C124S or lipid-phosphatase-deficient Pten G129E mutant, reduced the enhanced cell motility of Pten-deficient cells. Moreover, phosphorylation of the focal adhesion kinase p125(FAK) was not changed in Pten(-/-) cells. Instead, significant increases in the endogenous activities of Rac1 and Cdc42, two small GTPases involved in regulating the actin cytoskeleton [7], were observed in Pten(-/-) cells. Overexpression of dominant-negative mutant forms of Rac1 and Cdc42 reversed the cell migration phenotype of Pten(-/-) cells. Thus, our studies suggest that Pten negatively controls cell motility through its lipid phosphatase activity by down-regulating Rac1 and Cdc42.
Collapse
Affiliation(s)
- J Liliental
- Department of Microbiology and Molecular Immunology, Howard Hughes Medical Institute, University of California at Los Angeles School of Medicine, Los Angeles, 90095-1735, USA
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Abstract
Cellular contacts with the extracellular matrix are regulated by the Rho family of GTPases through their effects on both the actin and the microtubule cytoarchitecture. Recent genetic, biochemical and structural data have highlighted the role played by a subset of actin-binding proteins in coupling integrins to cytoskeletal actin and in assembling signalling complexes that are important for cell motility and cell proliferation.
Collapse
Affiliation(s)
- D R Critchley
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH, England.
| |
Collapse
|
340
|
Bakolitsa C, de Pereda JM, Bagshaw CR, Critchley DR, Liddington RC. Crystal structure of the vinculin tail suggests a pathway for activation. Cell 1999; 99:603-13. [PMID: 10612396 DOI: 10.1016/s0092-8674(00)81549-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vinculin plays a dynamic role in the assembly of the actin cytoskeleton. A strong interaction between its head and tail domains that regulates binding to other cytoskeletal components is disrupted by acidic phospholipids. Here, we present the crystal structure of the vinculin tail, residues 879-1066. Five amphipathic helices form an antiparallel bundle that resembles exchangeable apolipoproteins. A C-terminal arm wraps across the base of the bundle and emerges as a hydrophobic hairpin surrounded by a collar of basic residues, adjacent to the N terminus. We show that the C-terminal arm is required for binding to acidic phospholipids but not to actin, and that binding either ligand induces conformational changes that may represent the first step in activation.
Collapse
Affiliation(s)
- C Bakolitsa
- Department of Biochemistry, University of Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
341
|
Hildebrand JD, Soriano P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 1999; 99:485-97. [PMID: 10589677 DOI: 10.1016/s0092-8674(00)81537-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using gene trap mutagenesis, we have identified a mutation in mice that causes exencephaly, acrania, facial clefting, and spina bifida, all of which can be attributed to failed neural tube closure. This mutation is designated shroom (shrm) because the neural folds "mushroom" outward and do not converge at the dorsal midline. shrm encodes a PDZ domain protein that is involved at several levels in regulating aspects of cytoarchitecture. First, endogenous Shrm localizes to adherens junctions and the cytoskeleton. Second, ectopically expressed Shrm alters the subcellular distribution of F-actin. Third, Shrm directly binds F-actin. Finally, cytoskeletal polarity within the neuroepithelium is perturbed in mutant embryos. In concert, these observations suggest that Shrm is a critical determinant of the cellular architecture required for proper neurulation.
Collapse
Affiliation(s)
- J D Hildebrand
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
342
|
Peitsch WK, Grund C, Kuhn C, Schnölzer M, Spring H, Schmelz M, Franke WW. Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells. Eur J Cell Biol 1999; 78:767-78. [PMID: 10604653 DOI: 10.1016/s0171-9335(99)80027-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Using immunoblotting, immunprecipitation with subsequent fragment mass spectrometry, and immunolocalization techniques, we have detected the actin-binding ca. 120-kDa protein drebrin, originally identified in - and thought to be specific for - neuronal cells, in diverse kinds of human and bovine non-neuronal cells. Drebrin has been found in numerous cell culture lines and in many tissues of epithelial, endothelial, smooth muscle and neural origin but not in, for example, cardiac, skeletal and certain types of smooth muscle cells, in hepatocytes and in the human epithelium-derived cell culture line A-431. By double-label fluorescence microscopy we have found drebrin enriched in actin microfilament bundles associated with plaques of cell-cell contact sites representing adhering junctions. These drebrin-positive, adhering junction-associated bundles, however, are not identical with the vinculin-containing, junction-attached bundles, and in the same cell both subtypes of microfilament-anchoring plaques are readily distinguished by immunolocalization comparing drebrin and vinculin. The intracellular distribution of the drebrin- and the vinculin-based microfilament systems has been studied in detail by confocal fluorescence laser scanning microscopy in monolayers of the polar epithelial cell lines, MCF-7 and PLC, and drebrin has been found to be totally and selectively absent in the notoriously vinculin-rich focal adhesions. The occurrence and the possible functions of drebrin in non-neuronal cells, notably epithelial cells, and the significance of the existence of two different actin-anchoring junctional plaques is discussed.
Collapse
Affiliation(s)
- W K Peitsch
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
343
|
Mikkola ML, Pispa J, Pekkanen M, Paulin L, Nieminen P, Kere J, Thesleff I. Ectodysplasin, a protein required for epithelial morphogenesis, is a novel TNF homologue and promotes cell-matrix adhesion. Mech Dev 1999; 88:133-46. [PMID: 10534613 DOI: 10.1016/s0925-4773(99)00180-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the mouse Tabby (Ta) mutant and human X-linked anhidrotic ectodermal dysplasia (EDA) syndrome development of several ectodermal organs such as hair, teeth, and sweat glands is impaired. The gene behind Tabby and EDA has been cloned, and several alternative transcripts have been isolated. The protein product named ectodysplasin had no obvious function or prominent homology to other known gene products apart from a short collagen-like sequence. We have isolated two novel Ta transcripts which are variants of the longest isoform of Tabby, named Ta-A. In situ hybridizations revealed Ta-A to be the major transcript in the developing embryo. It was detected in the endoderm of early embryos and subsequently in specific locations in the neuroepithelium and ectoderm. Unexpectedly, sequence analysis of the most C-terminal domain of Ta revealed that ectodysplasin is a novel member of the tumor necrosis factor (TNF) ligand superfamily. Mouse ectodysplasin was biochemically and functionally characterized, and shown to be a glycosylated, oligomeric type II membrane protein (N-terminus inside), all characteristics typical to TNF-like proteins. Members of the TNF family are critically involved in host defence and immune response often mediating either apoptosis or cell survival. Expression of Ta in several epithelial cell lines did not result in prominent changes in cell morphology and did not promote apoptosis. Instead, it was shown to promote cell adhesion to extracellular matrix, a function consistent with its postulated role in epithelial-mesenchymal interactions regulating the development of ectodermal appendages. Ectodysplasin is the first TNF-like signaling molecule described known to be required for epithelial morphogenesis.
Collapse
Affiliation(s)
- M L Mikkola
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, 00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
344
|
Honda H, Nakamoto T, Sakai R, Hirai H. p130(Cas), an assembling molecule of actin filaments, promotes cell movement, cell migration, and cell spreading in fibroblasts. Biochem Biophys Res Commun 1999; 262:25-30. [PMID: 10448062 DOI: 10.1006/bbrc.1999.1162] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
p130(Cas) (Cas) is an adaptor molecule which becomes tyrosine phosphorylated by v-Src- or v-Crk-triggered transformation and several physiological stimuli, such as cell attachment to fibronectin. We previously generated mice lacking Cas and demonstrated that Cas functions as an assembling molecule of actin filaments. To further explore Cas role in cellular function, we established Cas-deficient and Cas-re-expressing fibroblasts and compared their behaviors in response to several biological stimuli. We found that Cas-deficient fibroblasts showed significant defects in cell movement after mechanical wounding and in cell migration toward fibronectin as compared with Cas-re-expressing cells. In addition, when plated on fibronectin-coated dishes, Cas-deficient cells exhibited a significant delay in cell spreading as compared with Cas-re-expressing cells albeit that protein-tyrosine phosphorylation was similarly induced. These results demonstrated that Cas functions as a molecule promoting cell movement, cell migration, and cell spreading and suggest that Cas would be implicated in various physiological and pathological processes, such as would healing, chemotaxis, and tumor invasion.
Collapse
Affiliation(s)
- H Honda
- Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | | | | | | |
Collapse
|
345
|
Lakkis MM, Golden JA, O'Shea KS, Epstein JA. Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Dev Biol 1999; 212:80-92. [PMID: 10419687 DOI: 10.1006/dbio.1999.9327] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tube defects are common and serious human congenital anomalies. These malformations have a multifactorial etiology and can be reproduced in mouse models by mutations of numerous individual genes and by perturbation of multiple environmental factors. The identification of specific genetic interactions affecting neural tube closure will facilitate our understanding of molecular pathways regulating normal neural development and will enhance our ability to predict and modify the incidence of spina bifida and other neural tube defects. Here, we report a genetic interaction between Nf1, encoding the intracellular signal transduction protein neurofibromin, and Pax3, a transcription factor gene mutated in the Splotch mouse. Both Pax3 and Nf1 are important for the development of neural crest-derived structures and the central nervous system. Splotch is an established model of folate-sensitive neural tube defects, and homozygous mutant embryos develop spina bifida and sometimes exencephaly. Neural development is grossly normal in heterozygotes and neural tube defects are not seen. In contrast, we found a low incidence of neural tube defects in heterozygous Splotch mice that also harbored a mutation in one Nf1 allele. All compound homozygotes had severe neural tube defects and died earlier in embryogenesis than either Nf1(-/-) or Sp(-/-) embryos. We also report occasional exencephaly in Nf1(-/-) mice and identify more subtle CNS abnormalities in normal-appearing Nf1(-/-) embryos. Though other genetic loci and environmental factors affect the incidence of neural tube defects in Splotch mice, these results establish Nf1 as the first known gene to act as a modifier of neural tube defects in Splotch.
Collapse
Affiliation(s)
- M M Lakkis
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
346
|
Steimle PA, Hoffert JD, Adey NB, Craig SW. Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J Biol Chem 1999; 274:18414-20. [PMID: 10373448 DOI: 10.1074/jbc.274.26.18414] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of vinculin to adhesion plaque proteins is restricted by an intramolecular association of vinculin's head and tail regions. Results of previous work suggest that polyphosphoinositides disrupt this interaction and thereby promote binding of vinculin to both talin and actin. However, data presented here show that phosphatidylinositol 4,5-bisphosphate (PI4,5P2) inhibits the interaction of purified tail domain with F-actin. Upon re-examining the effect of PI4,5P2 on the actin and talin-binding activities of intact vinculin, we find that when the experimental design controls for the effect of magnesium on aggregation of PI4,5P2 micelles, polyphosphoinositides promote interactions with the talin-binding domain, but block interactions of the actin-binding domain. In contrast, if vinculin is trapped in an open confirmation by a peptide specific for the talin-binding domain of vinculin, actin binding is allowed. These results demonstrate that activation of the actin-binding activity of vinculin requires steps other than or in addition to the binding of PI4,5P2.
Collapse
Affiliation(s)
- P A Steimle
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
347
|
Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:435-78. [PMID: 10354709 DOI: 10.1016/s0079-6107(98)00052-2] [Citation(s) in RCA: 902] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK-) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK- cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.
Collapse
Affiliation(s)
- D D Schlaepfer
- Scripps Research Institute, Department of Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
348
|
Fadel MP, Dziak E, Lo CM, Ferrier J, Mesaeli N, Michalak M, Opas M. Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J Biol Chem 1999; 274:15085-94. [PMID: 10329714 DOI: 10.1074/jbc.274.21.15085] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used two cell lines expressing fast (RPEfast) and slow (RPEslow) attachment kinetics to investigate mechanisms of cell-substratum adhesion. We show that the abundance of a cytoskeletal protein, vinculin, is dramatically decreased in RPEfast cells. This coincides with the diminished expression level of an endoplasmic reticulum chaperone, calreticulin. Both protein and mRNA levels for calreticulin and vinculin were decreased in RPEfast cells. After RPEfast cells were transfected with cDNA encoding calreticulin, both the expression of endoplasmic reticulum-resident calreticulin and cytoplasmic vinculin increased. The abundance of other adhesion-related proteins was not affected. RPEfast cells underexpressing calreticulin displayed a dramatic increase in the abundance of total cellular phosphotyrosine suggesting that the effects of calreticulin on cell adhesiveness may involve modulation of the activities of protein tyrosine kinases or phosphatases which may affect the stability of focal contacts. The calreticulin and vinculin underexpressing RPEfast cells lacked extensive focal contacts and adhered weakly but attached fast to the substratum. In contrast, the RPEslow cells that expressed calreticulin and vinculin abundantly developed numerous and prominent focal contacts slowly, but adhered strongly. Thus, while the calreticulin overexpressing RPEslow cells "grip" the substratum with focal contacts, calreticulin underexpressing RPEfast cells use close contacts to "stick" to it.
Collapse
Affiliation(s)
- M P Fadel
- Department of Anatomy and Cell Biology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
349
|
Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard JC. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 1999; 112 ( Pt 10):1529-39. [PMID: 10212147 DOI: 10.1242/jcs.112.10.1529] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myofibrillogenesis in situ was investigated by confocal microscopy of immunofluorescently labelled whole mount preparations of early embryonic chicken heart rudiments. The time-course of incorporation of several components into myofibrils was compared in triple-stained specimens, taken around the time when beating starts. All sarcomeric proteins investigated so far were already expressed before the first contractions and myofibril assembly happened within a few hours. No typical stress fibre-like structures or premyofibrils, structures observed in cultured cardiomyocytes, could be detected during myofibrillogenesis in the heart. Sarcomeric proteins like (α)-actinin, titin and actin were found in a defined localisation pattern even in cardiomyocytes that did not yet contain myofibrils, making up dense body-like structures. As soon as the heart started to beat, all myofibrillar proteins were already located at their exact position in the sarcomere. The maturation of the sarcomeres was characterised by a short delay in the establishment of the pattern for M-line epitopes of titin with respect to Z-disk epitopes and the incorporation of the M-line component myomesin, which preceded that of myosin binding protein-C. Thus dense body-like structures, made up of titin, (α)-actinin and actin filaments serve as the first organised complexes also during myofibrillogenesis in situ and titin functions as a ruler for sarcomere assembly as soon as its C termini have become localised. We suggest that assembly of thin and thick filament occurs independently during myofibrillogenesis in situ and that myomesin might be important for integrating thick filaments with the M-line end of titin.
Collapse
Affiliation(s)
- E Ehler
- Institute of Cell Biology, ETH-Zürich Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
350
|
Gory-Fauré S, Prandini MH, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M, Huber P. Role of vascular endothelial-cadherin in vascular morphogenesis. Development 1999; 126:2093-102. [PMID: 10207135 DOI: 10.1242/dev.126.10.2093] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular endothelial (VE)-cadherin is an adhesive transmembrane protein specifically expressed at interendothelial junctions. Its extracellular domain exhibits Ca2+-dependent homophilic reactivity, promoting cell-cell recognition. Mice deficient in VE-cadherin die at mid-gestation resulting from severe vascular defects. At the early phases of vascular development (E8.5) of VE-cadherin-deficient embryos, in situ differentiation of endothelial cells was delayed although their differentiation program appeared normal. Vascularization was defective in the anterior part of the embryo, while dorsal aortae and vitelline and umbilical arteries formed normally in the caudal part. At E9.25, organization of endothelial cells into large vessels was incomplete and angiogenesis was impaired in mutant embryos. Defects were more severe in extraembryonic vasculature. Blood islands of the yolk sac and clusters of angioblasts in allantois failed to establish a capillary plexus and remained isolated. This was not due to defective cell-cell recognition as endothelial cells formed intercellular junctions, as shown by electron microscopy. These data indicate that VE-cadherin is dispensable for endothelial homophilic adhesion but is required for vascular morphogenesis.
Collapse
Affiliation(s)
- S Gory-Fauré
- Laboratoire de Transgenèse et Différenciation Cellulaire, Atelier de Transgenèse, and Atelier de Microscopie Electronique, Département de Biologie Moléculaire et Structurale, INSERM IFR27, CEA-Grenoble, rue des Martyrs, France
| | | | | | | | | | | | | |
Collapse
|