301
|
Chauvel M, Nesseir A, Cabral V, Znaidi S, Goyard S, Bachellier-Bassi S, Firon A, Legrand M, Diogo D, Naulleau C, Rossignol T, d’Enfert C. A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. PLoS One 2012; 7:e45912. [PMID: 23049891 PMCID: PMC3457969 DOI: 10.1371/journal.pone.0045912] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is the most frequently encountered human fungal pathogen, causing both superficial infections and life-threatening systemic diseases. Functional genomic studies performed in this organism have mainly used knock-out mutants and extensive collections of overexpression mutants are still lacking. Here, we report the development of a first generation C. albicans ORFeome, the improvement of overexpression systems and the construction of two new libraries of C. albicans strains overexpressing genes for components of signaling networks, in particular protein kinases, protein phosphatases and transcription factors. As a proof of concept, we screened these collections for genes whose overexpression impacts morphogenesis or growth rates in C. albicans. Our screens identified genes previously described for their role in these biological processes, demonstrating the functionality of our strategy, as well as genes that have not been previously associated to these processes. This article emphasizes the potential of systematic overexpression strategies to improve our knowledge of regulatory networks in C. albicans. The C. albicans plasmid and strain collections described here are available at the Fungal Genetics Stock Center. Their extension to a genome-wide scale will represent important resources for the C. albicans community.
Collapse
Affiliation(s)
- Murielle Chauvel
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Audrey Nesseir
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Vitor Cabral
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Mélanie Legrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Dorothée Diogo
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Claire Naulleau
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- * E-mail:
| |
Collapse
|
302
|
Bailão EFLC, Parente AFA, Parente JA, Silva-Bailão MG, de Castro KP, Kmetzsch L, Staats CC, Schrank A, Vainstein MH, Borges CL, Bailão AM, de Almeida Soares CM. Metal Acquisition and Homeostasis in Fungi. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0108-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
303
|
Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Istel F, Schwarzmüller T, Reynolds TB, Kuchler K, Gifford DK, Whiteway M, Giaever G, Nislow C, Costanzo M, Gingras AC, Mitra RD, Andrews B, Fink GR, Cowen LE, Boone C. Global gene deletion analysis exploring yeast filamentous growth. Science 2012; 337:1353-6. [PMID: 22984072 DOI: 10.1126/science.1224339] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain, Σ1278b. We identified genes involved in morphologically distinct forms of filamentation: haploid invasive growth, biofilm formation, and diploid pseudohyphal growth. Unique genes appear to underlie each program, but we also found core genes with general roles in filamentous growth, including MFG1 (YDL233w), whose product binds two morphogenetic transcription factors, Flo8 and Mss11, and functions as a critical transcriptional regulator of filamentous growth in both S. cerevisiae and C. albicans.
Collapse
Affiliation(s)
- Owen Ryan
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Sellam A, Tebbji F, Whiteway M, Nantel A. A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans. PLoS One 2012; 7:e43956. [PMID: 22952822 PMCID: PMC3430608 DOI: 10.1371/journal.pone.0043956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/27/2012] [Indexed: 11/21/2022] Open
Abstract
The ability of Candida albicans to survive in the presence of nitrosative stress during the initial contact with the host immune system is crucial for its ability to colonize mammalian hosts. Thus, this fungus must activate robust mechanisms to neutralize and repair nitrosative-induced damage. Until now, very little was known regarding the regulatory circuits associated with reactive nitrogen species detoxification in fungi. To gain insight into the transcriptional regulatory networks controlling nitrosative stress response (NRS) in C. albicans a compilation of transcriptional regulator-defective mutants were screened. This led to the identification of Cwt1p as a negative regulator of NSR. By combining genome-wide location and expression analyses, we have characterized the Cwt1p regulon and demonstrated that Cwt1p is directly required for proper repression of the flavohemoglobin Yhb1p, a key NO-detoxification enzyme. Furthermore, Cwt1p operates both by activating and repressing genes of specific functions solicited upon NSR. Additionally, we used Gene Set Enrichment Analysis to reinvestigate the C. albicans NSR-transcriptome and demonstrate a significant similarity with the transcriptional profiles of C. albicans interacting with phagocytic host-cells. In summary, we have characterized a novel negative regulator of NSR and bring new insights into the transcriptional regulatory network governing fungal NSR.
Collapse
Affiliation(s)
- Adnane Sellam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montréal, QC, Canada
- * E-mail: (AS); (AN)
| | - Faiza Tebbji
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
- Department of Biology, McGill University, Montréal, QC, Canada
| | - André Nantel
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- * E-mail: (AS); (AN)
| |
Collapse
|
305
|
Xu N, Cheng X, Yu Q, Zhang B, Ding X, Xing L, Li M. Identification and functional characterization of mitochondrial carrier Mrs4 in Candida albicans. FEMS Yeast Res 2012; 12:844-58. [PMID: 22846114 DOI: 10.1111/j.1567-1364.2012.00835.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022] Open
Abstract
Iron is an essential nutrient required for the growth and metabolism in Candida albicans. Here, we for the first time identified Mrs4 as a new member of mitochondrial carrier family in C. albicans. Our experiments revealed that C. albicans Mrs4 (CaMrs4) is localized to the mitochondria and required for mitochondrial morphology. We found that CaMrs4 is required for cell growth, and the mrs4Δ/Δ mutant showed a more severe growth defect in iron deficiency. Deletion of MRS4 affected cellular iron content by altering the expression of iron regulon genes in C. albicans, such as AFT2, SMF3, FTR1 and ISU1. Candida albicans Aft2 factor functions as a negative regulator of MRS4 expression through the CACCC Aft-type sequence in a gene dose-dependent fashion. In addition, the mrs4Δ/Δ mutant exhibited hypersensitivity to oxidants and most metal ions, but decreased sensitivity to cobalt. Exogenous iron could suppress the sensitivity of the mrs4Δ/Δ mutant to oxidants and most metal ions, suggesting that the role of CaMrs4 is partially mediated by iron availability. Furthermore, deletion of MRS4 resulted in delayed filamentation under tested conditions. Taken together, these findings characterize a new mitochondrial carrier and provide a novel insight into the role of CaMrs4 in mitochondrial function.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
306
|
Abstract
Temperature affects diverse biological processes. In fungi such as the pathogen Candida albicans, temperature governs a morphogenetic switch between yeast and hyphal growth. A new report connects the thermosensor Hsp90 to a CDK-cyclin-transcription factor module that controls morphogenesis.
Collapse
Affiliation(s)
- Wenjie Xu
- 200B Mellon Institute, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
307
|
Rinaldi G, Eckert SE, Tsai IJ, Suttiprapa S, Kines KJ, Tort JF, Mann VH, Turner DJ, Berriman M, Brindley PJ. Germline transgenesis and insertional mutagenesis in Schistosoma mansoni mediated by murine leukemia virus. PLoS Pathog 2012; 8:e1002820. [PMID: 22911241 PMCID: PMC3406096 DOI: 10.1371/journal.ppat.1002820] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022] Open
Abstract
Functional studies will facilitate characterization of role and essentiality of newly available genome sequences of the human schistosomes, Schistosoma mansoni, S. japonicum and S. haematobium. To develop transgenesis as a functional approach for these pathogens, we previously demonstrated that pseudotyped murine leukemia virus (MLV) can transduce schistosomes leading to chromosomal integration of reporter transgenes and short hairpin RNA cassettes. Here we investigated vertical transmission of transgenes through the developmental cycle of S. mansoni after introducing transgenes into eggs. Although MLV infection of schistosome eggs from mouse livers was efficient in terms of snail infectivity, >10-fold higher transgene copy numbers were detected in cercariae derived from in vitro laid eggs (IVLE). After infecting snails with miracidia from eggs transduced by MLV, sequencing of genomic DNA from cercariae released from the snails also revealed the presence of transgenes, demonstrating that transgenes had been transmitted through the asexual developmental cycle, and thereby confirming germline transgenesis. High-throughput sequencing of genomic DNA from schistosome populations exposed to MLV mapped widespread and random insertion of transgenes throughout the genome, along each of the autosomes and sex chromosomes, validating the utility of this approach for insertional mutagenesis. In addition, the germline-transmitted transgene encoding neomycin phosphotransferase rescued cultured schistosomules from toxicity of the antibiotic G418, and PCR analysis of eggs resulting from sexual reproduction of the transgenic worms in mice confirmed that retroviral transgenes were transmitted to the next (F1) generation. These findings provide the first description of wide-scale, random insertional mutagenesis of chromosomes and of germline transmission of a transgene in schistosomes. Transgenic lines of schistosomes expressing antibiotic resistance could advance functional genomics for these significant human pathogens. DATABASE ACCESSION: Sequence data from this study have been submitted to the European Nucleotide Archive (http://www.ebi.ac.uk/embl) under accession number ERP000379.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Departamento de Genética, Facultad de Medicina, Universidad de la República, (UDELAR), Montevideo, Uruguay
| | - Sabine E. Eckert
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Isheng J. Tsai
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sutas Suttiprapa
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kristine J. Kines
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, (UDELAR), Montevideo, Uruguay
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Daniel J. Turner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Research Center for Neglected Diseases of Poverty, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
308
|
Cleary IA, Lazzell AL, Monteagudo C, Thomas DP, Saville SP. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol 2012; 85:557-73. [PMID: 22757963 DOI: 10.1111/j.1365-2958.2012.08127.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the opportunistic fungal pathogen Candida albicans both cellular morphology and the capacity to cause disease are regulated by the transcriptional repressor Nrg1p. One of the genes repressed by Nrg1p is BRG1, which encodes a putative GATA family transcription factor. Deletion of both copies of this gene prevents hypha formation. We discovered that BRG1 overexpression is sufficient to overcome Nrg1p-mediated repression and drive the morphogenetic shift from yeast to hyphae even in the absence of environmental stimuli. We further observed that expression of BRG1 influences the stability of the NRG1 transcript, thus controlling filamentation through a feedback loop. Analysis of this phenomenon revealed that BRG1 expression is required for the induction of an antisense NRG1 transcript. This is the first demonstration of a role for mRNA stability in regulating the key C. albicans virulence trait: the ability to form hyphae.
Collapse
Affiliation(s)
- Ian A Cleary
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
309
|
Du H, Guan G, Xie J, Cottier F, Sun Y, Jia W, Mühlschlegel FA, Huang G. The transcription factor Flo8 mediates CO2 sensing in the human fungal pathogen Candida albicans. Mol Biol Cell 2012; 23:2692-701. [PMID: 22621896 PMCID: PMC3395658 DOI: 10.1091/mbc.e12-02-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CO2 is a critical signaling molecule in a variety of biological processes. The transcription factor Flo8 is identified as a key regulator of CO2 sensing, which governs CO2-induced phenotypic transitions in Candida albicans. These findings provide new insights into the understanding of CO2 sensing in pathogenic fungi. Physiological levels of CO2 have a profound impact on prominent biological attributes of the major fungal pathogen of humans, Candida albicans. Elevated CO2 induces filamentous growth and promotes white-to-opaque switching. However, the underlying molecular mechanisms of CO2 sensing in C. albicans are insufficiently understood. Here we identify the transcription factor Flo8 as a key regulator of CO2-induced morphogenesis in C. albicans by screening a gene null mutant library. We show that Flo8 is required for CO2-induced white-to-opaque switching, as well as for filamentous growth. Ectopic expression of FLO8 hypersensitizes C. albicans cells to the elevated CO2 levels. Furthermore, we demonstrate that CO2 signaling in C. albicans involves two pathways: the already reported cAMP/protein kinase A and another major one that is unidentified. The two pathways converge on the transcription factor Flo8, which is the master regulator of CO2 sensing in C. albicans and plays a critical role in regulation of white-to-opaque switching and filamentous growth. Our findings provide new insights into the understanding of CO2 sensing in pathogenic fungi that have important implications for higher organisms.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans. EUKARYOTIC CELL 2012; 11:916-31. [PMID: 22581526 DOI: 10.1128/ec.00134-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.
Collapse
|
311
|
Ostaszewski M, Eifes S, del Sol A. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human. PLoS One 2012; 7:e36488. [PMID: 22577488 PMCID: PMC3342260 DOI: 10.1371/journal.pone.0036488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/07/2012] [Indexed: 11/19/2022] Open
Abstract
The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.
Collapse
Affiliation(s)
| | - Serge Eifes
- Luxembourg Centre for Systems Biomedicine, Luxembourg, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine, Luxembourg, Luxembourg
- * E-mail:
| |
Collapse
|
312
|
Abstract
The regulation of Ace2 and morphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae, we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Pneumocystis spp.
Collapse
|
313
|
Lu Y, Su C, Liu H. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog 2012; 8:e1002663. [PMID: 22536157 PMCID: PMC3334898 DOI: 10.1371/journal.ppat.1002663] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/08/2012] [Indexed: 01/15/2023] Open
Abstract
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. One critical virulence attribute is its morphogenetic plasticity. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of the cAMP/PKA pathway and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling. Molecular mechanisms for the temporal connection and the link to Tor1 signaling are not clear. Here, through a forward genetic screen, we report the identification of the GATA family transcription factor Brg1 as the factor that recruits Hda1 to promoters of hypha-specific genes during hyphal elongation. BRG1 expression requires both the removal of Nrg1 and a sub-growth inhibitory level of rapamycin; therefore, it is a sensitive readout of Tor1 signaling. Interestingly, promoters of hypha-specific genes are not accessible to Brg1 in yeast cells. Furthermore, ectopic expression of Brg1 cannot induce hyphae, but can sustain hyphal development. Nucleosome mapping of a hypha-specific promoter shows that Nrg1 binding sites are in nucleosome free regions in yeast cells, whereas Brg1 binding sites are occupied by nucleosomes. Nucleosome disassembly during hyphal initiation exposes the binding sites for both regulators. During hyphal elongation, Brg1-mediated Hda1 recruitment causes nucleosome repositioning and occlusion of Nrg1 binding sites. We suggest that nucleosome repositioning is the underlying mechanism for the yeast-hyphal transition. The hypha-specific regulator Ume6 is a key downstream target of Brg1 and functions after Brg1 as a built-in positive feedback regulator of the hyphal transcriptional program to sustain hyphal development. With the levels of Nrg1 and Brg1 dynamically and sensitively controlled by the two major cellular growth pathways, temporal changes in nucleosome positioning during the yeast-to-hypha transition provide a mechanism for signal integration and cell fate specification. This mechanism is likely used broadly in development. Candida is part of the gut microflora in healthy individuals, but can disseminate and cause systemic disease when the host's immune system is suppressed. Its ability to grow as yeast and hyphae in response to environmental cues is a major virulence attribute. Hyphal development requires temporary clearing of the transcription inhibitor Nrg1 upon activation of cAMP/PKA for initiation and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling for maintenance. Here, we show that, during hyphal initiation when Nrg1 is gone, expression of the GATA family transcription factor Brg1 is activated under reduced Tor1 signaling. Accumulated Brg1 recruits Hda1 to hyphal promoters to reposition nucleosomes, leading to obstruction of Nrg1 binding sites and sustained hyphal development. The nucleosome repositioning during the yeast-hyphal transition provides a mechanism for temporal integration of extracellular signals and cell-fate specification. The hypha-specific transcription factor Ume6 functions after Brg1 in this succession of feed-forward regulation of hyphal development. Since misregulation of either Nrg1 or Ume6 causes altered virulence, and Brg1 regulates both Nrg1 accessibility and Ume6 transcription, our findings should provide a better understanding of how Candida controls its morphological program in different host niches to exist as a commensal and a pathogen.
Collapse
Affiliation(s)
- Yang Lu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Chang Su
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
314
|
Ofir A, Hofmann K, Weindling E, Gildor T, Barker KS, Rogers PD, Kornitzer D. Role of a Candida albicans Nrm1/Whi5 homologue in cell cycle gene expression and DNA replication stress response. Mol Microbiol 2012; 84:778-94. [PMID: 22463761 DOI: 10.1111/j.1365-2958.2012.08056.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To explore cell cycle regulation in the dimorphic fungus Candida albicans, we identified and characterized CaNrm1, a C. albicans homologue of the Saccharomyces cerevisiae Whi5 and Nrm1 transcription inhibitors that, analogous to mammalian Rb, regulate the cell cycle transcription programme during the G1 phase. CaNRM1 is able to complement the phenotypes of both whi5 and nrm1 mutants in S. cerevisiae. In C. albicans, global transcription analysis of the CaNRM1 deletion mutant reveals a preferential induction of G1- and G1/S-specific genes. CaNrm1 interacts genetically with the C. albicans MBF functional homologue, and physically with its subunit CaSwi4. Similar to S. cerevisiae Whi5, CaNrm1 subcellular localization oscillates with the cell cycle between the nucleus and the cytoplasm. Deletion of CaNRM1 further results in increased resistance to hydroxyurea, an inhibitor of DNA replication; analysis of the expression of ribonucleotide reductase, the target of hydroxyurea, suggests that its transcriptional induction in response to hydroxyurea is regulated via CaNrm1, and biochemical analysis shows that hydroxyurea causes disruption of the interaction of CaNrm1 with CaSwi4. Furthermore, induction of the hyphal-specific genes is dampened under certain conditions in the Canrm1(-/-) mutant, suggesting that the cell cycle transcription programme can influence the morphogenetic transcription programme of C. albicans.
Collapse
Affiliation(s)
- Ayala Ofir
- Department of Molecular Microbiology, Technion - IIT and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
315
|
Uwamahoro N, Qu Y, Jelicic B, Lo TL, Beaurepaire C, Bantun F, Quenault T, Boag PR, Ramm G, Callaghan J, Beilharz TH, Nantel A, Peleg AY, Traven A. The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genet 2012; 8:e1002613. [PMID: 22496666 PMCID: PMC3320594 DOI: 10.1371/journal.pgen.1002613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 02/07/2012] [Indexed: 01/01/2023] Open
Abstract
The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.
Collapse
Affiliation(s)
- Nathalie Uwamahoro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yue Qu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Branka Jelicic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tricia L. Lo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Cecile Beaurepaire
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - Farkad Bantun
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tara Quenault
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Judy Callaghan
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Traude H. Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - André Nantel
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
- * E-mail: (AT); (AN)
| | - Anton Y. Peleg
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (AT); (AN)
| |
Collapse
|
316
|
Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity. Genetics 2012; 191:435-49. [PMID: 22466042 DOI: 10.1534/genetics.112.138958] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution.
Collapse
|
317
|
Diezmann S, Michaut M, Shapiro RS, Bader GD, Cowen LE. Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry. PLoS Genet 2012; 8:e1002562. [PMID: 22438817 PMCID: PMC3305360 DOI: 10.1371/journal.pgen.1002562] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/13/2012] [Indexed: 11/18/2022] Open
Abstract
The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with ∼10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time. Hsp90 is an essential and conserved molecular chaperone in eukaryotes that assists with folding diverse proteins, especially regulators of cellular signaling. By activating signaling in response to environmental cues, Hsp90 has a profound impact on myriad aspects of biology. In fungi, Hsp90 influences development, drug resistance, and evolution. In the model yeast Saccharomyces cerevisiae, Hsp90 interacts with ∼10% of proteins. In the leading human fungal pathogen, Candida albicans, only two interactions have been identified. We conducted a chemical genetic screen to elucidate the C. albicans Hsp90 interaction network under diverse stress conditions. The majority of the 226 genetic interactors are important for growth under specific conditions, suggesting that they act downstream of Hsp90 and that the network is environmentally contingent. For example, the kinase Hog1 depends upon Hsp90 for activation. Only a few interactors are important for growth in many conditions, suggesting that they act upstream of Hsp90. For example, the protein kinase CK2 regulates function of the Hsp90 chaperone machine and the transcription factor Ahr1 governs HSP90 expression. Thus, we identify novel effectors upstream and downstream of Hsp90, and establish the first chaperone network of a fungal pathogen, with evidence for environmental contingency and network rewiring over evolutionary time.
Collapse
Affiliation(s)
- Stephanie Diezmann
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
318
|
Shapiro RS, Sellam A, Tebbji F, Whiteway M, Nantel A, Cowen LE. Pho85, Pcl1, and Hms1 signaling governs Candida albicans morphogenesis induced by high temperature or Hsp90 compromise. Curr Biol 2012; 22:461-70. [PMID: 22365851 DOI: 10.1016/j.cub.2012.01.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/13/2012] [Accepted: 01/30/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Temperature exerts powerful control over development and virulence of diverse pathogens. In the leading human fungal pathogen, Candida albicans, temperature governs morphogenesis, a key virulence trait. Many cues that induce the yeast to filament transition are contingent on a minimum of 37°C, whereas further elevation to 39°C serves as an independent inducer. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A signaling but is independent of the terminal transcription factor, Efg1. RESULTS Here, we establish that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues and does so independently of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or Hsp90 compromise. Hms1 functions downstream of the cyclin Pcl1 and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility for virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. CONCLUSIONS Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens.
Collapse
Affiliation(s)
- Rebecca S Shapiro
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
319
|
Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP. Portrait of Candida albicans adherence regulators. PLoS Pathog 2012; 8:e1002525. [PMID: 22359502 PMCID: PMC3280983 DOI: 10.1371/journal.ppat.1002525] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/21/2011] [Indexed: 12/20/2022] Open
Abstract
Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors that are required for adherence. We then combined nanoString gene expression profiling with functional analysis to elucidate relationships among these transcription factors, with two major goals: to extend our understanding of transcription factors previously known to govern adherence or biofilm formation, and to gain insight into the many transcription factors we identified that were relatively uncharacterized, particularly in the context of adherence or cell surface biogenesis. With regard to the first goal, we have discovered a role for biofilm regulator Bcr1 in adherence, and found that biofilm regulator Ace2 is a major functional target of chromatin remodeling factor Snf5. In addition, Bcr1 and Ace2 share several target genes, pointing to a new connection between them. With regard to the second goal, our findings reveal existence of a large regulatory network that connects eleven adherence regulators, the zinc-response regulator Zap1, and approximately one quarter of the predicted cell surface protein genes in this organism. This limited yet sensitive glimpse of mutant gene expression changes had thus defined one of the broadest cell surface regulatory networks in C. albicans.
Collapse
Affiliation(s)
- Jonathan S. Finkel
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth M. Hill
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jigar V. Desai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jeniel E. Nett
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Heather Taff
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Carmelle T. Norice
- Department of Microbiology, Columbia University, New York, New York, United States of America
| | - David R. Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
320
|
van Dijk ADJ, van Mourik S, van Ham RCHJ. Mutational robustness of gene regulatory networks. PLoS One 2012; 7:e30591. [PMID: 22295094 PMCID: PMC3266278 DOI: 10.1371/journal.pone.0030591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022] Open
Abstract
Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor – target gene interactions) but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive). In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.
Collapse
Affiliation(s)
- Aalt D J van Dijk
- Applied Bioinformatics, PRI, Wageningen UR, Wageningen, The Netherlands.
| | | | | |
Collapse
|
321
|
Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012; 148:126-38. [PMID: 22265407 PMCID: PMC3266547 DOI: 10.1016/j.cell.2011.10.048] [Citation(s) in RCA: 519] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 10/14/2022]
Abstract
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
Collapse
Affiliation(s)
- Clarissa J Nobile
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Du H, Guan G, Xie J, Sun Y, Tong Y, Zhang L, Huang G. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLoS One 2012; 7:e29707. [PMID: 22276126 PMCID: PMC3261855 DOI: 10.1371/journal.pone.0029707] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing not only superficial infections, but also life-threatening systemic disease. C. albicans can grow in several morphological forms including unicellular yeast-form, elongated hyphae and pseudohyphae. In certain natural environments, C. albicans also exists as biofilms, which are structured and surface-attached microbial communities. Transcription factors play a critical role in morphogenesis and biofilm development. In this study, we identified four adhesion-promoting transcription factors (Tec1, Cph1, Ume6 and Gat2) by screening a transcription factor overexpression library. Sequence analysis indicates that Gat2 is a GATA-type zinc finger transcription factor. Here we showed that the gat2/gat2 mutant failed to form biofilms on the plastic and silicone surfaces. Overexpression of GAT2 gene promoted filamentous and invasive growth on agar containing Lee's medium, while deletion of this gene had an opposite effect. However, inactivation of Gat2 had no obvious effect on N-acetyl-glucosamine (GlcNAc) induced hyphal development. In a mouse model of systemic infection, the gat2/gat2 mutant showed strongly attenuated virulence. Our results suggest that Gat2 plays a critical role in C. albicans biofilm formation, filamentous growth and virulence.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaojun Tong
- Graduate University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lixin Zhang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
323
|
Romanowski K, Zaborin A, Valuckaite V, Rolfes RJ, Babrowski T, Bethel C, Olivas A, Zaborina O, Alverdy JC. Candida albicans isolates from the gut of critically ill patients respond to phosphate limitation by expressing filaments and a lethal phenotype. PLoS One 2012; 7:e30119. [PMID: 22253901 PMCID: PMC3258262 DOI: 10.1371/journal.pone.0030119] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that proliferates in the intestinal tract of critically ill patients where it continues to be a major cause of infectious-related mortality. The precise cues that shift intestinal C. albicans from its ubiquitous indolent colonizing yeast form to an invasive and lethal filamentous form remain unknown. We have previously shown that severe phosphate depletion develops in the intestinal tract during extreme physiologic stress and plays a major role in shifting intestinal Pseudomonas aeruginosa to express a lethal phenotype via conserved phosphosensory-phosphoregulatory systems. Here we studied whether phosphate dependent virulence expression could be similarly demonstrated for C. albicans. C. albicans isolates from the stool of critically ill patients and laboratory prototype strains (SC5314, BWP17, SN152) were evaluated for morphotype transformation and lethality against C. elegans and mice during exposure to phosphate limitation. Isolates ICU1 and ICU12 were able to filament and kill C. elegans in a phosphate dependent manner. In a mouse model of intestinal phosphate depletion (30% hepatectomy), direct intestinal inoculation of C. albicans caused mortality that was prevented by oral phosphate supplementation. Prototype strains displayed limited responses to phosphate limitation; however, the pho4Δ mutant displayed extensive filamentation during low phosphate conditions compared to its isogenic parent strain SN152, suggesting that mutation in the transcriptional factor Pho4p may sensitize C. albicans to phosphate limitation. Extensive filamentation was also observed in strain ICU12 suggesting that this strain is also sensitized to phosphate limitation. Analysis of the sequence of PHO4 in strain ICU12, its transcriptional response to phosphate limitation, and phosphatase assays confirmed that ICU12 demonstrates a profound response to phosphate limitation. The emergence of strains of C. albicans with marked responsiveness to phosphate limitation may represent a fitness adaptation to the complex and nutrient scarce environment typical of the gut of a critically ill patient.
Collapse
Affiliation(s)
- Kathleen Romanowski
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Alexander Zaborin
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Vesta Valuckaite
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Ronda J. Rolfes
- Department of Biology, Georgetown University, Washington, D. C., United States of America
| | - Trissa Babrowski
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Cindy Bethel
- Clinical Microbiology/Immunology Laboratories, University of Chicago, Chicago, Illinois, United States of America
| | - Andrea Olivas
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - John C. Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
324
|
Sur7 promotes plasma membrane organization and is needed for resistance to stressful conditions and to the invasive growth and virulence of Candida albicans. mBio 2011; 3:mBio.00254-11. [PMID: 22202230 PMCID: PMC3244266 DOI: 10.1128/mbio.00254-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The human fungal pathogen Candida albicans causes lethal systemic infections because of its ability to grow and disseminate in a host. The C. albicans plasma membrane is essential for virulence by acting as a protective barrier and through its key roles in interfacing with the environment, secretion of virulence factors, morphogenesis, and cell wall synthesis. Difficulties in studying hydrophobic membranes have limited the understanding of how plasma membrane organization contributes to its function and to the actions of antifungal drugs. Therefore, the role of the recently discovered plasma membrane subdomains termed the membrane compartment containing Can1 (MCC) was analyzed by assessing the virulence of a sur7Δ mutant. Sur7 is an integral membrane protein component of the MCC that is needed for proper localization of actin, morphogenesis, cell wall synthesis, and responding to cell wall stress. MCC domains are stable 300-nm-sized punctate patches that associate with a complex of cytoplasmic proteins known as an eisosome. Analysis of virulence-related properties of a sur7Δ mutant revealed defects in intraphagosomal growth in macrophages that correlate with increased sensitivity to oxidation and copper. The sur7Δ mutant was also strongly defective in pathogenesis in a mouse model of systemic candidiasis. The mutant cells showed a decreased ability to initiate an infection and greatly diminished invasive growth into kidney tissues. These studies on Sur7 demonstrate that the plasma membrane MCC domains are critical for virulence and represent an important new target for the development of novel therapeutic strategies. Candida albicans, the most common human fungal pathogen, causes lethal systemic infections by growing and disseminating in a host. The plasma membrane plays key roles in enabling C. albicans to grow in vivo, and it is also the target of the most commonly used antifungal drugs. However, plasma membrane organization is poorly understood because of the experimental difficulties in studying hydrophobic components. Interestingly, recent studies have identified a novel type of plasma membrane subdomain in fungi known as the membrane compartment containing Can1 (MCC). Cells lacking the MCC-localized protein Sur7 display broad defects in cellular organization and response to stress in vitro. Consistent with this, C. albicans cells lacking the SUR7 gene were more susceptible to attack by macrophages than cells with the gene and showed greatly reduced virulence in a mouse model of systemic infection. Thus, Sur7 and other MCC components represent novel targets for antifungal therapy.
Collapse
|
325
|
Bharucha N, Chabrier-Roselló Y, Xu T, Johnson C, Sobczynski S, Song Q, Dobry CJ, Eckwahl MJ, Anderson CP, Benjamin AJ, Kumar A, Krysan DJ. A large-scale complex haploinsufficiency-based genetic interaction screen in Candida albicans: analysis of the RAM network during morphogenesis. PLoS Genet 2011; 7:e1002058. [PMID: 22103005 PMCID: PMC3084211 DOI: 10.1371/journal.pgen.1002058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The morphogenetic transition between yeast and filamentous forms of the human
fungal pathogen Candida albicans is regulated by a variety of
signaling pathways. How these pathways interact to orchestrate morphogenesis,
however, has not been as well characterized. To address this question and to
identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM)
pathway during filamentation, we report the first large-scale genetic
interaction screen in C. albicans. Our strategy for this screen
was based on the concept of complex haploinsufficiency (CHI). A heterozygous
mutant of CBK1
(cbk1Δ/CBK1), a key RAM pathway
protein kinase, was subjected to transposon-mediated, insertional mutagenesis.
The resulting double heterozygous mutants (6,528 independent strains) were
screened for decreased filamentation on Spider Medium (SM). From the 441 mutants
showing altered filamentation, 139 transposon insertion sites were sequenced,
yielding 41 unique CBK1-interacting genes. This gene set was
enriched in transcriptional targets of Ace2 and, strikingly, the cAMP-dependent
protein kinase A (PKA) pathway, suggesting an interaction between these two
pathways. Further analysis indicates that the RAM and PKA pathways co-regulate a
common set of genes during morphogenesis and that hyper-activation of the PKA
pathway may compensate for loss of RAM pathway function. Our data also indicate
that the PKA–regulated transcription factor Efg1 primarily localizes to
yeast phase cells while the RAM–pathway regulated transcription factor
Ace2 localizes to daughter nuclei of filamentous cells, suggesting that Efg1 and
Ace2 regulate a common set of genes at separate stages of morphogenesis. Taken
together, our observations indicate that CHI–based screening is a useful
approach to genetic interaction analysis in C. albicans and
support a model in which these two pathways regulate a common set of genes at
different stages of filamentation. Candida albicans is the most common cause of fungal infections
in humans. As a diploid yeast without a classical sexual cycle, many genetic
approaches developed for large-scale genetic interaction studies in the model
yeast Saccharomyces cerevisiae cannot be applied to C.
albicans. Genetic interaction studies have proven to be powerful
genetic tools for the analysis of complex biological processes. Here, we
demonstrate that libraries of C. albicans strains containing
heterozygous mutations in two different genes can be generated and used to study
genetic interactions in C. albicans on a large scale. Double
heterozygous mutants that show more severe phenotypes than strains with single
heterozygous mutations are indicative of genetic interactions through a
phenomenon referred to as complex haploinsufficiency (CHI). We applied this
approach to the study of the RAM (Regulation of Ace2 and Morphogenesis)
signaling network during the morphogenetic transition of C.
albicans from yeast to filamentous growth. Among the genes that
interacted with CBK1, the key signaling kinase of the RAM
pathway, were transcriptional targets of the RAM pathway and the protein kinase
A pathway. Further analysis supports a model in which these two pathways
co-regulate a common set of genes at different stages of filamentation.
Collapse
Affiliation(s)
- Nike Bharucha
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Yeissa Chabrier-Roselló
- Department of Pediatrics, University of
Rochester School of Medicine and Dentistry, Rochester, New York, United States
of America
| | - Tao Xu
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Cole Johnson
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Sarah Sobczynski
- Department of Microbiology/Immunology,
University of Rochester School of Medicine and Dentistry, Rochester, New York,
United States of America
| | - Qingxuan Song
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Craig J. Dobry
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Matthew J. Eckwahl
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Christopher P. Anderson
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Andrew J. Benjamin
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and
Developmental Biology, University of Michigan, Ann Arbor, Michigan, United
States of America
- * E-mail: (DJK); (AK)
| | - Damian J. Krysan
- Department of Pediatrics, University of
Rochester School of Medicine and Dentistry, Rochester, New York, United States
of America
- Department of Microbiology/Immunology,
University of Rochester School of Medicine and Dentistry, Rochester, New York,
United States of America
- * E-mail: (DJK); (AK)
| |
Collapse
|
326
|
Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2011; 2012:713687. [PMID: 22187560 PMCID: PMC3236459 DOI: 10.1155/2012/713687] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
Collapse
|
327
|
Finkel JS, Yudanin N, Nett JE, Andes DR, Mitchell AP. Application of the systematic "DAmP" approach to create a partially defective C. albicans mutant. Fungal Genet Biol 2011; 48:1056-61. [PMID: 21820070 PMCID: PMC3185220 DOI: 10.1016/j.fgb.2011.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022]
Abstract
An understanding of gene function often relies upon creating multiple kinds of alleles. Functional analysis in Candida albicans, a major fungal pathogen, has generally included characterization of mutant strains with insertion or deletion alleles and over-expression alleles. Here we use in C. albicans another type of allele that has been employed effectively in the model yeast Saccharomyces cerevisiae, a "Decreased Abundance by mRNA Perturbation" (DAmP) allele (Yan et al., 2008). DAmP alleles are created systematically through replacement of 30 noncoding regions with nonfunctional heterologous sequences, and thus are broadly applicable. We used a DAmP allele to probe the function of Sun41, a surface protein with roles in cell wall integrity, cell-cell adherence, hyphal formation, and biofilm formation that has been suggested as a possible therapeutic target (Firon et al., 2007; Hiller et al., 2007; Norice et al., 2007). A SUN41-DAmP allele results in approximately 10-fold reduced levels of SUN41 RNA, and yields intermediate phenotypes in most assays. We report that a sun41Δ/Δ mutant is defective in biofilm formation in vivo, and that the SUN41-DAmP allele complements that defect. This finding argues that Sun41 may not be an ideal therapeutic target for biofilm inhibition, since a 90% decrease in activity has little effect on biofilm formation in vivo. We anticipate that DAmP alleles of C. albicans genes will be informative for analysis of other prospective drug targets, including essential genes.
Collapse
Affiliation(s)
- JS Finkel
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - N Yudanin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - JE Nett
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin 53792 USA
| | - DR Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin 53792 USA
| | - AP Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
328
|
Vandeputte P, Ischer F, Sanglard D, Coste AT. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization. PLoS One 2011; 6:e26962. [PMID: 22073120 PMCID: PMC3205040 DOI: 10.1371/journal.pone.0026962] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022] Open
Abstract
The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.
Collapse
Affiliation(s)
- Patrick Vandeputte
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Françoise Ischer
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
329
|
Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease. EUKARYOTIC CELL 2011; 10:1618-27. [PMID: 21984707 DOI: 10.1128/ec.05160-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycerophosphodiesters are the products of phospholipase-mediated deacylation of phospholipids. In Saccharomyces cerevisiae, a single gene, GIT1, encodes a permease responsible for importing glycerophosphodiesters, such as glycerophosphoinositol and glycerophosphocholine, into the cell. In contrast, the Candida albicans genome contains four open reading frames (ORFs) with a high degree of similarity to S. cerevisiae GIT1 (ScGIT1) Here, we report that C. albicans utilizes glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) as sources of phosphate at both mildly acidic and physiological pHs. Insertional mutagenesis of C. albicans GIT1 (CaGIT1) (orf19.34), the ORF most similar to ScGit1, abolished the ability of cells to use GroPIns as a phosphate source at acidic pH and to transport [(3)H]GroPIns at acidic and physiological pHs, while reintegration of a GIT1 allele into the genome restored those functions. Several lines of evidence, including the detection of internal [(3)H]GroPIns, indicated that GroPIns is transported intact through CaGit1. GroPIns transport was shown to conform to Michaelis-Menten kinetics, with an apparent K(m) of 28 ± 6 μM. Notably, uptake of label from [(3)H]GroPCho was found to be roughly 50-fold greater than uptake of label from [(3)H]GroPIns and roughly 500-fold greater than the equivalent activity in S. cerevisiae. Insertional mutagenesis of CaGIT1 had no effect on the utilization of GroPCho as a phosphate source or on the uptake of label from [(3)H]GroPCho. Growth under low-phosphate conditions was shown to increase label uptake from both [(3)H]GroPIns and [(3)H]GroPCho. Screening of a transcription factor deletion set identified CaPHO4 as required for the utilization of GroPIns, but not GroPCho, as a phosphate source.
Collapse
|
330
|
Arkowitz RA, Bassilana M. Polarized growth in fungi: symmetry breaking and hyphal formation. Semin Cell Dev Biol 2011; 22:806-15. [PMID: 21906692 DOI: 10.1016/j.semcdb.2011.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 01/12/2023]
Abstract
Cell shape is a critical determinant for function. The baker's yeast Saccharomyces cerevisiae changes shape in response to its environment, growing by budding in rich nutrients, forming invasive pseudohyphal filaments in nutrient poor conditions and pear shaped shmoos for growth towards a partner during mating. The human opportunistic pathogen Candida albicans can switch from budding to hyphal growth, in response to numerous environmental stimuli to colonize and invade its host. Hyphal growth, typical of filamentous fungi, is not observed in S. cerevisiae. A number of internal cues regulate when and where yeast cells break symmetry leading to polarized growth and ultimately distinct cell shapes. This review discusses how cells break symmetry using the yeast S. cerevisiae paradigm and how polarized growth is initiated and maintained to result in dramatic morphological changes during C. albicans hyphal growth.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Centre National de la Recherche Scientifique and Université de Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer, CNRS-UMR6543 Faculté des Sciences, Nice, France.
| | | |
Collapse
|
331
|
Abstract
Draft genome sequences for Schistosoma japonicum and S. mansoni are now available. The schistosome genome encodes ∼13,000 protein-encoding genes for which the functions of few are well understood. Nonetheless, the new genes represent potential intervention targets, and molecular tools are being developed to determine their importance. Over the past 15 years, noteworthy progress has been achieved towards development of tools for gene manipulation and transgenesis of schistosomes. A brief history of genetic manipulation is presented, along with a review of the field with emphasis on reports of integration of transgenes into schistosome chromosomes.
Collapse
|
332
|
Chen C, Pande K, French SD, Tuch BB, Noble SM. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 2011; 10:118-35. [PMID: 21843869 PMCID: PMC3165008 DOI: 10.1016/j.chom.2011.07.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/14/2011] [Accepted: 07/05/2011] [Indexed: 11/21/2022]
Abstract
The mammalian gastrointestinal tract and bloodstream are highly disparate biological niches that differ in concentrations of nutrients such as iron. However, some commensal-pathogenic microorganisms, such as the yeast Candida albicans, thrive in both environments. We report the evolution of a transcription circuit in C. albicans that controls iron uptake and determines its fitness in both niches. Our analysis of DNA-binding proteins that regulate iron uptake by this organism suggests the evolutionary intercalation of a transcriptional activator called Sef1 between two broadly conserved iron-responsive transcriptional repressors, Sfu1 and Hap43. Sef1 activates iron-uptake genes and promotes virulence in a mouse model of bloodstream infection, whereas Sfu1 represses iron-uptake genes and is dispensable for virulence but promotes gastrointestinal commensalism. Thus, C. albicans can alternate between genetic programs conferring resistance to iron depletion in the bloodstream versus iron toxicity in the gut, and this may represent a fundamental attribute of gastrointestinal commensal-pathogens.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kalyan Pande
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sarah D. French
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Brian B. Tuch
- Genome Analysis Unit, Amgen, South San Francisco, CA, 94080, USA
| | - Suzanne M. Noble
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
333
|
Lelandais G, Goudot C, Devaux F. The evolution of gene expression regulatory networks in yeasts. C R Biol 2011; 334:655-61. [PMID: 21819947 DOI: 10.1016/j.crvi.2011.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/02/2011] [Indexed: 12/20/2022]
Abstract
Gene regulation is a major source of phenotypic diversity between and within species. This aspect of evolution has long been addressed from the sole point of view of the genome sequence. The incredible development of transcriptomics approaches now allows one to actually study the topology and the properties of regulatory networks on an evolutionary perspective. This new discipline is called comparative functional genomics or comparative transcriptomics. This article reviews some of the main advances made in this field, using yeast species, and especially the species sequenced in the frame of the Genolevures program, as a model.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- Inserm UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques, Université Paris Diderot, Sorbonne Paris Cité, INTS, 6 rue Alexandre-Cabanel, 75015 Paris, France.
| | | | | |
Collapse
|
334
|
Blankenship J, Mitchell A. Candida albicans Adds More Weight to Iron Regulation. Cell Host Microbe 2011; 10:93-4. [DOI: 10.1016/j.chom.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
335
|
Lu Y, Su C, Wang A, Liu H. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 2011; 9:e1001105. [PMID: 21811397 PMCID: PMC3139633 DOI: 10.1371/journal.pbio.1001105] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/31/2011] [Indexed: 12/21/2022] Open
Abstract
Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to environmental cues. Although many regulators have been found involved in hyphal development, the mechanisms of regulating hyphal development and plasticity of dimorphism remain unclear. Here we show that hyphal development involves two sequential regulations of the promoter chromatin of hypha-specific genes. Initiation requires a rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal morphogenesis via activation of the cAMP-PKA pathway. Maintenance requires promoter recruitment of Hda1 histone deacetylase under reduced Tor1 (target of rapamycin) signaling. Hda1 deacetylates a subunit of the NuA4 histone acetyltransferase module, leading to eviction of the NuA4 acetyltransferase module and blockage of Nrg1 access to promoters of hypha-specific genes. Promoter recruitment of Hda1 for hyphal maintenance happens only during the period when Nrg1 is gone. The sequential regulation of hyphal development by the activation of the cAMP-PKA pathway and reduced Tor1 signaling provides a molecular mechanism for plasticity of dimorphism and how C. albicans adapts to the varied host environments in pathogenesis. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals during development and cell fate specification. Many organisms are able to change their phenotype in response to changes in the environment, a phenomenon referred to as plasticity. Candida albicans, a major opportunistic fungal pathogen of humans, can undergo reversible morphological changes between yeast (spherical) and hyphal (filamentous) forms of growth in response to environmental cues. This morphological plasticity is essential for its pathogenesis and survival in its hosts. In this study, we show that hyphal development is initiated and maintained by two major nutrient-sensing cellular growth pathways that act by removing the inhibition provided by the transcriptional repressor Nrg1. While initiation requires a rapid but temporary disappearance of Nrg1 via activation of the cAMP-dependent protein kinase A pathway, maintenance requires the recruitment to promoters of the Hda1 histone deacetylase under conditions of reduced signaling by the target of rapamycin (TOR) kinase, leading to chromatin remodeling that blocks Nrg1 access to the promoters of hypha-specific genes. We observed that recruitment of Hda1 to promoters happens only during the time window when Nrg1 is absent. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals in the regulation of gene expression and phenotypic plasticity during development and cell fate specification.
Collapse
Affiliation(s)
- Yang Lu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Chang Su
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Allen Wang
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
336
|
Naseem S, Gunasekera A, Araya E, Konopka JB. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism. J Biol Chem 2011; 286:28671-28680. [PMID: 21700702 DOI: 10.1074/jbc.m111.249854] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) stimulates important signaling pathways in a wide range of organisms. In the human fungal pathogen Candida albicans, GlcNAc stimulates hyphal cell morphogenesis, virulence genes, and the genes needed to catabolize GlcNAc. Previous studies on the GlcNAc transporter (NGT1) indicated that GlcNAc has to be internalized to induce signaling. Therefore, the role of GlcNAc catabolism was examined by deleting the genes required to phosphorylate, deacetylate, and deaminate GlcNAc to convert it to fructose-6-PO(4) (HXK1, NAG1, and DAC1). As expected, the mutants failed to utilize GlcNAc. Surprisingly, GlcNAc inhibited the growth of the nag1Δ and dac1Δ mutants in the presence of other sugars, suggesting that excess GlcNAc-6-PO(4) is deleterious. Interestingly, both hxk1Δ and an hxk1Δ nag1Δ dac1Δ triple mutant could be efficiently stimulated by GlcNAc to form hyphae. These mutants could also be stimulated to express GlcNAc-regulated genes. Because GlcNAc must be phosphorylated by Hxk1 to be catabolized, and also for it to enter the anabolic pathways that form chitin, N-linked glycosylation, and glycosylphosphatidylinositol anchors, the mutant phenotypes indicate that GlcNAc metabolism is not needed to induce signaling in C. albicans. Thus, these studies in C. albicans reveal a novel role for GlcNAc in cell signaling that may also regulate critical pathways in other organisms.
Collapse
Affiliation(s)
- Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222
| | - Angelo Gunasekera
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222
| | - Esteban Araya
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222.
| |
Collapse
|
337
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
338
|
Singh RP, Prasad HK, Sinha I, Agarwal N, Natarajan K. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem 2011; 286:25154-70. [PMID: 21592964 DOI: 10.1074/jbc.m111.233569] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron homeostasis is highly regulated in organisms across evolutionary time scale as iron is essential for various cellular processes. In a computational screen, we identified the Yap/bZIP domain family in Candida clade genomes. Cap2/Hap43 is essential for C. albicans growth under iron-deprivation conditions and for virulence in mouse. Cap2 has an amino-terminal bipartite domain comprising a fungal-specific Hap4-like domain and a bZIP domain. Our mutational analyses showed that both the bZIP and Hap4-like domains perform critical and independent functions for growth under iron-deprivation conditions. Transcriptome analysis conducted under iron-deprivation conditions identified about 16% of the C. albicans ORFs that were differentially regulated in a Cap2-dependent manner. Microarray data also suggested that Cap2 is required to mobilize iron through multiple mechanisms; chiefly by activation of genes in three iron uptake pathways and repression of iron utilizing and iron storage genes. The expression of HAP2, HAP32, and HAP5, core components of the HAP regulatory complex was induced in a Cap2-dependent manner indicating a feed-forward loop. In a feed-back loop, Cap2 repressed the expression of Sfu1, a negative regulator of iron uptake genes. Cap2 was coimmunoprecipitated with Hap5 from cell extracts prepared from iron-deprivation conditions indicating an in vivo association. ChIP assays demonstrated Hap32-dependent recruitment of Hap5 to the promoters of FRP1 (Cap2-induced) and ACO1 (Cap2-repressed). Together our data indicates that the Cap2-HAP complex functions both as a positive and a negative regulator to maintain iron homeostasis in C. albicans.
Collapse
Affiliation(s)
- Rana Pratap Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
339
|
Samaranayake DP, Hanes SD. Milestones in Candida albicans gene manipulation. Fungal Genet Biol 2011; 48:858-65. [PMID: 21511047 DOI: 10.1016/j.fgb.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/02/2011] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
In the United States, candidemia is one of the most common hospital-acquired infections and is estimated to cause 10,000 deaths per year. The species Candida albicans is responsible for the majority of these cases. As C. albicans is capable of developing resistance against the currently available drugs, understanding the molecular basis of drug resistance, finding new cellular targets, and further understanding the overall mechanism of C. albicans pathogenesis are important goals. To study this pathogen it is advantageous to manipulate its genome. Numerous strategies of C. albicans gene manipulation have been introduced. This review evaluates a majority of these strategies and should be a helpful guide for researchers to identify gene targeting strategies to suit their requirements.
Collapse
Affiliation(s)
- Dhanushki P Samaranayake
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA.
| | | |
Collapse
|
340
|
Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. EUKARYOTIC CELL 2011; 10:565-77. [PMID: 21357478 DOI: 10.1128/ec.00305-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polymorphic yeast Candida albicans exists in yeast and filamentous forms. Given that the morphogenetic switch coincides with the expression of many virulence factors, the yeast-to-hypha transition constitutes an attractive target for the development of new antifungal agents. Since an untapped therapeutic potential resides in small molecules that hinder C. albicans filamentation, we characterized the inhibitory effect of conjugated linoleic acid (CLA) on hyphal growth and addressed its mechanism of action. CLA inhibited hyphal growth in a dose-dependent fashion in both liquid and solid hypha-inducing media. The fatty acid blocked germ tube formation without affecting cellular growth rates. Global transcriptional profiling revealed that CLA downregulated the expression of hypha-specific genes and abrogated the induction of several regulators of hyphal growth, including TEC1, UME6, RFG1, and RAS1. However, neither UME6 nor RFG1 was necessary for CLA-mediated hyphal growth inhibition. Expression analysis showed that the downregulation of TEC1 expression levels by CLA depended on RAS1. In addition, while RAS1 transcript levels remained constant in CLA-treated cells, its protein levels declined with time. With the use of a strain expressing GFP-Ras1p, CLA treatment was also shown to affect Ras1p localization to the plasma membrane. These findings suggest that CLA inhibits hyphal growth by affecting the cellular localization of Ras1p and blocking the increase in RAS1 mRNA and protein levels. Combined, these effects should prevent the induction of the Ras1p signaling pathway. This study provides the biological and molecular explanations that underlie CLA's ability to inhibit hyphal growth in C. albicans.
Collapse
|
341
|
G1/S transcription factor orthologues Swi4p and Swi6p are important but not essential for cell proliferation and influence hyphal development in the fungal pathogen Candida albicans. EUKARYOTIC CELL 2011; 10:384-97. [PMID: 21257795 DOI: 10.1128/ec.00278-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The G(1)/S transition is a critical control point for cell proliferation and involves essential transcription complexes termed SBF and MBF in Saccharomyces cerevisiae or MBF in Schizosaccharomyces pombe. In the fungal pathogen Candida albicans, G(1)/S regulation is not clear. To gain more insight into the G(1)/S circuitry, we characterized Swi6p, Swi4p and Mbp1p, the closest orthologues of SBF (Swi6p and Swi4p) and MBF (Swi6p and Mbp1p) components in S. cerevisiae. The mbp1Δ/Δ cells showed minor growth defects, whereas swi4Δ/Δ and swi6Δ/Δ yeast cells dramatically increased in size, suggesting a G(1) phase delay. Gene set enrichment analysis (GSEA) of transcription profiles revealed that genes associated with G(1)/S phase were significantly enriched in cells lacking Swi4p and Swi6p. These expression patterns suggested that Swi4p and Swi6p have repressing as well as activating activity. Intriguingly, swi4Δ/Δ swi6Δ/Δ and swi4Δ/Δ mbp1Δ/Δ strains were viable, in contrast to the situation in S. cerevisiae, and showed pleiotropic phenotypes that included multibudded yeast, pseudohyphae, and intriguingly, true hyphae. Consistently, GSEA identified strong enrichment of genes that are normally modulated during C. albicans-host cell interactions. Since Swi4p and Swi6p influence G(1) phase progression and SBF binding sites are lacking in the C. albicans genome, these factors may contribute to MBF activity. Overall, the data suggest that the putative G(1)/S regulatory machinery of C. albicans contains novel features and underscore the existence of a relationship between G(1) phase and morphogenetic switching, including hyphal development, in the pathogen.
Collapse
|
342
|
Song W, Wang H, Chen J. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model. FEMS Yeast Res 2011; 11:209-22. [PMID: 21205158 DOI: 10.1111/j.1567-1364.2010.00710.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many transcriptional regulators play roles in morphogenesis of the human pathogen Candida albicans. Recently, Sfl2, a sequence homolog of C. albicans Sfl1, has been shown to be required for hyphal development. In this report, we show that, like Sfl1, Sfl2 could complement the phenotypes of the Saccharomyces cerevisiae sfl1 mutant, and green fluorescent protein-tagged Sfl2 localized in the nuclei of both yeast and hyphal cells in C. albicans, reflecting its role as a transcriptional regulator. In C. albicans, SFL2 expression was induced at a high growth temperature (37 °C) at both transcriptional and translational levels. The deletion of SFL2 impaired filamentation at a high temperature, whereas the overexpression of SFL2 promoted filamentous growth at a low temperature. Sfl2-activated hyphal development needs the existence of Efg1 and Flo8 under aerobic conditions. Thus, in contrast to Sfl1, which represses filamentation, Sfl2 acts as an activator of filamentous growth in C. albicans. Functional analysis of chimeric Sfl proteins demonstrated that the opposite actions of C. albicans Sfl1 and Sfl2 were mainly mediated by their heat shock factor domains. Furthermore, the deletion of SFL2 attenuated virulence in a mouse model of gastrointestinal colonization and dissemination, indicating that Sfl2 is important for virulence in the gastrointestinal model of candidiasis. Our results provide new insights into Sfl2 functions in C. albicans morphogenesis and pathogenesis.
Collapse
Affiliation(s)
- Wenji Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
343
|
Tscherner M, Schwarzmüller T, Kuchler K. Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen Candida glabrata. Pharmaceuticals (Basel) 2011. [PMCID: PMC4052548 DOI: 10.3390/ph4010169] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida glabrata is a major opportunistic human fungal pathogen causing superficial as well as systemic infections in immunocompromised individuals and several other patient cohorts. C. glabrata represents the second most prevalent cause of candidemia and a better understanding of its virulence and drug resistance mechanisms is thus of high medical relevance. In contrast to the diploid dimorphic pathogen C. albicans, whose ability to undergo filamentation is considered a major virulence trait, C. glabrata has a haploid genome and lacks the ability to switch to filamentous growth. A major impediment for the clinical therapy of C. glabrata infections is its high intrinsic resistance to several antifungal drugs, especially azoles. Further, the development of antifungal resistance, particularly during prolonged and prophylactic therapies is diminishing efficacies of therapeutic interventions. In addition, C. glabrata harbors a large repertoire of adhesins involved in the adherence to host epithelia. Interestingly, genome plasticity, phenotypic switching or the remarkable ability to persist and survive inside host immune cells further contribute to the pathogenicity of C. glabrata. In this comprehensive review, we want to emphasize and discuss the mechanisms underlying virulence and drug resistance of C. glabrata, and discuss its ability to escape from the host immune surveillance or persist inside host cells.
Collapse
Affiliation(s)
| | | | - Karl Kuchler
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-1-4277-61807; Fax: +43-1-4277-9618
| |
Collapse
|
344
|
Xu T, Bharucha N, Kumar A. Genome-wide transposon mutagenesis in Saccharomyces cerevisiae and Candida albicans. Methods Mol Biol 2011; 765:207-24. [PMID: 21815095 DOI: 10.1007/978-1-61779-197-0_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds.
Collapse
Affiliation(s)
- Tao Xu
- Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
345
|
Askew C, Sellam A, Epp E, Mallick J, Hogues H, Mullick A, Nantel A, Whiteway M. The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion. Mol Microbiol 2010; 79:940-53. [PMID: 21299649 DOI: 10.1111/j.1365-2958.2010.07504.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biofilm development by Candida albicans requires cell adhesion for the initial establishment of the biofilm and the continued stability after hyphal development occurs; however, the regulation of the process has not been fully established. Using chromatin immunoprecipitation coupled to microarray analysis (ChIP-chip) we have characterized a regulon containing the Mcm1p factor that is required for the initial surface adhesion during biofilm formation. In the yeast Saccharomyces cerevisiae several Mcm1p regulons have been characterized in which regulatory specificity is achieved through cofactors binding a sequence adjacent to the Mcm1p binding site. This new Mcm1p regulon in C. albicans also requires a cofactor, which we identify as the transcription factor Ahr1p. However, in contrast to the other yeast regulons, Ahr1p alone binds the target promoters, which include several key adhesion genes, and recruits Mcm1p to these sites. Through transcription profiling and qPCR analysis, we demonstrate that this Ahr1p-Mcm1p complex directly activates these adhesion genes. When the regulatory circuit was disrupted by deleting AHR1, the strain displayed reduced adherence to a polystyrene surface. We also demonstrate a role for the regulon in hyphal growth and in virulence. Our work thus establishes a new mechanism of Mcm1p-directed regulation distinct from those observed for other Mcm1p co-regulators.
Collapse
Affiliation(s)
- Christopher Askew
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada H4P 2R2
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. EUKARYOTIC CELL 2010; 10:207-25. [PMID: 21131439 DOI: 10.1128/ec.00158-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities.
Collapse
|
347
|
Linde J, Wilson D, Hube B, Guthke R. Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC SYSTEMS BIOLOGY 2010; 4:148. [PMID: 21050438 PMCID: PMC3225834 DOI: 10.1186/1752-0509-4-148] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/04/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of an organism faced with environmental changes, but can prove problematic, especially when focusing on complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will extend our knowledge of the complex regulatory changes during the infection process and might identify new potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of iron acquisition genes during the infection process. RESULTS This study deals with the regulation of C. albicans iron uptake genes during adhesion to and invasion into human oral epithelial cells. A reverse engineering strategy is presented, which is able to infer regulatory networks on the basis of gene expression data, making use of relevant selection criteria such as sparseness and robustness. An exhaustive use of available knowledge from different data sources improved the network prediction. The predicted regulatory network proposes a number of new target genes for the transcriptional regulators Rim101, Hap3, Sef1 and Tup1. Furthermore, the molecular mode of action for Tup1 is clarified. Finally, regulatory interactions between the transcription factors themselves are proposed. This study presents a model describing how C. albicans may regulate iron acquisition during contact with and invasion of human oral epithelial cells. There is evidence that some of the proposed regulatory interactions might also occur during oral infection. CONCLUSIONS This study focuses on a typical problem in Systems Biology where an interesting biological phenomenon is studied using a small number of available experimental data points. To overcome this limitation, a special modelling strategy was used which identifies sparse and robust networks. The data is augmented by an exhaustive search for additional data sources, helping to make proposals on regulatory interactions and to guide the modelling approach. The proposed modelling strategy is capable of finding known regulatory interactions and predicts a number of yet unknown biologically relevant regulatory interactions.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology/Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Duncan Wilson
- Department Microbial Pathogenicity Mechanisms, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology/Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
348
|
Lelandais G, Devaux F. Comparative Functional Genomics of Stress Responses in Yeasts. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:501-15. [DOI: 10.1089/omi.2010.0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM UMR-S 665, Université Paris Diderot, Paris France
| | - Frédéric Devaux
- Laboratoire de génomique des microorganismes, CNRS FRE3214, Université Pierre et Marie Curie, Institut des Cordeliers, Paris, France
| |
Collapse
|
349
|
LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AAL, Perfect JR, Cowen LE. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 2010; 6:e1001069. [PMID: 20865172 PMCID: PMC2928802 DOI: 10.1371/journal.ppat.1001069] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/26/2010] [Indexed: 11/25/2022] Open
Abstract
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections. Treating fungal infections is challenging due to the emergence of drug resistance and the limited number of clinically useful antifungal drugs. We screened a library of 1,280 pharmacologically active compounds to identify those that reverse resistance of the leading human fungal pathogen, Candida albicans, to the most widely used antifungals, the azoles. This revealed a new role for protein kinase C (PKC) signaling in resistance to drugs targeting the cell membrane, including azoles, allylamines, and morpholines. We dissected mechanisms through which PKC regulates resistance in C. albicans and the model yeast Saccharomyces cerevisiae. PKC enabled survival of cell membrane stress at least in part through the mitogen-activated protein kinase (MAPK) cascade in both species. In S. cerevisiae, inhibition of PKC signaling blocked activation of a key regulator of membrane stress responses, calcineurin. In C. albicans, Pkc1 and calcineurin independently regulate resistance via a common target. Deletion of C. albicans PKC1 rendered fungistatic drugs fungicidal and reduced virulence in a mouse model. The molecular chaperone Hsp90, which stabilizes client proteins including calcineurin, also stabilized the terminal C. albicans MAPK, Mkc1. We establish new circuitry connecting PKC with Hsp90 and calcineurin and suggest a promising strategy for treating life-threatening fungal infections.
Collapse
Affiliation(s)
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aimee K. Zaas
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wiley A. Schell
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marisol Betancourt-Quiroz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - A. A. Leslie Gunatilaka
- SW Center for Natural Products Research & Commercialization, Office of Arid Lands Studies, The University of Arizona, Tucson, Arizona, United States of America
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
350
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|