3901
|
Carson JH, Gao Y, Tatavarty V, Levin MK, Korza G, Francone VP, Kosturko LD, Maggipinto MJ, Barbarese E. Multiplexed RNA trafficking in oligodendrocytes and neurons. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:453-8. [PMID: 18442491 DOI: 10.1016/j.bbagrm.2008.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/28/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022]
Abstract
In oligodendrocytes and neurons genetic information is transmitted from the nucleus to dendrites in the form of RNA granules. Here we describe how transport of multiple different RNA molecules in individual granules is analogous to the process of multiplexing in telecommunications. In both cases multiple messages are combined into a composite signal for transmission on a single carrier. Multiplexing provides a mechanism to coordinate local expression of ensembles of genes in myelin in oligodendrocytes and at synapses in neurons.
Collapse
Affiliation(s)
- John H Carson
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3902
|
Moore SW, Lai Wing Sun K, Xie F, Barker PA, Conti M, Kennedy TE. Soluble adenylyl cyclase is not required for axon guidance to netrin-1. J Neurosci 2008; 28:3920-4. [PMID: 18400890 PMCID: PMC6670467 DOI: 10.1523/jneurosci.0547-08.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 02/27/2008] [Indexed: 11/21/2022] Open
Abstract
During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on netrin-1 action are well accepted, but the critical issue of whether cAMP production is activated by a netrin-1 induced signaling cascade remains uncertain. A previous report has suggested that axon guidance in response to netrin-1 requires cAMP production mediated by soluble adenyl cyclase (sAC). We have used genetic, molecular and biochemical strategies to assess this issue. Surprisingly, we found only extremely weak expression of sAC in embryonic neurons and determined that, under conditions where netrin-1 directs axonal pathfinding, exposure to netrin-1 does not alter cAMP levels. Furthermore, although netrin-1-deficient mice exhibit major axon guidance defects, we show that pathfinding is normal in sAC-null mice. Therefore, although cAMP can alter the response of axons to netrin-1, we conclude that netrin-1 does not alter cAMP levels in axons attracted by this cue, and that sAC is not required for axon attraction to netrin-1.
Collapse
Affiliation(s)
- Simon W. Moore
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Karen Lai Wing Sun
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Fang Xie
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Philip A. Barker
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| | - Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317
| | - Timothy E. Kennedy
- Centre for Neuronal Survival, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4, and
| |
Collapse
|
3903
|
Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 2008; 42:60-9. [PMID: 18502665 DOI: 10.1016/j.neuroimage.2008.03.037] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/26/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022] Open
Abstract
Detailed anatomical atlases can provide considerable interpretive power in studies of both human and rodent neuroanatomy. Here we describe a three-dimensional atlas of the mouse brain, manually segmented into 62 structures, based on an average of 32 mum isotropic resolution T(2)-weighted, within skull images of forty 12 week old C57Bl/6J mice, scanned on a 7 T scanner. Individual scans were normalized, registered, and averaged into one volume. Structures within the cerebrum, cerebellum, and brainstem were painted on each slice of the average MR image while using simultaneous viewing of the coronal, sagittal and horizontal orientations. The final product, which will be freely available to the research community, provides the most detailed MR-based, three-dimensional neuroanatomical atlas of the whole brain yet created. The atlas is furthermore accompanied by ancillary detailed descriptions of boundaries for each structure and provides high quality neuroanatomical details pertinent to MR studies using mouse models in research.
Collapse
Affiliation(s)
- A E Dorr
- Clinical Integrative Biology, Sunnybrook Health Sciences Centre, Toronto ON, Canada
| | | | | | | | | |
Collapse
|
3904
|
Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits. Neuron 2008; 57:634-60. [PMID: 18341986 DOI: 10.1016/j.neuron.2008.01.002] [Citation(s) in RCA: 556] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/24/2007] [Accepted: 01/01/2008] [Indexed: 11/29/2022]
Abstract
Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
3905
|
Mattick JS, Mehler MF. RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 2008; 31:227-33. [PMID: 18395806 DOI: 10.1016/j.tins.2008.02.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/10/2008] [Accepted: 02/12/2008] [Indexed: 01/09/2023]
Abstract
RNA editing appears to be the major mechanism by which environmental signals overwrite encoded genetic information to modify gene function and regulation, particularly in the brain. We suggest that the predominance of Alu elements in the human genome is the result of their evolutionary co-adaptation as a modular substrate for RNA editing, driven by selection for higher-order cognitive function. We show that RNA editing alters transcripts from loci encoding proteins involved in neural cell identity, maturation and function, as well as in DNA repair, implying a role for RNA editing not only in neural transmission and network plasticity but also in brain development, and suggesting that communication of productive changes back to the genome might constitute the molecular basis of long-term memory and higher-order cognition.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
3906
|
Abstract
Biogenic amines, such as serotonin and dopamine, can be important in reinforcing associative learning. This function is evident as changes in memory performance with manipulation of either of these signals. In the insects, evidence begins to argue for a common role of dopamine in negatively reinforced memory. In contrast, the role of the serotonergic system in reinforcing insect associative learning is either unclear or controversial. We investigated the role of both of these signals in operant place learning in Drosophila. By genetically altering serotonin and dopamine levels, manipulating the neurons that make serotonin and dopamine, and pharmacological treatments we provide clear evidence that serotonin, but not dopamine, is necessary for place memory. Thus, serotonin can be critical for memory formation in an insect, and dopamine is not a universal negatively reinforcing signal.
Collapse
|
3907
|
Cloning and molecular characterization of the orphan carrier protein Slc10a4: Expression in cholinergic neurons of the rat central nervous system. Neuroscience 2008; 152:990-1005. [DOI: 10.1016/j.neuroscience.2008.01.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 12/17/2007] [Accepted: 02/04/2008] [Indexed: 11/15/2022]
|
3908
|
Olszewski PK, Cedernaes J, Olsson F, Levine AS, Schiöth HB. Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci Biobehav Rev 2008; 32:945-56. [PMID: 18457878 DOI: 10.1016/j.neubiorev.2008.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
The Allen Brain Atlas, the most comprehensive in situ hybridization database, covers over 21,000 genes expressed in the mouse brain. Here we discuss the feasibility to utilize the ABA in research pertaining to the central regulation of feeding and we define advantages and vulnerabilities associated with the use of the atlas as a guidance tool. We searched for 57 feeding-related genes in the ABA, and of those 42 display distribution consistent with that described in previous reports. Detailed analyses of these 42 genes in the nucleus accumbens, ventral tegmental area, nucleus of the solitary tract, lateral hypothalamus, arcuate, paraventricular, ventromedial and dorsomedial nuclei suggests that molecules involved in feeding stimulation and termination are coexpressed in multiple consumption-related sites. Gene systems linked to energy needs, reward or satiation display a remarkably high level of overlap. This conclusion calls into question the classical concept of brain sites viewed as independent hunger or reward "centers" and favors the theory of a widespread feeding network comprising multiple neuroregulators affecting numerous aspects of consumption.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Minnesota Obesity Center, Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55117, United States.
| | | | | | | | | |
Collapse
|
3909
|
Lau C, Ng L, Thompson C, Pathak S, Kuan L, Jones A, Hawrylycz M. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 2008; 9:153. [PMID: 18366675 PMCID: PMC2375125 DOI: 10.1186/1471-2105-9-153] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 03/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatially mapped large scale gene expression databases enable quantitative comparison of data measurements across genes, anatomy, and phenotype. In most ongoing efforts to study gene expression in the mammalian brain, significant resources are applied to the mapping and visualization of data. This paper describes the implementation and utility of Brain Explorer, a 3D visualization tool for studying in situ hybridization-based (ISH) expression patterns in the Allen Brain Atlas, a genome-wide survey of 21,000 expression patterns in the C57BL\6J adult mouse brain. RESULTS Brain Explorer enables users to visualize gene expression data from the C57Bl/6J mouse brain in 3D at a resolution of 100 microm3, allowing co-display of several experiments as well as 179 reference neuro-anatomical structures. Brain Explorer also allows viewing of the original ISH images referenced from any point in a 3D data set. Anatomic and spatial homology searches can be performed from the application to find data sets with expression in specific structures and with similar expression patterns. This latter feature allows for anatomy independent queries and genome wide expression correlation studies. CONCLUSION These tools offer convenient access to detailed expression information in the adult mouse brain and the ability to perform data mining and visualization of gene expression and neuroanatomy in an integrated manner.
Collapse
|
3910
|
Wang S, Hecksher-Sorensen J, Xu Y, Zhao A, Dor Y, Rosenberg L, Serup P, Gu G. Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol 2008; 317:531-40. [PMID: 18394599 DOI: 10.1016/j.ydbio.2008.02.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
High levels of Ngn3 expression in pancreatic progenitor cells are both necessary and sufficient to initiate endocrine differentiation. While it is clear that the Notch-Hes1-mediated signals control the number of Ngn3-expressing cells in the developing pancreas, it is not known what factors control the level of Ngn3 expression in individual pancreatic cells. Here we report that Myt1b and Ngn3 form a feed-forward expression loop that regulates endocrine differentiation. Myt1b induces glucagon expression by potentiating Ngn3 transcription in pancreatic progenitors. Vice versa, Ngn3 protein production induces the expression of Myt1. Furthermore, pancreatic Myt1 expression largely, but not totally, relies on Ngn3 activity. Surprisingly, a portion of Myt1 expressing pancreatic cells express glucagon and other alpha cell markers in Ngn3 nullizygous mutant animals. These results demonstrate that Myt1b and Ngn3 positively regulate each other's expression to promote endocrine differentiation. In addition, the data uncover an unexpected Ngn3 expression-independent endocrine cell production pathway, which further bolsters the notion that the seemingly equivalent endocrine cells of each type, as judged by hormone and transcription factor expression, are heterogeneous in their origin.
Collapse
Affiliation(s)
- Sui Wang
- Program in Developmental Biology, Department of Cell and Developmental Biology, 465 21st Avenue South, Rm 4128, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
3911
|
Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 2008; 452:713-8. [PMID: 18337722 PMCID: PMC2377396 DOI: 10.1038/nature06731] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 01/21/2008] [Indexed: 01/11/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine-encoding repeat in ataxin 1 (ATXN1). In all known polyglutamine diseases, the glutamine expansion confers toxic functions onto the protein; however, the mechanism by which this occurs remains enigmatic, in light of the fact that the mutant protein apparently maintains interactions with its usual partners. Here we show that the expanded polyglutamine tract differentially affects the function of the host protein in the context of different endogenous protein complexes. Polyglutamine expansion in ATXN1 favours the formation of a particular protein complex containing RBM17, contributing to SCA1 neuropathology by means of a gain-of-function mechanism. Concomitantly, polyglutamine expansion attenuates the formation and function of another protein complex containing ATXN1 and capicua, contributing to SCA1 through a partial loss-of-function mechanism. This model provides mechanistic insight into the molecular pathogenesis of SCA1 as well as other polyglutamine diseases.
Collapse
|
3912
|
Moldrich RX, Lainé J, Visel A, Beart PM, Laffaire J, Rossier J, Potier MC. Transmembrane protein 50b (C21orf4), a candidate for Down syndrome neurophenotypes, encodes an intracellular membrane protein expressed in the rodent brain. Neuroscience 2008; 154:1255-66. [PMID: 18541381 DOI: 10.1016/j.neuroscience.2008.01.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/10/2008] [Accepted: 01/31/2008] [Indexed: 01/31/2023]
Abstract
Transmembrane protein 50b, Tmem50b, previously referred to as C21orf4, encodes a predicted transmembrane protein and is one of few genes significantly over-expressed during cerebellar development in a Down syndrome mouse model, Ts1Cje. In order to assess potential mechanisms by which Tmem50b could contribute to Down syndrome-related phenotypes, we determined the expression patterns of Tmem50b mRNA, as well as Tmem50b protein distribution, expression and subcellular localization. In situ hybridization in mice at embryonic day 14.5 showed cortical plate and spinal cord mRNA expression. By postnatal day 7, strong mRNA expression was seen in the cerebellum, hippocampus and olfactory bulb, with diffuse cortical expression. Quantitative PCR of adult mouse tissue showed Tmem50b mRNA expression in the brain, heart and testis. A rabbit polyclonal antibody was generated against Tmem50b and rat and mouse tissue screening by Western blot, and immunohistochemistry showed that protein expression concurred with mRNA expression. Double immunofluorescence revealed that Tmem50b is highly expressed in rat and mouse glial fibrillary acidic protein-positive cells in vivo and in vitro, but less so in neuronal MAP2- or beta-tubulin II-positive cells in vitro. Tmem50b is invariably expressed in cultured mouse neural precursor cells. In adult mouse cerebellum sections, Tmem50b immunoreactivity was found in Purkinje and Golgi cell somata and in Bergmann glial processes. Electron microscopy confirmed that Tmem50b was present on endoplasmic reticulum (ER) and Golgi apparatus membranes. Results indicate that Tmem50b is a developmentally-regulated intracellular ER and Golgi apparatus membrane protein that may prove important for correct brain development through functions associated with precursor cells and glia.
Collapse
Affiliation(s)
- R X Moldrich
- Laboratoire de Neurobiologie, UMR7637, ESPCI, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
3913
|
McKee AE, Neretti N, Carvalho LE, Meyer CA, Fox EA, Brodsky AS, Silver PA. Exon expression profiling reveals stimulus-mediated exon use in neural cells. Genome Biol 2008; 8:R159. [PMID: 17683528 PMCID: PMC2374990 DOI: 10.1186/gb-2007-8-8-r159] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/12/2007] [Accepted: 08/02/2007] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuronal cells respond to changes in intracellular calcium ([Ca2+]i) by affecting both the abundance and architecture of specific mRNAs. Although calcium-induced transcription and transcript variation have both been recognized as important sources of gene regulation, the interplay between these two phenomena has not been evaluated on a genome-wide scale. RESULTS Here, we show that exon-centric microarrays can be used to resolve the [Ca2+]i-modulated gene expression response into transcript-level and exon-level regulation. Global assessments of affected transcripts reveal modulation within distinct functional gene categories. We find that transcripts containing calcium-modulated exons exhibit enrichment for calcium ion binding, calmodulin binding, plasma membrane associated, and metabolic proteins. Additionally, we uncover instances of regulated exon use in potassium channels, neuroendocrine secretory proteins and metabolic enzymes, and demonstrate that regulated changes in exon expression give rise to distinct transcript variants. CONCLUSION Our findings connect extracellular stimuli to specific exon behavior, and suggest that changes in transcript and exon abundance are reflective of a coordinated gene expression response to elevated [Ca2+]i. The technology we describe here lends itself readily to the resolution of stimulus-induced gene expression at both the transcript and exon levels.
Collapse
Affiliation(s)
- Adrienne E McKee
- Department of Systems Biology, 200 Longwood Avenue, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
3914
|
Gao Y, Tatavarty V, Korza G, Levin MK, Carson JH. Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol Biol Cell 2008; 19:2311-27. [PMID: 18305102 DOI: 10.1091/mbc.e07-09-0914] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In neurons, many different RNAs are targeted to dendrites where local expression of the encoded proteins mediates synaptic plasticity during learning and memory. It is not known whether each RNA follows a separate trafficking pathway or whether multiple RNAs are targeted to dendrites by the same pathway. Here, we show that RNAs encoding alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein are coassembled into the same RNA granules and targeted to dendrites by the same cis/trans-determinants (heterogeneous nuclear ribonucleoprotein [hnRNP] A2 response element and hnRNP A2) that mediate dendritic targeting of myelin basic protein RNA by the A2 pathway in oligodendrocytes. Multiplexed dendritic targeting of different RNAs by the same pathway represents a new organizing principle for coordinating gene expression at the synapse.
Collapse
Affiliation(s)
- Yuanzheng Gao
- Neuroscience Program, Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington CT 06030, USA
| | | | | | | | | |
Collapse
|
3915
|
Ramos RL, Smith PT, DeCola C, Tam D, Corzo O, Brumberg JC. Cytoarchitecture and transcriptional profiles of neocortical malformations in inbred mice. ACTA ACUST UNITED AC 2008; 18:2614-28. [PMID: 18308707 DOI: 10.1093/cercor/bhn019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Malformations of neocortical development are associated with cognitive dysfunction and increased susceptibility to epileptogenesis. Rodent models are widely used to study neocortical malformations and have revealed important genetic and environmental mechanisms that contribute to neocortical development. Interestingly, several inbred mice strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations. In the present report we examine the cytoarchitecture and myeloarchitecture of the neocortex of 11 inbred mouse strains and identified malformations of cortical development, including molecular layer heterotopia, in all but one strain. We used in silico methods to confirm our observations and determined the transcriptional profiles of cells found within heterotopia. These data indicate cellular and transcriptional diversity present in cells in malformations. Furthermore, the presence of dysplasia in nearly every inbred strain examined suggests that malformations of neocortical development are a common feature in the neocortex of inbred mice.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Psychology, Queens College, CUNY, Flushing, NY 11367, USA
| | | | | | | | | | | |
Collapse
|
3916
|
Lerch JP, Carroll JB, Dorr A, Spring S, Evans AC, Hayden MR, Sled JG, Henkelman RM. Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease. Neuroimage 2008; 41:243-51. [PMID: 18387826 DOI: 10.1016/j.neuroimage.2008.02.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 01/16/2008] [Accepted: 02/07/2008] [Indexed: 11/16/2022] Open
Abstract
A recent study found differences in localised regions of the cortex between the YAC128 mouse model of Huntington's Disease (HD) and wild-type mice. There are, however, few tools to automatically examine shape differences in the cortices of mice. This paper describes an algorithm for automatically measuring cortical thickness across the entire cortex from MRI of fixed mouse brain specimens. An analysis of the variance of the method showed that, on average, a 50 microm (0.05 mm) localised difference in cortical thickness can be measured using MR scans. Applying these methods to 8-month-old YAC128 mouse model mice representing an early stage of HD, we found an increase in cortical thickness in the sensorimotor cortex, and also revealed regions wherein decreasing striatal volume correlated with increasing cortical thickness, indicating a potential compensatory response.
Collapse
Affiliation(s)
- Jason P Lerch
- The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
3917
|
McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, Grimmond S, Lessard JL, Little MH, Potter SS, Wilder EL, Zhang P. GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol 2008; 19:667-71. [PMID: 18287559 DOI: 10.1681/asn.2007101078] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In late 2004, an International Consortium of research groups were charged with the task of producing a high-quality molecular anatomy of the developing mammalian urogenital tract (UGT). Given the importance of these organ systems for human health and reproduction, the need for a systematic molecular and cellular description of their developmental programs was deemed a high priority. The information obtained through this initiative is anticipated to enable the highest level of basic and clinical research grounded on a 21st-century view of the developing anatomy. There are three components to the Genitourinary Developmental Molecular Anatomy Project GUDMAP; all of these are intended to provide resources that support research on the kidney and UGT. The first provides ontology of the cell types during UGT development and the molecular hallmarks of those cells as discerned by a variety of procedures, including in situ hybridization, transcriptional profiling, and immunostaining. The second generates novel mouse strains. In these strains, cell types of particular interest within an organ are labeled through the introduction of a specific marker into the context of a gene that exhibits appropriate cell type or structure-specific expression. In addition, the targeting construct enables genetic manipulation within the cell of interest in many of the strains. Finally, the information is annotated, collated, and promptly released at regular intervals, before publication, through a database that is accessed through a Web portal. Presented here is a brief overview of the Genitourinary Developmental Molecular Anatomy Project effort.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology and Harvard Stem Cell Institute, Harvard University, 16, Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3918
|
Abstract
Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulate guanylyl cyclases by natriuretic peptides. The classical targets of cGMP are cGMP-dependent protein kinases (cGKs), cyclic nucleotide hydrolysing phosphodiesterases, and cyclic nucleotide-gated (CNG) cation channels. The NO/cGMP/cGK signalling cascade has been linked to the modulation of transmitter release and synaptic plasticity by numerous pharmacological and genetic studies. This review focuses on the role of NO as a retrograde messenger in long-term potentiation of transmitter release in the hippocampus. Presynaptic mechanisms of NO/cGMP/cGK signalling will be discussed with recently identified potential downstream components such as CaMKII, the vasodilator-stimulated phosphoprotein, and regulators of G protein signalling. NO has further been suggested to increase transmitter release through presynaptic clustering of a-synuclein. Alternative modes of NO/cGMP signalling resulting in inhibition of transmitter release and long-term depression of synaptic activity will also be addressed, as well as anterograde NO signalling in the cerebellum. Finally, emerging evidence for cGMP signalling through CNG channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels will be discussed.
Collapse
|
3919
|
Brain capacity for repair of oxidatively damaged DNA and preservation of neuronal function. Mech Ageing Dev 2008; 129:475-82. [PMID: 18374390 DOI: 10.1016/j.mad.2008.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/23/2008] [Accepted: 02/07/2008] [Indexed: 11/20/2022]
Abstract
Accumulation of oxidative DNA damage in the human brain has been implicated in etiologies of post-traumatic and age-associated declines in neuronal function. In neurons, because of high metabolic rates and prolonged life span, exposure to free radicals is intense and risk for accumulation of damaged DNA is amplified. While data indicate that the brain is equipped to repair nuclear and mitochondrial DNA, it is unclear whether repair is executed by distinct subsets of the DNA-repair machinery. Likewise, there are no firm assessments of brain capacity for accurate DNA repair under normal and more so compromised conditions. Consequently, the scope of DNA repair in the brain and the impact of resolution of oxidative lesions on neuronal survival and function remain largely unknown. This review considers evidences for brain levels and activities of the base excision repair (BER) pathway in the context of newly available, comprehensive in situ hybridization analyses of genes encoding repair enzymes. These analyses suggest that not all subsets of BER are equally represented in the brain. Because BER is the major repair process for oxidatively damaged DNA, to what extent parsimonious BER may contribute to development of neuronal dysfunction and brain injury under compromised conditions, is discussed.
Collapse
|
3920
|
Summerhurst K, Stark M, Sharpe J, Davidson D, Murphy P. 3D representation of Wnt and Frizzled gene expression patterns in the mouse embryo at embryonic day 11.5 (Ts19). Gene Expr Patterns 2008; 8:331-48. [PMID: 18364260 PMCID: PMC2452985 DOI: 10.1016/j.gep.2008.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/30/2022]
Abstract
Wnt signalling is one of the fundamental cell communication systems operating in the embryo and the collection of 19 Wnt and 10 Frizzled (Fzd) receptor genes (in mouse and human) represent just part of a complex system to be unravelled. Here we present a spatially comprehensive set of data on the 3D distribution of Wnt and Fzd gene expression patterns at a carefully selected single stage of mouse development. Overviews and selected features of the patterns are presented and the full 3D data set, generated by fully described probes, is available to the research community through the Edinburgh Mouse Atlas of Gene Expression. In addition to being comprehensive, the data set has been generated and recorded in a consistent manner to facilitate comparisons between gene expression patterns with the capacity to generate matching virtual sections from the 3D representations for specific studies. Expression patterns in the left forelimb were selected for more detailed comparative description. In addition to confirming the previously published expression of these genes, our whole embryo and limb bud analyses significantly extend the data in terms of details of the patterns and the addition of previously undetected sites of expression. Our focussed analysis of expression domains in the limb, defined by just two gene families, reveals a surprisingly high degree of spatial complexity and underlines the enormous potential for local cellular interactions that exist within an emerging structure. This work also highlights the use of OPT to generate detailed high-quality, spatially complex expression data that is readily comparable between specimens and can be reviewed and reanalysed as required for specific studies. It represents a core set of data that will be extended with additional stages of development and through addition of potentially interacting genes and ultimately other cross-regulatory communication pathways operating in the embryo.
Collapse
Affiliation(s)
- Kristen Summerhurst
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | | | | | | | | |
Collapse
|
3921
|
Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc Natl Acad Sci U S A 2008; 105:2687-92. [PMID: 18272480 DOI: 10.1073/pnas.0712062105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ablation of inhibitory agouti-related protein (AgRP)-expressing neurons in the arcuate nucleus that also synthesize gamma-amino-butyric acid (GABA) and neuropeptide Y in adult mice leads to starvation within 1 week. The removal of inhibition from the AgRP neurons onto neighboring proopiomelanocortin neurons and their common postsynaptic neurons is predicted to stimulate melanocortin signaling, which is known to inhibit appetite. To examine the importance of uncontrolled melanocortin signaling in mediating starvation in this model, we ablated AgRP neurons in A(y)/a mice that have chronic blockade of the melanocortin signaling. The blockade of melanocortin signaling did not ameliorate the rate of starvation. On both WT and A(y)/a genetic backgrounds, there was a progressive decrease in meal frequency after AgRP neuron ablation. Surprisingly, intraoral feeding also was dramatically reduced after the ablation of AgRP neurons. These results indicate that both the appetitive and consummatory aspects of feeding become impaired in a melanocortin-independent manner after AgRP neuron ablation.
Collapse
|
3922
|
Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci U S A 2008; 105:2681-6. [PMID: 18272491 DOI: 10.1073/pnas.0712197105] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells that have evolved to produce large quantities of secreted proteins to serve the integrated functions of complex multicellular organisms are equipped to compensate for protein misfolding. Hepatocytes and plasma cells have well developed chaperone and proteasome systems to ensure that secreted proteins transit the cell efficiently. The number of neurodegenerative disorders associated with protein misfolding suggests that neurons are particularly sensitive to the pathogenic effects of aggregates of misfolded molecules because those systems are less well developed in this lineage. Aggregates of the amyloidogenic (Abeta(1-42)) peptide play a major role in the pathogenesis of Alzheimer's disease (AD), although the precise mechanism is unclear. In genetic studies examining protein-protein interactions that could constitute native mechanisms of neuroprotection in vivo, overexpression of a WT human transthyretin (TTR) transgene was ameliorative in the APP23 transgenic murine model of human AD. Targeted silencing of the endogenous TTR gene accelerated the development of the neuropathologic phenotype. Intraneuronal TTR was seen in the brains of normal humans and mice and in AD patients and APP23 mice. The APP23 brains showed colocalization of extracellular TTR with Abeta in plaques. Using surface plasmon resonance we obtained in vitro evidence of direct protein-protein interaction between TTR and Abeta aggregates. These findings suggest that TTR is protective because of its capacity to bind toxic or pretoxic Abeta aggregates in both the intracellular and extracellular environment in a chaperone-like manner. The interaction may represent a unique normal host defense mechanism, enhancement of which could be therapeutically useful.
Collapse
|
3923
|
Fisher ME, Clelland AK, Bain A, Baldock RA, Murphy P, Downie H, Tickle C, Davidson DR, Buckland RA. Integrating technologies for comparing 3D gene expression domains in the developing chick limb. Dev Biol 2008; 317:13-23. [PMID: 18355805 PMCID: PMC2529376 DOI: 10.1016/j.ydbio.2008.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 11/06/2022]
Abstract
Chick embryos are good models for vertebrate development due to their accessibility and manipulability. Recent large increases in available genomic data from both whole genome sequencing and EST projects provide opportunities for identifying many new developmentally important chicken genes. Traditional methods of documenting when and where specific genes are expressed in embryos using wholemount and section in-situ hybridisation do not readily allow appreciation of 3-dimensional (3D) patterns of expression, but this can be accomplished by the recently developed microscopy technique, Optical Projection Tomography (OPT). Here we show that OPT data on the developing chick wing from different labs can be reliably integrated into a common database, that OPT is efficient in capturing 3D gene expression domains and that such domains can be meaningfully compared. Novel protocols are used to compare 3D expression domains of 7 genes known to be involved in chick wing development. This reveals previously unappreciated relationships and demonstrates the potential, using modern genomic resources, for building a large scale 3D atlas of gene expression. Such an atlas could be extended to include other types of data, such as fate maps, and the approach is also more generally applicable to embryos, organs and tissues.
Collapse
Affiliation(s)
- Malcolm E Fisher
- Department of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
3924
|
A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008; 28:264-78. [PMID: 18171944 DOI: 10.1523/jneurosci.4178-07.2008] [Citation(s) in RCA: 2384] [Impact Index Per Article: 140.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the cell-cell interactions that control CNS development and function has long been limited by the lack of methods to cleanly separate neural cell types. Here we describe methods for the prospective isolation and purification of astrocytes, neurons, and oligodendrocytes from developing and mature mouse forebrain. We used FACS (fluorescent-activated cell sorting) to isolate astrocytes from transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of an S100beta promoter. Using Affymetrix GeneChip Arrays, we then created a transcriptome database of the expression levels of >20,000 genes by gene profiling these three main CNS neural cell types at various postnatal ages between postnatal day 1 (P1) and P30. This database provides a detailed global characterization and comparison of the genes expressed by acutely isolated astrocytes, neurons, and oligodendrocytes. We found that Aldh1L1 is a highly specific antigenic marker for astrocytes with a substantially broader pattern of astrocyte expression than the traditional astrocyte marker GFAP. Astrocytes were enriched in specific metabolic and lipid synthetic pathways, as well as the draper/Megf10 and Mertk/integrin alpha(v)beta5 phagocytic pathways suggesting that astrocytes are professional phagocytes. Our findings call into question the concept of a "glial" cell class as the gene profiles of astrocytes and oligodendrocytes are as dissimilar to each other as they are to neurons. This transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes provides a resource to the neuroscience community by providing improved cell-type-specific markers and for better understanding of neural development, function, and disease.
Collapse
|
3925
|
Brochier C, Gaillard MC, Diguet E, Caudy N, Dossat C, Ségurens B, Wincker P, Roze E, Caboche J, Hantraye P, Brouillet E, Elalouf JM, de Chaldée M. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol Genomics 2008; 33:170-9. [PMID: 18252803 DOI: 10.1152/physiolgenomics.00125.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using serial analysis of gene expression, we collected quantitative transcriptome data in 11 regions of the adult wild-type mouse brain: the orbital, prelimbic, cingulate, motor, somatosensory, and entorhinal cortices, the caudate-putamen, the nucleus accumbens, the thalamus, the substantia nigra, and the ventral tegmental area. With >1.2 million cDNA tags sequenced, this database is a powerful resource to explore brain functions and disorders. As an illustration, we performed interregional comparisons and found 315 differential transcripts. Most of them are poorly characterized and 20% lack functional annotation. For 78 differential transcripts, we provide independent expression level measurements in mouse brain regions by real-time quantitative RT-PCR. We also show examples where we used in situ hybridization to achieve infrastructural resolution. For 30 transcripts, we next demonstrated that regional enrichment is conserved in the human brain. We then quantified the expression levels of region-enriched transcripts in the R6/2 mouse model of Huntington disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease and observed significant alterations in the striatum, cerebral cortex, thalamus and substantia nigra of R6/2 mice and in the striatum of MPTP-treated mice. These results show that the gene expression data provided here for the mouse brain can be used to explore pathophysiological models and disclose transcripts differentially expressed in human brain regions.
Collapse
Affiliation(s)
- Camille Brochier
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, Service de Biologie Intégrative et Génétique Moléculaire, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3926
|
Human protein atlas and the use of microarray technologies. Curr Opin Biotechnol 2008; 19:30-5. [DOI: 10.1016/j.copbio.2007.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/14/2007] [Accepted: 11/14/2007] [Indexed: 01/06/2023]
|
3927
|
Aller M, Wisden W. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience 2008; 151:1154-72. [DOI: 10.1016/j.neuroscience.2007.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
3928
|
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are key regulators of developmental processes such as regional specification, patterning, migration and differentiation. In both mouse and humans, the developing forebrain is marked by distinct boundaries of homeobox gene expression at different developmental time points. These genes regulate the patterning of the forebrain along the dorsal/ventral and rostral/caudal axes and are also essential for the differentiation of specific neuronal subtypes. Inhibitory interneurons that arise from the ganglionic eminences and migrate tangentially to the neocortex and hippocampus are dramatically affected by mutations in several homeobox genes. In this review, we discuss the identification, expression patterns, loss- and/or gain-of-function models, and confirmed transcriptional targets for a set of homeobox genes required for the correct development of the forebrain in the mouse. In humans, mutations of homeobox genes expressed in the forebrain have been shown to result in mental retardation, epilepsy or movement disorders. The number of homeobox genes currently linked to human nervous system disease is surprisingly low, perhaps reflecting the essential functions of these genes throughout embryogenesis or the degree of functional redundancy during central nervous system development.
Collapse
Affiliation(s)
- J T Wigle
- Department of Biochemistry & Medical Genetics; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
3929
|
Lee CK, Sunkin SM, Kuan C, Thompson CL, Pathak S, Ng L, Lau C, Fischer S, Mortrud M, Slaughterbeck C, Jones A, Lein E, Hawrylycz M. Quantitative methods for genome-scale analysis of in situ hybridization and correlation with microarray data. Genome Biol 2008; 9:R23. [PMID: 18234097 PMCID: PMC2395252 DOI: 10.1186/gb-2008-9-1-r23] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/21/2007] [Accepted: 01/30/2008] [Indexed: 02/06/2023] Open
Abstract
This study introduces a novel method for standardized relative quantification of colorimetric in situ hybridization signal that enables a large-scale cross-platform expression level comparison of in situ hybridization with two publicly available microarray brain data sources. With the emergence of genome-wide colorimetric in situ hybridization (ISH) data sets such as the Allen Brain Atlas, it is important to understand the relationship between this gene expression modality and those derived from more quantitative based technologies. This study introduces a novel method for standardized relative quantification of colorimetric ISH signal that enables a large-scale cross-platform expression level comparison of ISH with two publicly available microarray brain data sources.
Collapse
Affiliation(s)
- Chang-Kyu Lee
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3930
|
Budreck EC, Scheiffele P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 2008; 26:1738-48. [PMID: 17897391 DOI: 10.1111/j.1460-9568.2007.05842.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic adhesion molecules are thought to play a critical role in the formation, function and plasticity of neuronal networks. Neuroligins (NL1-4) are a family of presumptive postsynaptic cell adhesion molecules. NL1 and NL2 isoforms are concentrated at glutamatergic and GABAergic synapses, respectively, but the cellular expression and synaptic localization of the endogenous NL3 and NL4 isoforms are unknown. We generated a panel of NL isoform-specific antibodies and examined the expression, developmental regulation and synaptic specificity of NL3. We found that NL3 was enriched in brain, where NL3 protein levels increased during postnatal development, coinciding with the peak of synaptogenesis. Subcellular fractionation revealed a concentration of NL3 in synaptic plasma membranes and postsynaptic densities. In cultured hippocampal neurons, endogenous NL3 was highly expressed and was localized at both glutamatergic and GABAergic synapses. Clustering of NL3 in hippocampal neurons by neurexin-expressing cells resulted in coaggregation of NL3 with glutamatergic and GABAergic scaffolding proteins. Finally, individual synapses contained colocalized NL2 and NL3 proteins, and coimmunoprecipitation studies revealed the presence of NL1-NL3 and NL2-NL3 complexes in brain extracts. These findings suggest that rodent NL3 is a synaptic adhesion molecule that is a shared component of glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
- Elaine C Budreck
- Department of Physiology & Cellular Biophysics, Columbia University, College of Physicians & Surgeons, 630 West 168th Street, P&S 11-511, New York, NY 10032, USA
| | | |
Collapse
|
3931
|
Wolfgang MJ, Cha SH, Millington DS, Cline G, Shulman GI, Suwa A, Asaumi M, Kurama T, Shimokawa T, Lane MD. Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight. J Neurochem 2008; 105:1550-9. [PMID: 18248603 DOI: 10.1111/j.1471-4159.2008.05255.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of carnitine palmitoyl-transferase 1 (CPT1), a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c knockout (KO) mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than wild-type littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation.
Collapse
Affiliation(s)
- Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3932
|
Three-dimensional microtomographic imaging of human brain cortex. Brain Res 2008; 1199:53-61. [PMID: 18289513 DOI: 10.1016/j.brainres.2008.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/25/2007] [Accepted: 01/05/2008] [Indexed: 11/21/2022]
Abstract
This paper describes an X-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard X-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.
Collapse
|
3933
|
Gray PA. Transcription factors and the genetic organization of brain stem respiratory neurons. J Appl Physiol (1985) 2008; 104:1513-21. [PMID: 18218908 DOI: 10.1152/japplphysiol.01383.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Breathing is a genetically determined behavior generated by neurons in the brain stem. Transcription factors, in part, determine the basic developmental identity of neurons, but the relationships between these genes and the neural populations generating and modulating respiration are unclear. The diversity of brain stem populations has been proposed to result from a combinatorial code of transcription factor expression corresponding to the anterior-posterior (A-P) and dorsal-ventral (D-V) location of a neuron's birth. I provide a schematic of transcription factor coding identifying at least 15 genetically distinct D-V subdivisions of brain stem neurons that, combined with A-P patterning, may provide a genetic organization of the brain stem in general, with the eventual goal of describing respiratory populations in particular. Using a combination of fate mapping in transgenic mouse lines and immunohistochemistry, we confirm the parabrachial nuclei are derived from a subset of Atoh1 expression progenitor neurons. I hypothesize the Kölliker-Fuse nucleus can be uniquely defined in the neonate mouse by the coexpression of the transcription factor FoxP2 in Atoh1-derived neurons of rhombomere 1.
Collapse
Affiliation(s)
- Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
3934
|
The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc Natl Acad Sci U S A 2008; 105:1291-6. [PMID: 18216249 DOI: 10.1073/pnas.0711257105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG repeats encoding a glutamine tract in the disease-causing proteins. There are nine disorders, each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with degeneration of Purkinje cells. To determine whether the disorders share molecular pathogenic events, we studied two mouse models of SCA1 and SCA7 that express the glutamine-expanded protein from the respective endogenous loci. We found common transcriptional changes, with down-regulation of insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust changes. Igfbp5 down-regulation occurred in granule neurons through a non-cell-autonomous mechanism and was concomitant with activation of the insulin-like growth factor (IGF) pathway and the type I IGF receptor on Purkinje cells. These data define one common pathogenic response in SCA1 and SCA7 and reveal the importance of intercellular mechanisms in their pathogenesis.
Collapse
|
3935
|
Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci U S A 2008; 105:728-33. [PMID: 18182484 PMCID: PMC2206604 DOI: 10.1073/pnas.0711018105] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Indexed: 11/18/2022] Open
Abstract
Genomic multiplication of the locus-encoding human alpha-synuclein (alpha-syn), a polypeptide with a propensity toward intracellular misfolding, results in Parkinson's disease (PD). Here we report the results from systematic screening of nearly 900 candidate genetic targets, prioritized by bioinformatic associations to existing PD genes and pathways, via RNAi knockdown. Depletion of 20 gene products reproducibly enhanced misfolding of alpha-syn over the course of aging in the nematode Caenorhabditis elegans. Subsequent functional analysis of seven positive targets revealed five previously unreported gene products that significantly protect against age- and dose-dependent alpha-syn-induced degeneration in the dopamine neurons of transgenic worms. These include two trafficking proteins, a conserved cellular scaffold-type protein that modulates G protein signaling, a protein of unknown function, and one gene reported to cause neurodegeneration in knockout mice. These data represent putative genetic susceptibility loci and potential therapeutic targets for PD, a movement disorder affecting approximately 2% of the population over 65 years of age.
Collapse
Affiliation(s)
- Shusei Hamamichi
- *Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; and
| | - Renee N. Rivas
- *Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; and
| | - Adam L. Knight
- *Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; and
| | - Songsong Cao
- *Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; and
| | - Kim A. Caldwell
- *Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; and
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Guy A. Caldwell
- *Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; and
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
3936
|
Hirokawa J, Bosch M, Sakata S, Sakurai Y, Yamamori T. Functional role of the secondary visual cortex in multisensory facilitation in rats. Neuroscience 2008; 153:1402-17. [PMID: 18440715 DOI: 10.1016/j.neuroscience.2008.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/20/2007] [Accepted: 01/07/2008] [Indexed: 11/15/2022]
Abstract
Recent studies reveal that multisensory convergence can occur in early sensory cortical areas. However, the behavioral importance of the multisensory integration in such early cortical areas is unknown. Here, we used c-Fos immunohistochemistry to explore neuronal populations specifically activated during the facilitation of reaction time induced by the temporally congruent audiovisual stimuli in rats. Our newly developed analytical method for c-Fos mapping revealed a pronounced up-regulation of c-Fos expression particularly in layer 4 of the lateral secondary visual area (V2L). A local injection of a GABA A receptor agonist, muscimol, into V2L completely suppressed the audiovisual facilitation of reaction time without affecting responses to unimodal stimuli. Such a selective suppression was not found following the injection of muscimol into the primary auditory and visual areas. To examine whether or not the rats might have shown the facilitated responses because of increment of stimulus intensity caused by the two modal stimuli, the behavioral facilitation induced by the high-intensity unimodal stimuli was tested by the injection of muscimol into V2L, which turned out not to affect the facilitation. These results suggest that V2L, an early visual area, is critically involved in the multisensory facilitation of reaction time induced by the combination of auditory and visual stimuli.
Collapse
Affiliation(s)
- J Hirokawa
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | | | | | | | | |
Collapse
|
3937
|
Abstract
A major proportion of the mammalian transcriptome comprises long RNAs that have little or no protein-coding capacity (ncRNAs). Only a handful of such transcripts have been examined in detail, and it is unknown whether this class of transcript is generally functional or merely artifact. Using in situ hybridization data from the Allen Brain Atlas, we identified 849 ncRNAs (of 1,328 examined) that are expressed in the adult mouse brain and found that the majority were associated with specific neuroanatomical regions, cell types, or subcellular compartments. Examination of their genomic context revealed that the ncRNAs were expressed from diverse places including intergenic, intronic, and imprinted loci and that many overlap with, or are transcribed antisense to, protein-coding genes of neurological importance. Comparisons between the expression profiles of ncRNAs and their associated protein-coding genes revealed complex relationships that, in combination with the specific expression profiles exhibited at both regional and subcellular levels, are inconsistent with the notion that they are transcriptional noise or artifacts of chromatin remodeling. Our results show that the majority of ncRNAs are expressed in the brain and provide strong evidence that the majority of processed transcripts with no protein-coding capacity function intrinsically as RNAs.
Collapse
|
3938
|
Sharing and reusing gene expression profiling data in neuroscience. Neuroinformatics 2008; 5:161-75. [PMID: 17917127 DOI: 10.1007/s12021-007-0012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/31/2022]
Abstract
As public availability of gene expression profiling data increases, it is natural to ask how these data can be used by neuroscientists. Here we review the public availability of high-throughput expression data in neuroscience and how it has been reused, and tools that have been developed to facilitate reuse. There is increasing interest in making expression data reuse a routine part of the neuroscience tool-kit, but there are a number of challenges. Data must become more readily available in public databases; efforts to encourage investigators to make data available are important, as is education on the benefits of public data release. Once released, data must be better-annotated. Techniques and tools for data reuse are also in need of improvement. Integration of expression profiling data with neuroscience-specific resources such as anatomical atlases will further increase the value of expression data.
Collapse
|
3939
|
Jan TA, Lu L, Li CX, Williams RW, Waters RS. Genetic analysis of posterior medial barrel subfield (PMBSF) size in somatosensory cortex (SI) in recombinant inbred strains of mice. BMC Neurosci 2008; 9:3. [PMID: 18179704 PMCID: PMC2254631 DOI: 10.1186/1471-2202-9-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 01/07/2008] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Quantitative trait locus (QTL) mapping is an important tool for identifying potential candidate genes linked to complex traits. QTL mapping has been used to identify genes associated with cytoarchitecture, cell number, brain size, and brain volume. Previously, QTL mapping was utilized to examine variation of barrel field size in the somatosensory cortex in a limited number of recombinant inbred (RI) strains of mice. In order to further elucidate the underlying natural variation in mouse primary somatosensory cortex, we measured the size of the posterior medial barrel subfield (PMBSF), associated with the representation of the large mystacial vibrissae, in an expanded sample set that included 42 BXD RI strains, two parental strains (C57BL/6J and DBA/2J), and one F1 strain (B6D2F1). Cytochrome oxidase labeling was used to visualize barrels within the PMBSF. RESULTS We observed a 33% difference between the largest and smallest BXD RI strains with continuous variation in-between. Using QTL linkage analysis from WebQTL, we generated linkage maps of raw total PMBSF and brain weight adjusted total PMBSF areas. After removing the effects of brain weight, we detected a suggestive QTL (likelihood ratio statistic [LRS]: 14.20) on the proximal arm of chromosome 4. Candidate genes under the suggestive QTL peak for PMBSF area were selected based on the number of single nucleotide polymorphisms (SNPs) present and the biological relevance of each gene. Among the candidate genes are Car8 and Rab2. More importantly, mRNA expression profiles obtained using GeneNetwork indicated a strong correlation between total PMBSF area and two genes (Adcy1 and Gap43) known to be important in mouse cortex development. GAP43 has been shown to be critical during neurodevelopment of the somatosensory cortex, while knockout Adcy1 mice have disrupted barrel field patterns. CONCLUSION We detected a novel suggestive QTL on chromosome 4 that is linked to PMBSF size. The present study is an important step towards identifying genes underlying the size and possible development of cortical structures.
Collapse
Affiliation(s)
- Taha A Jan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
3940
|
Gulati AS, Ochsner SA, Henning SJ. Molecular properties of side population-sorted cells from mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2008; 294:G286-94. [PMID: 18006601 DOI: 10.1152/ajpgi.00416.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The high rate of turnover of the intestinal epithelium is maintained by a group of stem cells that reside at the base of the crypts of Lieberkuhn. Whereas the existence of these intestinal epithelial stem cells has been well established, their study has been limited due to the inability to isolate them. Previous work has utilized side population (SP) sorting of the murine small intestine to isolate a viable fraction of cells enriched for putative intestinal epithelial stem cells. In the present study, we have used gene expression profiling techniques to characterize the molecular features of this potential stem cell population. Further in situ hybridization studies reveal that transcripts enriched in the SP tend to localize to the intestinal crypt base/progenitor cell zone, while deenriched transcripts localize outside of this region. From a functional standpoint, gene ontology and pathway mapping analyses demonstrate that immune, mesenchymal, and differentiated epithelial cells are depleted in the SP fraction, while putative progenitor cells are enriched in this cell population. Furthermore, the significance of the maturity onset diabetes of the young pathway in these cells suggests that enteroendocrine progenitors are enriched in this cell fraction as well. In conclusion, SP sorting of mouse small intestinal mucosa does appear to isolate cells with progenitor characteristics. These findings provide the foundation for membrane protein-based sorting procedures that can be used to further fractionate these cells for transplantation experiments in the future.
Collapse
Affiliation(s)
- Ajay S Gulati
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
3941
|
Moore J, Allan C, Burel JM, Loranger B, MacDonald D, Monk J, Swedlow JR. Open tools for storage and management of quantitative image data. Methods Cell Biol 2008; 85:555-70. [PMID: 18155479 DOI: 10.1016/s0091-679x(08)85024-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The explosion in quantitative imaging has driven the need to develop tools for storing, managing, analyzing, and viewing large sets of data. In this chapter, we discuss tools we have built for storing large data sets for the lifetime of a typical research project. As part of the Open Microscopy Environment (OME) Consortium, we have built a series of open-source tools that support the manipulation and visualization of large sets of complex image data. Images from a number of proprietary file formats can be imported and then accessed from a single server running in a laboratory or imaging facility. We discuss the capabilities of the OME Server, a Perl-based data management system that is designed for large-scale analysis of image data using a web browser-based user interface. In addition, we have recently released a lighter weight Java-based OME Remote Objects Server that supports remote applications for managing and viewing image data. Together these systems provide a suite of tools for large-scale quantitative imaging that is now commonly used throughout cell and developmental biology.
Collapse
Affiliation(s)
- Joshua Moore
- Division of Gene Regulation and Expression, College of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, Scotland DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
3942
|
Farber CR, Lusis AJ. Integrating global gene expression analysis and genetics. ADVANCES IN GENETICS 2008; 60:571-601. [PMID: 18358333 DOI: 10.1016/s0065-2660(07)00420-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The transcriptome is defined as the collection of all RNAs produced in a cell or tissue at a defined time in development and is one of many stages that make up a biological system. It is also one of the most important; providing the critical link in the flow of information between genes and disease. Therefore, identifying gene expression changes that are reacting to or causing disease promises to significantly enhance our understanding of common disorders. However, only recently has the technology, in the form of DNA microarrays, been in place to quantitate gene expression levels on a genome-wide scale. DNA microarrays are small chips that contain arrays of DNA sequences and are capable of simultaneously quantifying the expression of thousands of genes. When applied to samples representing diseased and normal states, microarray-based expression profiling can identify differentially expressed genes that may play a role in the disease or predict progression or severity. Additionally, the integration of genetics and gene expression promises to aid in uncovering common genetic variations that control a particular disease. In animal models, this approach has already been used to identify genes correlated with disease, prioritized candidates, model causal interactions between genes and traits, and generate gene coexpression networks; all of which have shed light on novel disease mechanisms. In this chapter, we provide an overview of DNA microarray technologies and discuss ways in which microarray expression data can be combined with more traditional experimental approaches to dissect the genetic basis of disease.
Collapse
Affiliation(s)
- Charles R Farber
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
3943
|
Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J, Hatfield DL, Gladyshev VN. Comparative Analysis of Selenocysteine Machinery and Selenoproteome Gene Expression in Mouse Brain Identifies Neurons as Key Functional Sites of Selenium in Mammals. J Biol Chem 2008; 283:2427-38. [DOI: 10.1074/jbc.m707951200] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
3944
|
EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J Neurosci 2007; 27:13481-90. [PMID: 18057206 DOI: 10.1523/jneurosci.4158-07.2007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The adult brain maintains two regions of neurogenesis from which new neurons are born, migrate to their appropriate location, and become incorporated into the circuitry of the CNS. One of these, the subgranular zone of the hippocampal dentate gyrus, is of primary interest because of the role of this region in learning and memory. We show that mice lacking EphB1, and more profoundly EphB1 and EphB2, have significantly fewer neural progenitors in the hippocampus. Furthermore, other aspects of neurogenesis, such as polarity, cell positioning, and proliferation are disrupted in animals lacking the EphB1 receptor or its cognate ephrin-B3 ligand. Our data strongly suggest that EphB1 and ephrin-B3 cooperatively regulate the proliferation and migration of neural progenitors in the hippocampus and should be added to a short list of candidate target molecules for modulating the production and integration of new neurons as a treatment for neurodegenerative diseases or brain injury.
Collapse
|
3945
|
Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007; 27:14231-8. [PMID: 18160630 PMCID: PMC6673457 DOI: 10.1523/jneurosci.3578-07.2007] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Feng Zhang
- Department of Bioengineering
- Department of Chemistry, and
| | | | | | - M. Bret Schneider
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Karl Deisseroth
- Department of Bioengineering
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
3946
|
Garland P, Quraishe S, French P, O'Connor V. Expression of the MAST family of serine/threonine kinases. Brain Res 2007; 1195:12-9. [PMID: 18206861 DOI: 10.1016/j.brainres.2007.12.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 10/27/2007] [Accepted: 12/16/2007] [Indexed: 11/18/2022]
Abstract
The Microtubule-Associated Serine/Threonine Kinase family (MAST1-4, and MAST-like) is characterised by the presence of a serine/threonine kinase domain and a postsynaptic density protein-95/discs large/zona occludens-1 domain (PDZ). This latter domain gives the MAST family the capacity to scaffold its own kinase activity. In the present study we have profiled the mRNA for each member of the MAST family transcripts across various tissues, with particular focus on rodent brain. Reverse-transcriptase polymerase chain reaction (RT-PCR) has shown equivalent patterns of expression for MAST1 and 2 in multiple tissues. Both MAST3 and 4 show more distinct expression in several tissues, and MAST-like appears to be predominantly expressed in heart and testis. In situ hybridisation reveals overlapping expression of MAST1 and 2 in specific brain regions. In contrast, MAST3 shows selective expression in the striatum and cerebral cortex. MAST4 also exhibits distinct expression in oligodendrocytes of white matter containing brain regions. In keeping with previous results, this family member also shows increased expression in the hippocampus following seizure-like activity. Our analysis of MAST family expression provides support for the role of these kinases in a broad range of neural functions.
Collapse
Affiliation(s)
- Patrick Garland
- University of Southampton, School of Biological Sciences, Boldrewood, Basssett Crescent East, Southampton, SO16 7PX, UK
| | | | | | | |
Collapse
|
3947
|
Circuit reconstruction tools today. Curr Opin Neurobiol 2007; 17:601-8. [PMID: 18082394 DOI: 10.1016/j.conb.2007.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/17/2007] [Accepted: 11/03/2007] [Indexed: 11/22/2022]
Abstract
To understand how a brain processes information, we must understand the structure of its neural circuits-especially circuit interconnection topologies and the cell and synapse molecular architectures that determine circuit-signaling dynamics. Our information on these key aspects of neural circuit structure has remained incomplete and fragmentary, however, because of limitations of the best available imaging methods. Now, new transgenic tool mice and new image acquisition tools appear poised to permit very significant advances in our abilities to reconstruct circuit connection topologies and molecular architectures.
Collapse
|
3948
|
Abstract
Ephrin (Eph) signaling via Eph receptors affects neuronal structure and function. We report here that exogenous ephrinAs (EphAs) induce outgrowth of filopodial processes from astrocytes within minutes in rat hippocampal slice cultures. Identical effects were induced by release of endogenous ephrinAs by cleavage of their glycosylphosphatidylinositol anchor. Reverse transcription-PCR and immunocytochemistry revealed the expression of multiple EphA receptors (EphARs) in astrocytes. Exogenous and endogenous ephrins did not induce process outgrowth from astrocytes transfected with a kinase-dead EphAR construct, indicating that the critical EphARs were located on glia. Concomitant with these morphological changes, ephrinA reduced the frequency of (S)-3,5-dihydroxyphenylglycine-evoked NMDA receptor-mediated inward currents in CA1 pyramidal cells, elicited by release of glutamate from glial cells. The sensitivity of CA1 cell synaptic or extrasynaptic NMDA receptors was unaffected by ephrinA, indicating that this effect was mediated by inhibition of glutamate release from glial cells. Finally, ephrinA application decreased the frequency and increased the duration of spontaneous oscillations of the intracellular [Ca2+] in astrocytes. We conclude that ephrinA-EphA signaling is a pluripotent regulator of neuron-astrocyte interactions mediating rapid structural and functional plasticity.
Collapse
|
3949
|
Visel A, Carson J, Oldekamp J, Warnecke M, Jakubcakova V, Zhou X, Shaw CA, Alvarez-Bolado G, Eichele G. Regulatory pathway analysis by high-throughput in situ hybridization. PLoS Genet 2007; 3:1867-83. [PMID: 17953485 PMCID: PMC2041993 DOI: 10.1371/journal.pgen.0030178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022] Open
Abstract
Automated in situ hybridization enables the construction of comprehensive atlases of gene expression patterns in mammals. Such atlases can become Web-searchable digital expression maps of individual genes and thus offer an entryway to elucidate genetic interactions and signaling pathways. Towards this end, an atlas housing ∼1,000 spatial gene expression patterns of the midgestation mouse embryo was generated. Patterns were textually annotated using a controlled vocabulary comprising >90 anatomical features. Hierarchical clustering of annotations was carried out using distance scores calculated from the similarity between pairs of patterns across all anatomical structures. This process ordered hundreds of complex expression patterns into a matrix that reflects the embryonic architecture and the relatedness of patterns of expression. Clustering yielded 12 distinct groups of expression patterns. Because of the similarity of expression patterns within a group, members of each group may be components of regulatory cascades. We focused on the group containing Pax6, an evolutionary conserved transcriptional master mediator of development. Seventeen of the 82 genes in this group showed a change of expression in the developing neocortex of Pax6-deficient embryos. Electromobility shift assays were used to test for the presence of Pax6-paired domain binding sites. This led to the identification of 12 genes not previously known as potential targets of Pax6 regulation. These findings suggest that cluster analysis of annotated gene expression patterns obtained by automated in situ hybridization is a novel approach for identifying components of signaling cascades. Signaling pathways drive biological processes with high specificity. Reductionist approaches such as mutagenesis provide one strategy to identity components of pathways. We used high throughput in situ hybridization to systematically map the spatiotemporal expression pattern of ∼1,000 developmental genes in the mouse embryo. The rich information collectively contained in these patterns was captured in annotation tables that were systematically mined using hierarchical clustering, resulting in 12 groups of genes with related expression patterns. We show that this process generates biologically meaningful, high-content information. The expression pattern of developmental master regulator Pax6 is found in a cluster together with that of 81 other genes. The paired DNA binding domain of Pax6 can bind to regulatory sequences in 14 of the 81 genes. We also found that the expression pattern of all these 14 genes is up- or downregulated in Pax6 mutant mice. These results emphasize that determining the expression pattern of many genes in a systematic way followed by an application of integrative tools leads to the identification of novel candidate components of signaling pathways. More generally, when complemented with appropriate data-mining strategies, transcriptome-scale in situ hybridization can be turned into a powerful instrument for systems biology.
Collapse
Affiliation(s)
- Axel Visel
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - James Carson
- Biological Monitoring and Modeling Department, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Judit Oldekamp
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Marei Warnecke
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Vladimira Jakubcakova
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Xunlei Zhou
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gonzalo Alvarez-Bolado
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
3950
|
Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci 2007; 27:13624-34. [PMID: 18077674 PMCID: PMC6673626 DOI: 10.1523/jneurosci.2858-07.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 12/13/2022] Open
Abstract
The ventromedial hypothalamus (VMH) is a distinct morphological nucleus involved in feeding, fear, thermoregulation, and sexual activity. It is essentially unknown how VMH circuits underlying these innate responses develop, in part because the VMH remains poorly defined at a cellular and molecular level. Specifically, there is a paucity of cell-type-specific genetic markers with which to identify neuronal subgroups and manipulate development and signaling in vivo. Using gene profiling, we now identify approximately 200 genes highly enriched in neonatal (postnatal day 0) mouse VMH tissue. Analyses of these VMH markers by real or virtual (Allen Brain Atlas; http://www.brain-map.org) experiments revealed distinct regional patterning within the newly formed VMH. Top neonatal markers include transcriptional regulators such as Vgll2, SF-1, Sox14, Satb2, Fezf1, Dax1, Nkx2-2, and COUP-TFII, but interestingly, the highest expressed VMH transcript, the transcriptional coregulator Vgll2, is completely absent in older animals. Collective results from zebrafish knockdown experiments and from cellular studies suggest that a subset of these VMH markers will be important for hypothalamic development and will be downstream of SF-1, a critical factor for normal VMH differentiation. We show that at least one VMH marker, the AT-rich binding protein Satb2, was responsive to the loss of leptin signaling (Lep(ob/ob)) at postnatal day 0 but not in the adult, suggesting that some VMH transcriptional programs might be influenced by fetal or early postnatal environments. Our study describing this comprehensive "VMH transcriptome" provides a novel molecular toolkit to probe further the genetic basis of innate neuroendocrine behavioral responses.
Collapse
Affiliation(s)
- Deborah M. Kurrasch
- Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - Clement C. Cheung
- Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - Florence Y. Lee
- Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - Phu V. Tran
- Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - Kenji Hata
- Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - Holly A. Ingraham
- Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|