3751
|
Zheng C, Zhou XW, Wang JZ. The dual roles of cytokines in Alzheimer's disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 2016; 5:7. [PMID: 27054030 PMCID: PMC4822284 DOI: 10.1186/s40035-016-0054-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/29/2016] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the elderly. Although the mechanisms underlying AD neurodegeneration are not fully understood, it is well recognized that inflammation plays a crucial role in the initiation and/or deterioration of AD neurodegeneration. Increasing evidence suggests that different cytokines, including interleukins, TNF-α, TGF-β and IFN-γ, are actively participated in AD pathogenesis and may serve as diagnostic or therapeutic targets for AD neurodegeneration. Here, we review the progress in understanding the important role that these cytokines or neuroinflammation has played in AD etiology and pathogenesis.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xin-Wen Zhou
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ; Co-innovation Center of Neuroregeneration, Nantong, 226000 China
| |
Collapse
|
3752
|
Multitarget strategies in Alzheimer's disease: benefits and challenges on the road to therapeutics. Future Med Chem 2016; 8:697-711. [DOI: 10.4155/fmc-2016-0003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease is a multifactorial syndrome, for which effective cures are urgently needed. Seeking for enhanced therapeutic efficacy, multitarget drugs have been increasingly sought after over the last decades. They offer the attractive prospect of tackling intricate network effects, but with the benefits of a single-molecule therapy. Herein, we highlight relevant progress in the field, focusing on acetylcholinesterase inhibition and amyloid pathways as two pivotal features in multitarget design strategies. We also discuss the intertwined relationship between selected molecular targets and give a brief glimpse into the power of multitarget agents as pharmacological probes of Alzheimer's disease molecular mechanisms.
Collapse
|
3753
|
Pearse DD, Hughes ZA. PDE4B as a microglia target to reduce neuroinflammation. Glia 2016; 64:1698-709. [PMID: 27038323 DOI: 10.1002/glia.22986] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The importance of microglia in immune homeostasis within the brain is undisputed. Their role in a diversity of neurological and psychiatric diseases as well as CNS injury is the subject of much investigation. Cyclic adenosine monophosphate (AMP) is a critical regulator of microglia homeostasis; as the predominant negative modulator of cyclic AMP signaling within microglia, phosphodiesterase 4 (PDE4) represents a promising target for modulating immune function. PDE4 expression is regulated by inflammation, and in turn, PDE4 inhibition can alter microglia reactivity. As the prototypic PDE4 inhibitor, rolipram, was tested clinically in the 1980s, drug discovery and clinical development of PDE4 inhibitors have been severely hampered by tolerability issues involving nausea and emesis. The two PDE4 inhibitors approved for peripheral inflammatory disorders (roflumilast and apremilast) lack brain penetration and are dose-limited by side effects making them unsuitable for modulating microglial function. Subtype selective inhibitors targeting PDE4B are of high interest given the critical role PDE4B plays in immune function versus the association of PDE4D with nausea and emesis. The challenges and requirements for successful development of a novel brain-penetrant PDE4B inhibitor are discussed in the context of early clinical development strategies. Furthermore, the challenges of monitoring the state of microglia in vivo are highlighted, including a description of the currently available tools and their limitations. Continued drug discovery efforts to identify safe and well-tolerated, brain-penetrant PDE4 inhibitors are a reflection of the confidence in the rationale for modulation of this target to produce meaningful therapeutic benefit in a wide range of neurological conditions and injury. GLIA 2016;64:1698-1709.
Collapse
Affiliation(s)
- Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.,The Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida.,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Zoë A Hughes
- Neuroscience and Pain Research Unit, Pfizer Global Research, Cambridge, Massachusetts
| |
Collapse
|
3754
|
St-Amour I, Cicchetti F, Calon F. Immunotherapies in Alzheimer's disease: Too much, too little, too late or off-target? Acta Neuropathol 2016; 131:481-504. [PMID: 26689922 DOI: 10.1007/s00401-015-1518-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022]
Abstract
Years of research have highlighted the importance of the immune system in Alzheimer's disease (AD), a system that, if manipulated during strategic time windows, could potentially be tackled to treat this disorder. However, to minimize adverse effects, it is essential to first grasp which exact aspect of it may be targeted. Several clues have been collected over the years regarding specific immune players strongly modulated during different stages of AD progression. However, the inherent complexity of the immune system as well as conflicting data make it quite challenging to pinpoint a specific immune target in AD. In this review, we discuss immune-related abnormalities observed in the periphery as well as in the brain of AD patients, in relation to known risk factors of AD such as genetics, type-2 diabetes or obesity, aging, physical inactivity and hypertension. Although not investigated yet in clinical trials, C5 complement system component, CD40/CD40L interactions and the CXCR2 pathway are altered in AD patients and may represent potential therapeutic targets. Immunotherapies tested in a clinical context, those aiming to attenuate the innate immune response and those used to facilitate the removal of pathological proteins, are further discussed to try and understand the causes of the limited success reached. The prevailing eagerness to move basic research data to clinic should not overshadow the fact that a careful preclinical characterization of a drug is still required to ultimately improve the chance of clinical success. Finally, specific elements to consider prior to initiate large-scale trials are highlighted and include the replication of preclinical data, the use of small-scale human studies, the sub-typing of AD patients and the determination of pharmacokinetic and pharmacodynamics parameters such as brain bioavailability and target engagement.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Faculté de médecine, Université Laval, Quebec, QC, Canada
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Faculté de médecine, Université Laval, Quebec, QC, Canada
| | - Frédéric Calon
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
3755
|
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Front Neuroendocrinol 2016; 41:153-71. [PMID: 26746105 DOI: 10.1016/j.yfrne.2015.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/18/2023]
Abstract
Depression (MDD) is prodromal to, and a component of, Alzheimer's disease (AD): it may also be a trigger for incipient AD. MDD is not a unitary disorder, so there may be particular subtypes of early life MDD that pose independent high risks for later AD, though the identification of these subtypes is problematical. There may either be a common pathological event underlying both MDD and AD, or MDD may sensitize the brain to a second event ('hit') that precipitates AD. MDD may also accelerate brain ageing, including altered DNA methylation, increased cortisol but decreasing DHEA and thus the risk for AD. So far, genes predicting AD (e.g. APOEε4) are not risk factors for MDD, and those implicated in MDD (e.g. SLC6A4) are not risks for AD, so a common genetic predisposition looks unlikely. There is as yet no strong indication that an epigenetic event occurs during some forms of MDD that predisposes to later AD, though the evidence is limited. Glucocorticoids (GCs) are disturbed in some cases of MDD and in AD. GCs have marked degenerative actions on the hippocampus, a site of early β-amyloid deposition, and rare genetic variants of GC-regulating enzymes (e.g. 11β-HSD) predispose to AD. GCs also inhibit hippocampal neurogenesis and plasticity, and thus episodic memory, a core symptom of AD. Disordered GCs in MDD may inhibit neurogenesis, but the contribution of diminished neurogenesis to the onset or progression of AD is still debated. GCs and cytokines also reduce BDNF, implicated in both MDD and AD and hippocampal neurogenesis, reinforcing the notion that those cases of MDD with disordered GCs may be a risk for AD. Cytokines, including IL1β, IL6 and TNFα, are increased in the blood in some cases of MDD. They also reduce hippocampal neurogenesis, and increased cytokines are a known risk for later AD. Inflammatory changes occur in both MDD and AD (e.g. raised CRP, TNFα). Both cytokines and GCs can have pro-inflammatory actions in the brain. Inflammation (e.g. microglial activation) may be a common link, but this has not been systematically investigated. We lack substantial, rigorous and comprehensive follow-up studies to better identify possible subtypes of MDD that may represent a major predictor for later AD. This would enable specific interventions during critical episodes of these subtypes of MDD that should reduce this substantial risk.
Collapse
Affiliation(s)
- Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
3756
|
Forloni G, Artuso V, La Vitola P, Balducci C. Oligomeropathies and pathogenesis of Alzheimer and Parkinson's diseases. Mov Disord 2016; 31:771-81. [DOI: 10.1002/mds.26624] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gianluigi Forloni
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | | | - Pietro La Vitola
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| | - Claudia Balducci
- Departement of Neuroscience; IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri,”; Milano Italy
| |
Collapse
|
3757
|
Marques RE, Marques PE, Guabiraba R, Teixeira MM. Exploring the Homeostatic and Sensory Roles of the Immune System. Front Immunol 2016; 7:125. [PMID: 27065209 PMCID: PMC4814584 DOI: 10.3389/fimmu.2016.00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Pedro Elias Marques
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Rodrigo Guabiraba
- ISP, INRA, Université François Rabelais de Tours , Nouzilly , France
| | - Mauro Martins Teixeira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| |
Collapse
|
3758
|
Amato SP, Pan F, Schwartz J, Ragan TM. Whole Brain Imaging with Serial Two-Photon Tomography. Front Neuroanat 2016; 10:31. [PMID: 27047350 PMCID: PMC4802409 DOI: 10.3389/fnana.2016.00031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. This has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this article, we describe in detail Serial Two-Photon (STP) tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as Optical Coherence Tomography (OCT), in order to provide unique contrast mechanisms. Furthermore, we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches.
Collapse
|
3759
|
Zheng H, Liu CC, Atagi Y, Chen XF, Jia L, Yang L, He W, Zhang X, Kang SS, Rosenberry TL, Fryer JD, Zhang YW, Xu H, Bu G. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging 2016; 42:132-41. [PMID: 27143430 DOI: 10.1016/j.neurobiolaging.2016.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/14/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
Abstract
Mutations in triggering receptor expressed on myeloid cells 2 (TREM2), which has been proposed to regulate the inflammatory responses and the clearance of apoptotic neurons and/or amyloid-β, are genetically linked to increased risk for late-onset Alzheimer's disease (AD). Interestingly, a missense variant in TREM-like transcript 2 (TREML2), a structurally similar protein encoded by the same gene cluster with TREM2 on chromosome 6, has been shown to protect against AD. However, the molecular mechanisms by which TREM2 and TREML2 regulate the pathogenesis of AD, and their functional relationship, if any, remain unclear. Here, we show that lipopolysaccharide (LPS) stimulation significantly suppressed TREM2 but increased TREML2 expression in mouse brain. Consistent with this in vivo result, LPS or oligomeric amyloid-β treatment down regulated TREM2 but up-regulated TREML2 expression in primary microglia. Most important, modulation of TREM2 or TREML2 levels had opposing effects on inflammatory responses with enhancement or suppression of LPS-induced proinflammatory cytokine gene expression observed on TREM2 or TREML2 down regulation, respectively. In addition, the proliferation of primary microglia was significantly decreased when TREM2 was down regulated, whereas it was increased on TREML2 knockdown. Together, our results suggest that several microglial functions are strictly regulated by TREM2 and TREML2, whose dysfunctions likely contribute to AD pathogenesis by impairing brain innate immunity. Our findings provide novel mechanistic insights into the functions of TREM2 and TREML2 in microglia and have implications on designing new therapeutic strategies to treat AD.
Collapse
Affiliation(s)
- Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Lin Jia
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Longyu Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Wencan He
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Xilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Silvia S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China; Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China; Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3760
|
Sørensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer's disease and other types of dementia - an exploratory study. Transl Neurodegener 2016; 5:6. [PMID: 26981236 PMCID: PMC4791887 DOI: 10.1186/s40035-016-0053-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/28/2016] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNA molecules that function as posttranscriptional regulators of gene expression. Measurements of miRNAs in cerebrospinal fluid (CSF) and blood have just started gaining attention as a novel diagnostic tool for various neurological conditions. The purpose of this exploratory investigation was to analyze the expression of miRNAs in CSF and blood of patients with Alzheimer’s disease (AD) and other neurodegenerative disorders in order to identify potential miRNA biomarker candidates able to separate AD from other types of dementia. Methods CSF was collected by lumbar puncture performed on 10 patients diagnosed with AD and 10 patients diagnosed with either vascular dementia, frontotemporal dementia or dementia with Lewy bodies. Blood samples were taken immediately after. Total RNA was extracted from cell free fractions of CSF and plasma, and a screening for 372 known miRNA sequences was carried out by real time quantitative polymerase chain reactions (miRCURY LNA™ Universal RT miRNA PCR, Polyadenylation and cDNA synthesis kit, Exiqon). Results Fifty-two miRNAs were detected in CSF in at least nine out of ten patients in both groups. Among these, two miRNAs (let-7i-5p and miR-15a-5p) were found significantly up-regulated and one miRNA (miR-29c-3p) was found significantly down-regulated in patients with AD compared to controls. One hundred and sixty-eight miRNAs were frequently detected in the blood, among which miR-590-5p and miR-142-5p were significantly up-regulated and miR-194-5p was significantly down-regulated in AD patients compared to controls. Conclusions Detection of miRNA expression profiles in blood and in particular CSF of patients diagnosed with different types of dementia is feasible and it seems that several expressional differences between AD and other dementia types do exist when measured in a clinically relevant setup. In this explorative pilot study, the deregulated miRNAs in CSF of AD patients may be associated with relevant target genes related to AD pathology, including APP and BACE1, which suggests that miRNAs are interesting candidates for AD biomarkers in the future. Electronic supplementary material The online version of this article (doi:10.1186/s40035-016-0053-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofie Sølvsten Sørensen
- Department of Neurology, Copenhagen University Hospital, Nordsjællands Hospital, Dyrehavevej 29, 3400 Hillerød, Denmark
| | - Ann-Britt Nygaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Nordsjællands Hospital, Dyrehavevej 29, 3400 Hillerød, Denmark
| | - Thomas Christensen
- Department of Neurology, Copenhagen University Hospital, Nordsjællands Hospital, Dyrehavevej 29, 3400 Hillerød, Denmark
| |
Collapse
|
3761
|
Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M. Early and protective microglial activation in Alzheimer’s disease: a prospective study using18F-DPA-714 PET imaging. Brain 2016; 139:1252-64. [DOI: 10.1093/brain/aww017] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/05/2016] [Indexed: 11/14/2022] Open
|
3762
|
Onyango IG, Dennis J, Khan SM. Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies. Aging Dis 2016; 7:201-14. [PMID: 27114851 PMCID: PMC4809610 DOI: 10.14336/ad.2015.1007] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far.
Collapse
Affiliation(s)
- Isaac G Onyango
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| | - Jameel Dennis
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| | - Shaharyah M Khan
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| |
Collapse
|
3763
|
da Rocha EL, Ung CY, McGehee CD, Correia C, Li H. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities. Nucleic Acids Res 2016; 44:e100. [PMID: 26975659 PMCID: PMC4889937 DOI: 10.1093/nar/gkw166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 12/30/2022] Open
Abstract
The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets.
Collapse
Affiliation(s)
- Edroaldo Lummertz da Rocha
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Cordelia D McGehee
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
3764
|
Heras-Sandoval D, Pedraza-Chaverri J, Pérez-Rojas JM. Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer's disease. J Neuroinflammation 2016; 13:61. [PMID: 26965310 PMCID: PMC4787218 DOI: 10.1186/s12974-016-0525-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/03/2016] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 (ω-3) long-chain polyunsaturated fatty acid (LCPUFA) relevant for brain function. It has largely been explored as a potential candidate to treat Alzheimer’s disease (AD). Clinical evidence favors a role for DHA in the improvement of cognition in very early stages of the AD. In response to stress or damage, DHA generates oxygenated derivatives called docosanoids that can activate the peroxisome proliferator-activated receptor γ (PPARγ). In conjunction with activated retinoid X receptors (RXR), PPARγ modulates inflammation, cell survival, and lipid metabolism. As an early event in AD, inflammation is associated with an excess of amyloid β peptide (Aβ) that contributes to neural insult. Glial cells are recognized to be actively involved during AD, and their dysfunction is associated with the early appearance of this pathology. These cells give support to neurons, remove amyloid β peptides from the brain, and modulate inflammation. Since DHA can modulate glial cell activity, the present work reviews the evidence about this modulation as well as the effect of docosanoids on neuroinflammation and in some AD models. The evidence supports PPARγ as a preferred target for gene modulation. The effective use of DHA and/or its derivatives in a subgroup of people at risk of developing AD is discussed.
Collapse
Affiliation(s)
- David Heras-Sandoval
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México.,Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México
| | - Jazmin M Pérez-Rojas
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México.
| |
Collapse
|
3765
|
Dong YF, Chen ZZ, Zhao Z, Yang DD, Yan H, Ji J, Sun XL. Potential role of microRNA-7 in the anti-neuroinflammation effects of nicorandil in astrocytes induced by oxygen-glucose deprivation. J Neuroinflammation 2016; 13:60. [PMID: 26961366 PMCID: PMC4785619 DOI: 10.1186/s12974-016-0527-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/06/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is generally recognized that the inflammatory reaction in glia is one of the important pathological factors in brain ischemic injury. Our previous study has revealed that opening ATP-sensitive potassium (K-ATP) channels could attenuate glial inflammation induced by ischemic stroke. However, the detailed mechanisms are not well known. METHODS Primary cultured astrocytes separated from C57BL/6 mice were subjected to oxygen-glucose deprivation (OGD); cellular injuries were determined via observing the changes of cellular morphology and cell viability. MicroRNA (miR) and messenger RNA (mRNA) level was validated by real-time PCR. The interaction between microRNA and the target was confirmed via dual luciferase reporter gene assay. Expressions of proteins and inflammatory cytokines were respectively assessed by western blotting and enzyme-linked immunosorbent assay. RESULTS OGD resulted in astrocytic damage, which was prevented by K-ATP channel opener nicorandil. Notably, we found that OGD significantly downregulated miR-7 and upregulated Herpud2. Our further study proved that miR-7 targeted Herpud2 3'UTR, which encoded endoplasmic reticulum (ER) stress protein-HERP2. Correspondingly, our results showed that OGD increased the levels of ER stress proteins along with significant elevations of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Pretreatment with nicorandil could remarkably upregulate miR-7, depress the ER-related protein expressions including glucose-regulated protein 78 (GRP78), C/EBP-homologous protein (CHOP), and Caspase-12, and thereby attenuate inflammatory responses and astrocytic damages. CONCLUSIONS These findings demonstrate that opening K-ATP channels protects astrocytes against OGD-mediated neuroinflammation. Potentially, miR-7-targeted ER stress acts as a key molecular brake on neuroinflammation.
Collapse
Affiliation(s)
- Yin-Feng Dong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China. .,School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zheng-Zhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Zhan Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Dan-Dan Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Hui Yan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Juan Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
3766
|
The misfolded pro-inflammatory protein S100A9 disrupts memory via neurochemical remodelling instigating an Alzheimer's disease-like cognitive deficit. Behav Brain Res 2016; 306:106-16. [PMID: 26965570 DOI: 10.1016/j.bbr.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/15/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022]
Abstract
Memory deficits may develop from a variety of neuropathologies including Alzheimer's disease dementia. During neurodegenerative conditions there are contributory factors such as neuroinflammation and amyloidogenesis involved in memory impairment. In the present study, dual properties of S100A9 protein as a pro-inflammatory and amyloidogenic agent were explored in the passive avoidance memory task along with neurochemical assays in the prefrontal cortex and hippocampus of aged mice. S100A9 oligomers and fibrils were generated in vitro and verified by AFM, Thioflavin T and A11 antibody binding. Native S100A9 as well as S100A9 oligomers and fibrils or their combination were administered intranasally over 14 days followed by behavioral and neurochemical analysis. Both oligomers and fibrils evoked amnestic activity which correlated with disrupted prefrontal cortical and hippocampal dopaminergic neurochemistry. The oligomer-fibril combination produced similar but weaker neurochemistry to the fibrils administered alone but without passive avoidance amnesia. Native S100A9 did not modify memory task performance even though it generated a general and consistent decrease in monoamine levels (DA, 5-HT and NA) and increased metabolic marker ratios of DA and 5-HT turnover (DOPAC/DA, HVA/DA and 5-HIAA) in the prefrontal cortex. These results provide insight into a novel pathogenetic mechanism underlying amnesia in a fear-aggravated memory task based on amyloidogenesis of a pro-inflammatory factor leading to disrupted brain neurochemistry in the aged brain. The data further suggests that amyloid species of S100A9 create deleterious effects principally on the dopaminergic system and this novel finding might be potentially exploited during dementia management through a neuroprotective strategy.
Collapse
|
3767
|
Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, Rainone V, Nemni R, Mancuso R, Clerici M. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease. Mol Neurodegener 2016; 11:23. [PMID: 26939933 PMCID: PMC4778358 DOI: 10.1186/s13024-016-0088-1] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interleukin-1 beta (IL-1β) and its key regulator, the inflammasome, are suspected to play a role in the neuroinflammation observed in Alzheimer's disease (AD); no conclusive data are nevertheless available in AD patients. RESULTS mRNA for inflammasome components (NLRP1, NLRP3, PYCARD, caspase 1, 5 and 8) and downstream effectors (IL-1β, IL-18) was up-regulated in severe and MILD AD. Monocytes co-expressing NLRP3 with caspase 1 or caspase 8 were significantly increased in severe AD alone, whereas those co-expressing NLRP1 and NLRP3 with PYCARD were augmented in both severe and MILD AD. Activation of the NLRP1 and NLRP3 inflammasomes in AD was confirmed by confocal microscopy proteins co-localization and by the significantly higher amounts of the pro-inflammatory cytokines IL-1β and IL-18 being produced by monocytes. In MCI, the expression of NLRP3, but not the one of PYCARD or caspase 1 was increased, indicating that functional inflammasomes are not assembled in these individuals: this was confirmed by lack of co-localization and of proinflammatory cytokines production. CONCLUSIONS The activation of at least two different inflammasome complexes explains AD-associated neuroinflammation. Strategies targeting inflammasome activation could be useful in the therapy of AD.
Collapse
Affiliation(s)
- Marina Saresella
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy.
| | - Francesca La Rosa
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy.
| | - Federica Piancone
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy.
| | - Martina Zoppis
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy.
| | - Ivana Marventano
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy.
| | - Elena Calabrese
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy.
| | - Veronica Rainone
- Departments of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, 20100, Milan, Italy.
| | - Raffaello Nemni
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy. .,Departments of Physiopathology and Transplants, University of Milano, 20100, Milan, Italy.
| | - Roberta Mancuso
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy.
| | - Mario Clerici
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121, Milan, Italy. .,Departments of Physiopathology and Transplants, University of Milano, 20100, Milan, Italy.
| |
Collapse
|
3768
|
Time-Dependent Increase of Chitinase1 in APP/PS1 Double Transgenic Mice. Neurochem Res 2016; 41:1604-11. [DOI: 10.1007/s11064-016-1874-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
3769
|
Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochim Biophys Acta Mol Basis Dis 2016; 1862:492-505. [DOI: 10.1016/j.bbadis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
|
3770
|
Infante-Garcia C, Ramos-Rodriguez JJ, Galindo-Gonzalez L, Garcia-Alloza M. Long-term central pathology and cognitive impairment are exacerbated in a mixed model of Alzheimer's disease and type 2 diabetes. Psychoneuroendocrinology 2016; 65:15-25. [PMID: 26708068 DOI: 10.1016/j.psyneuen.2015.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/12/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes (T2D) is a well-characterized risk factor for Alzheimer's disease (AD), the most common cause of dementia. Since both, T2D and dementia are closely related to aging and they chronically coexist in elderly patients, it is of particular relevance to know whether long-term evolution of T2D and dementia interfere with each other years after the onset of the diseases. In order to elucidate this interaction, we have characterized a mixed model of T2D and AD, the APP/PS1xdb/db mouse, at 36 weeks of age, when both diseases have long coexisted and evolved. In aged APP/PS1xdb/db mice we observed dysfunctional metabolic control, when compared with diabetic mice alone, suggesting that AD may also contribute to T2D pathology in the long-term. Learning and memory were severely impaired in APP/PS1xdb/db mice, accompanied by reduced cortical size, neuronal branching simplification and reduction of dendritic spine density. Increased tau phosphorylation was also observed in old APP/PS1xdb/db mice. A shift in amyloid-β (Aβ) pathology was detected, and while insoluble Aβ was reduced, more toxic soluble species were favoured. Microglia burden was significantly increased in the proximity of senile plaques and an overall increase of spontaneous haemorrhages was also observed in APP/PS1xdb/db mice, suggesting a possible disruption of the blood brain barrier in the mixed model. It is therefore feasible that strict metabolic control may slow or delay central complications when T2D and dementia coexist in the long term.
Collapse
Affiliation(s)
- Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Institute of Biomolecules (INBIO), Universidad de Cadiz, Cadiz, Spain
| | - Juan Jose Ramos-Rodriguez
- Division of Physiology, School of Medicine, Institute of Biomolecules (INBIO), Universidad de Cadiz, Cadiz, Spain
| | - Lucia Galindo-Gonzalez
- Division of Physiology, School of Medicine, Institute of Biomolecules (INBIO), Universidad de Cadiz, Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Institute of Biomolecules (INBIO), Universidad de Cadiz, Cadiz, Spain.
| |
Collapse
|
3771
|
Ochoa-Repáraz J, Kasper LH. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr Obes Rep 2016; 5:51-64. [PMID: 26865085 PMCID: PMC4798912 DOI: 10.1007/s13679-016-0191-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.
Collapse
Affiliation(s)
| | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Remsen Building, Room 132A, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, United States, Phone: (603) 653-9909
| |
Collapse
|
3772
|
Garibotto V, Frisoni GB, Zilli T. Re: Cranial irradiation significantly reduces beta amyloid plaques in the brain and improves cognition in a murine model of Alzheimer’s Disease (AD). Radiother Oncol 2016; 118:577-8. [DOI: 10.1016/j.radonc.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
|
3773
|
Ozawa M, Chambers JK, Uchida K, Nakayama H. The Relation between canine cognitive dysfunction and age-related brain lesions. J Vet Med Sci 2016; 78:997-1006. [PMID: 26922972 PMCID: PMC4937160 DOI: 10.1292/jvms.15-0624] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Canine cognitive dysfunction (CCD) is a syndrome that manifests itself in abnormal behaviors, such as
disorientation and wandering. β-amyloid deposition in the brain, including the senile plaque (SP) and cerebral
amyloid angiopathy (CAA), has been suggested as a major cause of the syndrome. However, the pathological
significance of β-amyloid deposition in CCD dogs remains unclear. The present study was conducted using 16
dogs aged 10 years or older to clarify the relationship between the age-related histopathological lesions,
such as β-amyloid deposition, in the brain and the clinical symptoms of CCD as evaluated in a questionnaire
previously established in a large survey. In addition, age-related brain lesions were assessed in 37 dogs. The
pathological lesions were evaluated by the severity of β-amyloid deposition (SP and CAA), the amount of
ubiquitin-positive granules (UBQ), GFAP-positive astrocytes, Iba-1-positive microglia and Nissle
stain-positive nerve cells. The results revealed that there was no significant correlation between the
severities of canine SP and CCD. The SP increased until 14 years old, but decreased thereafter, although the
incidence of CCD is high at these ages. The CAA consistently increased with age, but did not correlate greatly
with the CCD score. In contrast, the increases of UBQ, astrocytes and microglia were significantly correlated
with CCD. Thus, the impairment in the synapse and/or myelin suggested by increased UBQ and glial activation
might be involved in CCD pathogenesis, but β-amyloid deposition, especially SP, is not a direct pathogenic
factor of CCD.
Collapse
Affiliation(s)
- Makiko Ozawa
- Department of Veterinary Pathology, the University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
3774
|
Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fülöp T. Protective Effect of Amyloid-β Peptides Against Herpes Simplex Virus-1 Infection in a Neuronal Cell Culture Model. J Alzheimers Dis 2016; 50:1227-41. [DOI: 10.3233/jad-150652] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Aurélie Le Page
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamás Fülöp
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3775
|
Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, Beck R, Lindner S, Gildehaus FJ, Baumann K, Bartenstein P, Kleinberger G, Haass C, Herms J, Rominger A. Glial Activation and Glucose Metabolism in a Transgenic Amyloid Mouse Model: A Triple-Tracer PET Study. J Nucl Med 2016; 57:954-60. [PMID: 26912428 DOI: 10.2967/jnumed.115.167858] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Amyloid imaging by small-animal PET in models of Alzheimer disease (AD) offers the possibility to track amyloidogenesis and brain energy metabolism. Because microglial activation is thought to contribute to AD pathology, we undertook a triple-tracer small-animal PET study to assess microglial activation and glucose metabolism in association with amyloid plaque load in a transgenic AD mouse model. METHODS Groups of PS2APP and C57BL/6 wild-type mice of various ages were examined by small-animal PET. We acquired 90-min dynamic emission data with (18)F-GE180 for imaging activated microglia (18-kD translocator protein ligand [TSPO]) and static 30- to 60-min recordings with (18)F-FDG for energy metabolism and (18)F-florbetaben for amyloidosis. Optimal fusion of PET data was obtained through automatic nonlinear spatial normalization, and SUVRs were calculated. For the novel TSPO tracer (18)F-GE180, we then calculated distribution volume ratios after establishing a suitable reference region. Immunohistochemical analyses with TSPO antisera, methoxy-X04 staining for fibrillary β-amyloid, and ex vivo autoradiography served as terminal gold standard assessments. RESULTS SUVR at 60-90 min after injection gave robust quantitation of (18)F-GE180, which correlated well with distribution volume ratios calculated from the entire recording and using a white matter reference region. Relative to age-matched wild-type, (18)F-GE180 SUVR was slightly elevated in PS2APP mice at 5 mo (+9%; P < 0.01) and distinctly increased at 16 mo (+25%; P < 0.001). Over this age range, there was a high positive correlation between small-animal PET findings of microglial activation with amyloid load (R = 0.85; P < 0.001) and likewise with metabolism (R = 0.61; P < 0.005). Immunohistochemical and autoradiographic findings confirmed the in vivo small-animal PET data. CONCLUSION In this first triple-tracer small-animal PET in a well-established AD mouse model, we found evidence for age-dependent microglial activation. This activation, correlating positively with the amyloid load, implies a relationship between amyloidosis and inflammation in the PS2APP AD mouse model.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Federico Probst
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna Jaworska
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
| | - Felix Overhoff
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Roswitha Beck
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany SyNergy, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Gernot Kleinberger
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany SyNergy, Ludwig-Maximilians-University of Munich, Munich, Germany; and Biomedical Center (BMC), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Christian Haass
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany SyNergy, Ludwig-Maximilians-University of Munich, Munich, Germany; and Biomedical Center (BMC), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jochen Herms
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany SyNergy, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany SyNergy, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| |
Collapse
|
3776
|
Rodriguez-Vieitez E, Carter SF, Chiotis K, Saint-Aubert L, Leuzy A, Schöll M, Almkvist O, Wall A, Långström B, Nordberg A. Comparison of Early-Phase 11C-Deuterium-l-Deprenyl and 11C-Pittsburgh Compound B PET for Assessing Brain Perfusion in Alzheimer Disease. J Nucl Med 2016; 57:1071-7. [PMID: 26912447 DOI: 10.2967/jnumed.115.168732] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The PET tracer (11)C-deuterium-L-deprenyl ((11)C-DED) has been used to visualize activated astrocytes in vivo in patients with Alzheimer disease (AD). In this multitracer PET study, early-phase (11)C-DED and (11)C-Pittsburgh compound B ((11)C-PiB) (eDED and ePiB, respectively) were compared as surrogate markers of brain perfusion, and the extent to which (11)C-DED binding is influenced by brain perfusion was investigated. METHODS (11)C-DED, (11)C-PiB, and (18)F-FDG dynamic PET scans were obtained in age-matched groups comprising AD patients (n = 8), patients with mild cognitive impairment (n = 17), and healthy controls (n = 16). A modified reference Patlak model was used to quantify (11)C-DED binding. A simplified reference tissue model was applied to both (11)C-DED and (11)C-PiB to measure brain perfusion relative to the cerebellar gray matter (R1) and binding potentials. (11)C-PiB retention and (18)F-FDG uptake were also quantified as target-to-pons SUV ratios in 12 regions of interest (ROIs). RESULTS The strongest within-subject correlations with the corresponding R1 values (R1,DED and R1,PiB, respectively) and with (18)F-FDG uptake were obtained when the eDED and ePiB PET data were measured 1-4 min after injection. The optimum eDED/ePiB intervals also showed strong, significant ROI-based intersubject Pearson correlations with R1,DED/R1,PiB and with (18)F-FDG uptake, whereas (11)C-DED binding was largely independent of brain perfusion, as measured by eDED. Corresponding voxelwise correlations confirmed the ROI-based results. Temporoparietal eDED or ePiB brain perfusion measurements were highly discriminative between patient and control groups, with discriminative ability statistically comparable to that of temporoparietal (18)F-FDG glucose metabolism. Hypometabolism extended over wider regions than hypoperfusion in patient groups compared with controls. CONCLUSION The 1- to 4-min early-frame intervals of (11)C-DED or (11)C-PiB are suitable surrogate measures for brain perfusion. (11)C-DED binding is independent of brain perfusion, and thus (11)C-DED PET can provide information on both functional (brain perfusion) and pathologic (astrocytosis) aspects from a single PET scan. In comparison with glucose metabolism, early-phase (11)C-DED and (11)C-PiB perfusion appear to provide complementary rather than redundant information.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Stephen F Carter
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Wolfson Molecular Imaging Centre, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, United Kingdom
| | - Konstantinos Chiotis
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Laure Saint-Aubert
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Antoine Leuzy
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Michael Schöll
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ove Almkvist
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Psychology, Stockholm University, Stockholm, Sweden Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anders Wall
- Department of Surgical Sciences, Section of Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden; and
| | | | - Agneta Nordberg
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
3777
|
The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A 2016; 113:E1316-25. [PMID: 26884167 DOI: 10.1073/pnas.1525466113] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression.
Collapse
|
3778
|
Jarmalavičiūtė A, Pivoriūnas A. Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol Res 2016; 113:816-822. [PMID: 26855317 DOI: 10.1016/j.phrs.2016.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
Exosomes are extracellular vesicles that can transfer biological information over long distances affecting normal and pathological processes throughout organism. It is known that very often composition and therapeutic properties of exosomes depends on cell type and its physiological state. Thus, depending on tissue of origin and physiological context exosomes may act as promoters, or suppressors of pathological processes in CNS. From the therapeutic perspective, the most promising cellular sources of exosomes are mesenchymal stem cells, dendritic cells and inducible pluripotent stem cells. In this review, we will summarize the current state of knowledge on the molecular mechanisms underlying neuroprotective actions of exosomes derived from these cells. New therapies for the neurodegenerative disorders are often halted by the inability of drugs to cross blood-brain barrier. In this respect exosomes have a critical advantage, because they can cross blood-brain barrier. Despite the great importance, surprisingly little is known about mechanistic details of this process. Therefore we will discuss some recent findings that may explain mechanisms of exosomal entry into the brain.
Collapse
Affiliation(s)
- Akvilė Jarmalavičiūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08406 Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08406 Vilnius, Lithuania.
| |
Collapse
|
3779
|
Kamer AR, Fortea JO, Videla S, Mayoral A, Janal M, Carmona-Iragui M, Benejam B, Craig RG, Saxena D, Corby P, Glodzik L, Annam KRC, Robbins M, de Leon MJ. Periodontal disease's contribution to Alzheimer's disease progression in Down syndrome. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 2:49-57. [PMID: 27239536 PMCID: PMC4879643 DOI: 10.1016/j.dadm.2016.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
People with Down syndrome (DS) are at an increased risk for Alzheimer's disease (AD). After 60 years of age, >50% of DS subjects acquire dementia. Nevertheless, the age of onset is highly variable possibly because of both genetic and environmental factors. Genetics cannot be modified, but environmental risk factors present a potentially relevant intervention for DS persons at risk for AD. Among them, inflammation, important in AD of DS type, is potential target. Consistent with this hypothesis, chronic peripheral inflammation and infections may contribute to AD pathogenesis in DS. People with DS have an aggressive form of periodontitis characterized by rapid progression, significant bacterial and inflammatory burden, and an onset as early as 6 years of age. This review offers a hypothetical mechanistic link between periodontitis and AD in the DS population. Because periodontitis is a treatable condition, it may be a readily modifiable risk factor for AD.
Collapse
Affiliation(s)
- Angela R Kamer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA; Department of Psychiatry, Center for Brain Health, School of Medicine, New York, NY, USA
| | - Juan O Fortea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Sebastià Videla
- Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Angela Mayoral
- Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Dentistry School Universitat Internacional de Catalunya, Sant Cugat del Vallés, Barcelona, Spain
| | - Malvin Janal
- Department of Epidemiology, College of Dentistry, New York University, New York, NY, USA
| | - Maria Carmona-Iragui
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain; Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Bessy Benejam
- Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Ronald G Craig
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, NY, USA
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, NY, USA
| | - Patricia Corby
- Department of Psychiatry, Center for Brain Health, School of Medicine, New York, NY, USA
| | - Lidia Glodzik
- Department of Psychiatry, Center for Brain Health, School of Medicine, New York, NY, USA
| | - Kumar Raghava Chowdary Annam
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA
| | - Miriam Robbins
- Department of Dental Medicine, Winthrop University Hospital, Mineola, NY, USA
| | - Mony J de Leon
- Department of Psychiatry, Center for Brain Health, School of Medicine, New York, NY, USA
| |
Collapse
|
3780
|
Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends Immunol 2016; 37:154-165. [DOI: 10.1016/j.it.2015.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
3781
|
Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 2016; 136:475-91. [PMID: 26546579 PMCID: PMC4720533 DOI: 10.1111/jnc.13424] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system. They play critical roles in neuronal homeostasis through their physical properties and neuron-glia signaling pathways. Astrocytes become reactive in response to neuronal injury and this process, referred to as reactive astrogliosis, is a common feature accompanying neurodegenerative conditions, particularly Alzheimer's disease. Reactive astrogliosis represents a continuum of pathobiological processes and is associated with morphological, functional, and gene expression changes of varying degrees. There has been a substantial growth of knowledge regarding the signaling pathways regulating glial biology and pathophysiology in recent years. Here, we attempt to provide an unbiased review of some of the well-known players, namely calcium, proteoglycan, transforming growth factor β, NFκB, and complement, in mediating neuron-glia interaction under physiological conditions as well as in Alzheimer's disease. This review discusses the role of astrocytic NFκB and calcium as well as astroglial secreted factors, including proteoglycans, TGFβ, and complement in mediating neuronal function and AD pathogenesis through direct interaction with neurons and through cooperation with microglia.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Neuroscience, Xiamen University College of Medicine, Xiamen, Fujian 361102, China
| |
Collapse
|
3782
|
Marples B, McGee M, Callan S, Bowen SE, Thibodeau BJ, Michael DB, Wilson GD, Maddens ME, Fontanesi J, Martinez AA. Cranial irradiation significantly reduces beta amyloid plaques in the brain and improves cognition in a murine model of Alzheimer's Disease (AD). Radiother Oncol 2016; 118:579-80. [PMID: 26838263 DOI: 10.1016/j.radonc.2016.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Brian Marples
- Department of Radiation Oncology, William Beaumont Hospital, 3811 W. Thirteen Mile Rd, 105-RI, Royal Oak, MI 48073, USA.
| | - Mackenzie McGee
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA
| | - Sean Callan
- Department of Psychology, Wayne State University, Detroit, USA
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, USA
| | - Bryan J Thibodeau
- Beaumont BioBank and Erb Family Core Molecular Laboratories, William Beaumont Hospital, USA
| | - Daniel B Michael
- Beaumont Neurosurgery, William Beaumont Hospital and Michigan Head and Spine Institute, USA
| | - George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA
| | - Michael E Maddens
- Division of Geriatric Medicine, William Beaumont Hospital and Department of Internal Medicine, Oakland University-William Beaumont School of Medicine, Detroit, USA
| | - James Fontanesi
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA
| | - Alvaro A Martinez
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA
| |
Collapse
|
3783
|
Astroglia dynamics in ageing and Alzheimer's disease. Curr Opin Pharmacol 2016; 26:74-9. [DOI: 10.1016/j.coph.2015.09.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022]
|
3784
|
Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M, Chiotis K, Thordardottir S, Graff C, Wall A, Långström B, Nordberg A. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease. Brain 2016; 139:922-36. [PMID: 26813969 PMCID: PMC4766380 DOI: 10.1093/brain/awv404] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/20/2015] [Indexed: 11/14/2022] Open
Abstract
See Schott and Fox (doi:
10.1093/brain/awv405
) for a scientific commentary on this article.
Alzheimer’s disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer’s disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer
11
C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition (
11
C-Pittsburgh compound B), and glucose metabolism (
18
F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer’s disease mutation carriers (
n =
11; 49.6 ± 10.3 years old) and non-carriers (
n =
16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (
n =
17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer’s disease (
n =
8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer’s disease participants belonged to families with known mutations in either presenilin 1 (
PSEN1
) or amyloid precursor protein (
APPswe
or
APParc
) genes. Sporadic mild cognitive impairment patients were further divided into
11
C-Pittsburgh compound B-positive (
n =
13; 62.0 ± 6.4; seven male) and
11
C-Pittsburgh compound B-negative (
n =
4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear mixed-effects models, fibrillar amyloid-β plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer’s disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-β plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-β plaque deposition. Patients with sporadic mild cognitive impairment who were
11
C-Pittsburgh compound B-positive at baseline showed increasing amyloid-β plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer’s disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer’s disease carriers, contrasting with the increasing amyloid-β plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Laure Saint-Aubert
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Stephen F Carter
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Ove Almkvist
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden 2 Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Karim Farid
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Michael Schöll
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Konstantinos Chiotis
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Steinunn Thordardottir
- 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden 4 Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Caroline Graff
- 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden 4 Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Anders Wall
- 5 Department of Surgical Sciences, Section of Nuclear Medicine & PET, Uppsala University, 751 85 Uppsala, Sweden
| | - Bengt Långström
- 6 Department of Chemistry, Uppsala University, 701 05 Uppsala, Sweden
| | - Agneta Nordberg
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| |
Collapse
|
3785
|
Hui CW, Zhang Y, Herrup K. Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System. PLoS One 2016; 11:e0147134. [PMID: 26788729 PMCID: PMC4720438 DOI: 10.1371/journal.pone.0147134] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/28/2015] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammation is associated with activated microglia and reactive astrocytes and plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s. Both in vivo and in vitro studies have demonstrated that inflammatory cytokine responses to immune challenges contribute to neuronal death during neurodegeneration. In order to investigate the role of glial cells in this phenomenon, we developed a modified method to remove the non-neuronal cells in primary cultures of E16.5 mouse cortex. We modified previously reported methods as we found that a brief treatment with the thymidine analog, 5-fluorodeoxyuridine (FdU), is sufficient to substantially deplete dividing non-neuronal cells in primary cultures. Cell cycle and glial markers confirm the loss of ~99% of all microglia, astrocytes and oligodendrocyte precursor cells (OPCs). More importantly, under this milder treatment, the neurons suffered neither cell loss nor any morphological defects up to 2.5 weeks later; both pre- and post-synaptic markers were retained. Further, neurons in FdU-treated cultures remained responsive to excitotoxicity induced by glutamate application. The immunobiology of the FdU culture, however, was significantly changed. Compared with mixed culture, the protein levels of NFκB p65 and the gene expression of several cytokine receptors were altered. Individual cytokines or conditioned medium from β-amyloid-stimulated THP-1 cells that were, potent neurotoxins in normal, mixed cultures, were virtually inactive in the absence of glial cells. The results highlight the importance of our glial-depleted culture system and identifies and offer unexpected insights into the complexity of -brain neuroinflammation.
Collapse
Affiliation(s)
- Chin Wai Hui
- Division of Life Science and the State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yang Zhang
- Division of Life Science and the State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and the State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|
3786
|
Network Topology Analysis of Post-Mortem Brain Microarrays Identifies More Alzheimer's Related Genes and MicroRNAs and Points to Novel Routes for Fighting with the Disease. PLoS One 2016; 11:e0144052. [PMID: 26784894 PMCID: PMC4718516 DOI: 10.1371/journal.pone.0144052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
Network-based approaches are powerful and beneficial tools to study complex systems in their entirety, elucidating the essential factors that turn the multitude of individual elements into a functional system. In this study we used critical network topology descriptors and guilt-by-association rule to explore and understand the significant molecular players, drug targets and underlying biological mechanisms of Alzheimer’s disease. Analyzing two post-mortem brain gene microarrays (GSE4757 and GSE28146) with Pathway Studio software package we constructed and analyzed a set of protein-protein interaction, as well as miRNA-target networks. In a 4-step procedure the expression datasets were normalized using Robust Multi-array Average approach, while the modulation of gene expression by the disease was statistically evaluated by the empirical Bayes method from the limma Bioconductor package. Representative set of 214 seed-genes (p<0.01) common for the three brain sections of the two microarrays was thus created. The Pathway Studio analysis of the networks built identified 15 new potential AD-related genes and 17 novel AD-involved microRNAs. Using KEGG pathways relevant in Alzheimer’s disease we built an integrated mechanistic network from the interactions between the overlapping genes in these pathways. Routes of possible disease initiation process were thus revealed through the CD4, DCN, and IL8 extracellular ligands. DAVID and IPA enrichment analysis uncovered a number of deregulated biological processes and pathways including neuron projection/differentiation, aging, oxidative stress, chemokine/ neurotrophin signaling, long-term potentiation and others. The findings in this study offer information of interest for subsequent experimental studies.
Collapse
|
3787
|
Watanabe Y, Kitamura K, Nakamura K, Sanpei K, Wakasugi M, Yokoseki A, Onodera O, Ikeuchi T, Kuwano R, Momotsu T, Narita I, Endo N. Elevated C-Reactive Protein Is Associated with Cognitive Decline in Outpatients of a General Hospital: The Project in Sado for Total Health (PROST). Dement Geriatr Cogn Dis Extra 2016; 6:10-9. [PMID: 26933436 PMCID: PMC4772636 DOI: 10.1159/000442585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We aimed to determine whether the concentration of serum C-reactive protein (CRP) is associated with cognitive function in an adult Japanese population. METHODS Participants of this cross-sectional study were from a subgroup of the Project in Sado for Total Health (PROST; n = 454; mean age, 70.5 years). The cognitive state was evaluated using the Mini-Mental State Examination (MMSE), and those with an MMSE score <24 were considered 'cognitively declined'. Concentrations of serum high-sensitivity CRP were measured. Multiple logistic regression analysis was used to calculate odds ratios (ORs) for cognitive decline, adjusting for the covariates of age, sex, BMI, disease history, and APOE allele. RESULTS Of the 454 participants, 94 (20.7%) were cognitively declined. Relative to the lowest (first) quartile of CRP concentration, adjusted ORs were 1.29 (95% CI 0.61-2.75) for the second, 1.78 (95% CI 0.82-3.86) for the third, and 3.05 (95% CI 1.45-6.42) for the highest (fourth) quartiles (p for trend = 0.018). When data were stratified by sex, the association between CRP concentration and cognitive decline was observed only in women. CONCLUSION Our findings suggest an association between higher CRP concentration and lower cognitive function. Chronic inflammation may affect cognitive function in adults, in particular women.
Collapse
Affiliation(s)
- Yumi Watanabe
- Division of Preventive Medicine, University of Niigata, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, University of Niigata, Niigata, Japan
| | | | - Kazuhiro Sanpei
- JA Niigata Koseiren Sado General Hospital, University of Niigata, Niigata, Japan
| | - Minako Wakasugi
- Center for Inter-Organ Communication Research, University of Niigata, Niigata, Japan
| | - Akio Yokoseki
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, University of Niigata, Niigata, Japan
| | - Osamu Onodera
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, University of Niigata, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Takeshi Momotsu
- JA Niigata Koseiren Sado General Hospital, University of Niigata, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, University of Niigata, Niigata, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, University of Niigata, Niigata, Japan
| |
Collapse
|
3788
|
The Neuroprotective Effect of Rapamycin as a Modulator of the mTOR-NF-κB Axis during Retinal Inflammation. PLoS One 2016; 11:e0146517. [PMID: 26771918 PMCID: PMC4714903 DOI: 10.1371/journal.pone.0146517] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022] Open
Abstract
Purpose The determination of the molecular mechanism underlying retinal pathogenesis and visual dysfunction during innate inflammation, and the treatment effect of rapamycin thereon. Methods The endotoxin-induced uveitis and retinitis mouse model was established by injecting lipopolysaccharide. The mice were subsequently treated with rapamycin, a mammalian target of rapamycin (mTOR) inhibitor. The rhodopsin mRNA and protein expression level in the retina and the photoreceptor outer segment (OS) length in immunohistochemical stainings were measured, and visual function was recorded by electroretinography. Inflammatory cytokines, their related molecules, mTOR, and LC3 levels were measured by real-time PCR and/or immunoblotting. Leukocyte adhesion during inflammation was analyzed using concanavalin A lectin. Results The post-transcriptional reduction in the visual pigment of rod photoreceptor cells, rhodopsin, OS shortening, and rod photoreceptor cell dysfunction during inflammation were suppressed by rapamycin. Activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induction of inflammatory cytokines, such as interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), and the activation of the downstream signaling protein, signal transducer and activator of transcription 3 (STAT3), which reduces rhodopsin in the retina during inflammation, were attenuated by rapamycin. Increased leukocyte adhesion was also attenuated by rapamycin. Interestingly, although mTOR activation was observed after NF-κB activation, mTOR inhibition suppressed NF-κB activation at the early phase, indicating that the basal level of activated mTOR was sufficient to activate NF-κB in the retina. In addition, the inhibition of NF-κB suppressed mTOR activation, suggesting a positive feedback loop of mTOR and NF-κB during inflammation. The ratio of LC3II to LC3I, which reflects autophagy induction, was not changed by inflammation but was increased by rapamycin. Conclusions Our results propose the potential use of rapamycin as a neuroprotective therapy to suppress local activated mTOR levels, related inflammatory molecules, and the subsequent visual dysfunction during retinal inflammation.
Collapse
|
3789
|
Erskine D, Khundakar AA. Stereological approaches to dementia research using human brain tissue. J Chem Neuroanat 2016; 76:73-81. [PMID: 26777894 DOI: 10.1016/j.jchemneu.2016.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
The relationship between the clinical features of dementia disorders and the resultant changes in underlying neuropathological mechanisms has long been of interest to researchers working in the field of neurodegenerative disorders. The majority of neuropathological research in dementia has utilized semi-quantitative analysis of protein inclusions, which have defined the hallmark histological features of the conditions. However, the advent of three-dimensional stereological techniques has enabled unbiased and fully quantitative assessment of brain tissue. The present review focuses on studies that have used these techniques to elucidate important relationships between neuropathological changes and clinical features and, in doing so, revealed important mechanistic insights into the pathophysiology of dementia disorders.
Collapse
Affiliation(s)
- D Erskine
- Institute of Neuroscience and Newcastle University Institute for Ageing, Newcastle University, United Kingdom
| | - A A Khundakar
- Institute of Neuroscience and Newcastle University Institute for Ageing, Newcastle University, United Kingdom.
| |
Collapse
|
3790
|
Rajkovic I, Denes A, Allan SM, Pinteaux E. Emerging roles of the acute phase protein pentraxin-3 during central nervous system disorders. J Neuroimmunol 2016; 292:27-33. [PMID: 26943955 DOI: 10.1016/j.jneuroim.2015.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022]
Abstract
Pentraxin-3 (PTX3) is an acute phase protein (APP) and a member of the long pentraxin family that is recognised for its role in peripheral immunity and vascular inflammation in response to injury, infection and diseases such as atherosclerosis, cancer and respiratory disease. Systemic levels of PTX3 are highly elevated in these conditions, and PTX3 is now recognised as a new biomarker of disease risk and progression. There is extensive evidence demonstrating that central nervous system (CNS) disorders are primarily characterised by central activation of innate immunity, as well as activation of a potent peripheral acute phase response (APR) that influences central inflammation and contributes to poor outcome. PTX3 has been recently recognised to play important roles in CNS disorders, having both detrimental and neuroprotective effects. The present review aims to give an up-to-date account of the emerging roles of PTX3 in CNS disorders, and to provide a critical comparison between peripheral and central actions of PTX3 in inflammatory diseases.
Collapse
Affiliation(s)
- Ivana Rajkovic
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adam Denes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1450, Hungary
| | - Stuart M Allan
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
3791
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
3792
|
Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Öhrfelt A, Blennow K, Hardy J, Schott J, Mills K, Zetterberg H. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease. Mol Neurodegener 2016; 11:3. [PMID: 26754172 PMCID: PMC4709982 DOI: 10.1186/s13024-016-0071-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The discovery that heterozygous missense mutations in the gene encoding triggering receptor expressed on myeloid cells 2 (TREM2) are risk factors for Alzheimer's disease (AD), with only the apolipoprotein E (APOE) ε4 gene allele conferring a higher risk, has led to increased interest in immune biology in the brain. TREM2 is expressed on microglia, the resident immune cells of the brain and has been linked to phagocytotic clearance of amyloid β (Aβ) plaques. Soluble TREM2 (sTREM2) has previously been measured in cerebrospinal fluid (CSF) by ELISA but in our hands commercial kits have proved unreliable, suggesting that other methods may be required. We developed a mass spectrometry method using selected reaction monitoring for the presence of a TREM2 peptide, which can be used to quantify levels of sTREM2 in CSF. FINDINGS We examined CSF samples from memory clinics in Sweden and the UK. For all samples the following were available: clinical diagnosis, age, sex, and measurements of the CSF AD biomarkers Aβ42, T-tau and P-tau181. AD patients (n = 37) all met biomarker (IWG2) criteria for AD. Control individuals (n = 22) were cognitively normal without evidence for AD in CSF. We found significantly higher sTREM2 concentration in AD compared to control CSF. There were significant correlations between CSF sTREM2 and T-tau as well as P-tau181. CSF sTREM2 increase in AD was replicated in a second, independent cohort consisting of 24 AD patients and 16 healthy volunteers. CONCLUSION CSF concentrations of sTREM2 are higher in AD than in controls, and correlate with markers of neurodegeneration. CSF sTREM2 may be used to quantify glial activation in AD.
Collapse
Affiliation(s)
- Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Wendy Heywood
- UCL Institute of Child Health, Guilford Street, London, WC1N 1EH, UK.
| | - Ross Paterson
- Dementia Research Centre UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Nadia Magdalinou
- Dementia Research Centre UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Johan Svensson
- Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, S-413 45, Sweden.
| | - Per Johansson
- Department of Endocrinology, Skaraborg Hospital, Skövde, S-541 85, Sweden.
| | - Annika Öhrfelt
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden.
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Jonathan Schott
- Dementia Research Centre UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Kevin Mills
- UCL Institute of Child Health, Guilford Street, London, WC1N 1EH, UK.
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK. .,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden.
| |
Collapse
|
3793
|
Pearson-Leary J, Osborne DM, McNay EC. Role of Glia in Stress-Induced Enhancement and Impairment of Memory. Front Integr Neurosci 2016; 9:63. [PMID: 26793072 PMCID: PMC4707238 DOI: 10.3389/fnint.2015.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/05/2015] [Indexed: 12/20/2022] Open
Abstract
Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized.
Collapse
Affiliation(s)
- Jiah Pearson-Leary
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | | - Ewan C McNay
- Behavioral Neuroscience and Biology, University at Albany Albany, NY, USA
| |
Collapse
|
3794
|
Figueiredo-Pereira ME, Corwin C, Babich J. Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration. Ann N Y Acad Sci 2016; 1363:125-37. [PMID: 26748744 DOI: 10.1111/nyas.12987] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostaglandins (PGs) are produced via cyclooxygenases, which are enzymes that play a major role in neuroinflammation. Epidemiological studies show that chronic treatment with low levels of cyclooxygenase inhibitors (nonsteroidal anti-inflammatory drugs (NSAIDs)) lowers the risk for Alzheimer's disease (AD) and Parkinson's disease (PD) by as much as 50%. Unfortunately, inhibiting cyclooxygenases with NSAIDs blocks the synthesis of downstream neuroprotective and neurotoxic PGs, thus producing adverse side effects. We focus on prostaglandin J2 (PGJ2) because it is highly neurotoxic compared to PGA1, D2, and E2. Unlike other PGs, PGJ2 and its metabolites have a cyclopentenone ring with reactive α,β-unsaturated carbonyl groups that form covalent Michael adducts with key cysteines in proteins and GSH. Cysteine-binding electrophiles such as PGJ2 are considered to play an important role in determining whether neurons will live or die. We discuss in vitro and in vivo studies showing that PGJ2 induces pathological processes relevant to neurodegenerative disorders such as AD and PD. Further, we discuss our work showing that increasing intracellular cAMP with the lipophilic peptide PACAP27 counteracts some of the PGJ2-induced detrimental effects. New therapeutic strategies that neutralize the effects of specific neurotoxic PGs downstream from cyclooxygenases could have a significant impact on the treatment of chronic neurodegenerative disorders with fewer adverse side effects.
Collapse
Affiliation(s)
| | - Chuhyon Corwin
- Department of Biological Sciences, Hunter College and the Graduate Center, CUNY, New York, New York
| | - John Babich
- Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
3795
|
The neuropathology and cerebrovascular mechanisms of dementia. J Cereb Blood Flow Metab 2016; 36:172-86. [PMID: 26174330 PMCID: PMC4758551 DOI: 10.1038/jcbfm.2015.164] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022]
Abstract
The prevalence of dementia is increasing in our aging population at an alarming rate. Because of the heterogeneity of clinical presentation and complexity of disease neuropathology, dementia classifications remain controversial. Recently, the National Plan to address Alzheimer’s Disease prioritized Alzheimer’s disease-related dementias to include: Alzheimer’s disease, dementia with Lewy bodies, frontotemporal dementia, vascular dementia, and mixed dementias. While each of these dementing conditions has their unique pathologic signature, one common etiology shared among all these conditions is cerebrovascular dysfunction at some point during the disease process. The goal of this comprehensive review is to summarize the current findings in the field and address the important contributions of cerebrovascular, physiologic, and cellular alterations to cognitive impairment in these human dementias. Specifically, evidence will be presented in support of small-vessel disease as an underlying neuropathologic hallmark of various dementias, while controversial findings will also be highlighted. Finally, the molecular mechanisms shared among all dementia types including hypoxia, oxidative stress, mitochondrial bioenergetics, neuroinflammation, neurodegeneration, and blood–brain barrier permeability responsible for disease etiology and progression will be discussed.
Collapse
|
3796
|
|
3797
|
Abstract
This chapter will focus on the descriptive, analytic, and intervention-oriented epidemiology of dementia and its most frequent etiologic type due to Alzheimer's disease. The chapter opens with a brief presentation of the concept of dementia, followed by the presentation of dementia of the Alzheimer type (DAT), including natural history, clinical manifestation, neuropathology, medical prognosis, and management. Further, the chapter presents the prevalence and incidence of dementia, with special consideration of secular trends in prevalence and incidence of DAT, and prognosis of the socioeconomic impact of dementia. Thereafter the main risk factors for DAT are covered. The chapter also addresses the results of ongoing therapeutic and preventive intervention trials for DAT. Finally, the future challenges of the epidemiology of dementia with a focus on the impact of the new diagnostic criteria for neurocognitive disorders, as well as the development of biomarkers for DAT and other types of dementia, will be briefly discussed.
Collapse
Affiliation(s)
- S F Sacuiu
- Department of Neuropsychiatry, Sahlgrenska University Hospital and Department of Psychiatry and Neurochemistry, University of Gothenburg Institute of Neuroscience and Physiology, Gothenburg, Sweden.
| |
Collapse
|
3798
|
Groeneveld ON, Kappelle LJ, Biessels GJ. Potentials of incretin-based therapies in dementia and stroke in type 2 diabetes mellitus. J Diabetes Investig 2016; 7:5-16. [PMID: 26816596 PMCID: PMC4718099 DOI: 10.1111/jdi.12420] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Patients with type 2 diabetes mellitus are at risk for accelerated cognitive decline and dementia. Furthermore, their risk of stroke is increased and their outcome after stroke is worse than in those without diabetes. Incretin-based therapies are a class of antidiabetic agents that are of interest in relation to these cerebral complications of diabetes. Two classes of incretin-based therapies are currently available: the glucagon-like-peptide-1 agonists and the dipeptidyl peptidase-4 -inhibitors. Independent of their glucose-lowering effects, incretin-based therapies might also have direct or indirect beneficial effects on the brain. In the present review, we discuss the potential of incretin-based therapies in relation to dementia, in particular Alzheimer's disease, and stroke in patients with type 2 diabetes. Experimental studies on Alzheimer's disease have found beneficial effects of incretin-based therapies on cognition, synaptic plasticity and metabolism of amyloid-β and microtubule-associated protein tau. Preclinical studies on incretin-based therapies in stroke have shown an improved functional outcome, a reduction of infarct volume as well as neuroprotective and neurotrophic properties. Both with regard to the treatment of Alzheimer's disease, and with regard to prevention and treatment of stroke, randomized controlled trials in patients with or without diabetes are underway. In conclusion, experimental studies show promising results of incretin-based therapies at improving the outcome of Alzheimer's disease and stroke through glucose-independent pleiotropic effects on the brain. If these findings would indeed be confirmed in large clinical randomized controlled trials, this would have substantial impact.
Collapse
Affiliation(s)
- Onno N Groeneveld
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| | - L Jaap Kappelle
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| | - Geert Jan Biessels
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| |
Collapse
|
3799
|
Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V. PATHOBIOLOGY OF NEURODEGENERATION: THE ROLE FOR ASTROGLIA. OPERA MEDICA ET PHYSIOLOGICA 2016; 1:13-22. [PMID: 27308639 PMCID: PMC4905715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The common denominator of neurodegenerative diseases, which mainly affect humans, is the progressive death of neural cells resulting in neurological and cognitive deficits. Astroglial cells are the central elements of the homoeostasis, defence and regeneration of the central nervous system, and their malfunction or reactivity contribute to the pathophysiology of neurodegenerative diseases. Pathological remodelling of astroglia in neurodegenerative context is multifaceted. Both astroglial atrophy with a loss of function and astroglial reactivity have been identified in virtually all the forms of neurodegenerative disorders. Astroglia may represent a novel target for therapeutic strategies aimed at preventing and possibly curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK
- University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4; SI-1000, Ljubljana, Slovenia
- Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Jose J. Rodriguez
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429, University of Alabama, Birmingham, AL 35294-0021, USA
| |
Collapse
|
3800
|
Walter J. The Triggering Receptor Expressed on Myeloid Cells 2: A Molecular Link of Neuroinflammation and Neurodegenerative Diseases. J Biol Chem 2015; 291:4334-41. [PMID: 26694609 DOI: 10.1074/jbc.r115.704981] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The triggering receptor expressed on myeloid cells (TREM) 2 is a member of the immunoglobulin superfamily of receptors and mediates signaling in immune cells via engagement of its co-receptor DNAX-activating protein of 12 kDa (DAP12). Homozygous mutations in TREM2 or DAP12 cause Nasu-Hakola disease, which is characterized by bone abnormalities and dementia. Recently, a variant of TREM2 has also been associated with an increased risk for Alzheimer disease. The selective expression of TREM2 on immune cells and its association with different forms of dementia indicate a contribution of this receptor in common pathways of neurodegeneration.
Collapse
Affiliation(s)
- Jochen Walter
- From the Department of Neurology, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|