301
|
Bortoluzzi C, Menten J, Pereira R, Fagundes N, Napty G, Pedroso A, Bigaton A, Andreote F. Hops β-acids and zinc bacitracin affect the performance and intestinal microbiota of broilers challenged with Eimeria acervulina and Eimeria tenella. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
302
|
Thibodeau A, Fravalo P, Yergeau É, Arsenault J, Lahaye L, Letellier A. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive. PLoS One 2015; 10:e0131978. [PMID: 26161743 PMCID: PMC4498643 DOI: 10.1371/journal.pone.0131978] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/09/2015] [Indexed: 01/19/2023] Open
Abstract
Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9) CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- * E-mail: (AT); (AL)
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
| | - Étienne Yergeau
- National Research Council of Canada, Montréal, Québec, Canada
| | - Julie Arsenault
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
| | | | - Ann Letellier
- NSERC Industrial Research Chair in Meat-Safety (CRSV), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche et d’enseignement en salubrité alimentaire (GRESA), Université de Montréal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- * E-mail: (AT); (AL)
| |
Collapse
|
303
|
Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol 2015; 6:673. [PMID: 26191057 PMCID: PMC4490257 DOI: 10.3389/fmicb.2015.00673] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/19/2015] [Indexed: 01/16/2023] Open
Abstract
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill crucial roles in providing the host with nutrition and protection from pathogens. Across the field of avian microbiology knowledge is extremely uneven, with several species accounting for an overwhelming majority of all microbiological investigations. These include agriculturally important birds, such as chickens and turkeys, as well as birds of evolutionary or conservation interest. In our previous study we attempted the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available data sets. We have now extended our analysis to explore the microbiology of several key species in detail, to consider the avian microbiota within the context of what is known about other vertebrates, and to identify key areas of interest in avian microbiology for future study.
Collapse
Affiliation(s)
| | - Michael W. Taylor
- Centre for Microbial Innovation, School of Biological Sciences, University of AucklandAuckland, New Zealand
| |
Collapse
|
304
|
Effects of Xylo-Oligosaccharides on Broiler Chicken Performance and Microbiota. Appl Environ Microbiol 2015; 81:5880-8. [PMID: 26092452 DOI: 10.1128/aem.01616-15] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/15/2015] [Indexed: 01/04/2023] Open
Abstract
In broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon and Clostridium cluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level, Lactobacillus crispatus and Anaerostipes butyraticus were significantly increased in abundance in the colon and cecum, respectively. In vitro fermentation of XOS revealed cross-feeding between L. crispatus and A. butyraticus. Lactate, produced by L. crispatus during XOS fermentation, was utilized by the butyrate-producing Anaerostipes species. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.
Collapse
|
305
|
New issues and science in broiler chicken intestinal health: intestinal microbial composition, shifts, and impacts. WORLD POULTRY SCI J 2015. [DOI: 10.1017/s0043933915000276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intestinal health is important for maximising the health, welfare, and performance of poultry. In addition, intestinal health issues in poultry can have devastating financial impacts for producers, and food safety concerns for consumers. Until recently, intestinal health issues were seen as a handful of known infectious agents leading to a set of severe and identifiable named diseases. There is however an emerging area which depicts intestinal health as a more complex and multifaceted system than previously known. Recent progress in technology suitable for microbial community analysis has evolved our understanding of the chicken intestinal microbiome. It is now understood that shifts in the composition of microbial communities can occur. These shifts can result in a series of implications, including: disease, welfare, environmental, and food safety concerns. Minor shifts in intestinal microbial balance can result in a wide continuum of disease presentations ranging from severe to mild clinical, subclinical or asymptotic. Differential diagnosis of poultry intestinal health issues may be challenging and is important for applying appropriate treatment options. This review discusses new and emerging topics in broiler chicken intestinal health, with a focus on microbial composition, newly discovered microbial shifts in classical poultry diseases, range in severity of enteric diseases, newly identified organisms in normal intestinal flora, implications of shifts in intestinal microbial communities and diagnosis of emerging intestinal health issues in poultry.
Collapse
|
306
|
Ricke S. Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poult Sci 2015; 94:1411-8. [DOI: 10.3382/ps/pev049] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2015] [Indexed: 12/20/2022] Open
|
307
|
Roberts T, Wilson J, Guthrie A, Cookson K, Vancraeynest D, Schaeffer J, Moody R, Clark S. New issues and science in broiler chicken intestinal health: Emerging technology and alternative interventions. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
308
|
Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation. Appl Environ Microbiol 2015; 81:3460-70. [PMID: 25769823 DOI: 10.1128/aem.04194-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
This study focused on identifying reproducible effects of dietary supplementation with a mannan oligosaccharide (MOS) on the broiler cecal bacterial community structure and function in a commercial production setting. Two separate trials, each with a control and a supplemented group, were carried out in the same commercial location and run concurrently. Approximately 10,000 birds from the same commercial hatchery were mirror imaged into each of four commercial broiler sheds and fed either a control or supplemented diet. Cecal contents were obtained on days 7, 21, and 35 posthatch from 12 randomly caught broilers from each group. Bacterial pyrosequencing was performed on all samples, with approximately 250,000 sequences obtained per treatment per time point. The predominant phyla identified at all three time points in both trials were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Tenericutes, representing >99% of all sequences. MOS supplementation altered the bacterial community composition from 7 days supplementation through 35 days supplementation. Bacteroidetes appeared to be replacing Firmicutes as a result of supplementation, with the most noticeable effects after 35 days. The effects of supplementation were reproducible across both trials. PICRUSt was used to identify differences between the functional potentials of the bacterial communities as a result of MOS supplementation. Using level 3 KEGG ortholog function predictions, differences between control and supplemented groups were observed, with very strong segregation noted on day 35 posthatch in both trials. This indicated that alterations of bacterial communities as a result of MOS are likely to alter the functional capability of the cecum.
Collapse
|
309
|
Mohd Shaufi MA, Sieo CC, Chong CW, Gan HM, Ho YW. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog 2015; 7:4. [PMID: 25806087 PMCID: PMC4372169 DOI: 10.1186/s13099-015-0051-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation. Material and methods Ileal and caecal contents of broiler chicken were extracted from 7, 14, 21 and 42-day old chicken. Genomic DNA was then extracted and amplified based on V3 hyper-variable region of 16S rRNA. Bioinformatics, ecological and statistical analyses such as Principal Coordinate Analysis (PCoA) was performed in mothur software and plotted using PRIMER 6. Additional analyses for predicted metagenomes were performed through PICRUSt and STAMP software package based on Greengenes databases. Results A distinctive difference in bacterial communities was observed between ilea and caeca as the chicken aged (P < 0.001). The microbial communities in the caeca were more diverse in comparison to the ilea communities. The potentially pathogenic bacteria such as Clostridium were elevated as the chicken aged and the population of beneficial microbe such as Lactobacillus was low at all intervals. On the other hand, based on predicted metagenomes analysed, clear distinction in functions and roles of gut microbiota such as gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism), and bacterial proliferation and colonization (e.g. bacterial motility proteins, two-component system and bacterial secretion system) were observed between ilea and caeca, respectively (P < 0.05). Conclusions The caeca microbial communities were more diverse in comparison to ilea. The main functional differences between the two sites were found to be related to nutrient absorption and bacterial colonization. Based on the composition of the microbial community, future gut modulation with beneficial bacteria such as probiotics may benefit the host. Electronic supplementary material The online version of this article (doi:10.1186/s13099-015-0051-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Chin Chin Sieo
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Malaysia ; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Malaysia
| | - Chun Wie Chong
- Department of Life Sciences, International Medical University, Jalan Jalil Perkasa 19, Taman Esplanade, 57000 Kuala Lumpur, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Yin Wan Ho
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Malaysia
| |
Collapse
|
310
|
Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, Ding J, Wang J, Wang H, Fan W, Zhao J, Meng H. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 2015; 10:e0117441. [PMID: 25688558 PMCID: PMC4331431 DOI: 10.1371/journal.pone.0117441] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/23/2014] [Indexed: 12/24/2022] Open
Abstract
Metagenome of gut microbes has been implicated in metabolism, immunity, and health maintenance of its host. However, in most of previous studies, the microbiota was sampled from feces instead of gastrointestinal (GI) tract. In this study, we compared the microbial populations from feces at four different developmental stages and contents of four intestinal segments at maturity to examine the dynamic shift of microbiota in pigs and investigated whether adult porcine fecal samples could be used to represent samples of the GI tract. Analysis results revealed that the ratio of Firmicutes to Bacteroidetes from the feces of the older pigs (2-, 3-, 6- month) were 10 times higher compared to those from piglets (1-month). As the pigs matured, so did it seem that the composition of microbiome became more stable in feces. In adult pigs, there were significant differences in microbial profiles between the contents of the small intestine and large intestine. The dominant genera in the small intestine belonged to aerobe or facultative anaerobe categories, whereas the main genera in the large intestine were all anaerobes. Compared to the GI tract, the composition of microbiome was quite different in feces. The microbial profile in large intestine was more similar to feces than those in the small intestine, with the similarity of 0.75 and 0.38 on average, respectively. Microbial functions, predicted by metagenome profiles, showed the enrichment associated with metabolism pathway and metabolic disease in large intestine and feces while higher abundance of infectious disease, immune function disease, and cancer in small intestine. Fecal microbes also showed enriched function in metabolic pathways compared to microbes from pooled gut contents. Our study extended the understanding of dynamic shift of gut microbes during pig growth and also characterized the profiles of bacterial communities across GI tracts of mature pigs.
Collapse
Affiliation(s)
- Wenjing Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China
| | - Yapeng Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Shuyun Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China
| | - Jiaojiao Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Zhengxiao Zhai
- School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China
| | - Chuan He
- School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China
- Shanghai Personal Biotechnology Limited Company, Shanghai, P. R. China
| | - Jinmei Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China
| | - Jun Wang
- Shanghai Personal Biotechnology Limited Company, Shanghai, P. R. China
| | - Huijuan Wang
- Shanghai Personal Biotechnology Limited Company, Shanghai, P. R. China
| | - Weibing Fan
- Shanghai Personal Biotechnology Limited Company, Shanghai, P. R. China
| | - Jianguo Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
- * E-mail: (JZ); (HM)
| | - He Meng
- School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, P. R. China
- * E-mail: (JZ); (HM)
| |
Collapse
|
311
|
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA. The chicken gastrointestinal microbiome. FEMS Microbiol Lett 2014; 360:100-12. [PMID: 25263745 DOI: 10.1111/1574-6968.12608] [Citation(s) in RCA: 437] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/27/2022] Open
Abstract
The domestic chicken is a common model organism for human biological research and of course also forms the basis of a global protein industry. Recent methodological advances have spurred the recognition of microbiomes as complex communities with important influences on the health and disease status of the host. In this minireview, we provide an overview of the current state of knowledge of the chicken gastrointestinal microbiome focusing on spatial and temporal variability, the presence and importance of human pathogens, the influence of the microbiota on the immune system, and the importance of the microbiome for poultry nutrition. Review and meta-analysis of public data showed cecal communities dominated by Firmicutes and Bacteroides at the phylum level, while at finer levels of taxonomic resolution, a phylogenetically diverse assemblage of microorganisms appears to have similar metabolic functions that provide important benefits to the host as inferred from metagenomic data. This observation of functional redundancy may have important implications for management of the microbiome. We foresee advances in strategies to improve gut health in commercial operations through management of the intestinal microbiota as an alternative to in-feed subtherapeutic antibiotics, improvements in pre- and probiotics, improved management of polymicrobial poultry diseases, and better control of human pathogens via colonization reduction or competitive exclusion strategies.
Collapse
Affiliation(s)
- Brian B Oakley
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA-Agricultural Research Service, Athens, GA, USA; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Shah JD, Baller J, Zhang Y, Silverstein K, Xing Z, Cardona CJ. Comparison of tissue sample processing methods for harvesting the viral metagenome and a snapshot of the RNA viral community in a turkey gut. J Virol Methods 2014; 209:15-24. [PMID: 25181646 PMCID: PMC7172407 DOI: 10.1016/j.jviromet.2014.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
We evaluated three processing methods to harvest viral metagenome from intestinal tissue. Rotaviruses and astroviruses were found in abundance in the gut of a turkey showing no clinical signs of disease. A customized approach to analyze the data was evaluated. A true measure of diversity was obtained at much smaller fraction of the total data. The rarefaction curve plateaued after 90% of the data was sampled at species level.
RNA viruses have been associated with enteritis in poultry and have been isolated from diseased birds. The same viral agents have also been detected in healthy flocks bringing into question their role in health and disease. In order to understand better eukaryotic viruses in the gut, this project focused on evaluating alternative methods to purify and concentrate viral particles, which do not involve the use of density gradients, for generating viral metagenome data. In this study, the sequence outcomes of three tissue processing methods have been evaluated and a data analysis pipeline has been established for RNA viruses from the gastrointestinal tract. In addition, with the use of the best method and increased sequencing depth, a glimpse of the RNA viral community in the gastrointestinal tract of a clinically normal 5-week old turkey is presented. The viruses from the Reoviridae and Astroviridae families together accounted for 76.3% of total viruses identified. The rarefaction curve at the species level further indicated that majority of the species diversity was included with the increased sequencing depth, implying that viruses from other viral families were present in very low abundance.
Collapse
Affiliation(s)
- Jigna D Shah
- Veterinary and Biomedical Sciences, University of Minnesota, MN, USA
| | - Joshua Baller
- Minnesota Supercomputing Institute, University of Minnesota, MN, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, MN, USA
| | - Kevin Silverstein
- Minnesota Supercomputing Institute, University of Minnesota, MN, USA
| | - Zheng Xing
- Veterinary and Biomedical Sciences, University of Minnesota, MN, USA
| | - Carol J Cardona
- Veterinary and Biomedical Sciences, University of Minnesota, MN, USA.
| |
Collapse
|
313
|
Choi JH, Kim GB, Cha CJ. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poult Sci 2014; 93:1942-50. [PMID: 24931967 DOI: 10.3382/ps.2014-03974] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial communities in the different regions of gastrointestinal tract (GIT) of broiler chickens were analyzed by pyrosequencing approach to understand microbial composition and diversity. The DNA samples extracted from 7 different regions along the GIT were subjected to bacterial-community analysis by pyrosequencing of the V1-V3 region of 16S rRNA gene. Major bacterial phyla in the chicken-gut microbiota included Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria, but Firmicutes were mostly dominant (67.3 ± 16.1% of the total sequence reads identified). Among Firmicutes, Lactobacillales, including the genera Lactobacillus and Enterococcus, were the most dominant (51.8 ± 34.5% of the total sequence reads identified) from the crop to ileum. In contrast, in the cecum and large intestine, those genera were rarely detected, and Clostridiales were dominant (55.9 ± 31.4%). Fast UniFrac analysis showed that microbial communities from the crop to jejunum of the same individual chicken were grouped together, and those from ileum, cecum, and large intestine were clustered in a more GIT-specific manner. The numbers of shared operational taxonomic units between the neighboring segments of GIT were low, ranging from 2.9 to 20.3%. However, the abundance of shared operational taxonomic units in each segment was relatively high, ranging from 61.7 to 85.0%, suggesting that substantial proportions of microbial communities were shared between each segment and its neighboring segments, comprising a core microbiota. Our results suggested that the microbial communities of 7 main segments in the chicken GIT were distinctive according to both individuals and the different segments of GIT, but their stability was maintained along the GIT.
Collapse
Affiliation(s)
- J H Choi
- Department of Systems Biotechnology, Institute of Microbiomics, and
| | - G B Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - C J Cha
- Department of Systems Biotechnology, Institute of Microbiomics, and
| |
Collapse
|
314
|
You Y, Silbergeld EK. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion. Front Microbiol 2014; 5:284. [PMID: 24959164 PMCID: PMC4050735 DOI: 10.3389/fmicb.2014.00284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/22/2014] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level.
Collapse
Affiliation(s)
| | - Ellen K. Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
315
|
Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 2014; 5:223. [PMID: 24904538 PMCID: PMC4032936 DOI: 10.3389/fmicb.2014.00223] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.
Collapse
Affiliation(s)
- David W Waite
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| | - Michael W Taylor
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| |
Collapse
|
316
|
Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 2014; 9:e91941. [PMID: 24657972 PMCID: PMC3962364 DOI: 10.1371/journal.pone.0091941] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/18/2014] [Indexed: 11/18/2022] Open
Abstract
Chickens are major source of food and protein worldwide. Feed conversion and the health of chickens relies on the largely unexplored complex microbial community that inhabits the chicken gut, including the ceca. We have carried out deep microbial community profiling of the microbiota in twenty cecal samples via 16S rRNA gene sequences and an in-depth metagenomics analysis of a single cecal microbiota. We recovered 699 phylotypes, over half of which appear to represent previously unknown species. We obtained 648,251 environmental gene tags (EGTs), the majority of which represent new species. These were binned into over two-dozen draft genomes, which included Campylobacter jejuni and Helicobacter pullorum. We found numerous polysaccharide- and oligosaccharide-degrading enzymes encoding within the metagenome, some of which appeared to be part of polysaccharide utilization systems with genetic evidence for the co-ordination of polysaccharide degradation with sugar transport and utilization. The cecal metagenome encodes several fermentation pathways leading to the production of short-chain fatty acids, including some with novel features. We found a dozen uptake hydrogenases encoded in the metagenome and speculate that these provide major hydrogen sinks within this microbial community and might explain the high abundance of several genera within this microbiome, including Campylobacter, Helicobacter and Megamonas.
Collapse
Affiliation(s)
- Martin J. Sergeant
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Chrystala Constantinidou
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | - Charles W. Penn
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark J. Pallen
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
317
|
Stanley D, Hughes RJ, Moore RJ. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 2014; 98:4301-10. [PMID: 24643736 DOI: 10.1007/s00253-014-5646-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/23/2022]
Abstract
Recent advances in the technology available for culture-independent methods for identification and enumeration of environmental bacteria have invigorated interest in the study of the role of chicken intestinal microbiota in health and productivity. Chickens harbour unique and diverse bacterial communities that include human and animal pathogens. Increasing public concern about the use of antibiotics in the poultry industry has influenced the ways in which poultry producers are working towards improving birds' intestinal health. Effective means of antibiotic-independent pathogen control through competitive exclusion and promotion of good protective microbiota are being actively investigated. With the realisation that just about any change in environment influences the highly responsive microbial communities and with the abandonment of the notion that we can isolate and investigate a single species of interest outside of the community, came a flood of studies that have attempted to profile the intestinal microbiota of chickens under numerous conditions. This review aims to address the main issues in investigating chicken microbiota and to summarise the data acquired to date.
Collapse
Affiliation(s)
- Dragana Stanley
- School of Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD, 4702, Australia,
| | | | | |
Collapse
|
318
|
Meng H, Zhang Y, Zhao L, Zhao W, He C, Honaker CF, Zhai Z, Sun Z, Siegel PB. Body weight selection affects quantitative genetic correlated responses in gut microbiota. PLoS One 2014; 9:e89862. [PMID: 24608294 PMCID: PMC3946484 DOI: 10.1371/journal.pone.0089862] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/25/2014] [Indexed: 12/18/2022] Open
Abstract
The abundance of gut microbiota can be viewed as a quantitative trait, which is affected by the genetics and environment of the host. To quantify the effects of host genetics, we calculated the heritability of abundance of specific microorganisms and genetic correlations among them in the gut microbiota of two lines of chickens maintained under the same husbandry and dietary regimes. The lines, which originated from a common founder population, had undergone >50 generations of selection for high (HW) or low (LW) 56-day body weight and now differ by more than 10-fold in body weight at selection age. We identified families of Paenibacillaceae, Streptococcaceae, Helicobacteraceae, and Burkholderiaceae that had moderate heritabilities. Although there were no obvious phenotypic correlations among gut microbiota, significant genetic correlations were observed. Moreover, the effects were modified by genetic selection for body weight, which altered the quantitative genetic background of the host. Heritabilities for Bacillaceae, Flavobacteriaceae, Helicobacteraceae, Comamonadaceae, Enterococcaceae, and Streptococcaceae were moderate in LW line and little to zero in the HW line. These results suggest that loci associated with these microbiota families, while exhibiting genetic variation in LW, have been fixed in HW line. Also, long term selection for body weight has altered the genetic correlations among gut microbiota. No microbiota families had significant heritabilities in both the LW and HW lines suggesting that the presence and/or absence of a particular microbiota family either has a strong growth promoting or inhibiting effect, but not both. These results demonstrate that the quantitative genetics of the host have considerable influence on the gut microbiota.
Collapse
Affiliation(s)
- He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
- * E-mail: (HM); (YZ); (PBS)
| | - Yan Zhang
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (HM); (YZ); (PBS)
| | - Lele Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenjing Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chuan He
- Shanghai Personal Biotechnology Limited Company, Shanghai, P. R. China
| | - Christa F. Honaker
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Zhengxiao Zhai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zikui Sun
- Shanghai Personal Biotechnology Limited Company, Shanghai, P. R. China
| | - Paul B. Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (HM); (YZ); (PBS)
| |
Collapse
|
319
|
Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014; 5:108-19. [PMID: 24256702 PMCID: PMC4049927 DOI: 10.4161/gmic.26945] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 02/03/2023] Open
Abstract
The gastrointestinal (GI) tract of poultry is densely populated with microorganisms which closely and intensively interact with the host and ingested feed. The gut microbiome benefits the host by providing nutrients from otherwise poorly utilized dietary substrates and modulating the development and function of the digestive and immune system. In return, the host provides a permissive habitat and nutrients for bacterial colonization and growth. Gut microbiome can be affected by diet, and different dietary interventions are used by poultry producers to enhance bird growth and reduce risk of enteric infection by pathogens. There also exist extensive interactions among members of the gut microbiome. A comprehensive understanding of these interactions will help develop new dietary or managerial interventions that can enhance bird growth, maximize host feed utilization, and protect birds from enteric diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Deng Pan
- Department of Animal Sciences; The Ohio State University; Columbus, OH USA
| | - Zhongtang Yu
- Department of Animal Sciences; The Ohio State University; Columbus, OH USA
| |
Collapse
|
320
|
Abstract
The gastrointestinal tract (GIT) microbiomes of production animals are now firmly established as a key feature underscoring animal health, development, and productivity. In particular, early gut colonization is critically important to the morphological and immunological development of the GIT, development of a functional fermentative environment, and neonatal resistance to pathogenic challenge. Although perturbations of an animal's GIT microbiome at any age can have profound consequences, perturbations during early GIT development can be particularly severe and result in significant and long-lasting sequelae. As the GIT microbiome matures, it exhibits significant diversity, ostensibly an important indicator of ecosystem health. Recognition of the immense importance of the GIT microbiota to the host has led to the development of probiotic and prebiotic feedstuffs with the express aim of ensuring animal health. We herein review the current collective understanding of the GIT microbiota of production animals.
Collapse
Affiliation(s)
- Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana 59717-2900;
| | | |
Collapse
|
321
|
Lara LJ, Rostagno MH. Impact of Heat Stress on Poultry Production. Animals (Basel) 2013; 3:356-69. [PMID: 26487407 PMCID: PMC4494392 DOI: 10.3390/ani3020356] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Due to the common occurrence of environmental stressors worldwide, many studies have investigated the detrimental effects of heat stress on poultry production. It has been shown that heat stress negatively affects the welfare and productivity of broilers and laying hens. However, further research is still needed to improve the knowledge of basic mechanisms associated to the negative effects of heat stress in poultry, as well as to develop effective interventions. Abstract Understanding and controlling environmental conditions is crucial to successful poultry production and welfare. Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effects of heat stress on broilers and laying hens range from reduced growth and egg production to decreased poultry and egg quality and safety. Moreover, the negative impact of heat stress on poultry welfare has recently attracted increasing public awareness and concern. Much information has been published on the effects of heat stress on productivity and immune response in poultry. However, our knowledge of basic mechanisms associated to the reported effects, as well as related to poultry behavior and welfare under heat stress conditions is in fact scarce. Intervention strategies to deal with heat stress conditions have been the focus of many published studies. Nevertheless, effectiveness of most of the interventions has been variable or inconsistent. This review focuses on the scientific evidence available on the importance and impact of heat stress in poultry production, with emphasis on broilers and laying hens.
Collapse
Affiliation(s)
- Lucas J Lara
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | - Marcos H Rostagno
- Livestock Behavior Research Unit, USDA-ARS, 125 South Russell Street, West Lafayette, IN 47907, USA.
| |
Collapse
|