301
|
McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S. Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci U S A 2014; 111:E3206-13. [PMID: 25049377 PMCID: PMC4128105 DOI: 10.1073/pnas.1407068111] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-β in the presence of caspase inhibitors. IFN-I-induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN-β, IRF-9-STAT1- or -STAT2-deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-β-induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3-dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis.
Collapse
Affiliation(s)
- Scott McComb
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5;Department of Oncology, University Children's Hospital, University of Zurich, 8032 Zürich, Switzerland
| | - Erin Cessford
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Norah A Alturki
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Julie Joseph
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Bojan Shutinoski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Justyna B Startek
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5;Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ana M Gamero
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140; and
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster University, ON Canada L8S 4L8
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5;
| |
Collapse
|
302
|
Broggi A, Granucci F. Microbe- and danger-induced inflammation. Mol Immunol 2014; 63:127-33. [PMID: 25037632 DOI: 10.1016/j.molimm.2014.06.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
Abstract
The ability of the immune system to give rise to an effective response against pathogens while maintaining tolerance towards self-tissues has always been an object of keen interest for immunologist. Over the years, different theories have been proposed to explain if and how the immune system is able to discriminate between self and non-self, including the Infectious Non-self theory from Charles Janeway and Polly Matzinger's Danger theory. Nowadays we know Janeway's theory is largely true, however the immune system does respond to injured, stressed and necrotic cells releasing danger signals (DAMPs) with a potent inflammatory response. To avoid unwanted prolonged autoimmune reactions, though, danger-induced inflammation should be tightly regulated. In the present review we discuss how prototypic DAMPs are able to induce inflammation and the peculiarity of danger-induced inflammation, as opposed to a complete immune response to fight pathogen invasions.
Collapse
Affiliation(s)
- Achille Broggi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
303
|
Abstract
Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of morbidity and mortality worldwide. Current immunological mechanisms do not explain the basis of cellular dysfunction and organ failure, the ultimate cause of death. Here we review current dogma and argue that it is time to delineate novel immunometabolic and neurophysiological mechanisms underlying the altered cellular bioenergetics and failure of epithelial and endothelial barriers that produce organ dysfunction and death. These mechanisms might hold the key to future therapeutic strategies.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Anesthesiology and Critical Care and Surgery and Sepsis Research Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kevin J Tracey
- Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
304
|
Lage SL, Longo C, Branco LM, da Costa TB, Buzzo CDL, Bortoluci KR. Emerging Concepts about NAIP/NLRC4 Inflammasomes. Front Immunol 2014; 5:309. [PMID: 25071770 PMCID: PMC4078251 DOI: 10.3389/fimmu.2014.00309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
Neuronal apoptosis inhibitory protein (NAIP)/NOD-like receptor (NLR) containing a caspase activating and recruitment domain (CARD) 4 (NLRC4) inflammasome complexes are activated in response to proteins from virulent bacteria that reach the cell cytosol. Specific NAIP proteins bind to the agonists and then physically associate with NLRC4 to form an inflammasome complex able to recruit and activate pro-caspase-1. NAIP5 and NAIP6 sense flagellin, component of flagella from motile bacteria, whereas NAIP1 and NAIP2 detect needle and rod components from bacterial type III secretion systems, respectively. Active caspase-1 mediates the maturation and secretion of the pro-inflammatory cytokines, IL-1β and IL-18, and is responsible for the induction of pyroptosis, a pro-inflammatory form of cell death. In addition to these well-known effector mechanisms, novel roles have been described for NAIP/NLRC4 inflammasomes, such as phagosomal maturation, activation of inducible nitric oxide synthase, regulation of autophagy, secretion of inflammatory mediators, antibody production, activation of T cells, among others. These effector mechanisms mediated by NAIP/NLRC4 inflammasomes have been extensively studied in the context of resistance of infections and the potential of their agonists has been exploited in therapeutic strategies to non-infectious pathologies, such as tumor protection. Thus, this review will discuss current knowledge about the activation of NAIP/NLRC4 inflammasomes and their effector mechanisms.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Carla Longo
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil ; Departamento de Ciências Biológicas, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Laura Migliari Branco
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Thaís Boccia da Costa
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Carina de Lima Buzzo
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Karina Ramalho Bortoluci
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil ; Departamento de Ciências Biológicas, Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
305
|
Song-Zhao GX, Srinivasan N, Pott J, Baban D, Frankel G, Maloy KJ. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol 2014; 7:763-774. [PMID: 24280937 PMCID: PMC4048180 DOI: 10.1038/mi.2013.94] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/01/2013] [Indexed: 02/04/2023]
Abstract
Polymorphisms in the intracellular pattern recognition receptor gene NLRP3 (NLR family, pyrin domain containing 3) have been associated with susceptibility to Crohn's disease, a type of inflammatory bowel disease. Following tissue damage or infection, NLRP3 triggers the formation of inflammasomes, containing NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD domain), and caspase-1, that mediate secretion of interleukin (IL)-1β and IL-18. However, the precise role of NLRP3 inflammasomes in mucosal inflammation and barrier protection remains unclear. Here we show that upon infection with the attaching/effacing intestinal pathogen Citrobacter rodentium, Nlrp3(-/-) and Asc(-/-) mice displayed increased bacterial colonization and dispersion, more severe weight loss, and exacerbated intestinal inflammation. Analyses of irradiation bone marrow chimeras revealed that protection from disease was mediated through Nlrp3 activation in nonhematopoietic cells and was initiated very early after infection. Thus, early activation of Nlrp3 in intestinal epithelial cells limits pathogen colonization and prevents subsequent pathology, potentially providing a functional link between NLRP3 polymorphisms and susceptibility to inflammatory bowel disease.
Collapse
Affiliation(s)
- George X. Song-Zhao
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Naren Srinivasan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Dilair Baban
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK.
| | - Kevin J. Maloy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
,Corresponding author: T: +44-(0)1865-275589 F: +44-(0)1865-275591
| |
Collapse
|
306
|
|
307
|
Jessop F, Holian A. Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo. Nanotoxicology 2014; 9:365-72. [PMID: 24983895 DOI: 10.3109/17435390.2014.933904] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endotoxin is often used to activate NF-κB in vitro when assessing NLRP3 inflammasome activation by various exogenous particles including nanoparticles. However, the endogenous source of this signal 1 is unknown. High-mobility group box 1 (HMGB1) is known to play a critical role in acute lung injury, however the potential contribution of the alarmin HMGB1 to NLRP3 Inflammasome activation has not been determined in response to nanoparticles in vivo. In this study, the ability of multi-walled carbon nanotubes (MWCNT) to cause release of HMGB1 in vitro and in vivo, as well as the potential of HMGB1 to function as signal 1 in vitro and in vivo, was determined. HMGB1 activity in vivo was assessed by administration of HMGB1 neutralization antibodies following MWCNT exposure. Caspase-1(-/-) mice were utilized to elucidate the dependence of HMGB1 secretion on NLRP3 inflammasome activity. MWCNT exposure increased extracellular HMGB1 levels in primary alveolar macrophages from C57Bl/6 mice and C10 mouse epithelial cell culture supernatants, and in C57Bl/6 mouse lung lavage fluid. MWCNT-induced HMGB1 secretion was dependent upon caspase-1. HMGB1 increased MWCNT-induced IL-1β release from macrophages in vitro, and neutralization of extracellular HMGB1 reduced MWCNT-induced IL-1β secretion in vivo. HMGB1 neutralization was accompanied with overall decreased inflammation. In summary, this study suggests extracellular HMGB1 participates in NLRP3 inflammasome activity and regulates IL-1β associated sterile inflammation induced by MWCNT.
Collapse
Affiliation(s)
- Forrest Jessop
- Center for Environmental Health Sciences, University of Montana , Missoula, MT , USA
| | | |
Collapse
|
308
|
Gao Y, Chen X, Fang L, Liu F, Cai R, Peng C, Qi Y. Rhein exerts pro- and anti-inflammatory actions by targeting IKKβ inhibition in LPS-activated macrophages. Free Radic Biol Med 2014; 72:104-12. [PMID: 24721152 DOI: 10.1016/j.freeradbiomed.2014.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
Because steroids and cyclooxygenase inhibitors may cause serious side effects, the IκB kinase (IKK) β/nuclear factor-κB (NF-κB) system has become an intriguing candidate anti-inflammatory target. Rhein, the active metabolite of diacerein, possesses anti-inflammatory ability with a gastrointestinal protective effect. However, in a preliminary study, we accidentally found that rhein showed both anti- and proinflammatory activities in lipopolysaccharide (LPS)-activated macrophages. Thus, in this study, we explored the underlying molecular mechanisms of the dual effects of rhein. In LPS-activated macrophages, rhein inhibits NF-κB activation and sequentially suppresses its downstream inducible nitric oxide synthase, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) transcription and supernatant nitric oxide and IL-6 levels by inhibiting IKKβ (IC50 ≈ 11.79μM). But in the meantime, rhein enhances the activity of caspase-1 by inhibiting intracellular (in situ) IKKβ, in turn increasing the IL-1β and high-mobility-group box 1 release, which can be amplified by rhein׳s reductive effect on intracellular superoxide anion. Unexpectedly, it is because of IKKβ inhibition that rhein significantly enhances TNF-α secretion and phagocytosis in macrophages with or without LPS. These results indicate that rhein exerts anti- and proinflammatory activities by targeting IKKβ inhibition, providing a molecular mechanism for the unanticipated role of rhein in macrophages. Furthermore, our study also highlights the potential complications of IKKβ inhibitor (e.g., rhein, diacerein, etc.) application in inflammation disorders, for the overall effects of IKKβ inhibition in various organ systems and disease processes are not easily predictable under all circumstances.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lei Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fen Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
309
|
Zhang Y, Li S, Wang G, Han D, Xie X, Wu Y, Xu J, Lu J, Li F, Li M. Changes of HMGB1 and sRAGE during the recovery of COPD exacerbation. J Thorac Dis 2014; 6:734-41. [PMID: 24976997 DOI: 10.3978/j.issn.2072-1439.2014.04.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/15/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease is associated with increased airway and systemic inflammation. However, the correlation between acute exacerbation/convalescence of chronic obstructive pulmonary disease (COPD) and simultaneous changes of high mobility group protein B1 (HMGB1) and soluble RAGE (sRAGE) levels has not been clearly clarified. The aim of this study was to assess these issues. METHODS A total of 44 COPD patients were recruited. Following a structured interview, plasma levels of HMGB1, sRAGE, fibrinogen and serum level of high-sensitivity C-reactive protein (hsCRP) were measured in patients with acute exacerbation of COPD (AECOPD) within 24 h of hospitalization and pre-discharge (convalescence). All patients were examined with spirometry in convalescence of COPD. RESULTS There was a significant decline in plasma HMGB1 (P<0.01), sRAGE (P<0.05), fibrinogen (P<0.01) and serum hsCRP (P<0.01) levels from acute exacerbation to convalescence phase of COPD. Changes of sRAGE was significantly correlated with changes of HMGB1 (r=0.4, P=0.007). COPD disease status correlated with the ratio of HMGB1/sRAGE, but not gender, age, course of disease, smoking history and FEV1% pred. Levels of HMGB1 and sRAGE were the highest in the current smoker group, and significantly decreased in ex-smoker group in both acute exacerbation and convalescence phase of COPD, however, their levels in never smoker group were higher than ex-smoker group in either phase of COPD. CONCLUSIONS HMGB1 and sRAGE levels were dynamically changed between exacerbation and convalescence phase of COPD, HMGB1 and sRAGE were likely not only a potential marker in COPD exacerbation but also a therapeutic target for COPD treatment.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Shaojun Li
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Guizuo Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Dong Han
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinming Xie
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuanyuan Wu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jing Xu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiamei Lu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Fengjuan Li
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| | - Manxiang Li
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
310
|
The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 2014; 15:738-48. [PMID: 24952504 DOI: 10.1038/ni.2919] [Citation(s) in RCA: 623] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 12/17/2022]
Abstract
Assembly of the NLRP3 inflammasome activates caspase-1 and mediates the processing and release of the leaderless cytokine IL-1β and thereby serves a central role in the inflammatory response and in diverse human diseases. Here we found that upon activation of caspase-1, oligomeric NLRP3 inflammasome particles were released from macrophages. Recombinant oligomeric protein particles composed of the adaptor ASC or the p.D303N mutant form of NLRP3 associated with cryopyrin-associated periodic syndromes (CAPS) stimulated further activation of caspase-1 extracellularly, as well as intracellularly after phagocytosis by surrounding macrophages. We found oligomeric ASC particles in the serum of patients with active CAPS but not in that of patients with other inherited autoinflammatory diseases. Our findings support a model whereby the NLRP3 inflammasome, acting as an extracellular oligomeric complex, amplifies the inflammatory response.
Collapse
|
311
|
Kajiwara Y, Schiff T, Voloudakis G, Gama Sosa MA, Elder G, Bozdagi O, Buxbaum JD. A critical role for human caspase-4 in endotoxin sensitivity. THE JOURNAL OF IMMUNOLOGY 2014; 193:335-43. [PMID: 24879791 DOI: 10.4049/jimmunol.1303424] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Response to endotoxins is an important part of the organismal reaction to Gram-negative bacteria and plays a critical role in sepsis and septic shock, as well as other conditions such as metabolic endotoxemia. Humans are generally more sensitive to endotoxins when compared with experimental animals such as mice. Inflammatory caspases mediate endotoxin-induced IL-1β secretion and lethality in mice, and caspase-4 is an inflammatory caspase that is found in the human, and not mouse, genome. To test whether caspase-4 is involved in endotoxin sensitivity, we developed a transgenic mouse expressing human caspase-4 in its genomic context. Caspase-4 transgenic mice exhibited significantly higher endotoxin sensitivity, as measured by enhanced cytokine secretion and lethality following LPS challenge. Using bone marrow-derived macrophages, we then observed that caspase-4 can support activation of caspase-1 and secretion of IL-1β and IL-18 in response to priming signals (LPS or Pam3CSK4) alone, without the need for second signals to stimulate the assembly of the inflammasome. These findings indicate that the regulation of caspase-1 activity by human caspase-4 could represent a unique mechanism in humans, as compared with laboratory rodents, and may partially explain the higher sensitivity to endotoxins observed in humans. Regulation of the expression, activation, or activity of caspase-4 therefore represents targets for systemic inflammatory response syndrome, sepsis, septic shock, and related disorders.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
| | - Gregory Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ozlem Bozdagi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
312
|
Eguchi A, Wree A, Feldstein AE. Biomarkers of liver cell death. J Hepatol 2014; 60:1063-74. [PMID: 24412608 DOI: 10.1016/j.jhep.2013.12.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 12/08/2013] [Accepted: 12/26/2013] [Indexed: 12/14/2022]
Abstract
Hepatocyte cell death during liver injury was classically viewed to occur by either programmed (apoptosis), or accidental, uncontrolled cell death (necrosis). Growing evidence from our increasing understanding of the biochemical and molecular mechanisms involved in cell demise has provided an expanding view of various modes of cell death that can be triggered during both acute and chronic liver damage such as necroptosis, pyroptosis, and autophagic cell death. The complexity of non-invasively assessing the predominant mode of cell death during a specific liver insult in either experimental in vivo models or in humans is highlighted by the fact that in many instances there is significant crosstalk and overlap between the different cell death pathways. Nevertheless, the realization that during cell demise triggered by a specific mode of cell death certain intracellular molecules such as proteins, newly generated protein fragments, or MicroRNAs are released from hepatocytes into the extracellular space and may appear in circulation have spurred a significant interest in the development of non-invasive markers to monitor liver cell death. This review focuses on some of the most promising markers, and their potential role in assessing the presence and severity of liver damage in humans.
Collapse
Affiliation(s)
- Akiko Eguchi
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, San Diego, CA 92123, United States
| | - Alexander Wree
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, San Diego, CA 92123, United States
| | - Ariel E Feldstein
- Department of Pediatric Gastroenterology, Rady Children's Hospital, University of California San Diego, San Diego, CA 92123, United States.
| |
Collapse
|
313
|
Xie J, Hodgkinson JW, Li C, Kovacevic N, Belosevic M. Identification and functional characterization of the goldfish (Carassius auratus L.) high mobility group box 1 (HMGB1) chromatin-binding protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:245-253. [PMID: 24406304 DOI: 10.1016/j.dci.2013.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
We report on the identification and functional characterization of HMGB1 of the goldfish. Quantitative analysis indicated the highest expression of goldfish HMGB1 in the brain, with lower mRNA levels in spleen, intestine, kidney, gill and heart. HMGB1 was also differentially expressed in goldfish immune cell populations with highest mRNA levels present in splenocytes and neutrophils. We generated and functionally characterized the recombinant HMGB1 (rgHMGB1). The rgHMGB1 primed the respiratory burst response in monocytes and induced nitric oxide production of primary goldfish macrophages. Treatment of goldfish macrophages with heat-killed Mycobacterium marinum and Aeromonas salmonicida elevated the expression of HMGB1 and resulted in higher HMGB1 protein levels. The rgHMGB1 induced a dose-dependent production of TNFα-2 and IL-1β1 of goldfish macrophages. Furthermore, the dual luciferase reporter assay revealed that goldfish HMGB1 induced the activation of the NF-κB signaling pathway. Our results indicate that goldfish HMGB1 is a critical regulatory cytokine of inflammatory and antimicrobial response of the goldfish.
Collapse
Affiliation(s)
- Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chao Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolina Kovacevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
314
|
|
315
|
Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ, Wang H. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol 2014; 10:713-27. [PMID: 24746113 DOI: 10.1586/1744666x.2014.909730] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High mobility group box 1 (HMGB1) is an evolutionarily conserved protein, and is constitutively expressed in virtually all types of cells. Infection and injury converge on common inflammatory responses that are mediated by HMGB1 secreted from immunologically activated immune cells or passively released from pathologically damaged cells. Herein we review the emerging molecular mechanisms underlying the regulation of pathogen-associated molecular patterns (PAMPs)-induced HMGB1 secretion, and summarize many HMGB1-targeting therapeutic strategies for the treatment of infection- and injury-elicited inflammatory diseases. It may well be possible to develop strategies that specifically attenuate damage-associated molecular patterns (DAMPs)-mediated inflammatory responses without compromising the PAMPs-mediated innate immunity for the clinical management of infection- and injury-elicited inflammatory diseases.
Collapse
Affiliation(s)
- Ben Lu
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | | | | | | | | | | | | |
Collapse
|
316
|
Keyel PA. How is inflammation initiated? Individual influences of IL-1, IL-18 and HMGB1. Cytokine 2014; 69:136-45. [PMID: 24746243 DOI: 10.1016/j.cyto.2014.03.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 12/17/2022]
Abstract
Pro-inflammatory cytokines are crucial for fighting infection and establishing immunity. Recently, other proteins, such as danger-associated molecular patterns (DAMPs), have also been appreciated for their role in inflammation and immunity. Following the formation and activation of multiprotein complexes, termed inflammasomes, two cytokines, IL-1β and IL-18, along with the DAMP High Mobility Group Box 1 (HMGB1), are released from cells. Although these proteins all lack classical secretion signals and are released by inflammasome activation, they each lead to different downstream consequences. This review examines how various inflammasomes promote the release of IL-1β, IL-18 and HMGB1 to combat pathogenic situations. Each of these effector molecules plays distinct roles during sterile inflammation, responding to viral, bacterial and parasite infection, and tailoring the innate immune response to specific threats.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Biology Rm 108, Box 43131, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
317
|
Pisetsky DS. The expression of HMGB1 on microparticles released during cell activation and cell death in vitro and in vivo. Mol Med 2014; 20:158-63. [PMID: 24618884 DOI: 10.2119/molmed.2014.00014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/04/2014] [Indexed: 01/26/2023] Open
Abstract
High mobility group box protein 1 (HMGB1) is a nonhistone nuclear protein that is a prototypic alarmin that can stimulate innate immunity and drive the pathogenesis of a wide range of inflammatory diseases. While HMGB1 can be released from both activated and dying cells, its biochemical and immunological properties differ depending on the release mechanism, resulting from redox changes and posttranslational modifications including acetylation. In addition to release of HMGB1, cell death is associated with the release of microparticles. Microparticles are small membrane-bound vesicles that contain cytoplasmic, nuclear and membrane components. Like HMGB1, microparticles display immunological activity and levels are elevated in diseases characterized by inflammation and vasculopathy. While studies have addressed the immunological effects of HMGB1 and microparticles independently, HMGB1, like other nuclear molecules, is a component of microparticles. Evidence for the physical association of HMGB1 comes from Western blot analysis of microparticles derived from RAW 264.7 macrophage cells stimulated by lipopolysaccharide (LPS) or induced to undergo apoptosis by treatment with etoposide or staurosporine in vitro. Analysis of microparticles in the blood of healthy volunteers receiving LPS shows the presence of HMGB1 as assessed by flow cytometry. Together, these findings indicate that HMGB1 can be a component of microparticles and may contribute to their activities. Furthermore, particle HMGB1 may represent a useful biomarker for in vivo events that may not be reflected by measurement of the total amount of HMGB1 in the blood.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, Durham, North Carolina, United States of America Medical Research Service, Durham Veterans Administration Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
318
|
Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 2014; 20:138-46. [PMID: 24531836 DOI: 10.2119/molmed.2013.00164] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/05/2014] [Indexed: 12/30/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein is a highly abundant protein that can promote the pathogenesis of inflammatory and autoimmune diseases once it is in an extracellular location. This translocation can occur with immune cell activation as well as cell death, with the conditions for release associated with the expression of different isoforms. These isoforms result from post-translational modifications, with the redox states of three cysteines at positions 23, 45 and 106 critical for activity. Depending on the redox states of these residues, HMGB1 can induce cytokine production via toll-like receptor 4 (TLR4) or promote chemotaxis by binding the chemokine CXCL12 for stimulation via CXCR4. Fully oxidized HMGB1 is inactive. During the course of inflammatory disease, HMGB1 can therefore play a dynamic role depending on its redox state. As a mechanism to generate alarmins, cell death is an important source of HMGB1, although each major cell death form (necrosis, apoptosis, pyroptosis and NETosis) can lead to different isoforms of HMGB1 and variable levels of association of HMGB1 with nucleosomes. The association of HMGB1 with nucleosomes may contribute to the pathogenesis of systemic lupus erythematosus by producing nuclear material whose immunological properties are enhanced by the presence of an alarmin. Since HMGB1 levels in blood or tissue are elevated in many inflammatory and autoimmune diseases, this molecule can serve as a unique biomarker as well as represent a target of novel therapies to block its various activities.
Collapse
Affiliation(s)
- Melinda Magna
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - David S Pisetsky
- Duke University Medical Center, Durham, North Carolina, United States of America Medical Research Service, Durham Veterans Administration Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
319
|
Abstract
Proinflammatory caspases play important roles in innate immunity. Much attention has focused on caspase-1, which acts to eliminate pathogens by obliterating their replicative niches as well as alerting the host to their presence. Now, emerging data have shed light on the lesser-studied proinflammatory caspase-11 in the combat between host and pathogens. Using the new tools available, researchers are further elucidating the mechanisms by which caspase-11 contributes to host defense. Here, we review the emerging understanding of caspase-11 functions and the mechanisms of activation and discuss the implications for human disease.
Collapse
|
320
|
Hanamsagar R, Aldrich A, Kielian T. Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 2014; 129:704-11. [PMID: 24484406 DOI: 10.1111/jnc.12669] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/26/2013] [Accepted: 01/27/2014] [Indexed: 01/16/2023]
Abstract
Interleukin-1β (IL-1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL-1β production in response to live S. aureus is mediated through the Nod-like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis-associated speck-like protein containing a caspase-1 recruitment domain), and pro-caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild-type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL-1β, other key inflammatory mediators, including IL-6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL-1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL-1β release and survival during acute CNS S. aureus infection.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
321
|
Marra F, Lotersztajn S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des 2014; 19:5250-69. [PMID: 23394092 DOI: 10.2174/13816128113199990344] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/01/2013] [Indexed: 02/07/2023]
Abstract
Non alcoholic steatohepatitis (NASH) is the more severe form of nonalcoholic fatty liver disease. In NASH, fatty liver, hepatic inflammation, hepatocyte injury and fibrogenesis are associated, and this condition may eventually lead to cirrhosis. Current treatment of NASH relies on the reduction of body weight and increase in physical activity, but there is no pharmacologic treatment approved as yet. Emerging data indicate that NASH progression results from parallel events originating from the liver as well as from the adipose tissue, the gut and the gastrointestinal tract. Thus, dysfunction of the adipose tissue through enhanced flow of free fatty acids and release of adipocytokines, and alterations in the gut microbiome generate proinflammatory signals that underlie NASH progression. Additional 'extrahepatic hits' include dietary factors and gastrointestinal hormones. Within the liver, hepatocyte apoptosis, ER stress and oxidative stress are key contributors to hepatocellular injury. In addition, lipotoxic mediators and danger signals activate Kupffer cells which initiate and perpetuate the inflammatory response by releasing inflammatory mediators that contribute to inflammatory cell recruitment and development of fibrosis. Inflammatory and fibrogenic mediators include chemokines, the cannabinoid system, the inflammasome and activation of pattern-recognition receptors. Here we review the major mechanisms leading to appearance and progression of NASH, focusing on both extrahepatic signals and local inflammatory mechanisms, in an effort to identify the most promising molecular targets for the treatment of this condition.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Italy.
| | | |
Collapse
|
322
|
Marra F, Lotersztajn S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des 2014. [PMID: 23394092 DOI: 10.2174/1381612811399990344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non alcoholic steatohepatitis (NASH) is the more severe form of nonalcoholic fatty liver disease. In NASH, fatty liver, hepatic inflammation, hepatocyte injury and fibrogenesis are associated, and this condition may eventually lead to cirrhosis. Current treatment of NASH relies on the reduction of body weight and increase in physical activity, but there is no pharmacologic treatment approved as yet. Emerging data indicate that NASH progression results from parallel events originating from the liver as well as from the adipose tissue, the gut and the gastrointestinal tract. Thus, dysfunction of the adipose tissue through enhanced flow of free fatty acids and release of adipocytokines, and alterations in the gut microbiome generate proinflammatory signals that underlie NASH progression. Additional 'extrahepatic hits' include dietary factors and gastrointestinal hormones. Within the liver, hepatocyte apoptosis, ER stress and oxidative stress are key contributors to hepatocellular injury. In addition, lipotoxic mediators and danger signals activate Kupffer cells which initiate and perpetuate the inflammatory response by releasing inflammatory mediators that contribute to inflammatory cell recruitment and development of fibrosis. Inflammatory and fibrogenic mediators include chemokines, the cannabinoid system, the inflammasome and activation of pattern-recognition receptors. Here we review the major mechanisms leading to appearance and progression of NASH, focusing on both extrahepatic signals and local inflammatory mechanisms, in an effort to identify the most promising molecular targets for the treatment of this condition.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Italy.
| | | |
Collapse
|
323
|
Shestopalov VI, Slepak VZ. Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol 2014; 5:23. [PMID: 24575045 PMCID: PMC3920106 DOI: 10.3389/fphys.2014.00023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/10/2014] [Indexed: 01/09/2023] Open
Abstract
Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K(+), Zn(2+), fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca(2+). Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these "danger signals" triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways.
Collapse
Affiliation(s)
- Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine Miami, FL, USA ; Vavilov Institute of General Genetics, Moscow, Russian Federation, University of Miami Miller School of Medicine Miami, FL, USA
| | - Vladlen Z Slepak
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA ; Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
324
|
Berghe TV, Demon D, Bogaert P, Vandendriessche B, Goethals A, Depuydt B, Vuylsteke M, Roelandt R, Van Wonterghem E, Vandenbroecke J, Choi SM, Meyer E, Krautwald S, Declercq W, Takahashi N, Cauwels A, Vandenabeele P. Simultaneous Targeting of IL-1 and IL-18 Is Required for Protection against Inflammatory and Septic Shock. Am J Respir Crit Care Med 2014; 189:282-91. [DOI: 10.1164/rccm.201308-1535oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
325
|
Gentile LF, Moldawer LL. HMGB1 as a therapeutic target for sepsis: it's all in the timing! Expert Opin Ther Targets 2014; 18:243-5. [PMID: 24479494 DOI: 10.1517/14728222.2014.883380] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Morbidity and mortality from severe sepsis remain high, despite decades of research and improvements in intensive care unit (ICU) care. There have been over 100 failed clinical trials of biological response modifiers aimed at single therapeutic targets, mostly to suppress the early pro-inflammatory responses. In the last decade, extracellular HMGB1 has emerged as a late mediator of sepsis in murine sepsis models, whose blockade improves mortality and has a wider therapeutic window than previous efforts. Although this review promulgates the use of HMGB1 inhibitor as a therapeutic target, it should be recognized that it may not be an optimal approach to the early systemic inflammatory response syndrome (SIRS) response and cytokine storm, but rather for those patients who survive their cytokine storm and present with a persistent inflammatory, immunosuppressive and catabolism response (PICS). With earlier implementation of evidence-based best care principles for treating sepsis, fewer patients are dying from early septic shock, and there is an endemic increase in sepsis survivors with dismal long-term outcomes. These patients have ongoing inflammatory processes that may well be driven by the late and continued release of HMGB1 and other damage-associated molecular patterns receptors (DAMPRs). HMGB1 therapeutics, whether antibodies or natural herbal approaches, may be one novel approach for targeting not the early, but the late persistent inflammation of sepsis survivors.
Collapse
Affiliation(s)
- Lori F Gentile
- University of Florida College of Medicine, Department of Surgery , Room 6116, Shands Hospital, 1600 SW Archer Road, Gainesville, FL 32610-1019 , USA +1 352 265 0494 ; +1 352 265 0676 ;
| | | |
Collapse
|
326
|
JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A 2014; 111:3068-73. [PMID: 24469805 DOI: 10.1073/pnas.1316925111] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular high-mobility group box (HMGB)1 mediates inflammation during sterile and infectious injury and contributes importantly to disease pathogenesis. The first critical step in the release of HMGB1 from activated immune cells is mobilization from the nucleus to the cytoplasm, a process dependent upon hyperacetylation within two HMGB1 nuclear localization sequence (NLS) sites. The inflammasomes mediate the release of cytoplasmic HMGB1 in activated immune cells, but the mechanism of HMGB1 translocation from nucleus to cytoplasm was previously unknown. Here, we show that pharmacological inhibition of JAK/STAT1 inhibits LPS-induced HMGB1 nuclear translocation. Conversely, activation of JAK/STAT1 by type 1 interferon (IFN) stimulation induces HMGB1 translocation from nucleus to cytoplasm. Mass spectrometric analysis unequivocally revealed that pharmacological inhibition of the JAK/STAT1 pathway or genetic deletion of STAT1 abrogated LPS- or type 1 IFN-induced HMGB1 acetylation within the NLS sites. Together, these results identify a critical role of the JAK/STAT1 pathway in mediating HMGB1 cytoplasmic accumulation for subsequent release, suggesting that the JAK/STAT1 pathway is a potential drug target for inhibiting HMGB1 release.
Collapse
|
327
|
Hu Z, Murakami T, Suzuki K, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One 2014; 9:e85765. [PMID: 24454930 PMCID: PMC3894207 DOI: 10.1371/journal.pone.0085765] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/01/2013] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role in innate immune defense. Notably, human cathelicidin LL-37 exhibits the protective effect on the septic animal models. Thus, in this study, to elucidate the mechanism for the protective action of LL-37 on sepsis, we utilized LPS (lipopolysaccharide) and ATP (adenosine triphosphate) as a PAMP and a DAMP, respectively, and examined the effect of LL-37 on the LPS/ATP-induced pyroptosis of macrophage-like J774 cells. The data indicated that the stimulation of J774 cells with LPS and ATP induces the features of pyroptosis, including the expression of IL-1β mRNA and protein, activation of caspase-1, inflammasome formation and cell death. Moreover, LL-37 inhibits the LPS/ATP-induced IL-1β expression, caspase-1 activation, inflammasome formation, as well as cell death. Notably, LL-37 suppressed the LPS binding to target cells and ATP-induced/P2X7-mediated caspase-1 activation. Together these observations suggest that LL-37 potently inhibits the LPS/ATP-induced pyroptosis by both neutralizing the action of LPS and inhibiting the response of P2X7 to ATP. Thus, the present finding may provide a novel insight into the modulation of sepsis utilizing LL-37 with a dual action on the LPS binding and P2X7 activation.
Collapse
Affiliation(s)
- Zhongshuang Hu
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taisuke Murakami
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Suzuki
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Tamura
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Kuwahara-Arai
- Department of Bacteriology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
328
|
Abstract
INTRODUCTION Sepsis refers to the host's deleterious and non-resolving systemic inflammatory response to microbial infections and represents the leading cause of death in the intensive care unit. The pathogenesis of sepsis is complex, but partly mediated by a newly identified alarmin molecule, the high mobility group box 1 (HMGB1). AREAS COVERED Here we review the evidence that support extracellular HMGB1 as a late mediator of experimental sepsis with a wider therapeutic window and discuss the therapeutic potential of HMGB1-neutralizing antibodies and small molecule inhibitors (herbal components) in experimental sepsis. EXPERT OPINION It will be important to evaluate the efficacy of HMGB1-targeting strategies for the clinical management of human sepsis in the future.
Collapse
Affiliation(s)
- Haichao Wang
- The Feinstein Institute for Medical Research and North Shore University Hospital, The Hofstra North Shore - LIJ School of Medicine, Laboratory of Emergency Medicine, North Shore-LIJ Health System , 350 Community Drive, Manhasset, NY 11030 , USA +1 516 562 2823 ; +1 516 562 1022 ;
| | | | | |
Collapse
|
329
|
Liu H, Zhao Q, Song Q, Zhou FH, Kang HJ, Pan L, Yao YM. Release of High Mobility Protein Box-1 is Greatly Regulated by Nuclear Factor of Activated T Cell-2 in Human Monocytes. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Close talk between inflammatory mediators and immunological cytokines has been discovered and reported. In this study, the role of nuclear factor of activated T cell-2 (NFAT2) in regulation of high mobility group box-1 (HMGB1) release was investigated. THP-1 cell and HEK293T cell were incubated and stimulated by lipopolysaccharide (LPS). Firstly, binding site between HMGB1 and NFAT2 was identified by co-immunoprecipitation (IP). Box A, Box B and CT domain of HMGB1 were constructed, as well as Rel-homology-domain (RHD), pre-RHD and pro-RHD of NFAT2. THP-1 cell was harvested, cell lysate and culture medium were collected at appointed times. Binding between HMGB1 and NFAT2 was measured, HMGB1 protein level in culture medium was analyzed at the same time. Secondly, the role of NFAT2 in regulating HMGB1 release was investigated. When THP-1 cell was cultured for 24 h, HMGB1 protein level was measured at appointed times with or without siRNA to inhibit NFAT2 expression. Our data show that HMGB1 bound to NFAT2 in THP-1 cell cytoplasm. Further experiments showed that box B domain of HMGB1 could bind to pre-RHD of NFAT2. After stimulation by LPS, interaction between HMGB1 and NFAT2 was discovered decreasing gradually. However, HMGB1 protein level increased in culture medium at the same time. Furthermore, HMGB1 release could be enhanced by NFAT2 inhibition. Taken together, release of HMGB1 could be regulated by NFAT2 in human monocytes.
Collapse
Affiliation(s)
- H. Liu
- Critical Care Medicine Department, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Q. Zhao
- Gastroenterology Department of Nanlou, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Q. Song
- Critical Care Medicine Department, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - F-H. Zhou
- Critical Care Medicine Department, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - H-J. Kang
- Critical Care Medicine Department, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - L. Pan
- Critical Care Medicine Department, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Y-M. Yao
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital (formerly 304th Hospital), Beijing, People's Republic of China
| |
Collapse
|
330
|
IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 2013; 111:775-80. [PMID: 24379360 DOI: 10.1073/pnas.1320294111] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic infections and tissue injuries trigger the assembly of inflammasomes, cytosolic protein complexes that activate caspase-1, leading to cleavage of pro-IL-1β and pro-IL-18 and to pyroptosis, a proinflammatory cell death program. Although microbial recognition by Toll-like receptors (TLRs) is known to induce the synthesis of the major caspase-1 substrate pro-IL-1β, the role of TLRs has been considered limited to up-regulation of the inflammasome components. During infection with a virulent microbe, TLRs and nucleotide-binding oligomerization domain-like receptors (NLRs) are likely activated simultaneously. To examine the requirements and outcomes of combined activation, we stimulated TLRs and a specific NLR, nucleotide binding and oligomerization, leucine-rich repeat, pyrin domain-containing 3 (NLRP3), simultaneously and discovered that such activation triggers rapid caspase-1 cleavage, leading to secretion of presynthesized inflammatory molecules and pyroptosis. This acute caspase-1 activation is independent of new protein synthesis and depends on the TLR-signaling molecule IL-1 receptor-associated kinase (IRAK-1) and its kinase activity. Importantly, Listeria monocytogenes induces NLRP3-dependent rapid caspase-1 activation and pyroptosis, both of which are compromised in IRAK-1-deficient macrophages. Our results reveal that simultaneous sensing of microbial ligands and virulence factors by TLRs and NLRP3, respectively, leads to a rapid TLR- and IRAK-1-dependent assembly of the NLRP3 inflammasome complex, and that such activation is important for release of alarmins, pyroptosis, and early IFN-γ production by memory CD8 T cells, all of which could be critical for early host defense.
Collapse
|
331
|
Affiliation(s)
- Christopher N LaRock
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Brad T Cookson
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America ; Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
332
|
Abstract
The elaboration of an effective immune response against pathogenic microbes such as viruses, intracellular bacteria or protozoan parasites relies on the recognition of microbial products called pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Ligation of the PRRs leads to synthesis and secretion of pro-inflammatory cytokines and chemokines. Infected cells and other stressed cells also release host-cell derived molecules, called damage-associated molecular patterns (DAMPs, danger signals, or alarmins), which are generic markers for damage. DAMPs are recognized by specific receptors on both immune and nonimmune cells, which, depending on the target cell and the cellular context, can lead to cell differentiation or cell death, and either inflammation or inhibition of inflammation. Recent research has revealed that DAMPs and PAMPs synergize to permit secretion of pro-inflammatory cytokines such as interleukin-1β (IL-1β): PAMPs stimulate synthesis of pro-IL-1β, but not its secretion; while DAMPs can stimulate assembly of an inflammasome containing, usually, a Nod-like receptor (NLR) member, and activation of the protease caspase-1, which cleaves pro-IL-1β into IL-1β, allowing its secretion. Other NLR members do not participate in formation of inflammasomes but play other essential roles in regulation of the innate immune response.
Collapse
Affiliation(s)
- Najwane Saïd-Sadier
- Molecular Cell Biology, and Health Sciences Research Institute, University of California, Merced, CA, USA
| | | |
Collapse
|
333
|
Ratsimandresy RA, Dorfleutner A, Stehlik C. An Update on PYRIN Domain-Containing Pattern Recognition Receptors: From Immunity to Pathology. Front Immunol 2013; 4:440. [PMID: 24367371 PMCID: PMC3856626 DOI: 10.3389/fimmu.2013.00440] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Cytosolic pattern recognition receptors (PRRs) sense a wide range of endogenous danger-associated molecular patterns as well as exogenous pathogen-associated molecular patterns. In particular, Nod-like receptors containing a pyrin domain (PYD), called NLRPs, and AIM2-like receptors (ALRs) have been shown to play a critical role in host defense by facilitating clearance of pathogens and maintaining a healthy gut microflora. NLRPs and ALRs both encode a PYD, which is crucial for relaying signals that result in an efficient innate immune response through activation of several key innate immune signaling pathways. However, mutations in these PRRs have been linked to the development of auto-inflammatory and autoimmune diseases. In addition, they have been implicated in metabolic diseases. In this review, we summarize the function of PYD-containing NLRPs and ALRs and address their contribution to innate immunity, host defense, and immune-linked diseases.
Collapse
Affiliation(s)
- Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA ; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| |
Collapse
|
334
|
Zhang W, Wang LW, Wang LK, Li X, Zhang H, Luo LP, Song JC, Gong ZJ. Betaine protects against high-fat-diet-induced liver injury by inhibition of high-mobility group box 1 and Toll-like receptor 4 expression in rats. Dig Dis Sci 2013; 58:3198-206. [PMID: 23861108 DOI: 10.1007/s10620-013-2775-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have shown that betaine prevents alcohol-induced liver injury and improves liver function. The purpose of this study was to investigate the hepatoprotective effects of betaine on nonalcoholic fatty liver disease (NAFLD) and to observe changes of HMGB1/TLR4 signaling. METHODS Thirty rats were randomly divided into control, model, and betaine groups. The rats in the model and betaine groups were fed a high-fat diet for 12 weeks to induce an animal model of NAFLD. The rats in the betaine group were then intragastrically administered betaine solution at a dose of 400 mg/kg per day for four weeks. Liver histology was examined. Serum levels of ALT, AST, TC, TG, HDL-C, LDL-C, FFA, HMGB1, NF-κB, TLR4, and tHcy were determined and intrahepatic TC, TG, and Hcy levels were assayed. mRNA expression and protein levels of HMGB1, NF-κB, and TLR4 in liver tissue were also determined. RESULTS Compared with the control group, rats in the model group developed severe liver injury, accompanied by significant increases in serum levels of ALT, AST, TC, TG, LDL-C, FFA, HMGB1, NF-κB, and TLR4, intrahepatic TC, TG, and Hcy content, histological scores for steatosis, inflammation, and necrosis, and mRNA expression and protein levels of HMGB1, NF-κB, and TLR4, and a significant decrease in serum HDL-C (P < 0.05). Compared with the model group, all these indicators were significantly improved by administration of betaine (P < 0.05). CONCLUSIONS Betaine effectively protects against high-fat-diet-induced NAFLD and improves liver function; the mechanism is probably related to inhibition of HMGB1/TLR4 signaling pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jie Fang Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Antonopoulos C, El Sanadi C, Kaiser WJ, Mocarski ES, Dubyak GR. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4789-803. [PMID: 24078693 DOI: 10.4049/jimmunol.1300645] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The identification of noncanonical (caspase-1-independent) pathways for IL-1β production has unveiled an intricate interplay between inflammatory and death-inducing signaling platforms. We found a heretofore unappreciated role for caspase-8 as a major pathway for IL-1β processing and release in murine bone marrow-derived dendritic cells (BMDC) costimulated with TLR4 agonists and proapoptotic chemotherapeutic agents such as doxorubicin (Dox) or staurosporine (STS). The ability of Dox to stimulate release of mature (17-kDa) IL-1β was nearly equivalent in wild-type (WT) BMDC, Casp1(-/-)Casp11(-/-) BMDC, WT BMDC treated with the caspase-1 inhibitor YVAD, and BMDC lacking the inflammasome regulators ASC, NLRP3, or NLRC4. Notably, Dox-induced production of mature IL-1β was temporally correlated with caspase-8 activation in WT cells and greatly suppressed in Casp8(-/-)Rip3(-/-) or Trif(-/-) BMDC, as well as in WT BMDC treated with the caspase-8 inhibitor, IETD. Similarly, STS stimulated robust IL-1β processing and release in Casp1(-/-)Casp11(-/-) BMDC that was IETD sensitive. These data suggest that TLR4 induces assembly of caspase-8-based signaling complexes that become licensed as IL-1β-converting enzymes in response to Dox and STS. The responses were temporally correlated with downregulation of cellular inhibitor of apoptosis protein 1, suggesting suppressive roles for this and likely other inhibitor of apoptosis proteins on the stability and/or proteolytic activity of the caspase-8 platforms. Thus, proapoptotic chemotherapeutic agents stimulate the caspase-8-mediated processing and release of IL-1β, implicating direct effects of such drugs on a noncanonical inflammatory cascade that may modulate immune responses in tumor microenvironments.
Collapse
Affiliation(s)
- Christina Antonopoulos
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | | | |
Collapse
|
336
|
Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013; 341:1250-3. [PMID: 24031018 DOI: 10.1126/science.1240988] [Citation(s) in RCA: 976] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS.
Collapse
Affiliation(s)
- Jon A Hagar
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
337
|
Kaminski JJ, Schattgen SA, Tzeng TC, Bode C, Klinman DM, Fitzgerald KA. Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:3876-83. [PMID: 23986531 DOI: 10.4049/jimmunol.1300530] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthetic oligodeoxynucleotides (ODNs) comprised of the immunosuppressive motif TTAGGG block TLR9 signaling, prevent STAT1 and STAT4 phosphorylation and attenuate a variety of inflammatory responses in vivo. In this study, we demonstrate that such suppressive ODN abrogate activation of cytosolic nucleic acid-sensing pathways. Pretreatment of dendritic cells and macrophages with the suppressive ODN-A151 abrogated type I IFN, TNF-α, and ISG induction in response to cytosolic dsDNA. In addition, A151 abrogated caspase-1-dependent IL-1β and IL-18 maturation in dendritic cells stimulated with dsDNA and murine CMV. Inhibition was dependent on A151's phosphorothioate backbone, whereas substitution of the guanosine residues for adenosine negatively affected potency. A151 mediates these effects by binding to AIM2 in a manner that is competitive with immune-stimulatory DNA and as a consequence prevents AIM2 inflammasome complex formation. Collectively, these findings reveal a new route by which suppressive ODNs modulate the immune system and unveil novel applications for suppressive ODNs in the treatment of infectious and autoimmune diseases.
Collapse
Affiliation(s)
- John J Kaminski
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | | | | | | | | |
Collapse
|
338
|
Hillegass JM, Miller JM, MacPherson MB, Westbom CM, Sayan M, Thompson JK, Macura SL, Perkins TN, Beuschel SL, Alexeeva V, Pass HI, Steele C, Mossman BT, Shukla A. Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part Fibre Toxicol 2013; 10:39. [PMID: 23937860 PMCID: PMC3751315 DOI: 10.1186/1743-8977-10-39] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/09/2013] [Indexed: 01/07/2023] Open
Abstract
Background Pleural fibrosis and malignant mesotheliomas (MM) occur after exposures to pathogenic fibers, yet the mechanisms initiating these diseases are unclear. Results We document priming and activation of the NLRP3 inflammasome in human mesothelial cells by asbestos and erionite that is causally related to release of IL-1β, IL-6, IL-8, and Vascular Endothelial Growth Factor (VEGF). Transcription and release of these proteins are inhibited in vitro using Anakinra, an IL-1 receptor antagonist that reduces these cytokines in a human peritoneal MM mouse xenograft model. Conclusions These novel data show that asbestos-induced priming and activation of the NLRP3 inflammasome triggers an autocrine feedback loop modulated via the IL-1 receptor in mesothelial cell type targeted in pleural infection, fibrosis, and carcinogenesis.
Collapse
Affiliation(s)
- Jedd M Hillegass
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Li W, Li J, Sama AE, Wang H. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Mol Med 2013; 19:203-11. [PMID: 23835906 DOI: 10.2119/molmed.2013.00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 01/20/2023] Open
Abstract
The pathogen- and damage-associated molecular patterns (for example, bacterial endotoxin and adenosine 5'-triphosphate [ATP]) activate the double-stranded RNA-activated protein kinase R (PKR) to trigger the inflammasome-dependent high mobility group box 1 (HMGB1) release. Extracellular ATP contributes to the inflammasome activation through binding to the plasma membrane purinergic P2X7 receptor (P2X7R), triggering the opening of P2X7R channels and the pannexin-1 (panx-1) hemichannels permeable for larger molecules up to 900 daltons. It was previously unknown whether panx-1 channel blockers can abrogate lipopolysaccharide (LPS)-induced PKR activation and HMGB1 release in innate immune cells. Here we demonstrated that a major gancao (licorice) component (glycyrrhizin, or glycyrrhizic acid) derivative, carbenoxolone (CBX), dose dependently abrogated LPS-induced HMGB1 release in macrophage cultures with an estimated IC50 ≈ 5 μmol/L. In an animal model of polymicrobial sepsis (induced by cecal ligation and puncture [CLP]), repetitive CBX administration beginning 24 h after CLP led to a significant reduction of circulating and peritoneal HMGB1 levels, and promoted a significant increase in animal survival rates. As did P2X7R antagonists (for example, oxidized ATP, oATP), CBX also effectively attenuated LPS-induced P2X7R/panx-1 channel activation (as judged by Lucifer Yellow dye uptake) and PKR phosphorylation in primary peritoneal macrophages. Collectively, these results suggested that CBX blocks LPS-induced HMGB1 release possibly through impairing PKR activation, supporting the involvement of PKR in the regulation of HMGB1 release.
Collapse
Affiliation(s)
- Wei Li
- The Feinstein Institute for Medical Research, Manhasset, New York, USA.
| | | | | | | |
Collapse
|
340
|
Matsuda A, Jacob A, Wu R, Aziz M, Yang WL, Matsutani T, Suzuki H, Furukawa K, Uchida E, Wang P. Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses. J NIPPON MED SCH 2013; 79:4-18. [PMID: 22398786 DOI: 10.1272/jnms.79.4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sepsis is a devastating and complex syndrome and continues to be a major cause of morbidity and mortality among critically ill patients at the surgical intensive care unit setting in the United States. The occurrence of sepsis and septic shock has increased significantly over the past two decades. Despite of highly dedicated basic research and numerous clinical trials, remarkable progress has not been made in the development of novel and effective therapeutics. The sepsis-induced physiologic derangements are due largely to the host responses to the invading microorganism in contrast to the direct effects of the microorganism itself. Sepsis, the systemic inflammatory response to infection, is marked by dysregulated production of pro-inflammatory cytokines. Although pro-inflammatory cytokine production is normally indispensable to protect against pathogens and promote tissue repair, the dysregulated and prolonged production of these cytokines can trigger a systemic inflammatory cascade mediated by chemokines, vasoactive amines, the complement and coagulation system, and reactive oxygen species (ROS), amongst others. These mediators collectively lead to multiple organ failure, and ultimately to death. In this regard, the role of inflammation in the pathophysiology of sepsis, although still incompletely understood, is clearly critical. Recent findings resulting from vigorous investigations have contributed to delineate various novel directions of sepsis therapeutics. Among these, this review article is focused on new promising mechanisms and concepts that could have a key role in anti-inflammatory strategies against sepsis, including 1) "inflammasome": a multiprotein complex that activates caspase-1; 2) "the cholinergic anti-inflammatory pathway": the efferent arm of the vagus nerve-mediated, brain-to-immune reflex; 3) "stem cells": unspecialized and undifferentiated precursor cells with the capacity for self-renewal and potential to change into cells of multiple lineages; 4) "milk fat globule-EGF factor VIII (MFG-E8)": a bridging molecule between apoptotic cells and phagocytes, which promotes phagocytosis of apoptotic cells.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset and Laboratory of Surgical Research, the Feinstein Institute for Medical Research, Manhasset, NY 11303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Abstract
Inflammasomes are the central processing units (CPUs) responsible for decoding and integrating signals of foreignness, damage, danger, and distress released by pathogens, cells, and tissues. It was initially thought that the inflammasomes participated only in pathogen recognition and in the pathogenesis of a few, rare, hereditary inflammatory disorders. On the contrary, it is now clear that they have a central role in the pathogenesis of basically all types of chronic inflammation, in metabolic diseases and cancer. So far, six or possibly eight inflammasome subtypes have been identified. Their main, but by no means exclusive, function is to catalyze conversion of pro-IL-1β and pro-IL-18 into their respective mature forms. However, the different inflammasome subtypes may also participate in additional responses, e.g., proliferation, regulation of glycolytic metabolism, or cell activation, albeit it is not clear whether these effects are still mediated through IL-1β release or via modulation of other caspase-1-dependent or -independent pathways. Central to inflammasome organization and activity are proteins belonging to the nucleotide binding domain, leucine-rich repeat, or NOD-like receptor family. One relevant exception is the AIM2 inflammasome. NOD-like receptors belong to the superfamily of pattern recognition receptors, a group of highly conserved molecules specialized in the recognition of invariant molecular patterns diffused across species. Given their potent proinflammatory activity, it is anticipated that inflammasome activation is tightly controlled. In this review, I will summarize essential features of the known NOD-like receptors, the basic molecular structure of inflammasomes, their participation in pathophysiological responses, and their possible exploitation for therapy.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
342
|
Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 2013; 93:865-73. [PMID: 23446148 PMCID: PMC4051189 DOI: 10.1189/jlb.1212662] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 01/09/2023] Open
Abstract
HMGB1 is a ubiquitous nuclear protein present in almost all cell types. In addition to its intracellular functions, HMGB1 can be extracellularly released, where it mediates activation of innate immune responses, including chemotaxis and cytokine release. HMGB1 contains three conserved redox-sensitive cysteines (C23, C45, and C106); modification of these cysteines determines the bioactivity of extracellular HMGB1. Firstly, the cytokine-stimulating activity of HMGB1 requires C23 and C45 to be in a disulfide linkage, at the same time that C106 must remain in its reduced form as a thiol. This distinctive molecular conformation enables HMGB1 to bind and signal via the TLR4/MD-2 complex to induce cytokine release in macrophages. Secondly, for HMGB1 to act as a chemotactic mediator, all three cysteines must be in the reduced form. This all-thiol HMGB1 exerts its chemotactic activity to initiate inflammation by forming a heterocomplex with CXCL12; that complex binds exclusively to CXCR4 to initiate chemotaxis. Thirdly, binding of the HMGB1 to CXCR4 or to TLR4 is completely prevented by all-cysteine oxidation. Also, the initial post-translational redox modifications of HMGB1 are reversible processes, enabling HMGB1 to shift from acting as a chemotactic factor to acting as a cytokine and vice versa. Lastly, post-translational acetylation of key lysine residues within NLSs of HMGB1 affects HMGB1 to promote inflammation; hyperacetylation of HMGB1 shifts its equilibrium from a predominant nuclear location toward a cytosolic and subsequent extracellular presence. Hence, post-translational modifications of HMGB1 determine its role in inflammation and immunity.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | | | | | | |
Collapse
|
343
|
Carta S, Lavieri R, Rubartelli A. Different Members of the IL-1 Family Come Out in Different Ways: DAMPs vs. Cytokines? Front Immunol 2013; 4:123. [PMID: 23745123 PMCID: PMC3662868 DOI: 10.3389/fimmu.2013.00123] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/08/2013] [Indexed: 11/13/2022] Open
Abstract
Intercellular communications control fundamental biological processes required for the survival of multicellular organisms. Secretory proteins are among the most important messengers in this network of information. Proteins destined to the extracellular environment contain a signal sequence with the necessary information to target them to the Endoplasmic Reticulum, and are released by a "classical" pathway of secretion. However, in the early 1990s it became evident that non-classical mechanisms must exist for the secretion of some proteins, which in spite of their extracellular localization and function, lack a signal peptide. Indeed, the group of leaderless secretory proteins rapidly grew and is still growing. Many of them are implicated in the regulation of the inflammatory response. Interestingly, most members of the IL-1 family (IL-1F), including the master pro-inflammatory cytokine IL-1β, are leaderless proteins and find their way out of the cells in different manners. In this article, we will review current hypotheses on the mechanisms of externalization of IL-1F members and discuss their relevance with respect to the different functions (as cytokines or as DAMPs) played by the different IL-1 proteins.
Collapse
Affiliation(s)
- Sonia Carta
- Cell Biology Unit, IRCSS Azienda Ospedale Università San Martino-IST , Genoa , Italy
| | | | | |
Collapse
|
344
|
Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol 2013; 16:319-26. [PMID: 23707339 DOI: 10.1016/j.mib.2013.04.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/11/2013] [Accepted: 04/25/2013] [Indexed: 01/11/2023]
Abstract
Cell death is an effective strategy to limit intracellular infections. Canonical inflammasomes, including NLRP3, NLRC4, and AIM2, recruit and activate caspase-1 in response to a range of microbial stimuli and endogenous danger signals. Caspase-1 then promotes the secretion of IL-1β and IL-18 and a rapid form of lytic programmed cell death termed pyroptosis. A second inflammatory caspase, mouse caspase-11, mediates pyroptotic death through an unknown non-canonical inflammasome system in response to cytosolic bacteria. In addition, recent work shows that inflammasomes can also recruit procaspase-8, initiating apoptosis. The induction of multiple pathways of cell death has probably evolved to counteract microbial evasion of cell death pathways.
Collapse
Affiliation(s)
- Youssef Aachoui
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
345
|
The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 2013; 12:799-805. [PMID: 23245324 DOI: 10.1016/j.chom.2012.10.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/16/2012] [Accepted: 10/19/2012] [Indexed: 12/18/2022]
Abstract
Inflammasome assembly activates caspase-1 and initiates the inflammatory cell death program pyroptosis, which is protective against numerous pathogens. Consequently, several pathogens, including the plague causing bacterium Yersinia pestis, avoid activating this pathway to enhance their virulence. However, bacterial molecules that directly modulate the inflammasome have yet to be identified. Examining the contribution of Yersinia type III secretion effectors to caspase-1 activation, we identified the leucine-rich repeat effector YopM as a potent antagonist of both caspase-1 activity and activation. YopM directly binds caspase-1, which both inhibits caspase-1 activity and sequesters it to block formation of the mature inflammasome. Caspase-1 activation antagonizes Yersinia survival in vivo, and consequently YopM inhibition of caspase-1 is required for Yersinia pathogenesis. Thus, a bacterium obstructs pyroptosis utilizing a direct mechanism of caspase-1 inhibition that is distinct from known viral or host inhibitors.
Collapse
|
346
|
NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis 2013; 4:e644. [PMID: 23703389 PMCID: PMC3674376 DOI: 10.1038/cddis.2013.169] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NLR family pyrin domain containing 3 (NLRP3) is a cytoplasmic pattern recognition receptor that regulates innate immune responses by forming a protein complex, the inflammasome. It leads to production of proinflammatory cytokine productions such as interleukin 1β (IL-1β). We and others demonstrated that an induction of activated NLRP3 also induced cell death. However, little is known about the characteristics and mechanisms of the cell death and its involvement in the pathogenesis of inflammatory conditions. In this study, we established cell lines in which NLRP3 was induced by doxycycline using a tetracycline-inducible expression (Tet-on) system. Using this system, the expression of NLRP3 mutants in cryopyrin-associated periodic syndrome (CAPS) patients was sufficient for the induction of necrotic cell death without lipopolysaccharide stimulation or generation of mature IL-1β. We also found that CA074-Me, a cathepsin B inhibitor, blocked cell death before oligomerization of apoptosis-associated speck-like protein containing a CARD (ASC), whereas Z-VAD-fmk, a pan-caspase inhibitor, blocked the cell death after the oligomerization. Silencing of the ASC gene (Pycard) by small hairpin RNA treatment inhibited the NLRP3 mutant-induced cell death, but silencing of the caspase-1 gene (Casp1) did not. Taken together, these results indicated that ASC was indispensable for NLRP3-mediated programmed necrotic cell death, and that this type of cell death was distinct from ‘pyroptosis', which requires caspase-1. Finally, we demonstrated in an in vivo model that the programmed necrotic cell death induced by activated NLRP3 could cause neutrophil infiltration, indicating a possible role of cell death in neutrophil infiltration of skin lesions in CAPS patients.
Collapse
|
347
|
Abstract
The crucial role of the proinflammatory cytokine interleukin 1β (IL-1β) in driving inflammatory disorders, such as Muckle-Wells syndrome and gout, has been extensively characterised. Owing to its high potency to induce inflammation the activation and secretion of IL-1β is tightly regulated. The sensing of various host 'dangers', including infections and metabolic deregulation, results in the formation of large protein complexes, termed inflammasomes. Formation of the inflammasomes leads to the cleavage and activation of caspase-1, which in turn proteolytically processes its substrates, including pro-IL-1β. Biologically active IL-1β is subsequently secreted by the cell. In contrast to IL-1β, little is known about mechanisms underlying the activation and secretion of its close homologue IL-1α. Moreover, the physiological role of IL-1α is still not well defined. Several studies hypothesise that IL-1α serves as a danger signal, which is passively released from dying cells. However, recent studies suggest a more complex function of this cytokine. Indeed, NLRP3 inflammasome agonists such as uric acid crystal or nigericin induce IL-1α cleavage and secretion, leading to the cosecretion of both IL-1β and IL-1α. Depending on the type of NLRP3 agonist, release of IL-1α is NLRP3-inflammasome/caspase-1 dependent or independent, but in both cases IL-1α processing depends on calpain protease activity. Taken together, these results suggest that the promotion and progression of inflammatory diseases is not solely due to IL-1β but also to its close relative IL-1α. This should be considered when IL-1 blockade is applied as a therapeutic strategy for diseases such as cryopyrin-associated periodic syndromes or gout.
Collapse
Affiliation(s)
- Amir S Yazdi
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
348
|
Höhne C, Wenzel M, Angele B, Hammerschmidt S, Häcker H, Klein M, Bierhaus A, Sperandio M, Pfister HW, Koedel U. High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain 2013; 136:1746-59. [DOI: 10.1093/brain/awt064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
349
|
Regulation of HMGB1 release by inflammasomes. Protein Cell 2013; 4:163-7. [PMID: 23483477 DOI: 10.1007/s13238-012-2118-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/12/2012] [Indexed: 01/03/2023] Open
Abstract
High mobility group box 1 (HMGB1) is an evolutionarily conserved non-histone chromatin-binding protein. During infection or injury, activated immune cells and damaged cells release HMGB1 into the extracellular space, where HMGB1 functions as a proinflammatory mediator and contributes importantly to the pathogenesis of inflammatory diseases. Recent studies reveal that inflammasomes, intracellular protein complexes, critically regulate HMGB1 release from activated immune cells in response to a variety of exogenous and endogenous danger signals. Double stranded RNA dependent kinase (PKR), an intracellular danger-sensing molecule, physically interacts with inflammasome components and is important for inflammasome activation and HMGB1 release. Together, these studies not only unravel novel mechanisms of HMGB1 release during inflammation, but also provide potential therapeutic targets to treat HMGB1-related inflammatory diseases.
Collapse
|
350
|
Killeen ME, Ferris L, Kupetsky EA, Falo L, Mathers AR. Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. THE JOURNAL OF IMMUNOLOGY 2013; 190:4324-36. [PMID: 23479230 DOI: 10.4049/jimmunol.1202045] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human cutaneous dendritic cells (DCs) have the ability to prime and bias Th17 lymphocytes. However, the factors that stimulate cutaneous DCs to induce Th17 responses are not well known. Alarmins, such as ATP, likely play a pivotal role in the induction and maintenance of cutaneous immune responses by stimulating DC maturation, chemotaxis, and secretion of IL-1β and IL-6, Th17-biasing cytokines. In this study, using a well-established human skin model, we have demonstrated that signaling purinergic receptors, predominantly the P2X7 receptor (P2X7R), via an ATP analog initiate innate proinflammatory inflammation, DC17 differentiation, and the subsequent induction of Th17-biased immunity. Moreover, our results suggest a potential role for P2X7R signaling in the initiation of psoriasis pathogenesis, a Th17-dependent autoimmune disease. In support of this, we observed the increased presence of P2X7R in nonlesional and lesional psoriatic skin compared with normal healthy tissues. Interestingly, there was also a P2X7R variant that was highly expressed in lesional psoriatic skin compared with nonlesional psoriatic and normal healthy skin. Furthermore, we demonstrated that psoriatic responses could be initiated via P2X7R signaling in nonlesional skin following treatment with a P2X7R agonist. Mechanistic studies revealed a P2X7R-dependent mir-21 angiogenesis pathway that leads to the expression of vascular endothelial growth factor and IL-6 and that may be involved in the development of psoriatic lesions. In conclusion, we have established that purinergic signaling in the skin induces innate inflammation, leading to the differentiation of human Th17 responses, which have implications in the pathogenesis and potential treatment of psoriasis.
Collapse
Affiliation(s)
- Meaghan E Killeen
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|