301
|
Sattar A, Khan A, Hussain HI, He C, Hussain R, Zhiqiang S, Saleemi MK, Gul ST. Immunosuppressive effects of arsenic in broiler chicks exposed to Newcastle disease virus. J Immunotoxicol 2016; 13:861-869. [DOI: 10.1080/1547691x.2016.1217105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Adeel Sattar
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Ahrar Khan
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, Beijing Agricultural University, Beijing, China
| | - Riaz Hussain
- University College of Veterinary and Animal Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shen Zhiqiang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Shandong, China
| | | | - Shafia Tehseen Gul
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
302
|
Cui J, Huang D, Zheng Y. Ameliorative effects of α-lipoic acid on high-fat diet-induced oxidative stress and glucose uptake impairment of T cells. Free Radic Res 2016; 50:1106-1115. [DOI: 10.1080/10715762.2016.1210140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jue Cui
- College of Food Engineering, Xuzhou Institute of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou Institute of Technology, Xuzhou, China
| | - Dejian Huang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore
| | - Yi Zheng
- College of Food Engineering, Xuzhou Institute of Technology, Xuzhou, China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou Institute of Technology, Xuzhou, China
| |
Collapse
|
303
|
Deslyper G, Colgan TJ, Cooper AJR, Holland CV, Carolan JC. A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model. PLoS Negl Trop Dis 2016; 10:e0004837. [PMID: 27490109 PMCID: PMC4974003 DOI: 10.1371/journal.pntd.0004837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode's ability to successfully sustain a parasitic association with its resistant host. Under infection, both strains had increased abundances in proteins associated with the oxidative phosphorylation pathway, as well as the tricarboxylic acid cycle, with respect to their controls, indicating a general stress response to Ascaris infection. Despite the early stage of infection, some immune-associated proteins were identified to be differentially abundant, providing a novel insight into the host response to Ascaris. In general, the susceptible C57BL/6J mice displayed higher abundances in immune-associated proteins, most likely signifying a more active nematode cohort with respect to their CBA/Ca counterparts. The complement component C8a and S100 proteins, S100a8 and S100a9, were highly differentially abundant in both infected strains, signifying a potential innate immune response and the importance of the complement pathway in defence against macroparasite infection. In addition, the signatures of an early adaptive immune response were observed through the presence of proteins, such as plastin-2 and dipeptidyl peptidase 1. A marked decrease in proteins associated with translation was also observed in both C57BL/6J and CBA/Ca mice under infection, indicative of either a general response to Ascaris or a modulatory effect by the nematode itself. Our research provides novel insights into the in vivo host-Ascaris relationship on the molecular level and provides new research perspectives in the development of Ascaris control and treatment strategies.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Thomas J. Colgan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Andrew J. R. Cooper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
304
|
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J, Bazhin AV. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J Cell Physiol 2016; 231:2570-81. [PMID: 26895995 DOI: 10.1002/jcp.25349] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Werner Hartwig
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Pavel P Philippov
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
305
|
Ertl NG, O’Connor WA, Papanicolaou A, Wiegand AN, Elizur A. Transcriptome Analysis of the Sydney Rock Oyster, Saccostrea glomerata: Insights into Molluscan Immunity. PLoS One 2016; 11:e0156649. [PMID: 27258386 PMCID: PMC4892480 DOI: 10.1371/journal.pone.0156649] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oysters have important ecological functions in their natural environment, acting as global carbon sinks and improving water quality by removing excess nutrients from the water column. During their life-time oysters are exposed to a variety of pathogens that can cause severe mortality in a range of oyster species. Environmental stressors encountered in their habitat can increase the susceptibility of oysters to these pathogens and in general have been shown to impact on oyster immunity, making immune parameters expressed in these marine animals an important research topic. RESULTS Paired-end Illumina high throughput sequencing of six S. glomerata tissues exposed to different environmental stressors resulted in a total of 484,121,702 paired-end reads. When reads and assembled transcripts were compared to the C. gigas genome, an overall low level of similarity at the nucleotide level, but a relatively high similarity at the protein level was observed. Examination of the tissue expression pattern showed that some transcripts coding for cathepsins, heat shock proteins and antioxidant proteins were exclusively expressed in the haemolymph of S. glomerata, suggesting a role in innate immunity. Furthermore, analysis of the S. glomerata ORFs showed a wide range of genes potentially involved in innate immunity, from pattern recognition receptors, components of the Toll-like signalling and apoptosis pathways to a complex antioxidant defence mechanism. CONCLUSIONS This is the first large scale RNA-Seq study carried out in S. glomerata, showing the complex network of innate immune components that exist in this species. The results confirmed that many of the innate immune system components observed in mammals are also conserved in oysters; however, some, such as the TLR adaptors MAL, TRIF and TRAM are either missing or have been modified significantly. The components identified in this study could help explain the oysters' natural resilience against pathogenic microorganisms encountered in their natural environment.
Collapse
Affiliation(s)
- Nicole G. Ertl
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Australian Seafood Cooperative Research Centre, Bedford Park, South Australia, Australia
| | - Wayne A. O’Connor
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Primary Industries, Taylors Beach, New South Wales, Australia
| | - Alexie Papanicolaou
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ecosystem Sciences, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
| | - Aaron N. Wiegand
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Abigail Elizur
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
306
|
Frawley RP, Smith MJ, White KL, Elmore SA, Herbert R, Moore R, Staska LM, Behl M, Hooth MJ, Kissling GE, Germolec DR. Immunotoxic effects of sodium tungstate dihydrate on female B6C3F1/N mice when administered in drinking water. J Immunotoxicol 2016; 13:666-75. [PMID: 27223060 DOI: 10.3109/1547691x.2016.1154118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tungsten is a naturally occurring, high-tensile strength element that has been used in a number of consumer products. Tungsten has been detected in soil, waterways, groundwater, and human tissue and body fluids. Elevated levels of tungsten in urine were reported for populations exposed to tungstate in drinking water in areas where natural tungsten formations were prevalent. Published reports indicated that sodium tungstate may modulate hematopoiesis, immune cell populations, and immune responses in rodent models. The objective of this study was to assess potential immunotoxicity of sodium tungstate dihydrate (STD), a drinking water contaminant. Female B6C3F1/N mice received 0-2000 mg STD/L in their drinking water for 28 d, and were evaluated for effects on immune cell populations in spleen and bone marrow, and humoral-mediated, cell-mediated, and innate immunity. Three different parameters of cell-mediated immunity were similarly affected at 1000 mg STD/L. T-cell proliferative responses against allogeneic leukocytes and anti-CD3 were decreased 32%, and 21%, respectively. Cytotoxic T-lymphocyte activity was decreased at all effector:target cell ratios examined. At 2000 mg STD/L, the absolute numbers of CD3(+) T-cell progenitor cells in bone marrow were increased 86%, but the alterations in B-lymphocyte and other progenitor cells were not significant. There were no effects on bone marrow DNA synthesis or colony forming capabilities. STD-induced effects on humoral-mediated immunity, innate immunity, and splenocyte sub-populations were limited. Enhanced histopathology did not detect treatment-related lesions in any of the immune tissues. These data suggest exposure to STD in drinking water may adversely affect cell-mediated immunity.
Collapse
Affiliation(s)
- Rachel P Frawley
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Matthew J Smith
- b Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , VA
| | - Kimber L White
- b Department of Pharmacology and Toxicology , Virginia Commonwealth University , Richmond , VA
| | - Susan A Elmore
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Ron Herbert
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Rebecca Moore
- c Experimental Pathology Laboratories Inc., Research Triangle Park , NC , USA
| | | | - Mamta Behl
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Michelle J Hooth
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| | - Grace E Kissling
- e Division of Intramural Research , NIEHS, Research Triangle Park , NC , USA
| | - Dori R Germolec
- a Division of the National Toxicology Program , National Institute of Environmental Health Sciences (NIEHS) Research Triangle Park , NC , USA
| |
Collapse
|
307
|
Quantitative Assessment of the Effects of Oxidants on Antigen-Antibody Binding In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1480463. [PMID: 27313823 PMCID: PMC4894985 DOI: 10.1155/2016/1480463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/04/2016] [Accepted: 04/28/2016] [Indexed: 01/11/2023]
Abstract
Objective. We quantitatively assessed the influence of oxidants on antigen-antibody-binding activity. Methods. We used several immunological detection methods, including precipitation reactions, agglutination reactions, and enzyme immunoassays, to determine antibody activity. The oxidation-reduction potential was measured in order to determine total serum antioxidant capacity. Results. Certain concentrations of oxidants resulted in significant inhibition of antibody activity but had little influence on total serum antioxidant capacity. Conclusions. Oxidants had a significant influence on interactions between antigen and antibody, but minimal effect on the peptide of the antibody molecule.
Collapse
|
308
|
The Analgesic Effect of the Mitochondria-Targeted Antioxidant SkQ1 in Pancreatic Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4650489. [PMID: 27274778 PMCID: PMC4870369 DOI: 10.1155/2016/4650489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Background. Chronic pancreatitis is one of the main risk factors for pancreatic cancer. In acute and chronic pancreatitis, oxidative stress is thought to play a key role. In this respect, the recently described mitochondria-targeted antioxidant SkQ1 effectively scavenges reactive oxygen species at nanomolar concentrations. Therefore, we aimed to characterize the influence of SkQ1 on tissue injury and pain in acute and chronic pancreatitis. Methods. Both acute and chronic pancreatitis were induced in C57BL/6 mice by intraperitoneal cerulein injections and treatment with SkQ1 was carried out by peroral applications. Hyperalgesia was assessed by behavioral observation and measurement of abdominal mechanical sensitivity. Blood serum and pancreatic tissue were harvested for analysis of lipase and histology. Results. SkQ1 did not influence pain, serological, or histological parameters of tissue injury in acute pancreatitis. In chronic pancreatitis, a highly significant reduction of pain-related behavior (p < 0.0001) was evident, but histological grading revealed increased tissue injury in SkQ1-treated animals (p = 0.03). Conclusion. After SkQ1 treatment, tissue injury is not ameliorated in acute pancreatitis and increased in chronic pancreatitis. However, we show an analgesic effect in chronic pancreatitis. Further studies will need to elucidate the risks and benefits of mitochondria-targeted antioxidants as an analgesic.
Collapse
|
309
|
Zhou G, Meng S, Li Y, Ghebre YT, Cooke JP. Optimal ROS Signaling Is Critical for Nuclear Reprogramming. Cell Rep 2016; 15:919-925. [PMID: 27117405 DOI: 10.1016/j.celrep.2016.03.084] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 11/03/2015] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS) signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox)-inducible mouse embryonic fibroblasts (MEFs) carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM]) into induced pluripotent stem cells (iPSCs). ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22(phox)-a critical subunit of the Nox (1-4) complex-decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Shu Meng
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Yanhui Li
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Yohannes T Ghebre
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Avenue, Houston, TX 77030, USA.
| |
Collapse
|
310
|
Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci 2016; 10:98. [PMID: 27147970 PMCID: PMC4829593 DOI: 10.3389/fncel.2016.00098] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | | | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
311
|
Chainy GBN, Paital B, Dandapat J. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species. SCIENTIFICA 2016; 2016:6126570. [PMID: 27127682 PMCID: PMC4834391 DOI: 10.1155/2016/6126570] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/05/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons.
Collapse
Affiliation(s)
| | - Biswaranjan Paital
- Department of Zoology, College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Jagneswar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| |
Collapse
|
312
|
Bazhin AV, Yang Y, D'Haese JG, Werner J, Philippov PP, Karakhanova S. The novel mitochondria-targeted antioxidant SkQ1 modulates angiogenesis and inflammatory micromilieu in a murine orthotopic model of pancreatic cancer. Int J Cancer 2016; 139:130-9. [DOI: 10.1002/ijc.30054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Alexandr V. Bazhin
- Department of General; Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich; LMU Munich Germany
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Jan G. D'Haese
- Department of General; Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich; LMU Munich Germany
| | - Jens Werner
- Department of General; Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich; LMU Munich Germany
| | - Pavel P. Philippov
- Department of Cell Signalling; Belozersky Institute of Physico-Chemical Biology, Moscow State University; Moscow Russia
| | | |
Collapse
|
313
|
Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: A study using high performance thin-layer chromatographyelectrospray ionization mass spectrometry. J Chromatogr A 2016; 1439:89-96. [DOI: 10.1016/j.chroma.2015.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/08/2015] [Accepted: 11/17/2015] [Indexed: 01/14/2023]
|
314
|
Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol 2016; 26:249-261. [PMID: 26791157 DOI: 10.1016/j.tcb.2015.12.002] [Citation(s) in RCA: 685] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF) is tremendously important for mammalian immunity and cellular homeostasis. The role of TNF as a master regulator in balancing cell survival, apoptosis and necroptosis has been extensively studied in various cell types and tissues. Although these findings have revealed much about the direct impact of TNF on the regulation of NF-κB and JNK, there is now rising interest in understanding the emerging function of TNF as a regulator of the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review we summarize work aimed at defining the role of TNF in the control of ROS/RNS signaling that influences innate immune cells under both physiological and inflammatory conditions.
Collapse
Affiliation(s)
- Heiko Blaser
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Tak W Mak
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
315
|
Yu M, Xie D, Phan KP, Enriquez JS, Luci JJ, Que EL. A CoII complex for 19F MRI-based detection of reactive oxygen species. Chem Commun (Camb) 2016; 52:13885-13888. [DOI: 10.1039/c6cc08207f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A fluorinated, cobalt(ii)-based 19F MRI imaging agent switches from a paramagnetic high spin CoII state to a diamagnetic low spin CoIII state following oxidation by H2O2 and other reactive oxygen species, resulting in a turn-on response via both 19F NMR and MRI.
Collapse
Affiliation(s)
- Meng Yu
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Da Xie
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Khanh P. Phan
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - José S. Enriquez
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Jeffrey J. Luci
- Department of Neuroscience
- The University of Texas at Austin
- Austin
- USA
- Imaging Research Center
| | - Emily L. Que
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
316
|
Chiurchiù V, Orlacchio A, Maccarrone M. Is Modulation of Oxidative Stress an Answer? The State of the Art of Redox Therapeutic Actions in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7909380. [PMID: 26881039 PMCID: PMC4736210 DOI: 10.1155/2016/7909380] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/18/2015] [Indexed: 12/11/2022]
Abstract
The central nervous system is particularly sensitive to oxidative stress due to many reasons, including its high oxygen consumption even under basal conditions, high production of reactive oxygen and nitrogen species from specific neurochemical reactions, and the increased deposition of metal ions in the brain with aging. For this reason, along with inflammation, oxidative stress seems to be one of the main inducers of neurodegeneration, causing excitotoxicity, neuronal loss, and axonal damage, ultimately being now considered a key element in the onset and progression of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and hereditary spastic paraplegia. Thus, the present paper reviews the role of oxidative stress and of its mechanistic insights underlying the pathogenesis of these neurodegenerative diseases, with particular focus on current studies on its modulation as a potential and promising therapeutic strategy.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC), Laboratory of Neurochemistry of Lipids, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Antonio Orlacchio
- European Center for Brain Research (CERC), Laboratory of Neurogenetics, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of System Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Mauro Maccarrone
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC), Laboratory of Neurochemistry of Lipids, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
317
|
Comparative Immunogenicity in Rabbits of the Polypeptides Encoded by the 5' Terminus of Hepatitis C Virus RNA. J Immunol Res 2015; 2015:762426. [PMID: 26609538 PMCID: PMC4644844 DOI: 10.1155/2015/762426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/29/2015] [Indexed: 12/26/2022] Open
Abstract
Recent studies on the primate protection from HCV infection stressed the importance of immune response against structural viral proteins. Strong immune response against nucleocapsid (core) protein was difficult to achieve, requesting further experimentation in large animals. Here, we analyzed the immunogenicity of core aa 1–173, 1–152, and 147–191 and of its main alternative reading frame product F-protein in rabbits. Core aa 147–191 was synthesized; other polypeptides were obtained by expression in E. coli. Rabbits were immunized by polypeptide primes followed by multiple boosts and screened for specific anti-protein and anti-peptide antibodies. Antibody titers to core aa 147–191 reached 105; core aa 1–152, 5 × 105; core aa 1–173 and F-protein, 106. Strong immunogenicity of the last two proteins indicated that they may compete for the induction of immune response. The C-terminally truncated core was also weakly immunogenic on the T-cell level. To enhance core-specific cellular response, we immunized rabbits with the core aa 1–152 gene forbidding F-protein formation. Repeated DNA immunization induced a weak antibody and sustained proliferative response of broad specificity confirming a gain of cellular immunogenicity. Epitopes recognized in rabbits overlapped those in HCV infection. Our data promotes the use of rabbits for the immunogenicity tests of prototype HCV vaccines.
Collapse
|
318
|
YOO SEUNGHEE, KIM HYEYOUNG, RHO JEEHYUN, JEONG SEONYONG, YUN JEANHO, YUN IL, PARK HWANTAE, YOO YOUNGHYUN. Targeted inhibition of mitochondrial Hsp90 induces mitochondrial elongation in Hep3B hepatocellular carcinoma cells undergoing apoptosis by increasing the ROS level. Int J Oncol 2015; 47:1783-92. [DOI: 10.3892/ijo.2015.3150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 11/06/2022] Open
|
319
|
Codorniu-Hernández E, Hall KW, Boese AD, Ziemianowicz D, Carpendale S, Kusalik PG. Mechanism of O(3P) Formation from a Hydroxyl Radical Pair in Aqueous Solution. J Chem Theory Comput 2015; 11:4740-8. [DOI: 10.1021/acs.jctc.5b00783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - A. Daniel Boese
- Department
of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria
- Department
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | | | | | | |
Collapse
|
320
|
Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med 2015; 2:29. [PMID: 26664900 PMCID: PMC4671344 DOI: 10.3389/fcvm.2015.00029] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key feature of the atherothrombotic process involved in the etiology of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason that antioxidants represent a credible therapeutic option to prevent disease progression and thereby improve outcome, but despite positive findings from in vitro studies, clinical trials have failed to consistently show benefit. The aim of this review is to re-appraise the concept of antioxidants in the prevention and management of cardiovascular disease. In particular, the review will explore the reasons behind failed antioxidant strategies with vitamin supplements and will evaluate how flavonoids might improve cardiovascular function despite bioavailability that is not sufficiently high to directly influence antioxidant capacity. As well as reaching conclusions relating to those antioxidant strategies that might hold merit, the major myths, limitations, and pitfalls associated with this research field are explored.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; James Hutton Institute , Dundee , UK
| | - Sherine J Deakin
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| | - Garry G Duthie
- Rowett Institute of Health and Nutrition , Aberdeen , UK
| | - Derek Stewart
- James Hutton Institute , Dundee , UK ; School of Life Sciences, Heriot Watt University , Edinburgh , UK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; Cardiology Unit, Raigmore Hospital , Inverness , UK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| |
Collapse
|
321
|
Large M, Hehlgans S, Reichert S, Gaipl US, Fournier C, Rödel C, Weiss C, Rödel F. Study of the anti-inflammatory effects of low-dose radiation: The contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol 2015; 191:742-9. [PMID: 26051282 DOI: 10.1007/s00066-015-0848-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND We examined (a) the expression of the antioxidative factor glutathione peroxidase (GPx) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) following low-dose X-irradiation in endothelial cells (ECs) and (b) the impact of reactive oxygen species (ROS) and Nrf2 on functional properties of ECs to gain further knowledge about the anti-inflammatory mode of action of low doses of ionizing radiation. MATERIAL AND METHODS EA.hy926 ECs and primary human dermal microvascular ECs (HMVEC) were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with single doses ranging from 0.3 to 3 Gy. The expression and activity of GPx and Nrf2 were analyzed by flow cytometry, colorimetric assays, and real-time PCR. The impact of ROS and Nrf2 on peripheral blood mononuclear cell (PBMC) adhesion was assayed in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2 activator AI-1. RESULTS Following a low-dose exposure, we observed in EA.hy926 EC and HMVECs a discontinuous expression and enzymatic activity of GPx concomitant with a lowered expression and DNA binding activity of Nrf2 that was most pronounced at a dose of 0.5 Gy. Scavenging of ROS by NAC and activation of Nrf2 by AI-1 significantly diminished a lowered adhesion of PBMC to EC at a dose of 0.5 Gy. CONCLUSION Low-dose irradiation resulted in a nonlinear expression and activity of major compounds of the antioxidative system that might contribute to anti-inflammatory effects in stimulated ECs.
Collapse
Affiliation(s)
- Martin Large
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
322
|
Vera S, Martínez R, Gormaz JG, Gajardo A, Galleguillos F, Rodrigo R. Novel relationships between oxidative stress and angiogenesis-related factors in sepsis: New biomarkers and therapies. Ann Med 2015; 47:289-300. [PMID: 25998489 DOI: 10.3109/07853890.2015.1029967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a systemic uncontrolled inflammatory response in the presence of an infection. It remains a major cause of morbidity and mortality in hospitalized patients. According to its severity, sepsis can progress to three different states: severe sepsis, septic shock, and multiple organ dysfunction syndrome, related to organ dysfunction and/or tissue hypoperfusion. Different processes underlie its pathophysiology; among them are oxidative stress, endothelial and mitochondrial dysfunction, and angiogenesis-related factors. However, no studies have integrated these elements in sepsis. The main difficulty in sepsis is its diagnosis. Currently, the potential of inflammatory biomarkers in septic patients remains weak. In this context, the research into new biomarkers is essential to aid with sepsis diagnosis and prognostication. Furthermore, even though the current management of severe forms of sepsis has been effective, morbimortality remains elevated. Therefore, it is essential to explore alternative approaches to therapy development. The aim of this review is to present an update of evidence supporting the role of oxidative stress and angiogenesis-related factors in the pathophysiology of the different forms of sepsis. It proposes a novel convergence between both elements in their role in the disease, and it will cover their utility as new diagnostic tools, predictors of outcome, and as novel therapeutic targets.
Collapse
Affiliation(s)
- Sergio Vera
- Laboratory of Oxidative Stress and Nephrotoxicity, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | | | | | | | | | | |
Collapse
|
323
|
Chen Y, Zhang J, Huang X, Zhang J, Zhou X, Hu J, Li G, He S, Xing J. High leukocyte mitochondrial DNA content contributes to poor prognosis in glioma patients through its immunosuppressive effect. Br J Cancer 2015; 113:99-106. [PMID: 26022928 PMCID: PMC4647544 DOI: 10.1038/bjc.2015.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Epidemiological studies have indicated significant associations of leukocyte mitochondrial DNA (mtDNA) copy number with risk of several malignancies, including glioma. However, whether mtDNA content can predict the clinical outcome of glioma patients has not been investigated. Methods: The mtDNA content of peripheral blood leukocytes from 336 glioma patients was examined using a real-time PCR-based method. Kaplan–Meier curves and Cox proportional hazards regression model were used to examine the association of mtDNA content with overall survival (OS) and progression-free survival (PFS) of patients. To explore the potential mechanism, the immune phenotypes of peripheral blood mononuclear cells (PBMCs) and plasma concentrations of several cytokines from another 20 glioma patients were detected by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Results: Patients with high mtDNA content showed both poorer OS and PFS than those with low mtDNA content. Multivariate Cox regression analysis demonstrated that mtDNA content was an independent prognostic factor for both OS and PFS. Stratified analyses showed that high mtDNA content was significantly associated with poor prognosis of patients with younger age, high-grade glioma or adjuvant radiochemotherapy. Immunological analysis indicated that patients with high mtDNA content had significantly lower frequency of natural killer cells in PBMCs and higher plasma concentrations of interleukin-2 and tumour necrosis factor-α, suggesting an immunosuppression-related mechanism involved in mtDNA-mediated prognosis. Conclusions: Our study for the first time demonstrated that leukocyte mtDNA content could serve as an independent prognostic marker and an indicator of immune functions in glioma patients.
Collapse
Affiliation(s)
- Y Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, China
| | - J Zhang
- Department of Oncology, The First affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - X Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, China
| | - J Zhang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, China
| | - X Zhou
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, China
| | - J Hu
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, China
| | - G Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - S He
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - J Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
324
|
Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:654594. [PMID: 26078812 PMCID: PMC4452864 DOI: 10.1155/2015/654594] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies.
Collapse
|
325
|
Wei K, Yang J. Oxidative damage of hepatopancreas induced by pollution depresses humoral immunity response in the freshwater crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2015; 43:510-519. [PMID: 25655324 DOI: 10.1016/j.fsi.2015.01.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/12/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Previous studies provide evidences for the possible oxidative damage of toxic environmental pollutants to tissue protein in fish and amphibian, but little information is available about their effects on immunity response in crustacean. In the present study, we evaluated the relationship between oxidative damage and immune response induced by both typical pollutants (viz. copper and beta-cypermethrin), by exposing the freshwater Procambarus clarkii to sub-lethal concentrations (1/40, 1/20, 1/10 and 1/5 of the 96 h LC50) up to 96 h. Five biomarkers of oxidative stress, i.e. reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and protein carbonyl in hepatopancreas, and two immune factors, i.e. phenoloxidase (PO) and hemocyanin in haemolymph were determined. The results indicated that there was a significant increase (P < 0.05) in the contents of ROS, MDA and protein carbonyl accompanied by markedly decreased (P < 0.05) PO and hemocyanin levels in a dose and time dependent manner. The significant and positive correlation (P < 0.01) between protein carbonyls induction and MDA formation was observed in crayfish hepatopancreas at 96 h. The production of these protein carbonyls could significantly depress (P < 0.01) the levels of phenoloxidase and hemocyanin in hemolymph. Higher contents of ROS enhanced the risk of lipid peroxidation, protein carbonylation and immunosuppression of crayfish, and hepatopancreas might play an important role in immune system of crustaceans. Protein oxidation may be one of the main mechanisms for pollution-induced immunotoxicity in P. clarkii.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China.
| | - Junxian Yang
- School of Economics and Management, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
326
|
Qu F, Chen Y, Wang X, He X, Ren T, Huang Q, Zhang J, Liu X, Guo X, Gu J, Xing J. Leukocyte mitochondrial DNA content: a novel biomarker associated with prognosis and therapeutic outcome in colorectal cancer. Carcinogenesis 2015; 36:543-52. [PMID: 25823896 DOI: 10.1093/carcin/bgv042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Compelling evidence has indicated a significant association between leukocyte mitochondrial DNA (mtDNA) content and incidence risks of several malignancies in a cancer-specific manner. However, to date, whether leukocyte mtDNA content can predict clinical outcome of cancer patients has never been investigated. In the present study, we measured leukocyte mtDNA content using real-time PCR-based method in a total of 598 colorectal cancer (CRC) patients and explored its prognostic values. To explore potential mechanism, we detected the immunophenotypes of peripheral blood mononuclear cells and plasma concentrations of several cytokines in CRC patients. We found that patients with high mtDNA content showed significantly worse overall survival (OS) and relapse-free survival (RFS) than those with low mtDNA content in all patient sets. Furthermore, mtDNA content and tumor node metastasis (TNM) stage exhibited a notable joint effect in prognosis prediction. Integration of TNM stage and leukocyte mtDNA content significantly improved the prognosis prediction efficacy for CRC. Importantly, patients with high mtDNA content showed OS and RFS benefits from adjuvant chemotherapy. In addition, we found that patients with high mtDNA content had a higher frequency of CD4(+)CD25(+)FOXP3(+) regulatory T cells, higher plasma interleukin-2 and transforming growth factor-β1 and lower tumor necrosis factor-α concentration than those with low mtDNA content, suggesting a stronger immunosuppressive phenotype. In conclusion, our study for the first time demonstrates that leukocyte mtDNA content is an independent prognostic marker complementing TNM stage and associated with immunosuppression in CRC patients. Additionally, leukocyte mtDNA content might serve as a potential biomarker to select CRC patients who will benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Falin Qu
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Department of General Surgery, Tangdu Hospital and
| | - Yibing Chen
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine
| | - Xin Wang
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine
| | - Xianli He
- Department of General Surgery, Tangdu Hospital and
| | - Tingting Ren
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine
| | - Qichao Huang
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine
| | - Jing Zhang
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine
| | - Xiaonan Liu
- Xijing Hospital of Digestive Disease, The Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, China and
| | - Xu Guo
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine
| | - Jian Gu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine,
| |
Collapse
|
327
|
Kubat NJ, Moffett J, Fray LM. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. J Inflamm Res 2015; 8:59-69. [PMID: 25759595 PMCID: PMC4346366 DOI: 10.2147/jir.s78631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a complex process involving distinct but overlapping biochemical and molecular events that are highly regulated. Pulsed electromagnetic field (PEMF) therapy is increasingly used to treat pain and edema associated with inflammation following surgery involving soft tissue. However, the molecular and cellular effects of PEMF therapy on pathways involved in the resolution of inflammation are poorly understood. Using cell culture lines relevant to trauma-induced inflammation of the skin (human dermal fibroblasts, human epidermal keratinocytes, and human mononuclear cells), we investigated the effect of PEMF on gene expression involved in the acute and resolution phases of inflammation. We found that PEMF treatment was followed by changes in the relative amount of messenger (m)RNAs encoding enzymes involved in heme catabolism and removal of reactive oxygen species, including an increase in heme oxygenase 1 and superoxide dismutase 3 mRNAs, in all cell types examined 2 hours after PEMF treatment. A relative increase in mRNAs encoding enzymes involved in lipid mediator biosynthesis was also observed, including an increase in arachidonate 12- and 15-lipoxygenase mRNAs in dermal fibroblasts and epidermal keratinocytes, respectively. The relative amount of both of these lipoxygenase mRNAs was elevated in mononuclear cells following PEMF treatment relative to nontreated cells. PEMF treatment was also followed by changes in the mRNA levels of several cytokines. A decrease in the relative amount of interleukin 1 beta mRNA was observed in mononuclear cells, similar to that previously reported for epidermal keratinocytes and dermal fibroblasts. Based on our results, we propose a model in which PEMF therapy may promote chronic inflammation resolution by mediating gene expression changes important for inhibiting and resolving inflammation.
Collapse
Affiliation(s)
| | - John Moffett
- Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA
| | - Linley M Fray
- Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA
| |
Collapse
|
328
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
329
|
Muhammad F, Qi W, Wang A, Gu J, Du J, Zhu G. Using oxidant susceptibility of thiol stabilized nanoparticles to develop an inflammation triggered drug release system. J Mater Chem B 2015; 3:1597-1604. [DOI: 10.1039/c4tb01709a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ultrasmall thiol passivated ZnS NPs are prepared using a newly developed synthetic protocol. Exposure to hydroxyl radicals results in oxidation of the thiol groups, thus destabilizing the ZnS nanolids to open drug encompassing pores for attaining an inflammation responsive drug delivery system.
Collapse
Affiliation(s)
- Faheem Muhammad
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Wenxiu Qi
- College of Life Science
- Jilin University
- Changchun
- China
| | - Aifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jingkai Gu
- College of Life Science
- Jilin University
- Changchun
- China
| | - Jianshi Du
- China Japan Union Hospital
- Jilin University
- Changchun
- China
| | - Guangshan Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
330
|
Volarevic V, Paunovic V, Markovic Z, Simovic Markovic B, Misirkic-Marjanovic M, Todorovic-Markovic B, Bojic S, Vucicevic L, Jovanovic S, Arsenijevic N, Holclajtner-Antunovic I, Milosavljevic M, Dramicanin M, Kravic-Stevovic T, Ciric D, Lukic ML, Trajkovic V. Large graphene quantum dots alleviate immune-mediated liver damage. ACS NANO 2014; 8:12098-12109. [PMID: 25415137 DOI: 10.1021/nn502466z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated the effect of large (40 nm) graphene quantum dots (GQDs) in concanavalin A (Con A; 12 mg/kg i.v.)-induced mouse hepatitis, a T cell-mediated liver injury resembling fulminant hepatitis in humans. Intravenously injected GQDs (50 mg/kg) accumulated in liver and reduced Con A-mediated liver damage, as demonstrated by histopathological analysis and a decrease in liver lipid peroxidation and serum levels of liver transaminases. The cleavage of apoptotic markers caspase-3/PARP and mRNA levels of proapoptotic mediators Puma, Noxa, Bax, Bak1, Bim, Apaf1, and p21, as well as LC3-I conversion to autophagosome-associated LC3-II and expression of autophagy-related (Atg) genes Atg4b, Atg7, Atg12, and beclin-1, were attenuated by GQDs, indicating a decrease in both apoptosis and autophagy in the liver tissue. This was associated with the reduced liver infiltration of immune cells, particularly the T cells producing proinflammatory cytokine IFN-γ, and a decrease in IFN-γ serum levels. In the spleen of GQD-exposed mice, mRNA expression of IFN-γ and its transcription factor T-bet was reduced, while that of the IL-33 ligand ST2 was increased. The hepatoprotective effect of GQDs was less pronounced in ST2-deficient mice, indicating that it might depend on ST2 upregulation. In vitro, GQDs inhibited splenocyte IFN-γ production, reduced the activation of extracellular signal-regulated kinase in macrophage and T cell lines, inhibited macrophage production of the free radical nitric oxide, and reduced its cytotoxicity toward hepatocyte cell line HepG2. Therefore, GQDs alleviate immune-mediated fulminant hepatitis by interfering with T cell and macrophage activation and possibly by exerting a direct hepatoprotective effect.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 2014; 10:e1004566. [PMID: 25521078 PMCID: PMC4270780 DOI: 10.1371/journal.ppat.1004566] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is a re-emerging arthropod borne flavivirus that infects more than 300 million people worldwide, leading to 50,000 deaths annually. Because dendritic cells (DC) in the skin and blood are the first target cells for DENV, we sought to investigate the early molecular events involved in the host response to the virus in primary human monocyte-derived dendritic cells (Mo-DC). Using a genome-wide transcriptome analysis of DENV2-infected human Mo-DC, three major responses were identified within hours of infection - the activation of IRF3/7/STAT1 and NF-κB-driven antiviral and inflammatory networks, as well as the stimulation of an oxidative stress response that included the stimulation of an Nrf2-dependent antioxidant gene transcriptional program. DENV2 infection resulted in the intracellular accumulation of reactive oxygen species (ROS) that was dependent on NADPH-oxidase (NOX). A decrease in ROS levels through chemical or genetic inhibition of the NOX-complex dampened the innate immune responses to DENV infection and facilitated DENV replication; ROS were also essential in driving mitochondrial apoptosis in infected Mo-DC. In addition to stimulating innate immune responses to DENV, increased ROS led to the activation of bystander Mo-DC which up-regulated maturation/activation markers and were less susceptible to viral replication. We have identified a critical role for the transcription factor Nrf2 in limiting both antiviral and cell death responses to the virus by feedback modulation of oxidative stress. Silencing of Nrf2 by RNA interference increased DENV-associated immune and apoptotic responses. Taken together, these data demonstrate that the level of oxidative stress is critical to the control of both antiviral and apoptotic programs in DENV-infected human Mo-DC and highlight the importance of redox homeostasis in the outcome of DENV infection. Dengue virus (DENV), the leading arthropod-borne viral infection in the world, represents a major human health concern with a global at risk population of over 3 billion people. Currently, there are no antivirals or vaccines available to treat patients with dengue fever, nor is it possible to predict which patients will progress to life-threatening severe dengue fever. Markers associated with oxidative stress responses have been reported in patients with severe DENV infection, suggesting a relationship between oxidative stress and viral pathogenesis. In order to uncover biological processes that determine the outcome of disease in patients, we utilized human dendritic cells, the primary target of DENV infection, in an in vitro model. Transcriptional analysis of pathways activated upon de novo DENV infection revealed a major role for cellular oxidative stress in the induction of antiviral, inflammatory, and cell death responses. We also demonstrated that antioxidant mechanisms play a critical role in controlling antiviral and cell death responses to the virus, acting as feedback regulators of the oxidative stress response. This report highlights the importance of oxidative stress responses in the outcome of DENV infection, and identifies this pathway as a potential new entry-point for treating dengue-associated diseases.
Collapse
|
332
|
Liu J, Tian X, Luo N, Yang C, Xiao J, Shao Y, Chen X, Yang G, Chen D, Li L. Sub-10 nm monoclinic Gd2O3:Eu3+ nanoparticles as dual-modal nanoprobes for magnetic resonance and fluorescence imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13005-13013. [PMID: 25289961 DOI: 10.1021/la503228v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Monoclinic Gd2O3:Eu(3+) nanoparticles (NPs) possess favorable magnetic and optical properties for biomedical application. However, how to obtain small enough NPs still remains a challenge. Here we combined the standard solid-state reaction with the laser ablation in liquids (LAL) technique to fabricate sub-10 nm monoclinic Gd2O3:Eu(3+) NPs and explained their formation mechanism. The obtained Gd2O3:Eu(3+) NPs exhibit bright red fluorescence emission and can be successfully used as fluorescence probe for cells imaging. In vitro and in vivo magnetic resonance imaging (MRI) studies show that the product can also serve as MRI good contrast agent. Then, we systematically investigated the nanotoxicity including cell viability, apoptosis in vitro, as well as the immunotoxicity and pharmacokinetics assays in vivo. This investigation provides a platform for the fabrication of ultrafine monoclinic Gd2O3:Eu(3+) NPs and evaluation of their efficiency and safety in preclinical application.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University , 135 Xingang Xi Road, Guangzhou 510275, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Campos PB, Paulsen BS, Rehen SK. Accelerating neuronal aging in in vitro model brain disorders: a focus on reactive oxygen species. Front Aging Neurosci 2014; 6:292. [PMID: 25386139 PMCID: PMC4209886 DOI: 10.3389/fnagi.2014.00292] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
In this review, we discuss insights gained through the use of stem cell preparations regarding the modeling of neurological diseases, the need for aging neurons derived from pluripotent stem cells to further advance the study of late-onset adult neurological diseases, and the extent to which mechanisms linked to the mismanagement of reactive oxygen species (ROS). The context of these issues can be revealed using the three disease states of Parkinson’s (PD), Alzheimer’s (AD), and schizophrenia, as considerable insights have been gained into these conditions through the use of stem cells in terms of disease etiologies and the role of oxidative stress. The latter subject is a primary area of interest of our group. After discussing the molecular models of accelerated aging, we highlight the role of ROS for the three diseases explored here. Importantly, we do not seek to provide an extensive account of all genetic mutations for each of the three disorders discussed in this review, but we aim instead to provide a conceptual framework that could maximize the gains from merging the approaches of stem cell microsystems and the study of oxidative stress in disease in order to optimize therapeutics and determine new molecular targets against oxidative stress that spare stem cell proliferation and development.
Collapse
Affiliation(s)
- Priscila Britto Campos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Bruna S Paulsen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Stevens K Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil ; D'Or Institute for Research and Education (IDOR) Rio de Janeiro, Brazil
| |
Collapse
|
334
|
Refining and integrating schizophrenia pathophysiology – Relevance of the allostatic load concept. Neurosci Biobehav Rev 2014; 45:183-201. [DOI: 10.1016/j.neubiorev.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/02/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
|
335
|
In vivo immunotoxicity of SiO2@(Y0.5Gd0.45Eu0.05)2O3 as dual-modality nanoprobes. Int J Mol Sci 2014; 15:13649-62. [PMID: 25105724 PMCID: PMC4159817 DOI: 10.3390/ijms150813649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/22/2014] [Accepted: 07/04/2014] [Indexed: 12/29/2022] Open
Abstract
We have successfully synthesized SiO2@(Y0.5Gd0.45Eu0.05)2O3 nanocomposites as a potential dual-modality nanoprobe for molecular imaging in vitro. However, their immunotoxicity assessment in vivo remains unknown. In this article, the in vitro biocompatibility of our dual-modality nanoprobes was assayed in terms of cell viability and apoptosis. In vivo immunotoxicity was investigated by monitoring the generation of reactive oxygen species (ROS), cluster of differentiation (CD) markers and cytokines in Balb/c mice. The data show that the in vitro biocompatibility was satisfactory. In addition, the immunotoxicity data revealed there are no significant changes in the expression levels of CD11b and CD71 between the nanoprobe group and the Gd in a diethylenetriaminepentaacetic acid (DTPA) chelator (Gd-DTPA) group 24 h after injection in Balb/c mice (p > 0.05). Importantly, there are significant differences in the expression levels of CD206 and CD25 as well as the secretion of IL-4 and the generation of ROS 24 h after injection (p < 0.05). Transmission electron microscopy (TEM) images showed that few nanoprobes were localized in the phagosomes of liver and lung. In conclusion, the toxic effects of our nanoprobes may mainly result from the aggregation of particles in phagosomes. This accumulation may damage the microstructure of the cells and generate oxidative stress reactions that further stimulate the immune response. Therefore, it is important to evaluate the in vivo immunotoxicity of these rare earth-based biomaterials at the molecular level before molecular imaging in vivo.
Collapse
|
336
|
Bridge G, Rashid S, Martin SA. DNA mismatch repair and oxidative DNA damage: implications for cancer biology and treatment. Cancers (Basel) 2014; 6:1597-614. [PMID: 25099886 PMCID: PMC4190558 DOI: 10.3390/cancers6031597] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/02/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022] Open
Abstract
Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.
Collapse
Affiliation(s)
- Gemma Bridge
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Sukaina Rashid
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Sarah A Martin
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
337
|
Bunyavanich S, Schadt EE, Himes BE, Lasky-Su J, Qiu W, Lazarus R, Ziniti JP, Cohain A, Linderman M, Torgerson DG, Eng CS, Pino-Yanes M, Padhukasahasram B, Yang JJ, Mathias RA, Beaty TH, Li X, Graves P, Romieu I, Navarro BDR, Salam MT, Vora H, Nicolae DL, Ober C, Martinez FD, Bleecker ER, Meyers DA, Gauderman WJ, Gilliland F, Burchard EG, Barnes KC, Williams LK, London SJ, Zhang B, Raby BA, Weiss ST. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med Genomics 2014; 7:48. [PMID: 25085501 PMCID: PMC4127082 DOI: 10.1186/1755-8794-7-48] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/04/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Allergic rhinitis is a common disease whose genetic basis is incompletely explained. We report an integrated genomic analysis of allergic rhinitis. METHODS We performed genome wide association studies (GWAS) of allergic rhinitis in 5633 ethnically diverse North American subjects. Next, we profiled gene expression in disease-relevant tissue (peripheral blood CD4+ lymphocytes) collected from subjects who had been genotyped. We then integrated the GWAS and gene expression data using expression single nucleotide (eSNP), coexpression network, and pathway approaches to identify the biologic relevance of our GWAS. RESULTS GWAS revealed ethnicity-specific findings, with 4 genome-wide significant loci among Latinos and 1 genome-wide significant locus in the GWAS meta-analysis across ethnic groups. To identify biologic context for these results, we constructed a coexpression network to define modules of genes with similar patterns of CD4+ gene expression (coexpression modules) that could serve as constructs of broader gene expression. 6 of the 22 GWAS loci with P-value ≤ 1x10-6 tagged one particular coexpression module (4.0-fold enrichment, P-value 0.0029), and this module also had the greatest enrichment (3.4-fold enrichment, P-value 2.6 × 10-24) for allergic rhinitis-associated eSNPs (genetic variants associated with both gene expression and allergic rhinitis). The integrated GWAS, coexpression network, and eSNP results therefore supported this coexpression module as an allergic rhinitis module. Pathway analysis revealed that the module was enriched for mitochondrial pathways (8.6-fold enrichment, P-value 4.5 × 10-72). CONCLUSIONS Our results highlight mitochondrial pathways as a target for further investigation of allergic rhinitis mechanism and treatment. Our integrated approach can be applied to provide biologic context for GWAS of other diseases.
Collapse
Affiliation(s)
- Supinda Bunyavanich
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
| | - Blanca E Himes
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ross Lazarus
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Medical Bioinformatics, Baker IDI, Melbourne, Australia
| | - John P Ziniti
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ariella Cohain
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
| | - Michael Linderman
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
| | - Dara G Torgerson
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Celeste S Eng
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Maria Pino-Yanes
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- IBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Badri Padhukasahasram
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA
| | - James J Yang
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Rasika A Mathias
- Departments of Medicine and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Terri H Beaty
- Departments of Medicine and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Xingnan Li
- Center for Genomics, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Penelope Graves
- Arizona Respiratory Center and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | | | | | - M Towhid Salam
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hita Vora
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fernando D Martinez
- Arizona Respiratory Center and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Eugene R Bleecker
- Center for Genomics, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Deborah A Meyers
- Center for Genomics, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - W James Gauderman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank Gilliland
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Esteban G Burchard
- Department of Medicine and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen C Barnes
- Departments of Medicine and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - L Keoki Williams
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Stephanie J London
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle, Park, NC, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
338
|
Jiang L, Diaz PT, Best TM, Stimpfl JN, He F, Zuo L. Molecular characterization of redox mechanisms in allergic asthma. Ann Allergy Asthma Immunol 2014. [DOI: 10.10.1016/j.anai.2014.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
339
|
Plasma 8-iso-Prostaglandin F2α concentrations and outcomes after acute intracerebral hemorrhage. Clin Chim Acta 2014; 437:141-6. [PMID: 25079083 DOI: 10.1016/j.cca.2014.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Higher plasma 8-iso-Prostaglandin F2α concentrations have been associated with poor outcome of severe traumatic brain injury. We further investigated the relationships between plasma 8-iso-Prostaglandin F2α concentrations and clinical outcomes in patients with acute intracerebral hemorrhage. METHODS Plasma 8-iso-Prostaglandin F2α concentrations of 128 consecutive patients and 128 sex- and gender-matched healthy subjects were measured by enzyme-linked immunosorbent assay. We assessed their relationships with disease severity and clinical outcomes including 1-week mortality, 6-month mortality and unfavorable outcome (modified Rankin Scale score>2). RESULTS Plasma 8-iso-Prostaglandin F2α concentrations were substantially higher in patients than in healthy controls. Plasma 8-iso-Prostaglandin F2α concentrations were positively associated with National Institutes of Health Stroke Scale (NIHSS) scores and hematoma volume using a multivariate linear regression. It emerged as an independent predictor for clinical outcomes of patients using a forward stepwise logistic regression. ROC curves identified the predictive values of plasma 8-iso-Prostaglandin F2α concentrations, and found its predictive value was similar to NIHSS scores and hematoma volumes. However, it just numerically added the predictive values of NIHSS score and hematoma volume. CONCLUSIONS Increased plasma 8-iso-Prostaglandin F2α concentrations are associated with disease severity and clinical outcome after acute intracerebral hemorrhage.
Collapse
|
340
|
Jiang L, Diaz PT, Best TM, Stimpfl JN, He F, Zuo L. Molecular characterization of redox mechanisms in allergic asthma. Ann Allergy Asthma Immunol 2014; 113:137-42. [PMID: 24986036 DOI: 10.1016/j.anai.2014.05.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the molecular redox mechanisms in allergic asthma and to examine current studies of the disease to provide a basis for further investigation of oxidative stress in allergic asthma and the signaling cascades involved in its pathogenesis. DATA SOURCES Through the use of PubMed, a broad biomedical literature review was conducted in the following areas related to the physiology and pathobiology of asthma: redox therapy, reactive oxygen species (ROS), oxidative stress, allergic asthma, and antioxidants. STUDY SELECTIONS Studies pertaining to oxidative stress and redox signaling in the molecular pathways of inflammation and hypersensitivity in the pathogenesis of allergic asthma were reviewed. RESULTS Allergic asthma is associated with an increase in endogenous ROS formation, leading to oxidative stress-induced damage to the respiratory system and mitigated antioxidant defenses. Exposure to environmental antigens has been shown to stimulate overproduction of ROS, resulting in abnormal physiologic function of DNA, proteins, and lipids that clinically can augment bronchial hyperresponsiveness and inflammation. Through the use of animal and human studies, oxidative stress has been determined to be important in the pathogenesis of allergic asthma. Thus, recent research suggests that the assessment of oxidative stress byproducts represents a novel method by which disease severity can be monitored. In addition, the use of redox-based therapy to attenuate levels of ROS presents a potential strategy to alleviate oxidative stress-induced airway inflammation in patients with asthma. CONCLUSION Redox mechanisms of oxidative stress in allergic asthma appear to play a key role in the pathogenesis of the disease and represent a promising therapeutic target.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Philip T Diaz
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Thomas M Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health and Performance Institute, The Ohio State University, Columbus, Ohio
| | - Julia N Stimpfl
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Feng He
- Department of Health and Kinesiology, Purdue University, Lafayette, Indiana
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
341
|
Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett 2014; 356:43-51. [PMID: 24530228 DOI: 10.1016/j.canlet.2014.01.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/08/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
Ionizing radiation (IR) has been described as a double-edged sword, since it is used for diagnostic and therapeutic medical applications, and at the same time it is a well known human mutagen and carcinogen, causing wide-ranging chromosomal aberrations. It is nowadays accepted that the detrimental effects of IR are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects. This review presents the role of oxidative stress in the induction of bystander effects referring to the types of the implicated oxidative DNA lesions, the contributing intercellular and intracellular stress mediators, the way they are transmitted from irradiated to bystander cells and finally, the complex role of the bystander effect in the therapeutic efficacy of radiation treatment of cancer.
Collapse
Affiliation(s)
- Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Center for Scientific Research Demokritos, Athens, Greece
| | - Alexandros Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, M13 9WL, UK.
| |
Collapse
|
342
|
Codorniu-Hernández E, Hall KW, Ziemianowicz D, Carpendale S, Kusalik PG. Aqueous production of oxygen atoms from hydroxyl radicals. Phys Chem Chem Phys 2014; 16:26094-102. [DOI: 10.1039/c4cp02959c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Car–Parrinello MD simulations and advanced visualization techniques of OH*-pair encounters in water demonstrate the formation of the triplet oxygen atom.
Collapse
Affiliation(s)
| | - Kyle Wm. Hall
- Department of Chemistry
- University of Calgary
- Calgary, Canada
- Department of Computer Science
- University of Calgary
| | | | | | | |
Collapse
|
343
|
Sanchez AM, Viganò P, Somigliana E, Panina-Bordignon P, Vercellini P, Candiani M. The distinguishing cellular and molecular features of the endometriotic ovarian cyst: from pathophysiology to the potential endometrioma-mediated damage to the ovary. Hum Reprod Update 2013; 20:217-30. [PMID: 24129684 DOI: 10.1093/humupd/dmt053] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Clinical data suggest that the presence of an ovarian endometrioma may cause per se damage to the surrounding otherwise healthy ovarian tissue. However, the basic research has so far done a limited job in trying to understand the potential detrimental effect of an endometrioma presence in the context of the ovarian physiology. We have reviewed the literature with the aim of characterizing the pathophysiology of the endometrioma focusing mostly on factors and mechanisms potentially affecting the surrounding, otherwise normal, ovarian tissue. METHODS Comprehensive searches of PUBMED were conducted to identify human studies published from 1991 to 2013 in the English language on the cellular and molecular characterization of the various endometrioma components. RESULTS An endometrioma contains free iron, reactive oxygen species (ROS), proteolytic enzymes and inflammatory molecules in concentrations from tens to hundreds of times higher than those present in peripheral blood or in other types of benign cysts. The cyst fluid causes substantial changes in the endometriotic cells that it baths from gene expression modifications to genetic mutations The physical barrier between the cyst contents and the normal ovarian tissue is a thin wall composed of the ovarian cortex itself or fibroreactive tissue. ROS potentially permeating the surrounding tissues and proteolytic substances degrading the adjacent areas are likely to cause the substitution of normal ovarian cortical tissue with fibrous tissue in which the cortex-specific stroma is reduced. The fibrosis is associated with smooth muscle metaplasia and followed by follicular loss and intraovarian vascular injury. Follicular density in tissue surrounding the endometriotic cyst was consistently shown to be significantly lower than in healthy ovaries but this pathological change does not appear to be caused by the stretching of surrounding tissues owing to the presence of a cyst. CONCLUSIONS There is sufficient molecular, histological and morphological evidence, in part deriving from knowledge of the pathophysiology, to support a deleterious effect of the endometrioma on the adjacent ovarian cortical tissue, independent of the mere mechanical stretching owing to its size.
Collapse
Affiliation(s)
- A M Sanchez
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | |
Collapse
|
344
|
Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunol Lett 2013; 153:22-6. [PMID: 23850638 DOI: 10.1016/j.imlet.2013.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/24/2022]
Abstract
A relationship between the expression of inflammation markers, oxidative stress and opium use has not been clearly established. This study was done to determine serum high-sensitivity C-reactive protein (hs-CRP), quantity of C3 and C4 complement factors, immunoglobulins, nitric oxide (NO) and total antioxidant capacity (TAC) in opium smokers and non-drug-using control participants. The present study was done on 44 male opium smokers and 44 controls of the same sex and age (20-40 years). The control group was healthy individuals with no lifetime history of drug abuse or dependence. All of the opium abusers were selected from those who had a history of opium use, for at least one year, with a daily opium dosage not less than 2g. Addicts known to abuse alcohol or other drugs were excluded. Serum hs-CRP concentration was measured using ELISA method and serum C3, C4 and immunoglobulins concentration were determined by Single Radial Immunodiffusion (SRID) method. NO production was estimated through Griess reaction and TAC was assessed by Ferric Reducing/Antioxidant Power (FRAP) test. Serum hs-CRP, complement factors (C3 and C4) and FRAP levels were significantly higher in the opium smokers (8.93 ± 1.93; 138.47 ± 13.39; 68.79 ± 7.02 and 972.75 ± 11.55, respectively) relative to the control group (0.72 ± 0.09; 93.36 ± 8.73; 33.08 ± 7.39 and 761.95 ± 18.61, respectively). These results permit us to conclude that opium smokers indeed present with a low to moderate grade inflammation, which is defined by an increase in acute phase proteins.
Collapse
|