301
|
Sekulovic O, Ospina Bedoya M, Fivian-Hughes AS, Fairweather NF, Fortier LC. The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance. Mol Microbiol 2015; 98:329-42. [PMID: 26179020 PMCID: PMC4737114 DOI: 10.1111/mmi.13121] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 01/21/2023]
Abstract
Bacteriophages are present in virtually all ecosystems, and bacteria have developed multiple antiphage strategies to counter their attacks. Clostridium difficile is an important pathogen causing severe intestinal infections in humans and animals. Here we show that the conserved cell-surface protein CwpV provides antiphage protection in C. difficile. This protein, for which the expression is phase-variable, is classified into five types, each differing in their repeat-containing C-terminal domain. When expressed constitutively from a plasmid or the chromosome of locked 'ON' cells of C. difficile R20291, CwpV conferred antiphage protection. Differences in the level of phage protection were observed depending on the phage morphological group, siphophages being the most sensitive with efficiency of plaquing (EOP) values of < 5 × 10(-7) for phages ϕCD38-2, ϕCD111 and ϕCD146. Protection against the myophages ϕMMP01 and ϕCD52 was weaker, with EOP values between 9.0 × 10(-3) and 1.1 × 10(-1). The C-terminal domain of CwpV carries the antiphage activity and its deletion, or part of it, significantly reduced the antiphage protection. CwpV does not affect phage adsorption, but phage DNA replication is prevented, suggesting a mechanism reminiscent of superinfection exclusion systems normally encoded on prophages. CwpV thus represents a novel ubiquitous host-encoded and phase-variable antiphage system in C. difficile.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maicol Ospina Bedoya
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Amanda S Fivian-Hughes
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Neil F Fairweather
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Louis-Charles Fortier
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
302
|
Messad N, Prajsnar TK, Lina G, O'Callaghan D, Foster SJ, Renshaw SA, Skaar EP, Bes M, Dunyach-Remy C, Vandenesch F, Sotto A, Lavigne JP. Existence of a Colonizing Staphylococcus aureus Strain Isolated in Diabetic Foot Ulcers. Diabetes 2015; 64:2991-5. [PMID: 25901094 PMCID: PMC4512213 DOI: 10.2337/db15-0031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/09/2015] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is an opportunistic bacterium capable of causing a wide range of severe diseases when it gains access to underlying tissues. Paradoxically, S. aureus is a common inhabitant of the skin microflora and colonizes the nares and other human mucosa. The purpose of this study was to determine the genetic basis for the differences in the pathogenic versus colonizing potential of S. aureus isolated from diabetic foot ulcers (DFUs). By performing optical map comparisons of a collection of S. aureus strains isolated from DFUs, we brought to light a prophage present in noninfecting bacteria. The phage, namely ROSA-like, was localized in a hotspot region ΦNM2 near the locus isd, the iron surface determinant system. The integrated phage significantly reduces the virulence of the strain and increases the biofilm formation. DFUs seem to be a specific niche of this colonizing strain. The ROSA-like phage represents the first description of a mobile element present mainly in S. aureus isolated from DFUs, which modulates the relationship of the bacteria with its human host. This phage appears to attenuate bacterial virulence and promote colonization.
Collapse
Affiliation(s)
- Nourreddine Messad
- National Institute of Health and Medical Research, Faculty of Medicine, University of Montpellier, Nîmes, France
| | - Tomasz K Prajsnar
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, U.K. Krebs Institute, University of Sheffield, Western Bank, Sheffield, U.K
| | - Gerard Lina
- CIRI, International Center for Infectiology Research, LabEx Ecofect, University of Lyon 1, INSERM U1111, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France Referent National Center of Staphylococci, Center of Biology and Pathology East, University Hospital Lyon, Bron, France
| | - David O'Callaghan
- National Institute of Health and Medical Research, Faculty of Medicine, University of Montpellier, Nîmes, France
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Western Bank, Sheffield, U.K
| | - Steve A Renshaw
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, U.K. Krebs Institute, University of Sheffield, Western Bank, Sheffield, U.K
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Michèle Bes
- CIRI, International Center for Infectiology Research, LabEx Ecofect, University of Lyon 1, INSERM U1111, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France Referent National Center of Staphylococci, Center of Biology and Pathology East, University Hospital Lyon, Bron, France
| | - Catherine Dunyach-Remy
- National Institute of Health and Medical Research, Faculty of Medicine, University of Montpellier, Nîmes, France Department of Microbiology, University Hospital Carémeau, Nîmes, France
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, LabEx Ecofect, University of Lyon 1, INSERM U1111, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France Referent National Center of Staphylococci, Center of Biology and Pathology East, University Hospital Lyon, Bron, France
| | - Albert Sotto
- National Institute of Health and Medical Research, Faculty of Medicine, University of Montpellier, Nîmes, France Department of Infectious Diseases, University Hospital Carémeau, Nîmes, France
| | - Jean-Philippe Lavigne
- National Institute of Health and Medical Research, Faculty of Medicine, University of Montpellier, Nîmes, France Department of Microbiology, University Hospital Carémeau, Nîmes, France
| |
Collapse
|
303
|
Schmitz-Esser S, Müller A, Stessl B, Wagner M. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front Microbiol 2015; 6:380. [PMID: 25972859 PMCID: PMC4412001 DOI: 10.3389/fmicb.2015.00380] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
The food-borne pathogen Listeria (L.) monocytogenes is often found in food production environments. Thus, controlling the occurrence of L. monocytogenes in food production is a great challenge for food safety. Among a great diversity of L. monocytogenes strains from food production, particularly strains belonging to sequence type (ST)121 are prevalent. The molecular reasons for the abundance of ST121 strains are however currently unknown. We therefore determined the genome sequences of three L. monocytogenes ST121 strains: 6179 and 4423, which persisted for up to 8 years in food production plants in Ireland and Austria, and of the strain 3253 and compared them with available L. monocytogenes ST121 genomes. Our results show that the ST121 genomes are highly similar to each other and show a tremendously high degree of conservation among some of their prophages and particularly among their plasmids. This remarkably high level of conservation among prophages and plasmids suggests that strong selective pressure is acting on them. We thus hypothesize that plasmids and prophages are providing important adaptations for survival in food production environments. In addition, the ST121 genomes share common adaptations which might be related to their persistence in food production environments such as the presence of Tn6188, a transposon responsible for increased tolerance against quaternary ammonium compounds, a yet undescribed insertion harboring recombination hotspot (RHS) repeat proteins, which are most likely involved in competition against other bacteria, and presence of homologs of the L. innocua genes lin0464 and lin0465.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| | - Anneliese Müller
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| | - Beatrix Stessl
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| |
Collapse
|
304
|
Abstract
ABSTRACT Bacteriophages (or phages) are viruses which infect and kill bacteria. They are ubiquitous in the environment but are inert in humans and animals. For almost 100 years they have been used therapeutically but in the West the ready availability of antibiotics has meant that they have only been used sporadically and no commercial therapeutic products are currently available. The looming antibiotic crisis means that there is now a renewed interest in phages; a number of companies are producing nontherapeutic phage products (such as food treatment sprays), some clinical trial data are available and other trials are close to commencing. Here, I review the current state of phage therapy, with reference to the historical context and discuss why the time is now right for this forgotten cure to be revisited.
Collapse
Affiliation(s)
- Jason R Clark
- Novolytics Ltd, ITAC-Bio, Daresbury Science & Innovation Campus, Warrington, WA4 4AD, UK
| |
Collapse
|
305
|
Fu SM, Hartung J, Zhou CY, Su HN, Tan J, Li ZA. Ultrastructural Changes and Putative Phage Particles Observed in Sweet Orange Leaves Infected with 'Candidatus Liberibacter asiaticus'. PLANT DISEASE 2015; 99:320-324. [PMID: 30699697 DOI: 10.1094/pdis-01-14-0106-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening, is currently the most destructive citrus disease. Anatomical analyses of HLB-affected sweet orange were carried out by light and electron microscopy. As compared with healthy citrus, the phloem plasmodesmata were plugged with callose, and in some samples the phloem was collapsed. Chloroplast structures were deformed. Prophage sequences occupy a significant portion of the genome of 'Candidatus Liberibacter asiaticus' and have been used to distinguish strains from Yunnan and Guangdong provinces in China and Florida. Interestingly, a large number of possible putative phage particles were observed attached on the surface of 'Ca. L. asiaticus' cells in plants inoculated with strain FJ3 from Fujian Province, China. Phage particles have been observed previously only in periwinkle plants artificially inoculated in Florida with 'Ca. L. asiaticus' that carried the SC1-type prophage. PCR assays verified the presence of the SC1-type prophage sequences previously described from this bacterium in Florida in the FJ3 isolate. This is the first time that suspected phage particles have been observed in sweet orange trees infected with 'Ca. L. asiaticus.'
Collapse
Affiliation(s)
- S M Fu
- College of Plant Protection/Citrus Research Institute of Southwest University, Chongqing 400715, P. R. China, USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, MD
| | - John Hartung
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, MD
| | - C Y Zhou
- Citrus Research Institute, Southwest University, Chongqing 400715, P. R. China
| | - H N Su
- Citrus Research Institute, Southwest University, Chongqing 400715, P. R. China
| | - J Tan
- Citrus Research Institute, Southwest University, Chongqing 400715, P. R. China
| | - Z A Li
- Citrus Research Institute, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
306
|
Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 2015; 468-470:421-443. [PMID: 25240328 DOI: 10.1016/j.virol.2014.08.024] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 02/03/2023]
Abstract
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.
Collapse
Affiliation(s)
- Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, USA.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
307
|
Krylov V, Shaburova O, Pleteneva E, Krylov S, Kaplan A, Burkaltseva M, Polygach O, Chesnokova E. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol Sin 2015; 30:33-44. [PMID: 25680443 PMCID: PMC8200895 DOI: 10.1007/s12250-014-3546-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/30/2015] [Indexed: 11/27/2022] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefits and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specific conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.
Collapse
Affiliation(s)
- Victor Krylov
- I.I. Mechnikov Research Institute for Vaccines & Sera, RAMS, Moscow, 105064, Russian,
| | | | | | | | | | | | | | | |
Collapse
|
308
|
|
309
|
Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL, Zhao G, Fleshner P, Stappenbeck TS, McGovern DPB, Keshavarzian A, Mutlu EA, Sauk J, Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160:447-60. [PMID: 25619688 DOI: 10.1016/j.cell.2015.01.002] [Citation(s) in RCA: 849] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/13/2014] [Accepted: 12/24/2014] [Indexed: 12/13/2022]
Abstract
Decreases in the diversity of enteric bacterial populations are observed in patients with Crohn's disease (CD) and ulcerative colitis (UC). Less is known about the virome in these diseases. We show that the enteric virome is abnormal in CD and UC patients. In-depth analysis of preparations enriched for free virions in the intestine revealed that CD and UC were associated with a significant expansion of Caudovirales bacteriophages. The viromes of CD and UC patients were disease and cohort specific. Importantly, it did not appear that expansion and diversification of the enteric virome was secondary to changes in bacterial populations. These data support a model in which changes in the virome may contribute to intestinal inflammation and bacterial dysbiosis. We conclude that the virome is a candidate for contributing to, or being a biomarker for, human inflammatory bowel disease and speculate that the enteric virome may play a role in other diseases.
Collapse
Affiliation(s)
- Jason M Norman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan T Baldridge
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine Y Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian C Keller
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amal Kambal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cynthia L Monaco
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Phillip Fleshner
- Division of Colorectal Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dermot P B McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ali Keshavarzian
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ece A Mutlu
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jenny Sauk
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dirk Gevers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Miles Parkes
- Division of Gastroenterology Addenbrooke's Hospital and Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
310
|
Dang VT, Sullivan MB. Emerging methods to study bacteriophage infection at the single-cell level. Front Microbiol 2014; 5:724. [PMID: 25566233 PMCID: PMC4274963 DOI: 10.3389/fmicb.2014.00724] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022] Open
Abstract
Bacteria and their viruses (phages) are abundant across diverse ecosystems and their interactions influence global biogeochemical cycles and incidence of disease. Problematically, both classical and metagenomic methods insufficiently assess the host specificity of phages and phage–host infection dynamics in nature. Here we review emerging methods to study phage–host interaction and infection dynamics with a focus on those that offer resolution at the single-cell level. These methods leverage ever-increasing sequence data to identify virus signals from single-cell amplified genome datasets or to produce primers/probes to target particular phage–bacteria pairs (digital PCR and phageFISH), even in complex communities. All three methods enable study of phage infection of uncultured bacteria from environmental samples, while the latter also discriminates between phage–host interaction outcomes (e.g., lytic, chronic, lysogenic) in model systems. Together these techniques enable quantitative, spatiotemporal studies of phage–bacteria interactions from environmental samples of any ecosystem, which will help elucidate and predict the ecological and evolutionary impacts of specific phage–host pairings in nature.
Collapse
Affiliation(s)
- Vinh T Dang
- Department of Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA ; Department of Molecular and Cellular Biology, University of Arizona Tucson, AZ, USA
| |
Collapse
|
311
|
Díaz-Muñoz SL, Koskella B. Bacteria-phage interactions in natural environments. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:135-83. [PMID: 25131402 DOI: 10.1016/b978-0-12-800259-9.00004-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phages are considered the most abundant and diverse biological entities on Earth and are notable not only for their sheer abundance, but also for their influence on bacterial hosts. In nature, bacteria-phage relationships are complex and have far-reaching consequences beyond particular pairwise interactions, influencing everything from bacterial virulence to eukaryotic fitness to the carbon cycle. In this review, we examine bacteria and phage distributions in nature first by highlighting biogeographic patterns and nonhost environmental influences on phage distribution, then by considering the ways in which phages and bacteria interact, emphasizing phage life cycles, bacterial responses to phage infection, and the complex patterns of phage host specificity. Finally, we discuss phage impacts on bacterial abundance, genetics, and physiology, and further aim to clarify distinctions between current theoretical models and point out areas in need of future research.
Collapse
Affiliation(s)
- Samuel L Díaz-Muñoz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA; Department of Integrative Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt Koskella
- Department of Biosciences, University of Exeter, Penryn Campus, Tremough, Cornwall, United Kingdom.
| |
Collapse
|
312
|
Lynch KH, Liang Y, Eberl L, Wishart DS, Dennis JJ. Identification and characterization of ϕH111-1: A novel myovirus with broad activity against clinical isolates of Burkholderia cenocepacia.. BACTERIOPHAGE 2014; 3:e26649. [PMID: 24265978 DOI: 10.4161/bact.26649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/18/2022]
Abstract
Characterization of prophages in sequenced bacterial genomes is important for virulence assessment, evolutionary analysis, and phage application development. The objective of this study was to identify complete, inducible prophages in the cystic fibrosis (CF) clinical isolate Burkholderia cenocepacia H111. Using the prophage-finding program PHAge Search Tool (PHAST), we identified three putative intact prophages in the H111 sequence. Virions were readily isolated from H111 culture supernatants following extended incubation. Using shotgun cloning and sequencing, one of these virions (designated ϕH111-1 [vB_BceM_ϕH111-1]) was identified as the infective particle of a PHAST-detected intact prophage. ϕH111-1 has an extremely broad host range with respect to B. cenocepacia strains and is predicted to use lipopolysaccharide (LPS) as a receptor. Bioinformatics analysis indicates that the prophage is 42,972 base pairs in length, encodes 54 proteins, and shows relatedness to the virion morphogenesis modules of AcaML1 and "Vhmllikevirus" myoviruses. As ϕH111-1 is active against a broad panel of clinical strains and encodes no putative virulence factors, it may be therapeutically effective for Burkholderia infections.
Collapse
Affiliation(s)
- Karlene H Lynch
- Department of Biological Sciences; University of Alberta; Edmonton, Alberta Canada
| | | | | | | | | |
Collapse
|
313
|
Molecular characterization of a novel temperate sinorhizobium bacteriophage, ФLM21, encoding DNA methyltransferase with CcrM-like specificity. J Virol 2014; 88:13111-24. [PMID: 25187538 DOI: 10.1128/jvi.01875-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of mimicking the host regulatory mechanisms by viruses is quite common in bacteriophages.
Collapse
|
314
|
Sangster W, Hegarty JP, Stewart DB. Phage therapy for Clostridium difficile infection: An alternative to antibiotics? SEMINARS IN COLON AND RECTAL SURGERY 2014. [DOI: 10.1053/j.scrs.2014.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
315
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
316
|
El Haddad L, Ben Abdallah N, Plante PL, Dumaresq J, Katsarava R, Labrie S, Corbeil J, St-Gelais D, Moineau S. Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain. PLoS One 2014; 9:e102600. [PMID: 25061757 PMCID: PMC4111496 DOI: 10.1371/journal.pone.0102600] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/19/2014] [Indexed: 01/25/2023] Open
Abstract
Team1 (vB_SauM_Team1) is a polyvalent staphylococcal phage belonging to the Myoviridae family. Phage Team1 was propagated on a Staphylococcus aureus strain and a non-pathogenic Staphylococcus xylosus strain used in industrial meat fermentation. The two Team1 preparations were compared with respect to their microbiological and genomic properties. The burst sizes, latent periods, and host ranges of the two derivatives were identical as were their genome sequences. Phage Team1 has 140,903 bp of double stranded DNA encoding for 217 open reading frames and 4 tRNAs. Comparative genomic analysis revealed similarities to staphylococcal phages ISP (97%) and G1 (97%). The host range of Team1 was compared to the well-known polyvalent staphylococcal phages phi812 and K using a panel of 57 S. aureus strains collected from various sources. These bacterial strains were found to represent 18 sequence types (MLST) and 14 clonal complexes (eBURST). Altogether, the three phages propagated on S. xylosus lysed 52 out of 57 distinct strains of S. aureus. The identification of phage-insensitive strains underlines the importance of designing phage cocktails with broadly varying and overlapping host ranges. Taken altogether, our study suggests that some staphylococcal phages can be propagated on food-grade bacteria for biocontrol and safety purposes.
Collapse
Affiliation(s)
- Lynn El Haddad
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada
| | - Nour Ben Abdallah
- Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Québec, Canada
| | - Pier-Luc Plante
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jeannot Dumaresq
- Département de Microbiologie et d'Infectiologie, Centre Hospitalier Affilié Universitaire Hôtel-Dieu de Lévis, Lévis, Québec, Canada
| | - Ramaz Katsarava
- Institute of Chemistry & Molecular Engineering, Agricultural University of Georgia, University Campus at Digomi, Tbilsi, Georgia
| | - Steve Labrie
- Département des sciences des aliments et de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Dairy Science and Technology Research Centre/Institute of nutrition and functional foods, Université Laval, Québec, Canada
| | - Jacques Corbeil
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Canada
| | - Daniel St-Gelais
- Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Québec, Canada
- Département des sciences des aliments et de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Dairy Science and Technology Research Centre/Institute of nutrition and functional foods, Université Laval, Québec, Canada
| | - Sylvain Moineau
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
317
|
Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms. Appl Environ Microbiol 2014; 80:5304-16. [PMID: 24951794 DOI: 10.1128/aem.01480-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms. To this end, we used a functional fluorescence fusion to monitor λSo activation in various mutant backgrounds and in response to different physiological conditions. λSo induction occurred mainly in a subpopulation of filamentous cells in a strictly RecA-dependent manner, implicating oxidative stress-induced DNA damage as the major trigger. Accordingly, mutants affected in the oxidative stress response (ΔoxyR) or iron homeostasis (Δfur) displayed drastically increased levels of phage induction and abnormal biofilm formation, while planktonic cells were not or only marginally affected. To further investigate the role of oxidative stress, we performed a mutant screen and identified two independent amino acid substitutions in OxyR (T104N and L197P) that suppress induction of λSo by hydrogen peroxide (H2O2). However, λSo induction was not suppressed in biofilms formed by both mutants, suggesting a minor role of intracellular H2O2 in this process. In contrast, addition of iron to biofilms strongly enhanced λSo induction and eDNA release, while both processes were significantly suppressed at low iron levels, strongly indicating that iron is the limiting factor. We conclude that uptake of iron during biofilm formation triggers λSo-mediated lysis of a subpopulation of cells, likely by an increase in iron-mediated DNA damage sensed by RecA.
Collapse
|
318
|
Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 2014; 7:167-76. [PMID: 25018641 PMCID: PMC4073975 DOI: 10.2147/idr.s48820] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed.
Collapse
|
319
|
Abstract
ABSTRACT
To help assess the clinical and public health risks associated with different Shiga toxin-producing
Escherichia coli
(STEC) strains, an empirical classification scheme was used to classify STEC into five “seropathotypes” (seropathotype A [high risk] to seropathotypes D and E [minimal risk]). This definition is of considerable value in cases of human infection but is also problematic because not all STEC infections are fully characterized and coupled to reliable clinical information. Outbreaks with emerging hybrid strains continuously challenge our understanding of virulence potential and may result in incorrect classification of specific pathotypes; an example is the hybrid strain that caused the 2011 outbreak in Germany, STEC/EAggEC O104:H4, which may deserve an alternative seropathotype designation. The integration of mobile virulence factors in the stepwise and parallel evolution of pathogenic lineages of STEC collides with the requirements of a good taxonomy, which separates elements of each group into subgroups that are mutually exclusive, unambiguous, and, together, include all possibilities. The concept of (sero)-pathotypes is therefore challenged, and the need to identify factors of STEC that absolutely predict the potential to cause human disease is obvious. Because the definition of hemolytic-uremic syndrome (HUS) is distinct, a basic and primary definition of HUS-associated
E. coli
(HUSEC) for first-line public health action is proposed:
stx2
in a background of an
eae-
or
aggR
-positive
E. coli
followed by a second-line subtyping of
stx
genes that refines the definition of HUSEC to include only
stx2a
and
stx2d
. All other STEC strains are considered “low-risk” STEC.
Collapse
|
320
|
Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 2014; 146:1459-69. [PMID: 24508599 PMCID: PMC4009354 DOI: 10.1053/j.gastro.2014.02.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
Advanced sequencing techniques have shown that bacteria are not the only complex and important microbes in the human intestine. Nonbacterial organisms, particularly the virome and the mycobiome, are important regulators of intestinal immunity and inflammation. The virome is mucosal and systemic; it can alter the host response to bacteria and interact with host genes and bacteria to contribute to disease pathogenesis. The human mycobiome is also complex and can contribute to intestinal inflammation. We review what has recently been learned about the nonbacterial and nonarchaeal microbes in the gastrointestinal tract, discussing their potential effects on health and disease and analytical approaches for their study. Studies of associations between the microbiome and intestinal pathology should incorporate kingdom-agnostic approaches if we are to fully understand intestinal health and disease.
Collapse
Affiliation(s)
| | | | - Herbert W. Virgin
- Reprint requests Address requests for reprints to: Herbert W. Virgin, MD, PhD, Washington University School of Medicine, Box 8118, 660 South Euclid Avenue, St Louis, Missouri 63110.
| |
Collapse
|
321
|
Hargreaves KR, Clokie MRJ. Clostridium difficile phages: still difficult? Front Microbiol 2014; 5:184. [PMID: 24808893 PMCID: PMC4009436 DOI: 10.3389/fmicb.2014.00184] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/03/2014] [Indexed: 12/18/2022] Open
Abstract
Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen.
Collapse
Affiliation(s)
- Katherine R Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester Leicester, UK
| | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester Leicester, UK
| |
Collapse
|
322
|
De Paepe M, Leclerc M, Tinsley CR, Petit MA. Bacteriophages: an underestimated role in human and animal health? Front Cell Infect Microbiol 2014; 4:39. [PMID: 24734220 PMCID: PMC3975094 DOI: 10.3389/fcimb.2014.00039] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023] Open
Abstract
Metagenomic approaches applied to viruses have highlighted their prevalence in almost all microbial ecosystems investigated. In all ecosystems, notably those associated with humans or animals, the viral fraction is dominated by bacteriophages. Whether they contribute to dysbiosis, i.e., the departure from microbiota composition in symbiosis at equilibrium and entry into a state favoring human or animal disease is unknown at present. This review summarizes what has been learnt on phages associated with human and animal microbiota, and focuses on examples illustrating the several ways by which phages may contribute to a shift to pathogenesis, either by modifying population equilibrium, by horizontal transfer, or by modulating immunity.
Collapse
Affiliation(s)
- Marianne De Paepe
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| | - Marion Leclerc
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| | - Colin R Tinsley
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| | - Marie-Agnès Petit
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| |
Collapse
|
323
|
Fan X, Xie L, Li W, Xie J. Prophage-like elements present in Mycobacterium genomes. BMC Genomics 2014; 15:243. [PMID: 24673856 PMCID: PMC3986857 DOI: 10.1186/1471-2164-15-243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Prophages, integral components of many bacterial genomes, play significant roles in cognate host bacteria, such as virulence, toxin biosynthesis and secretion, fitness cost, genomic variations, and evolution. Many prophages and prophage-like elements present in sequenced bacterial genomes, such as Bifidobacteria, Lactococcus and Streptococcus, have been described. However, information for the prophage of Mycobacterium remains poorly defined. Results In this study, based on the search of the complete genome database from GenBank, the Whole Genome Shotgun (WGS) databases, and some published literatures, thirty-three prophages were described in detail. Eleven of them were full-length prophages, and others were prophage-like elements. Eleven prophages were firstly revealed. They were phiMAV_1, phiMAV_2, phiMmcs_1, phiMmcs_2, phiMkms_1, phiMkms_2, phiBN42_1, phiBN44_1, phiMCAN_1, phiMycsm_1, and phiW7S_1. Their genomes and gene contents were firstly analyzed. Furthermore, comparative genomics analyses among mycobacterioprophages showed that full-length prophage phi172_2 belonged to mycobacteriophage Cluster A and the phiMmcs_1, phiMkms_1, phiBN44_1, and phiMCAN_1 shared high homology and could be classified into one group. Conclusions To our knowledge, this is the first systematic characterization of mycobacterioprophages, their genomic organization and phylogeny. This information will afford more understanding of the biology of Mycobacterium. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-243) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory breeding base of Three Gorges Eco-environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 400715 Chongqing, China.
| |
Collapse
|
324
|
Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins. Appl Environ Microbiol 2014; 80:2555-63. [PMID: 24532062 DOI: 10.1128/aem.00237-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clostridium difficile is a Gram-positive pathogen infecting humans and animals. Recent studies suggest that animals could represent potential reservoirs of C. difficile that could then transfer to humans. Temperate phages contribute to the evolution of most bacteria, for example, by promoting the transduction of virulence, fitness, and antibiotic resistance genes. In C. difficile, little is known about their role, mainly because suitable propagating hosts and conditions are lacking. Here we report the isolation, propagation, and preliminary characterization of nine temperate phages from animal and human C. difficile isolates. Prophages were induced by UV light from 58 C. difficile isolates of animal and human origins. Using soft agar overlays with 27 different C. difficile test strains, we isolated and further propagated nine temperate phages: two from horse isolates (ΦCD481-1 and ΦCD481-2), three from dog isolates (ΦCD505, ΦCD506, and ΦCD508), and four from human isolates (ΦCD24-2, ΦCD111, ΦCD146, and ΦCD526). Two phages are members of the Siphoviridae family (ΦCD111 and ΦCD146), while the others are Myoviridae phages. Pulsed-field gel electrophoresis and restriction enzyme analyses showed that all of the phages had unique double-stranded DNA genomes of 30 to 60 kb. Phages induced from human C. difficile isolates, especially the members of the Siphoviridae family, had a broader host range than phages from animal C. difficile isolates. Nevertheless, most of the phages could infect both human and animal strains. Phage transduction of antibiotic resistance was recently reported in C. difficile. Our findings therefore call for further investigation of the potential risk of transduction between animal and human C. difficile isolates.
Collapse
|
325
|
Sherman MP, Minnerly J, Curtiss W, Rangwala S, Kelley ST. Research on neonatal microbiomes: what neonatologists need to know. Neonatology 2014; 105:14-24. [PMID: 24193200 PMCID: PMC3903415 DOI: 10.1159/000354944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 01/08/2023]
Abstract
The aim of this article is to educate neonatal caregivers about metagenomics. This scientific field uses novel and ever changing molecular methods to identify how infants become colonized with microbes after birth. Publications using metagenomics appear infrequently in the neonatal literature because clinicians are unaccustomed to the analytical techniques, data interpretation, and illustration of the results. This review covers those areas. After a brief introduction of neonatal citations forthcoming from metagenomic studies, the following topics are covered: (1) the history of metagenomics, (2) a description of current and emerging instruments used to define microbial populations in human organs, and (3) how extensive databases generated by genome analyzers are examined and presented to readers. Clinicians may feel like they are learning a new language; however, they will appreciate this task is essential to understanding and practicing neonatal medicine in the future.
Collapse
Affiliation(s)
- Michael P Sherman
- Department of Child Health, University of Missouri, Columbia, Mo., USA
| | | | | | | | | |
Collapse
|
326
|
Ehrmann MA, Angelov A, Picozzi C, Foschino R, Vogel RF. The genome of the Lactobacillus sanfranciscensis temperate phage EV3. BMC Res Notes 2013; 6:514. [PMID: 24308641 PMCID: PMC4234937 DOI: 10.1186/1756-0500-6-514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/29/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. RESULTS Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. CONCLUSIONS EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far.
Collapse
Affiliation(s)
- Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Str, 4, Freising 85354, Germany.
| | | | | | | | | |
Collapse
|
327
|
Ceglarek I, Piotrowicz A, Lecion D, Miernikiewicz P, Owczarek B, Hodyra K, Harhala M, Górski A, Dąbrowska K. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display. Sci Rep 2013; 3:3220. [PMID: 24225840 PMCID: PMC3827602 DOI: 10.1038/srep03220] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/25/2013] [Indexed: 02/01/2023] Open
Abstract
Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.
Collapse
Affiliation(s)
- Izabela Ceglarek
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, Wroclaw, 53-114, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|