301
|
Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From Theory to Practice. Foods 2021; 10:2595. [PMID: 34828876 PMCID: PMC8621732 DOI: 10.3390/foods10112595] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The importance of polyphenols in human health is well known; these compounds are common in foods, such as fruits, vegetables, spices, extra virgin olive oil and wine. On the other hand, the different factors that modulate the biological activity of these compounds are less well known. Conceptualization of the work: In this review we took into account about 200 relevant and recent papers on the following topics: "polyphenols bioavailability", "polyphenols matrix effect", "food matrix effect", "polyphenols-cytochromes interaction", after having reviewed and updated information on chemical classification and main biological properties of polyphenols, such as the antioxidant, anti-radical and anti-inflammatory activity, together with the tricky link between in vitro tests and clinical trials. KEY FINDINGS the issue of polyphenols bioavailability and matrix effect should be better taken into account when health claims are referred to polyphenols, thus considering the matrix effect, enzymatic interactions, reactions with other foods or genetic or gender characteristics that could interfere. We also discovered that in vitro studies often underrate the role of phytocomplexes and thus we provided practical hints to describe a clearer way to approach an investigation on polyphenols for a more resounding transfer to their use in medicine.
Collapse
Affiliation(s)
- Alberto Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Maddalena Corsini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| |
Collapse
|
302
|
Oliveira RCGD, Costa CA, Costa NL, Silva GC, Souza JACD. Effects of Curcuma as an adjunct therapy on periodontal disease: A systematic review and meta-analysis. Complement Ther Clin Pract 2021; 45:101493. [PMID: 34662850 DOI: 10.1016/j.ctcp.2021.101493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Periodontal disease (PD) is the second most prevalent buccal infectious condition in adults. Owing to its multifactorial etiology, treatment and maintenance are challenging. Scaling and root planing, associated with adequate plaque control, are considered the gold standard treatments for this disease. However, the instrumentation techniques can fail to completely eliminate calculus, particularly in higher grade and progression rated PD cases, and the continuing efficient removal of the biofilm by the patient can limit the long-term response of this treatment. Anti-infective herbal products, such as Curcuma, have been added as adjuvant therapy to prolong periodontal treatment outcomes. OBJECTIVE This systematic review aimed to summarize and evaluate whether Curcuma can contribute to PD treatment when applied as an adjunct to the standard scaling and root planing therapy. DATA SOURCES We searched databases using specific keywords and Boolean operators and systematically conducted the extraction and analysis according to the PROSPERO (CRD42019145691) database. The main eligibility criteria were randomized clinical trials in humans published in the English language. RESULTS Twelve studies were included in the review and 11 in the meta-analysis. Quantitative analysis of different clinical parameters was described. In comparison with the control group, Curcuma was associated with a reduction in pocket depth after 90 days of treatment (mean deviation: 0.48; 95% confidence interval: 0.89-0.08). CONCLUSION This systematic review and meta-analysis indicated that Curcuma is an effective product when applied as adjunct therapy for PD treatment. This improved the clinical and microbiological parameters.
Collapse
Affiliation(s)
- Rubelisa Cândido Gomes de Oliveira
- College of Dentistry, University of Kentucky, Lexington, KY, USA; Federal University of Goias, College of Dentistry, Goiânia, Goiás, GO, Brazil.
| | - Camila Alves Costa
- Federal University of Goias, College of Dentistry, Goiânia, Goiás, GO, Brazil
| | - Nádia Lago Costa
- Department of Stomatology (Oral Medicine and Oral Pathology), School of Dentistry, Federal University of Goias, Goiânia, GO, Brazil
| | | | | |
Collapse
|
303
|
Rispoli MG, Valentinuzzi S, De Luca G, Del Boccio P, Federici L, Di Ioia M, Digiovanni A, Grasso EA, Pozzilli V, Villani A, Chiarelli AM, Onofrj M, Wise RG, Pieragostino D, Tomassini V. Contribution of Metabolomics to Multiple Sclerosis Diagnosis, Prognosis and Treatment. Int J Mol Sci 2021; 22:11112. [PMID: 34681773 PMCID: PMC8541167 DOI: 10.3390/ijms222011112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures. In this review, we offer evidence in support of the potential of metabolomics as a biomarker and drug discovery tool in MS. We also use pathway analysis of metabolites that are described as potential biomarkers in the literature of MS biofluids to identify the most promising molecules and upstream regulators, and show novel, still unexplored metabolic pathways, whose investigation may open novel avenues of research.
Collapse
Affiliation(s)
- Marianna Gabriella Rispoli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Silvia Valentinuzzi
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna De Luca
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Di Ioia
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Anna Digiovanni
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Eleonora Agata Grasso
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Valeria Pozzilli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Alessandro Villani
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Antonio Maria Chiarelli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Marco Onofrj
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Richard G. Wise
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Damiana Pieragostino
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Paediatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| |
Collapse
|
304
|
de Gonzalo G, Alcántara AR. Recent Developments in the Synthesis of β-Diketones. Pharmaceuticals (Basel) 2021; 14:ph14101043. [PMID: 34681266 PMCID: PMC8541089 DOI: 10.3390/ph14101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Apart from being one of the most important intermediates in chemical synthesis, broadly used in the formation of C-C bonds among other processes, the β-dicarbonyl structure is present in a huge number of biologically and pharmaceutically active compounds. In fact, mainly derived from the well-known antioxidant capability associated with the corresponding enol tautomer, β-diketones are valuable compounds in the treatment of many pathological disorders, such as cardiovascular and liver diseases, hypertension, obesity, diabetes, neurological disorders, inflammation, skin diseases, fibrosis, or arthritis; therefore, the synthesis of these structures is an area of overwhelming interest for organic chemists. This paper is devoted to the advances achieved in the last ten years for the preparation of 1,3-diketones, using different chemical (Claisen, hydration of alkynones, decarboxylative coupling) or catalytic (biocatalysis, organocatalytic, metal-based catalysis) methodologies: Additionally, the preparation of branched β-dicarbonyl compounds by means of α-functionalization of non-substituted 1,3-diketones are also discussed.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Organic Chemistry Department, University of Sevilla, c/Profesor García González 2, 41012 Sevilla, Spain
- Correspondence: (G.d.G.); (A.R.A.); Tel.: +34-95-455-99-97 (G.d.G.); +34-91-394-18-21 (A.R.A.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
- Correspondence: (G.d.G.); (A.R.A.); Tel.: +34-95-455-99-97 (G.d.G.); +34-91-394-18-21 (A.R.A.)
| |
Collapse
|
305
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
306
|
Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, Ferri R, Galvano F, Leggio GM, Grosso G, Caraci F. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol Ther 2021; 232:108013. [PMID: 34624428 DOI: 10.1016/j.pharmthera.2021.108013] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 02/09/2023]
Abstract
Dietary polyphenols have been the focus of major interest for their potential benefits on human health. Several preclinical studies have been conducted to provide a rationale for their potential use as therapeutic agents in preventing or ameliorating cognitive decline. However, results from human studies are scarce and poorly documented. The aim of this review was to discuss the potential mechanisms involved in age-related cognitive decline or early stage cognitive impairment and current evidence from clinical human studies conducted on polyphenols and the aforementioned outcomes. The evidence published so far is encouraging but contrasting findings are to be taken into account. Most studies on anthocyanins showed a consistent positive effect on various cognitive aspects related to aging or early stages of cognitive impairment. Studies on cocoa flavanols, resveratrol, and isoflavones provided substantial contrasting results and further research is needed to clarify the therapeutic potential of these compounds. Results from other studies on quercetin, green tea flavanols, hydroxycinnamic acids (such as chlorogenic acid), curcumin, and olive oil tyrosol and derivatives are rather promising but still too few to provide any real conclusions. Future translational studies are needed to address issues related to dosage, optimal formulations to improve bioavailability, as well as better control for the overall diet, and correct target population.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
307
|
Potential applications and preliminary mechanism of action of dietary polyphenols against hyperuricemia: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
308
|
Recart VM, Spohr L, Soares MSP, Luduvico KP, Stefanello FM, Spanevello RM. Therapeutic approaches employing natural compounds and derivatives for treating bipolar disorder: emphasis on experimental models of the manic phase. Metab Brain Dis 2021; 36:1481-1499. [PMID: 34264451 DOI: 10.1007/s11011-021-00776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/06/2021] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a complex psychiatric disease characterized by mood swings that include episodes of mania and depression. Given its cyclical nature, BD is especially hard to model; however, the standard practice has been to mimic manic episodes in animal models. Despite scientific advances, the pathophysiology of BD is not fully understood, and treatment remains limited. In the last years, natural products have emerged as potential neuroprotective agents for the treatment of psychiatric diseases. Thus, the aim of this review was to explore the therapeutic potential of natural compounds and derivatives against BD, taking into account preclinical and clinical studies. Reliable articles indexed in databases such as PubMed, Web of Science and Science Direct were used. In clinical studies, treatment with herbal plants extracts, omega-3, inositol, n-acetylcysteine and vitamin D has been associated with a clinical improvement in symptoms of mania and depression in BD patients. In animal models, it has been shown that red fruits extracts, curcumin, quercetin, gallic acid, alpha-lipoic acid and carvone can modulate many neurochemical pathways involved in the pathophysiology of manic episodes. Thus, this review appointed the advances in the consumption of natural compounds and derivatives as an important therapeutic strategy to mitigate the symptoms of BD.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
309
|
Hsiao AF, Lien YC, Tzeng IS, Liu CT, Chou SH, Horng YS. The efficacy of high- and low-dose curcumin in knee osteoarthritis: A systematic review and meta-analysis. Complement Ther Med 2021; 63:102775. [PMID: 34537344 DOI: 10.1016/j.ctim.2021.102775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to critically appraise and evaluate effects of low- and high-dose curcuminoids on pain and functional improvement in patients with knee osteoarthritis (OA) and to compare adverse events (AEs) between curcuminoids and non-steroid anti-inflammatory drugs (NSAIDs). METHODS We systematically reviewed all randomized controlled trials (RCTs) on curcuminoids in knee osteoarthritis from the PubMed, Embase, Cochrane Library, AMED, Cinahl, ISI Web of Science, Chinese medical database, and Indian Scientific databases from inception to June 21, 2021. RESULTS We included eleven studies with a total of 1258 participants with primary knee OA. The meta-analysis results showed that curcuminoids were significantly more effective than comparators regarding visual analogue scale (VAS) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain scores. However, no significant difference in pain relief or AEs between the high-dose (daily dose ≥1000 mg or total dose ≥42 gm) and low-dose (daily dose <1000 mg or total dose <42 gm) curcuminoid treatments was observed. When comparing curcumininoids versus NSAIDs, a significant difference in VAS pain was found. For AE analysis, three of our included studies used NSAIDs as comparators, with all reporting higher AE rates in the NSAID group, though significance was reached in only one study. CONCLUSIONS The results of our meta-analysis suggest that low- and high-dose curcuminoids have similar pain relief effects and AEs in knee OA. Curcuminoids are also associated with better pain relief than NSAIDs; therefore, using curcuminoids as an adjunctive treatment in knee OA is recommended.
Collapse
Affiliation(s)
- An-Fang Hsiao
- Department of Physical Medicine and Rehabilitation, Cheng Ching Hospital Chung Kang Branch, Taichung City, Taiwan, ROC
| | - Yi-Chieh Lien
- Department of Physical Medicine and Rehabilitation, Cardinal Tien Hospital An Kang Branch, New Taipei City, Taiwan, ROC
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Chien-Ting Liu
- Department of Physical Medicine and Rehabilitation, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC; Department of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Sheng-Hsun Chou
- Department of Physical Medicine and Rehabilitation, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Yi-Shiung Horng
- Department of Physical Medicine and Rehabilitation, Taipei Tzu chi Hospital, Buddhist Tzu chi Medical Foundation, New Taipei City, Taiwan, ROC; Department of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
| |
Collapse
|
310
|
Li S, Zhang H, Wei X. Roles and Mechanisms of Deubiquitinases (DUBs) in Breast Cancer Progression and Targeted Drug Discovery. Life (Basel) 2021; 11:life11090965. [PMID: 34575114 PMCID: PMC8467271 DOI: 10.3390/life11090965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug targets. DUBs have shown significant roles in regulating breast cancer growth, metastasis, resistance to current therapies, and several canonical oncogenic signaling pathways. In addition, specific DUB inhibitors have been identified and are expected to benefit breast cancer patients in the future. Here, we review current knowledge about the effects and molecular mechanisms of DUBs in breast cancer, providing novel insight into treatments of breast cancer-targeting DUBs.
Collapse
|
311
|
Li H, Li Y. Network Pharmacology Analysis of Molecular Mechanism of Curcuma Longa L. extracts Regulating Glioma Immune Inflammatory Factors: Implications for Precise Cancer Treatment. Curr Top Med Chem 2021; 22:259-267. [PMID: 34515002 DOI: 10.2174/1568026621666210910123749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Curcuma longa L. has been associated with different antioxidant, anti-inflammatory, bactericidal and anticancer effects, but the mechanisms of the effects are not yet clearly understood. This study aimed to investigate the key targets and the effect of potential molecular mechanisms of Curcuma longa L. extracts on glioma using different network pharmacology analysis approaches. METHODS The components of Curcuma longa were extracted by gas chromatography-mass spectrometry (GC-MS), and the active components related to the occurrence and development of glioma were determined by traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database, and the same targets of the active components and glioma were screened by network pharmacology approach. Then, the protein's function and regulatory pathway of the common targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The protein's action and regulatory pathway of the common targets were analyzed with the Cytoscape package using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database to construct the target interaction network through which the key targets were identified. RESULTS GC-MS combined with TCMSP database was used to identify the active components related to the occurrence and development of glioma in Curcuma longa. Finally, we identified the active components 1-(1,5-Dimethyl-4-hexenyl)-4-methyl benzene and Zingiberene. At the same time, 190 target genes of Curcuma longa extracts on glioma were obtained using the Venn diagram. The results of GO analysis showed that the biological processes involved included a response to stimulation, metabolic process, inflammatory process, cell differentiation, and regulation of biological processes. KEGG analysis showed that the PI3K-Akt signaling pathway, MAPK signaling pathway, Th17 cell differentiation, and proteoglycan pathway might be involved in cancer. Further analyses showed that the IL-17 signaling pathway and Interleukin-4 and interleukin-13 signaling were involved in the inflammatory pathway. The analysis of key nodes showed that GSK3B, MAPK14, HSP90AA1, MAPK3 and MAPK8 were IL-17 signaling pathways, while HIF1A and JAK3 were Interleukin-4 and interleukin-13 signaling pathways. CONCLUSION Curcuma longa extracts can regulate the occurrence and development of glioma by regulating the immune-inflammatory responses.
Collapse
Affiliation(s)
- Hui Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of TCM, No.6 Dongfeng Road, Henan Province, 450002, Zhengzhou. China
| | - Yongwei Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of TCM, No.6 Dongfeng Road, Henan Province, 450002, Zhengzhou. China
| |
Collapse
|
312
|
Analytical Methods for Exploring Nutraceuticals Based on Phenolic Acids and Polyphenols. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenolic compounds such as phenolic acids, flavonoids, and stilbenes comprise an enormous family of bioactive molecules with a range of positive properties, including antioxidant, antimicrobial, or anti-inflammatory effects. As a result, plant extracts are often purified to recover phenolic compound-enriched fractions to be used to develop nutraceutical products or dietary supplements. In this article, we review the properties of some remarkable plant-based nutraceuticals in which the active molecules are mainly polyphenols and related compounds. Methods for the characterization of these extracts, the chemical determination of the bioactivities of key molecules, and the principal applications of the resulting products are discussed in detail.
Collapse
|
313
|
Gao ZF, Wang L, Hou GG, Zhang XF. Crystal structure of (3 E,5 E)-3,5-bis(4-fluorobenzylidene)-1-((4-trifluoromethyl)benzenesulfonyl)piperidin-4-one, C 26H 18F 5NO 3S. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C26H18F5NO3S, triclinic,
P
1
‾
$P‾{1}$
(no. 2), a = 7.8831(4) Å, b = 11.9591(7) Å, c = 13.3258(7) Å, α = 69.072(5)°, β = 88.556(4)°, γ = 73.730(5)°, V = 1122.48(11) Å3, Z = 2, R
gt
(F) = 0.0507, wR
ref
(F
2) = 0.1216, T = 100.0(1) K.
Collapse
Affiliation(s)
- Zhong-Fei Gao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , 264003 , P. R. China
| | - Lei Wang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , 264003 , P. R. China
| | - Gui-Ge Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , 264003 , P. R. China
| | - Xiao-Fan Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , 264003 , P. R. China
| |
Collapse
|
314
|
Barua N, Buragohain AK. Therapeutic Potential of Curcumin as an Antimycobacterial Agent. Biomolecules 2021; 11:biom11091278. [PMID: 34572491 PMCID: PMC8470464 DOI: 10.3390/biom11091278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/06/2023] Open
Abstract
Curcumin is the principal curcuminoid obtained from the plant Curcuma longa and has been extensively studied for its biological and chemical properties. Curcumin displays a vast range of pharmacological properties, including antimicrobial, anti-inflammatory, antioxidant, and antitumor activity. Specifically, curcumin has been linked to the improvement of the outcome of tuberculosis. There are many reviews on the pharmacological effects of curcumin; however, reviews of the antitubercular activity are comparatively scarcer. In this review, we attempt to discuss the different aspects of the research on the antitubercular activity of curcumin. These include antimycobacterial activity, modulation of the host immune response, and enhancement of BCG vaccine efficacy. Recent advances in the antimycobacterial activity of curcumin synthetic derivatives, the role of computer aided drug design in identifying curcumin targets, the hepatoprotective role of curcumin, and the dosage and toxicology of curcumin will be discussed. While growing evidence supports the use of curcumin and its derivatives for tuberculosis therapy, further preclinical and clinical investigations are of pivotal importance before recommending the use of curcumin formulations in public health.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin 999077, Hong Kong
- Correspondence: (N.B.); (A.K.B.)
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Biotechnology, Royal Global University, Guwahati 781035, India
- Correspondence: (N.B.); (A.K.B.)
| |
Collapse
|
315
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
316
|
Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021; 69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging increases the susceptibility to a diverse set of diseases and disorders, including neurodegeneration, cancer, diabetes, and arthritis. Natural compounds are currently being explored as alternative or complementary agents to treat or prevent aging-related malfunctions. Curcumin, a phytochemical isolated from the spice turmeric, has garnered great interest in recent years. With anti-oxidant, anti-inflammatory, anti-microbial, and other physiological activities, curcumin has great potential for health applications. However, the benefits of curcumin are restricted by its low bioavailability and stability in biological systems. Curcumin nanoformulations, or nano-curcumin, may overcome these limitations. This review discusses different forms of nano-curcumin that have been evaluated in vitro and in vivo to treat or prevent aging-associated health impairments. We describe current barriers for the routine use of curcumin nanoformulations in the clinic. Our review highlights outstanding questions and future work that is needed to ensure nano-curcumin is efficient and safe to lessen the burden of aging-related health problems.
Collapse
Affiliation(s)
- Maryam Mahjoob
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
317
|
Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021; 26:molecules26154621. [PMID: 34361774 PMCID: PMC8347607 DOI: 10.3390/molecules26154621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.
Collapse
|
318
|
Curcumin Loaded PEGylated Nanoemulsions Designed for Maintained Antioxidant Effects and Improved Bioavailability: A Pilot Study on Rats. Int J Mol Sci 2021; 22:ijms22157991. [PMID: 34360758 PMCID: PMC8347926 DOI: 10.3390/ijms22157991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of -40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078-0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.
Collapse
|
319
|
Diomede F, Fonticoli L, Guarnieri S, Della Rocca Y, Rajan TS, Fontana A, Trubiani O, Marconi GD, Pizzicannella J. The Effect of Liposomal Curcumin as an Anti-Inflammatory Strategy on Lipopolysaccharide e from Porphyromonas gingivalis Treated Endothelial Committed Neural Crest Derived Stem Cells: Morphological and Molecular Mechanisms. Int J Mol Sci 2021; 22:7534. [PMID: 34299157 PMCID: PMC8305631 DOI: 10.3390/ijms22147534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supplement. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encapsulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs) induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis, LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1β inflammation cascade and reactive oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | | | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | | |
Collapse
|
320
|
Cao W, Zhang Y, Li A, Yu P, Song L, Liang J, Cao N, Gao J, Xu R, Ma Y, Tang X. Curcumin reverses hepatic epithelial mesenchymal transition induced by trichloroethylene by inhibiting IL-6R/STAT3. Toxicol Mech Methods 2021; 31:589-599. [PMID: 34233590 DOI: 10.1080/15376516.2021.1941463] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Epithelial mesenchymal transition (EMT) and inflammation have been identified as carcinogenic agents. This study aims to investigate whether inhibition of trichloroethylene (TCE) associated hepatocellular carcinoma (HCC) by curcumin is associated with inflammation and EMT. METHODS In the current study, TCE sub-chronic cell model was induced in vitro, and the effects of TCE on cell proliferation, migration, invasion, and expression of functional proteins were verified by Western blot, MTT, clone formation, wound healing, Transwell. The detoxification effect of curcumin on TCE was explored by a mouse tumor-bearing experiment. RESULTS TCE induces hepatocyte migration, colony formation, and EMT in vitro. In vivo studies have shown that curcumin significantly reduces the mortality of mice and control the occurrence and size of liver tumors by inhibiting the IL-6/STAT3 signaling pathway. In vitro, curcumin inhibits the proliferation of HepG2 cells as determined by MTT assay. In addition, curcumin significantly inhibited the protein expression of IL-6R, STAT3, snail, survivin, and cyclin D1 in THLE-2 and HepG2 cells induced by IL-6. CONCLUSION Curcumin has anti-inflammatory and anti-proliferative effects, and inhibits the development of HCC induced by TCE by reversing IL-6/STAT3 mediated EMT.
Collapse
Affiliation(s)
- Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Pan Yu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Li Song
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiaojiao Liang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Niandie Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiafeng Gao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Ruyue Xu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yongfang Ma
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| |
Collapse
|
321
|
Curcumin Improved Glucose Intolerance, Renal Injury, and Nonalcoholic Fatty Liver Disease and Decreased Chromium Loss through Urine in Obese Mice. Processes (Basel) 2021. [DOI: 10.3390/pr9071132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity-associated hyperglycemia underlies insulin resistance, glucose intolerance, and related metabolic disorders including type 2 diabetes, renal damage, and nonalcoholic fatty liver disease. Turmeric root is commonly used in Asia, and curcumin, one of its pharmacological components, can play a role in preventing and treating certain chronic physiological disorders. Accordingly, this study examined how high-fat diet (HFD)-induced hyperglycemia and hyperlipidemia are reduced by curcumin through changes in fatty liver scores, chromium distribution, and renal injury in mice. Relative to the control group, also fed an HFD, the curcumin group weighed less and had smaller adipocytes; it also had lower daily food efficiency, blood urea nitrogen and creatinine levels, serum alanine aminotransferase and aspartate aminotransferase levels, serum and hepatic triglyceride levels, and hepatic lipid regulation marker expression. The curcumin-treated obese group exhibited significantly lower fasting blood glucose, was less glucose intolerant, had higher Akt phosphorylation and glucose transporter 4 (GLUT4) expression, and had greater serum insulin levels. Moreover, the group showed renal damage with lower TNF-α expression along with more numerous renal antioxidative enzymes that included superoxide dismutase, glutathione peroxidase, and catalase. The liver histology of the curcumin-treated obese mice showed superior lipid infiltration and fewer FASN and PNPLA3 proteins in comparison with the control mice. Curcumin contributed to creating a positive chromium balance by decreasing the amount of chromium lost through urine, leading to the chromium mobilization needed to mitigate hyperglycemia. Thus, the results suggest that curcumin prevents HFD-induced glucose intolerance, kidney injury, and nonalcoholic fatty liver disease.
Collapse
|
322
|
Śliwka-Kaszyńska M, Ślebioda M, Brillowska-Dąbrowska A, Mroczyńska M, Karczewski J, Marzec A, Rybiński P, Drążkowska A. Multi-Technique Investigation of Grave Robes from 17th and 18th Century Crypts Using Combined Spectroscopic, Spectrometric Techniques, and New-Generation Sequencing. MATERIALS 2021; 14:ma14133535. [PMID: 34202830 PMCID: PMC8269536 DOI: 10.3390/ma14133535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
The textile fragments of the funeral clothes found in the 17th and 18th century crypts were subjected to spectroscopic, spectrometric, and microbial investigation. The next-generation sequencing enabled DNA identification of microorganisms at the genus and in five cases to the species level. The soft hydrofluoric acid extraction method was optimized to isolate different classes of dyes from samples that had direct contact with human remains. High-performance liquid chromatography coupled with diode matrix and tandem mass spectrometry detectors with electrospray ionization (HPLC-DAD-ESI-MS/MS) enabled the detection and identification of 34 colourants that are present in historical textiles. Some of them are thus far unknown and uncommon dyes. Indigo, madder, cochineal, turmeric, tannin-producing plant, and young fustic were identified as sources of dyes in textiles. Scanning electron microscopy with energy-dispersive X-ray detector (SEM-EDS) and Fourier transform infrared spectroscopy (FT-IR) were used to identify and characterize fibres and mordants in funeral gowns. Of the 23 textile samples tested, 19 were silk while the remaining four were recognized as wool. The presence of iron, aluminium, sodium, and calcium suggests that they were used as mordants. Traces of copper, silica, and magnesium might originate from the contaminants. The large amount of silver indicated the presence of metal wire in one of the dyed silk textiles. SEM images showed that textile fibres were highly degraded.
Collapse
Affiliation(s)
- Magdalena Śliwka-Kaszyńska
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland
- Correspondence: ; Fax: +48-58-347-2694
| | - Marek Ślebioda
- Perlan Technologies, Sp. z.o.o., 02-785 Warszawa, Poland;
| | - Anna Brillowska-Dąbrowska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland; (A.B.-D.); (M.M.)
| | - Martyna Mroczyńska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland; (A.B.-D.); (M.M.)
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland;
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Przemysław Rybiński
- Institute of Chemistry, Faculty of Natural Science, The Jan Kochanowski University, 25-369 Kielce, Poland;
| | - Anna Drążkowska
- Faculty of History, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| |
Collapse
|
323
|
The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: a systematic review and meta-analysis. Biosci Rep 2021; 41:228709. [PMID: 34017975 PMCID: PMC8202067 DOI: 10.1042/bsr20210817] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: To assess the efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis (OA). Methods: The databases such as Pubmed and Cochrane Library were searched to collect the article about Curcuma longa extract and curcumin in the treatment of OA. Then, randomized controlled trials (RCTs) were selected and their data were extracted. Finally, the RevMan5.3 was utilized for risk of bias assessment and meta-analysis, the STATA15.0 were utilized for publication bias assessment, and GRADE tool were used for the evidence quality assessment of primary outcomes. Results: A total of 15 RCTs involving 1621 participants were included. (1) Compared with placebo, Curcuma longa extract and curcumin (C.) can decrease the visual analog scale (VAS) and The Western Ontario and McMaster Universities (WOMAC) score-pain, the WOMAC score-function and the WOMAC score-stiffness. In terms of adverse events, Curcuma longa extract and curcumin are comparable with those of placebo. (2) Compared with non-steroidal anti-inflammatory drugs (NSAIDs), Curcuma longa extract and curcumin have similar effects on joint pain, function and stiffness. The incidence of adverse events in Curcuma longa extract and curcumin was lower. (3) Compared with the NSAIDs group, C.+NSAIDs can also decrease the VAS and WOMAC score-pain, the WOMAC score-function and the WOMAC score-stiffness. In terms of adverse events, the addition of Curcuma longa extract and curcumin to NSAIDs did not increase adverse events. Conclusion:Curcuma longa extract and curcumin may be a safer and effective supplement for OA patients. It is recommended to use Curcuma longa extract and curcumin supplement for OA patients for more than 12 weeks.
Collapse
|
324
|
Zhang HA, Kitts DD. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem 2021; 476:3785-3814. [PMID: 34106380 PMCID: PMC8187459 DOI: 10.1007/s11010-021-04201-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023]
Abstract
Turmeric, the rhizome of Curcuma longa plant belonging to the ginger family Zingiberaceae, has a history in Ayurvedic and traditional Chinese medicine for treatment of chronic diseases, including metabolic and cardiovascular diseases (CVD). This parallels a prevalence of age- and lifestyle-related diseases, especially CVD and type 2 diabetes (T2D), and associated mortality which has occurred in recent decades. While the chemical composition of turmeric is complex, curcuminoids and essential oils are known as two major groups that display bioactive properties. Curcumin, the most predominant curcuminoid, can modulate several cell signaling pathways involved in the etiology and pathogenesis of CVD, T2D, and related morbidities. Lesser bioactivities have been reported from other curcuminoids and essential oils. This review examines the chemical compositions of turmeric, and related bioactive constituents. A focus was placed on the cellular and molecular mechanisms that underlie the protective effects of turmeric and turmeric-derived compounds against diabetes and CVD, compiled from the findings obtained with cell-based and animal models. Evidence from clinical trials is also presented to identify potential preventative and therapeutic efficacies. Clinical studies with longer intervention durations and specific endpoints for assessing health outcomes are warranted in order to fully evaluate the long-term protective efficacy of turmeric.
Collapse
Affiliation(s)
- Huiying Amelie Zhang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - David D Kitts
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
325
|
The scavenging effect of curcumin, piperine and their combination against physiological relevant reactive pro-oxidant species using in vitro non-cellular and cellular models. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
326
|
Berry A, Collacchi B, Masella R, Varì R, Cirulli F. Curcuma Longa, the "Golden Spice" to Counteract Neuroinflammaging and Cognitive Decline-What Have We Learned and What Needs to Be Done. Nutrients 2021; 13:1519. [PMID: 33946356 PMCID: PMC8145550 DOI: 10.3390/nu13051519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the global increase in lifespan, the proportion of people showing cognitive impairment is expected to grow exponentially. As target-specific drugs capable of tackling dementia are lagging behind, the focus of preclinical and clinical research has recently shifted towards natural products. Curcumin, one of the best investigated botanical constituents in the biomedical literature, has been receiving increased interest due to its unique molecular structure, which targets inflammatory and antioxidant pathways. These pathways have been shown to be critical for neurodegenerative disorders such as Alzheimer's disease and more in general for cognitive decline. Despite the substantial preclinical literature on the potential biomedical effects of curcumin, its relatively low bioavailability, poor water solubility and rapid metabolism/excretion have hampered clinical trials, resulting in mixed and inconclusive findings. In this review, we highlight current knowledge on the potential effects of this natural compound on cognition. Furthermore, we focus on new strategies to overcome current limitations in its use and improve its efficacy, with attention also on gender-driven differences.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Masella
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Rosaria Varì
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
327
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
328
|
Rezaei M, Nikkhah M, Mohammadi S, Bahrami SH, Sadeghizadeh M. Nano‐curcumin/graphene platelets loaded on sodium alginate/polyvinyl alcohol fibers as potential wound dressing. J Appl Polym Sci 2021. [DOI: 10.1002/app.50884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marjan Rezaei
- Department of Biomaterials, Faculty of Interdisciplinary Sciences and Technologies Tarbiat Modares University Tehran Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Soheila Mohammadi
- Department of Nanobiotechnology, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
- Pharmaceutical Sciences Research Center, Health Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Seyed Hajir Bahrami
- Textile Engineering Department Amirkabir University of Technology Tehran Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
329
|
Polyphenols as a Diet Therapy Concept for Endometriosis-Current Opinion and Future Perspectives. Nutrients 2021; 13:nu13041347. [PMID: 33919512 PMCID: PMC8074087 DOI: 10.3390/nu13041347] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Endometriosis represents an often painful, estrogen-dependent gynecological disorder, defined by the existence of endometrial glands and stroma exterior to the uterine cavity. The disease provides a wide range of symptoms and affects women’s quality of life and reproductive functions. Despite research efforts and extensive investigations, this disease’s pathogenesis and molecular basis remain unclear. Conventional endometriosis treatment implies surgical resection, hormonal therapies, and treatment with nonsteroidal anti-inflammatory drugs, but their efficacy is currently limited due to many side effects. Therefore, exploring complementary and alternative therapy strategies, minimizing the current treatments’ adverse effects, is needed. Plants are sources of bioactive compounds that demonstrate broad-spectrum health-promoting effects and interact with molecular targets associated with endometriosis, such as cell proliferation, apoptosis, invasiveness, inflammation, oxidative stress, and angiogenesis. Anti-endometriotic properties are exhibited mainly by polyphenols, which can exert a potent phytoestrogen effect, modulating estrogen activity. The available evidence derived from preclinical research and several clinical studies indicates that natural biologically active compounds represent promising candidates for developing novel strategies in endometriosis management. The purpose of this review is to provide a comprehensive overview of polyphenols and their properties valuable for natural treatment strategy by interacting with different cellular and molecular targets involved in endometriosis progression.
Collapse
|
330
|
Hydrolyzed Karaya Gum: Gelatin Complex Coacervates for Microencapsulation of Soybean Oil and Curcumin. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5593065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This is the first report on utilizing hydrolyzed karaya gum (HKG) as a novel polyanion material for complex coacervation with gelatin A. With negative zeta potentials at pH > 2.5, HKG formed the complex coacervate with a maximum yield at pH 3.75 and 1 : 1 HKG:gelatin ratio. The optimal complex coacervates were used to encapsulate soybean oil containing curcumin using different shell:core ratios, homogenization speeds, concentrations of emulsifier, and drying techniques. Optical microscopy showed that increasing homogenization speed and Tween 80 concentration produced smaller and more uniform coacervate particles. Increasing the shell:core mass ratio from 1 to 4 resulted in a linear increase in encapsulation efficiencies for both soybean oil and curcumin. Accelerated peroxidation tests on the microcapsules showed enhanced protective effects against oil peroxidation when increasing shell:core ratios and using freeze-drying instead of oven-drying at 50 oC. In vitro release of curcumin in simulated gastric and intestinal fluids was faster when using freeze-drying and decreasing shell:core ratio. This study shows perspective novel applications of HKG in microencapsulating active ingredients for food and pharmaceutical industries.
Collapse
|
331
|
Makuch S, Więcek K, Woźniak M. The Immunomodulatory and Anti-Inflammatory Effect of Curcumin on Immune Cell Populations, Cytokines, and In Vivo Models of Rheumatoid Arthritis. Pharmaceuticals (Basel) 2021; 14:ph14040309. [PMID: 33915757 PMCID: PMC8065689 DOI: 10.3390/ph14040309] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a widespread chronic autoimmune disorder affecting the joints, causing irreversible cartilage, synovium, and bone degradation. During the course of the disease, many immune and joint cells are activated, causing inflammation. Immune cells including macrophages, lymphocytes, neutrophils, mast cells, natural killer cells, innate lymphoid cells, as well as synovial tissue cells, like fibroblast-like synoviocytes, chondrocytes, and osteoclasts secrete different proinflammatory factors, including many cytokines, angiogenesis-stimulating molecules and others. Recent studies reveal that curcumin, a natural dietary anti-inflammatory compound, can modulate the response of the cells engaging in RA course. This review comprises detailed data about the pathogenesis and inflammation process in rheumatoid arthritis and demonstrates scientific investigations about the molecular interactions between curcumin and immune cells responsible for rheumatoid arthritis development to discuss this herbal drug’s immunoregulatory role in RA treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamil Więcek
- Department of Biotechnology, Wroclaw University, 50-383 Wroclaw, Poland;
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
332
|
Pelikh O, Pinnapireddy SR, Keck CM. Dermal Penetration Analysis of Curcumin in an ex vivo Porcine Ear Model Using Epifluorescence Microscopy and Digital Image Processing. Skin Pharmacol Physiol 2021; 34:281-299. [PMID: 33784713 DOI: 10.1159/000514498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Curcumin is a promising drug candidate, but its use for dermal application is limited due to its poor aqueous solubility. Thus, formulations that increase the solubility of curcumin are needed to fully exploit the therapeutic potential of curcumin. Various previous studies address this issue, but a comparison of the efficacy between these formulations remains difficult. The reason for this is a missing standard formulation as benchmark control and an easy-to-use skin penetration model that allows for a fast discrimination between different formulations. OBJECTIVE Thus, the aims of this study were the development of a curcumin standard formulation and a screening tool that allows for a fast discrimination between the dermal penetration efficacies of curcumin from different formulations. METHODS Ethanolic curcumin solutions were selected as simple and easy to produce standard formulations, and the ex vivo porcine ear model, coupled with epifluorescence microscopy and subsequent digital image analysis, was utilized to determine the dermal penetration efficacy of curcumin from the different formulations. RESULTS Results show that the utilized skin penetration model is a suitable and versatile tool that enables not only a fast determination of the dermal penetration efficacy of curcumin from different formulations but also a detailed and mechanistic information on the fate of chemical compounds after dermal penetration. Ethanolic solutions containing 0.25% curcumin were found to be the most suitable standard formulation. CONCLUSIONS Results of the study provide a new, effective screening tool for the development of dermal formulations for improved dermal delivery of curcumin.
Collapse
Affiliation(s)
- Olga Pelikh
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| | - Shashank R Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany.,CSL Behring GmbH, Marburg, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
333
|
Ibrahim R, Nyska A, Dunnick J, Ramot Y. The toxicologic pathology aspects of selected natural herbal products and related compounds. J Toxicol Pathol 2021; 34:181-211. [PMID: 34290474 PMCID: PMC8280299 DOI: 10.1293/tox.2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/02/2022] Open
Abstract
Herbal products have been in use for many years, but they are becoming more and more
popular in recent years, and they are currently in widespread use throughout the world. In
this review article we describe the histopathologic findings found after exposure to 12
dietary herbals in studies conducted in rodent model systems. Clear or some evidence for
carcinogenic activity was seen with 6 herbals, with the liver being the most common organ
affected. The intestine was affected by two herbals (aloe vera nondecolorized extract and
senna), three had no clear evidence for carcinogenic activity and one was cardiotoxic
(Ephedrine and Ephedra in combination with caffeine). Information from these studies can
help to better understand potential target organs for further evaluation from exposure to
various herbal products.
Collapse
Affiliation(s)
- Ruba Ibrahim
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Yehuda HaMaccabi 31, floor 5, Tel Aviv 6200515, Israel.,Tel Aviv University, Tel Aviv, Israel
| | - June Dunnick
- Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yuval Ramot
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
334
|
D'Angelo NA, Noronha MA, Kurnik IS, Câmara MCC, Vieira JM, Abrunhosa L, Martins JT, Alves TFR, Tundisi LL, Ataide JA, Costa JSR, Jozala AF, Nascimento LO, Mazzola PG, Chaud MV, Vicente AA, Lopes AM. Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. Int J Pharm 2021; 604:120534. [PMID: 33781887 DOI: 10.1016/j.ijpharm.2021.120534] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jorge M Vieira
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Joana T Martins
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - Louise L Tundisi
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Janaína A Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana S R Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angela F Jozala
- Laboratory of Industrial Microbiology and Fermentation Process (LAMINFE), University of Sorocaba, Sorocaba, Brazil
| | - Laura O Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Priscila G Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - António A Vicente
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
335
|
Szlasa W, Szewczyk A, Drąg-Zalesińska M, Czapor-Irzabek H, Michel O, Kiełbik A, Cierluk K, Zalesińska A, Novickij V, Tarek M, Saczko J, Kulbacka J. Mechanisms of curcumin-based photodynamic therapy and its effects in combination with electroporation: An in vitro and molecular dynamics study. Bioelectrochemistry 2021; 140:107806. [PMID: 33819839 DOI: 10.1016/j.bioelechem.2021.107806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) and electrochemotherapy (ECT) are two methods designed to enhance the anticancer potential of various drugs. Various clinical trials proved the efficacy of both ECT and PDT in melanoma treatment. Curcumin is a natural polyphenolic compound with high anticancer potential against melanoma due to its light absorption properties and toxicity towards cancer cells; however, high reactivity and amphipathic structure of curcumin are limiting its utility. This study aimed to propose the most effective protocol for antimelanoma combination of both therapies (PDT and ECT) in the context of curcumin. The in vitro studies were carried on melanotic melanoma (A375), amelanotic melanoma (C32) and fibroblast (HGF) cell lines. In molecular dynamics studies curcumin presented the single-layer localization in the water-membrane interphase. Further, the mass spectrometry studies exposed that during the PDT treatment curcumin is degraded to vanillin, feruloylmethane, and ferulic acid. Instant ECT with curcumin followed by PDT is the most efficient approach due to its selective genotoxicity towards malignant cells. The metabolic activity of fibroblasts decreased, however, at the same time the fragmentation of DNA did not occur. Additionally, instant PDT with curcumin followed by ECT after 3 h of incubation was a therapy selective towards melanotic melanoma.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department Human Morphology and Embryology, Division Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Hanna Czapor-Irzabek
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Karolina Cierluk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
336
|
Abe AA, Oliviero Rossi C, Caputo P, De Santo MP, Godbert N, Aiello I. Spicy Bitumen: Curcumin Effects on the Rheological and Adhesion Properties of Asphalt. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1622. [PMID: 33810459 PMCID: PMC8036851 DOI: 10.3390/ma14071622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
Over the years, the need for the synthesis of biodegradable materials has facilitated the drift of the asphalt industry towards eco-sustainable and cost-effective production of road pavements. The principal additives in the asphalt industry to improve the performance of road pavements and increase its lifespan are majorly rheological modifiers, adhesion promoters and anti-oxidant agents. Rheological modifiers increase physico-chemical properties such as transition temperature of asphalt binder (bitumen), adhesion promoters increase the affinity between binder and stone aggregates while anti-oxidant agents reduce the effects of oxidation caused by exposure to air, water and other natural elements during the production of asphalt pavements. In this study, we tested the effectiveness of a food grade bio-additive on these three aforementioned properties. We also sought to hypothesize the mechanisms by which the additive confers these desired features on bitumen. We present this study to evaluate the effects of turmeric, a food-based additive, on bitumen. The study was conducted through dynamic shear rheology (DSR), atomic force microscopy, scanning electron microscopy (SEM) and boiling test analysis.
Collapse
Affiliation(s)
- Abraham A. Abe
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy;
| | - Cesare Oliviero Rossi
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy;
| | - Paolino Caputo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy;
| | - Maria Penelope De Santo
- Dipartimento di Fisica e CNR-Nanotec, Università della Calabria, via Bucci 31C, 87036 Rende, Italy;
| | - Nicolas Godbert
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, 87036 Rende, Italy; (N.G.); (I.A.)
| | - Iolinda Aiello
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, 87036 Rende, Italy; (N.G.); (I.A.)
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036 Rende, Italy
| |
Collapse
|
337
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
338
|
Polysaccharides-Based Complex Particles' Protective Role on the Stability and Bioactivity of Immobilized Curcumin. Int J Mol Sci 2021; 22:ijms22063075. [PMID: 33802882 PMCID: PMC8002829 DOI: 10.3390/ijms22063075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/30/2022] Open
Abstract
The curcumin degradation represents a significant limitation for its applications. The stability of free curcumin (FC) and immobilized curcumin in complex particles (ComPs) based on different polysaccharides was studied under the action of several factors. Ultraviolet-visible (UV-VIS) and Fourier-transform infrared (FTIR) spectroscopy proved the FC photodegradation and its role as a metal chelator: 82% of FC and between 26% and 39.79% of curcumin within the ComPs degraded after exposure for 28 days to natural light. The degradation half-life (t1/2) decreases for FC when the pH increases, from 6.8 h at pH = 3 to 2.1 h at pH = 9. For curcumin extracted from ComPs, t1/2 was constant (between 10 and 13 h) and depended on the sample’s composition. The total phenol (TPC) and total flavonoids (TFC) content values increased by 16% and 13%, respectively, for FC exposed to ultraviolet light at λ = 365 nm (UVA), whereas no significant change was observed for immobilized curcumin. Antioxidant activity expressed by IC50 (µmoles/mL) for FC exposed to UVA decreased by 29%, but curcumin within ComPs was not affected by the UVA. The bovine serum albumin (BSA) adsorption efficiency on the ComPs surface depends on the pH value and the cross-linking degree. ComPs have a protective role for the immobilized curcumin.
Collapse
|
339
|
Ożarowski M, Karpiński TM, Szulc M, Wielgus K, Kujawski R, Wolski H, Seremak-Mrozikiewicz A. Plant Phenolics and Extracts in Animal Models of Preeclampsia and Clinical Trials-Review of Perspectives for Novel Therapies. Pharmaceuticals (Basel) 2021; 14:ph14030269. [PMID: 33809556 PMCID: PMC8000132 DOI: 10.3390/ph14030269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
The current health requirements set the direction in pharmacological research, especially as regards diseases that require improvement of existing therapeutic regimens. Such diseases include preeclampsia, which is a hypertensive disorder of pregnancy during which there occurs progressive increasing activation of the immune system through elevation of pro-inflammatory cytokines and antiangiogenic factors, which is dangerous for the mother and fetus. A promising field of research for new drugs to treat this disease is the study of natural phenolic compounds of plant origin and herbal extracts, which are complex matrices of chemical compounds with broad biological activities. Many plant substances with anti‑inflammatory and anti‑hypertensive properties are known, but studies in animal models of preeclampsia and clinical trials concerning this disease constitute a new and developing research trend of significant medical importance. The aim of our research review was to identify and analyze the results of already available studies on baicalin, curcumin, epigallocatechin gallate, punicalagin, quercetin, resveratrol, salvianolic acid A (danshensu), silibinin, and vitexin, as well as plant extracts from Brassica oleracea L., Euterpe oleracea Mart., Moringa oleifera Lam., Punica granatum L., Silybum marianum (L.) Gaertner, Thymus schimperi Ronniger, Uncaria rhynchophylla (Miq.) Miq. ex Havil., and Vitis vinifera L., which are potential and promising candidates for further research and for potential new therapies.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
- Correspondence:
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Michał Szulc
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (R.K.)
| | - Karolina Wielgus
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Radosław Kujawski
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (R.K.)
| | - Hubert Wolski
- Division of Gynecology and Obstetrics, Podhale Multidisciplinary Hospital, 34-400 Nowy Targ, Poland;
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 60-535 Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, 62-064 Poznań, Poland
| |
Collapse
|
340
|
Eckert RW, Wiemann S, Keck CM. Improved Dermal and Transdermal Delivery of Curcumin with SmartFilms and Nanocrystals. Molecules 2021; 26:1633. [PMID: 33804137 PMCID: PMC8000619 DOI: 10.3390/molecules26061633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
Poor aqueous solubility of active compounds is a major issue in today's drug delivery. In this study the smartFilm-technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of curcumin particles within the suspensions increased the passive dermal penetration of curcumin. The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the stratum corneum and maintains a high local concentration gradient between drug particles and skin. Thus, leading to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nano-particulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.
Collapse
Affiliation(s)
| | | | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (R.W.E.); (S.W.)
| |
Collapse
|
341
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
342
|
Neta JFDF, Veras VS, Sousa DFD, Cunha MDCDSO, Queiroz MVO, Neto JCGL, Damasceno MMC, Araújo MFMD, Freitas RWJFD. Effectiveness of the piperine-supplemented Curcuma longa L. in metabolic control of patients with type 2 diabetes: a randomised double-blind placebo-controlled clinical trial. Int J Food Sci Nutr 2021; 72:968-977. [PMID: 33586583 DOI: 10.1080/09637486.2021.1885015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is robust evidence of using Curcuma longa L. in reducing metabolic levels in people with diabetes. This study analysed the effectiveness of Curcuma longa L. in the metabolic control of patients with type 2 diabetes in Brazil. A randomised double-blind placebo-controlled clinical trial was conducted with 71 participants divided into a Curcuma longa L. group (500 mg/day with piperine 5 mg) and a placebo group, for 120 days. Anthropometric, clinical and biochemical variables were evaluated at baseline, 60 and 120 days after the beginning of the intervention. Paired and independent Student's t-test and chi-square test were used for statistical analysis. The curcuma group presented a significantly decreased glycaemia (p=.013), glycated haemoglobin (p=.015), HOMA index (p=.037) and triglycerides (TGs) (p=.002). The use of piperine-added Curcuma longa L. was effective in the glycaemic and TG control of patients with type 2 diabetes.
Collapse
Affiliation(s)
| | - Vivian Saraiva Veras
- Health Sciences Institute, University for International Integration of the Afro Brazilian Lusophony, Redenção, Brazil
| | - Danilo Ferreira de Sousa
- Health Sciences Institute, University for International Integration of the Afro Brazilian Lusophony, Redenção, Brazil
| | | | | | | | | | | | | |
Collapse
|
343
|
Altamura C, Greco MR, Carratù MR, Cardone RA, Desaphy JF. Emerging Roles for Ion Channels in Ovarian Cancer: Pathomechanisms and Pharmacological Treatment. Cancers (Basel) 2021; 13:668. [PMID: 33562306 PMCID: PMC7914442 DOI: 10.3390/cancers13040668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Maria Raffaella Greco
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (M.R.G.); (M.R.C.); (J.-F.D.)
| |
Collapse
|
344
|
Šudomová M, Hassan STS. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms 2021; 9:microorganisms9020292. [PMID: 33572685 PMCID: PMC7912164 DOI: 10.3390/microorganisms9020292] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses are DNA viruses that infect humans and animals with the ability to induce latent and lytic infections in their hosts, causing critical health complications. The enrolment of nutraceutical anti-herpesvirus drugs in clinical investigations with promising levels of reduced resistance, free or minimal cellular toxicity, and diverse mechanisms of action might be an effective way to defeat challenges that hurdle the progress of anti-herpesvirus drug development, including the problems with drug resistance and recurrent infections. Therefore, in this review, we aim to hunt down all investigations that feature the curative properties of curcumin, a principal bioactive phenolic compound of the spice turmeric, in regard to various human and animal herpesvirus infections and inflammation connected with these diseases. Curcumin was explored with potent antiherpetic actions against herpes simplex virus type 1 and type 2, human cytomegalovirus, Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus, bovine herpesvirus 1, and pseudorabies virus. The mechanisms and pathways by which curcumin inhibits anti-herpesvirus activities by targeting multiple steps in herpesvirus life/infectious cycle are emphasized. Improved strategies to overcome bioavailability challenges that limit its use in clinical practice, along with approaches and new directions to enhance the anti-herpesvirus efficacy of this compound, are also reviewed. According to the reviewed studies, this paper presents curcumin as a promising natural drug for the prevention and treatment of herpesvirus infections and their associated inflammatory diseases.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 16500 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
345
|
Tossetta G, Fantone S, Giannubilo SR, Marzioni D. The Multifaced Actions of Curcumin in Pregnancy Outcome. Antioxidants (Basel) 2021; 10:antiox10010126. [PMID: 33477354 PMCID: PMC7830020 DOI: 10.3390/antiox10010126] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, also known as diferuloylmethane, is the main polyphenolic substance present in the rhizomes of Curcuma longa L. This plant showed many beneficial effects and has been used since ancient times for both food and pharmaceutical purposes. Due to its pleiotropic functions, curcumin consumption in the human diet has become very common thanks also to the fact that this natural compound is considered quite safe as it does not have serious side effects. Its functions as an anti-inflammatory, anti-oxidant, neuroprotective, immunomodulatory, anti-toxicant, anti-apoptotic, and anti-diabetic compound are already known and widely demonstrated. There are numerous studies concerning its effects on various human pathologies including cancer, diabetes and arthritis while the studies on curcumin during pregnancy have been performed only in animal models. Data concerning the role of curcumin as anti-inflammatory compound suggest a possible use of curcumin in managing pregnancy complications such as Preeclampsia (PE), Gestational Diabetes Mellitus (GDM), Fetal Growth Restriction (FGR), PreTerm Birth (PTB), and exposure to toxic agents and pathogens. The aim of this review is to present data to support the possible use of curcumin in clinical trials on human gestation complications.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.T.); (S.F.)
- Correspondence: ; Tel.:+39-071.2206268
| |
Collapse
|
346
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
347
|
Jiang X, Lv H, Lu Y, Lu Y, Lv L. Trapping of Acrolein by Curcumin and the Synergistic Inhibition Effect of Curcumin Combined with Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:294-301. [PMID: 33373211 DOI: 10.1021/acs.jafc.0c06692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrolein (ACR) is a toxic unsaturated aldehyde that is formed during different steps of thermal food processing. Here, we explored the kinetics of curcumin and ACR and elucidated the pathway of curcumin trapping ACR by preparing a mono-adduct of ACR (CMA-1) conjugated with curcumin. The synergistic scavenging effect and mechanism of curcumin combined with quercetin on ACR was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing the uses of curcumin and quercetin both individually and in combination, we found that quercetin in combination resulted in more curcumin being transformed into CMA-2, while curcumin in combination made the amount of di-ACR conjugated to quercetin (QDA) increase. We also added combined curcumin and quercetin into grilled chicken wings to demonstrate that curcumin and quercetin could scavenge ACR by forming their own ACR adducts and antioxidant activity during the process. Our results have noted a new strategy, in which some combinations of dietary polyphenols might contribute to the removal of toxic ACR produced during thermal food processing.
Collapse
Affiliation(s)
- Xiaoyun Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Huifang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Yang Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| |
Collapse
|
348
|
Marton LT, Pescinini-e-Salzedas LM, Camargo MEC, Barbalho SM, Haber JFDS, Sinatora RV, Detregiachi CRP, Girio RJS, Buchaim DV, Cincotto dos Santos Bueno P. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:669448. [PMID: 34012421 PMCID: PMC8126655 DOI: 10.3389/fendo.2021.669448] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is an ensemble of metabolic conditions that have reached pandemic proportions worldwide. Pathology's multifactorial nature makes patient management, including lifelong drug therapy and lifestyle modification, extremely challenging. Currently, there is growing evidence about the effectiveness of using herbal supplements in preventing and controlling DM. Curcumin is a bioactive component found Curcuma longa, which exhibits several physiological and pharmacological properties such as antioxidant, anti-inflammatory, anticancer, neuroprotective, and anti-diabetic activities. For these reasons, our objective is to systematically review the effects of Curcuma longa or curcumin on DM. Databases such as PUBMED and EMBASE were searched, and the final selection included sixteen studies that fulfilled the inclusion criteria. The results showed that curcumin's anti-diabetic activity might be due to its capacity to suppress oxidative stress and inflammatory process. Also, it significantly reduces fasting blood glucose, glycated hemoglobin, and body mass index. Nanocurcumin is also associated with a significant reduction in triglycerides, VLDL-c, total cholesterol, LDL-c, HDL-c, serum C reactive protein, and plasma malonaldehyde. Therefore, it can be considered in the therapeutic approach of patients with DM.
Collapse
Affiliation(s)
- Ledyane Taynara Marton
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | | | - Maria Eduarda Côrtes Camargo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation-UNIMAR, Marília, Brazil
- Department of Biochemistry, School of Food and Technology of Marilia (FATEC), Marília, Brazil
- *Correspondence: Sandra M. Barbalho,
| | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | | | - Raul J. S. Girio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | - Daniela Vieira Buchaim
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation-UNIMAR, Marília, Brazil
| | | |
Collapse
|
349
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
350
|
Araya-Sibaja AM, Wilhelm K, González-Aguilar GA, Vega-Baudrit JR, Salazar-López NJ, Domínguez-Avila JA, Navarro-Hoyos M. Curcumin Loaded and Co-loaded Nanosystems: A Review from a Biological Activity Enhancement Perspective. Pharm Nanotechnol 2020; 9:85-100. [PMID: 33371864 DOI: 10.2174/2211738508666201228150659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a natural phenolic compound exhibiting multiple bioactivities that have been evaluated in vitro, in vivo as well as through clinical studies in humans. Some of them include antimicrobial, antioxidant, anti-inflammatory, and central nervous system protective effects. Further, curcumin is generally recognized as a safe substance because of its low toxicity. However, its molecular structure is susceptible to changes in pH, oxidation, photodegradation, low aqueous solubility, and biotransformation compromising its bioavailability; these drawbacks are successfully addressed through nanotechnology. OBJECTIVE The present review systematizes findings on the enhancement of curcumin's beneficial effects when it is loaded and co-loaded into different types of nanosystems covering liposomes, polymeric and solid-lipid nanoparticles, nanostructured lipid carrier, lipid-polymeric hybrids, self- -assembled and protein-based core-shell systems in relation to its antimicrobial, antioxidant, anti-inflammatory and central nervous system protective bioactivities. CONCLUSION Curcumin is a versatile molecule capable of exerting antimicrobial, antioxidant, anti- inflammatory, and central nervous system protective effects in an enhanced manner using the possibilities offered by the nanotechnology-based approach. Its enhanced bioactivities are associated with increments in solubility, stability, bioavailability, as well as in improved intracellular uptake and cell internalization. These advantages, in addition to curcumin's low toxicity, indicate the potential of curcumin to be loaded and co-loaded into nanosystems capable of providing a controlled release and targeted administration.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Krissia Wilhelm
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Jesús A Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Mirtha Navarro-Hoyos
- BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| |
Collapse
|