3901
|
Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Yu J, Grimmond S, McMahon AP, Patterson LT, Little MH, Potter SS. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 2008; 15:781-91. [PMID: 19000842 PMCID: PMC2653061 DOI: 10.1016/j.devcel.2008.09.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/29/2008] [Accepted: 09/22/2008] [Indexed: 01/03/2023]
Abstract
Kidney development is based on differential cell-type-specific expression of a vast number of genes. While multiple critical genes and pathways have been elucidated, a genome-wide analysis of gene expression within individual cellular and anatomic structures is lacking. Accomplishing this could provide significant new insights into fundamental developmental mechanisms such as mesenchymal-epithelial transition, inductive signaling, branching morphogenesis, and segmentation. We describe here a comprehensive gene expression atlas of the developing mouse kidney based on the isolation of each major compartment by either laser capture microdissection or fluorescence-activated cell sorting, followed by microarray profiling. The resulting data agree with known expression patterns and additional in situ hybridizations. This kidney atlas allows a comprehensive analysis of the progression of gene expression states during nephrogenesis, as well as discovery of potential growth factor-receptor interactions. In addition, the results provide deeper insight into the genetic regulatory mechanisms of kidney development.
Collapse
Affiliation(s)
- Eric W Brunskill
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3902
|
Greferath U, Kambourakis M, Barth C, Fletcher EL, Murphy M. Characterization of histamine projections and their potential cellular targets in the mouse retina. Neuroscience 2008; 158:932-44. [PMID: 19015005 DOI: 10.1016/j.neuroscience.2008.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 10/14/2008] [Accepted: 10/20/2008] [Indexed: 11/19/2022]
Abstract
The vertebrate retina receives histaminergic input from the brain via retinopetal axons that originate from perikarya in the posterior hypothalamus. In the nervous system, histamine acts on three G-protein-coupled receptors, histamine receptor (HR) 1, HR2 and HR3. In order to look for potential cellular targets of histamine in the mouse retina, we have examined the retina for the expression of histamine and the presence of these three receptors. Consistent with studies of retina from other vertebrates, histamine was only found in retinopetal axons, which coursed extensively through the ganglion cell and inner plexiform layers. mRNA for all three receptors was expressed in the mouse retina, and immunohistochemical studies further localized HR1 and HR2. HR1 immunoreactivity was observed on dopaminergic amacrine cells, calretinin-positive ganglion cells and axon bundles in the ganglion cell layer. Furthermore, a distinct group of processes in the inner plexiform layer was labeled, which most likely represents the processes of cholinergic amacrine cells. HR2 immunoreactivity was observed on the processes and cell bodies of the primary glial cells of the mammalian retina, the Müller cells. This distribution of histamine and its receptors is consistent with a brain-derived source of histamine acting on diverse populations of cells in the retina, including both neurons and glia.
Collapse
Affiliation(s)
- U Greferath
- Department of Anatomy and Cell Biology, University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
3903
|
Ding G, Lorenz P, Kreutzer M, Li Y, Thiesen HJ. SysZNF: the C2H2 zinc finger gene database. Nucleic Acids Res 2008; 37:D267-73. [PMID: 18974185 PMCID: PMC2686507 DOI: 10.1093/nar/gkn782] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
C2H2 zinc finger (C2H2-ZNF) genes are one of the largest and most complex gene super-families in metazoan genomes, with hundreds of members in the human and mouse genome. The ongoing investigation of this huge gene family requires computational support to catalog genotype phenotype comparisons of C2H2-ZNF genes between related species and finally to extend the worldwide knowledge on the evolution of C2H2-ZNF genes in general. Here, we systematically collected all the C2H2-ZNF genes in the human and mouse genome and constructed a database named SysZNF to deposit available datasets related to these genes. In the database, each C2H2-ZNF gene entry consists of physical location, gene model (including different transcript forms), Affymetrix gene expression probes, protein domain structures, homologs (and synteny between human and mouse), PubMed references as well as links to relevant public databases. The clustered organization of the C2H2-ZNF genes is highlighted. The database can be searched using text strings or sequence information. The data are also available for batch download from the web site. Moreover, the graphical gene model/protein view system, sequence retrieval system and some other tools embedded in SysZNF facilitate the research on the C2H2 type ZNF genes under an integrative view. The database can be accessed from the URL http://epgd.biosino.org/SysZNF.
Collapse
Affiliation(s)
- Guohui Ding
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | | | | | | | | |
Collapse
|
3904
|
Becker JAJ, Befort K, Blad C, Filliol D, Ghate A, Dembele D, Thibault C, Koch M, Muller J, Lardenois A, Poch O, Kieffer BL. Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala. Neuroscience 2008; 156:950-65. [PMID: 18786617 PMCID: PMC2629946 DOI: 10.1016/j.neuroscience.2008.07.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/18/2008] [Accepted: 07/30/2008] [Indexed: 01/18/2023]
Abstract
The central extended amygdala (EAc) is an ensemble of highly interconnected limbic structures of the anterior brain, and forms a cellular continuum including the bed nucleus of the stria terminalis (BNST), the central nucleus of the amygdala (CeA) and the nucleus accumbens shell (AcbSh). This neural network is a key site for interactions between brain reward and stress systems, and has been implicated in several aspects of drug abuse. In order to increase our understanding of EAc function at the molecular level, we undertook a genome-wide screen (Affymetrix) to identify genes whose expression is enriched in the mouse EAc. We focused on the less-well known BNST-CeA areas of the EAc, and identified 121 genes that exhibit more than twofold higher expression level in the EAc compared with whole brain. Among these, 43 genes have never been described to be expressed in the EAc. We mapped these genes throughout the brain, using non-radioactive in situ hybridization, and identified eight genes with a unique and distinct rostro-caudal expression pattern along AcbSh, BNST and CeA. Q-PCR analysis performed in brain and peripheral organ tissues indicated that, with the exception of one (Spata13), all these genes are predominantly expressed in brain. These genes encode signaling proteins (Adora2, GPR88, Arpp21 and Rem2), a transcription factor (Limh6) or proteins of unknown function (Rik130, Spata13 and Wfs1). The identification of genes with enriched expression expands our knowledge of EAc at a molecular level, and provides useful information to toward genetic manipulations within the EAc.
Collapse
Affiliation(s)
- J A J Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3905
|
Chen GI, Tisayakorn S, Jorgensen C, D'Ambrosio LM, Goudreault M, Gingras AC. PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4. J Biol Chem 2008; 283:29273-84. [PMID: 18715871 PMCID: PMC2662017 DOI: 10.1074/jbc.m803443200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/13/2008] [Indexed: 01/20/2023] Open
Abstract
Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.
Collapse
Affiliation(s)
- Ginny I Chen
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M4M 2Y8, Canada
| | | | | | | | | | | |
Collapse
|
3906
|
Blake SM, Strasser V, Andrade N, Duit S, Hofbauer R, Schneider WJ, Nimpf J. Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 2008; 27:3069-80. [PMID: 18946489 DOI: 10.1038/emboj.2008.223] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/26/2008] [Indexed: 11/09/2022] Open
Abstract
Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), and Dab1 are the main components of the Reelin signalling cascade. Reelin is the sole ligand defined so far in signalling through this pathway. Postnatal migration of neuronal precursors from the subventricular zone (SVZ) to the olfactory bulb (OB), however, depends on ApoER2 and Dab1, but functions independently of Reelin. Here, we show that thrombospondin-1 (THBS-1) is a novel physiological ligand for ApoER2 and VLDLR. THBS-1 is present in the SVZ and along the entire rostral migratory stream (RMS). It binds to ApoER2 and VLDLR and induces phosphorylation of Dab1. In contrast to Reelin, it does not induce Dab1 degradation or Akt phosphorylation, but stabilizes neuronal precursor chains derived from subventricular explants. Lack of THBS-1 results in anatomical abnormalities of the RMS and leads to a reduction of postnatal neuronal precursors entering the OB.
Collapse
Affiliation(s)
- Sophia M Blake
- Department of Medical Biochemistry, Max F Perutz Laboratories, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
3907
|
Menuz K, Nicoll RA. Loss of inhibitory neuron AMPA receptors contributes to ataxia and epilepsy in stargazer mice. J Neurosci 2008; 28:10599-603. [PMID: 18923036 PMCID: PMC3164835 DOI: 10.1523/jneurosci.2732-08.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/28/2008] [Accepted: 08/30/2008] [Indexed: 12/23/2022] Open
Abstract
Stargazer mice are characterized by ataxia and seizures, which resemble the human disorder absence epilepsy. Stargazin, the protein mutated in stargazer mice, promotes the expression and function of neuronal AMPA receptors (AMPARs). However, it is unclear how decreased expression of excitatory AMPARs generates stargazer seizures, given that seizures often result from increased neuronal excitability. Additionally, although stargazer ataxia has been attributed to loss of AMPARs from cerebellar granule cells, other cerebellar neurons have not been examined. To examine the role of AMPAR dysfunction in these behavioral phenotypes, electrophysiological recordings were used to probe AMPAR regulation in relevant brain regions. We found that both cerebellar Purkinje cells and inhibitory thalamic reticular nucleus neurons have strongly reduced synaptic AMPAR function in stargazer mice. Together, our data suggest that impaired AMPAR regulation in multiple neuron populations may contribute to the behavioral phenotypes of absence seizures and ataxia seen in stargazer mice and imply that an understanding of human genetic disorders will require knowledge of both the genes that are mutated as well as their precise cellular expression pattern.
Collapse
Affiliation(s)
- Karen Menuz
- Departments of Cellular and Molecular Pharmacology and
| | - Roger A. Nicoll
- Departments of Cellular and Molecular Pharmacology and
- Physiology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
3908
|
Li G, Olson JE. Purinergic activation of anion conductance and osmolyte efflux in cultured rat hippocampal neurons. Am J Physiol Cell Physiol 2008; 295:C1550-60. [PMID: 18923056 DOI: 10.1152/ajpcell.90605.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of mammalian cells demonstrate regulatory volume decrease (RVD) following swelling caused by hyposmotic exposure. A critical signal initiating RVD is activation of nucleotide receptors by ATP. Elevated extracellular ATP in response to cytotoxic cell swelling during pathological conditions also may initiate loss of taurine and other intracellular osmolytes via anion channels. This study characterizes neuronal ATP-activated anion current and explores its role in net loss of amino acid osmolytes. To isolate anion currents, we used CsCl as the major electrolyte in patch electrode and bath solutions and blocked residual cation currents with NiCl(2) and tetraethylammonium. Anion currents were activated by extracellular ATP with a K(m) of 70 microM and increased over fourfold during several minutes of ATP exposure, reaching a maximum after 9.0 min (SD 4.2). The currents were blocked by inhibitors of nucleotide receptors and volume-regulated anion channels (VRAC). Currents showed outward rectification and inactivation at highly depolarizing membrane potentials, characteristics of swelling-activated anion currents. P2X agonists failed to activate the anion current, and an inhibitor of P2X receptors did not block the effect of ATP. Furthermore, current activation was observed with extracellular ADP and 2-(methylthio)adenosine 5'-diphosphate, a P2Y(1) receptor-specific agonist. Much less current activation was observed with extracellular UTP, suggesting the response is mediated predominantly by P2Y(1) receptors. ATP caused a dose-dependent loss of taurine and alanine that could be blocked by inhibitors of VRAC. ATP did not inhibit the taurine uptake transporter. Thus extracellular ATP triggers a loss of intracellular organic osmolytes via activation of anion channels. This mechanism may facilitate neuronal volume homeostasis during cytotoxic edema.
Collapse
Affiliation(s)
- Guangze Li
- Dept. of Emergency Medicine, Wright State Univ., Boonshoft School of Medicine, Kettering, OH 45429, USA
| | | |
Collapse
|
3909
|
Wang IF, Wu LS, Shen CKJ. TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 2008; 14:479-85. [PMID: 18929508 DOI: 10.1016/j.molmed.2008.09.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/01/2008] [Accepted: 09/01/2008] [Indexed: 12/12/2022]
Abstract
Until a couple of years ago, TAR-DNA-binding protein-43 (TDP-43) was a relatively unknown nuclear protein implicated in transcriptional repression and splicing. Since 2006, when the protein was reported to be present in inclusions in the neurons and/or glial cells of a range of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive, tau- and alpha-synuclein-negative inclusions (FTLD-U) and Alzheimer's disease (AD), many reports on the medical aspects of TDP-43 have been published. Here, we summarize the current literature on TDP-43, focusing on recent studies that provide clues to the function of TDP-43. Using this information and database analysis, we also suggest a molecular and cellular model for possible events in normal and diseased neurons in relation to the emerging importance of the function and dysfunction of this protein as a target for basic as well as translational research.
Collapse
Affiliation(s)
- I-Fan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
3910
|
Pugh JR, Raman IM. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci 2008; 28:10549-60. [PMID: 18923031 PMCID: PMC2592847 DOI: 10.1523/jneurosci.2061-08.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/01/2008] [Accepted: 09/02/2008] [Indexed: 11/21/2022] Open
Abstract
Neurons of the cerebellar nuclei receive synaptic excitation from cerebellar mossy fibers. Unlike in many principal neurons, coincident presynaptic activity and postsynaptic depolarization do not generate long-term potentiation at these synapses. Instead, EPSCs are potentiated by high-frequency trains of presynaptic activity applied with postsynaptic hyperpolarization, in patterns resembling mossy-fiber-mediated excitation and Purkinje-cell-mediated inhibition that are predicted to occur during delay eyelid conditioning. Here, we have used electrophysiology and Ca imaging to test how synaptic excitation and inhibition interact to generate long-lasting synaptic plasticity in nuclear cells in cerebellar slices. We find that the extent of plasticity varies with the relative timing of synaptic excitation and hyperpolarization. Potentiation is most effective when synaptic stimuli precede the postinhibitory rebound by approximately 400 ms, whereas with longer intervals, or with a reverse sequence, EPSCs tend to depress. When basal intracellular Ca is raised by spontaneous firing or reduced by voltage clamping at subthreshold potentials, potentiation is induced as long as the synaptic-rebound temporal sequence is maintained, suggesting that plasticity does not require Ca levels to exceed a threshold or attain a specific concentration. Although rebound and spike-dependent Ca influx are global, potentiation is synapse specific, and is disrupted by inhibitors of calcineurin or Ca-calmodulin-dependent protein kinase II, but not PKC. When IPSPs replace the hyperpolarizing step in the induction protocol, potentiation proceeds normally. These results lead us to propose that synaptic and inhibitory/rebound stimuli initiate separate processes, with local NMDA receptor-mediated Ca influx "priming" synapses, and Ca changes from the inhibition and rebound "triggering" potentiation at recently activated synapses.
Collapse
Affiliation(s)
| | - Indira M. Raman
- Interdepartmental Neuroscience Program and
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
3911
|
Chaumont S, Compan V, Toulme E, Richler E, Housley GD, Rassendren F, Khakh BS. Regulation of P2X2 receptors by the neuronal calcium sensor VILIP1. Sci Signal 2008; 1:ra8. [PMID: 18922787 DOI: 10.1126/scisignal.1162329] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular adenosine triphosphate (ATP) activates P2X receptors, which are involved in diverse physiological functions. Using a proteomic approach, we identified the neuronal calcium sensor VILIP1 as interacting with P2X2 receptors. We found that VILIP1 forms a signaling complex in vitro and in vivo with P2X2 receptors and regulates P2X2 receptor sensitivity to ATP, peak response, surface expression, and diffusion. VILIP1 constitutively binds to P2X2 receptors and displays enhanced interactions in an activation- and calcium-dependent manner owing to exposure of its binding segment in P2X2 receptors. VILIP1-P2X2 interactions are also enhanced in hippocampal neurons during conditions of action potential firing known to trigger P2X2 receptor activation. Our data thus reveal a previously unrecognized function for the neuronal calcium sensor protein VILIP1 and a mechanism for regulation of ATP-dependent P2X receptor signaling by neuronal calcium sensors.
Collapse
Affiliation(s)
- Severine Chaumont
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
3912
|
The Adhesion GPCR GPR125 is specifically expressed in the choroid plexus and is upregulated following brain injury. BMC Neurosci 2008; 9:97. [PMID: 18834514 PMCID: PMC2571103 DOI: 10.1186/1471-2202-9-97] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/03/2008] [Indexed: 11/10/2022] Open
Abstract
Background GPR125 belongs to the family of Adhesion G protein-coupled receptors (GPCRs). A single copy of GPR125 was found in many vertebrate genomes. We also identified a Drosophila sequence, DmCG15744, which shares a common ancestor with the entire Group III of Adhesion GPCRs, and also contains Ig, LRR and HBD domains which were observed in mammalian GPR125. Results We found specific expression of GPR125 in cells of the choroid plexus using in situ hybridization and protein-specific antibodies and combined in situ/immunohistochemistry co-localization using cytokeratin, a marker specific for epithelial cells. Induction of inflammation by LPS did not change GPR125 expression. However, GPR125 expression was transiently increased (almost 2-fold) at 4 h after traumatic brain injury (TBI) followed by a decrease (approximately 4-fold) from 2 days onwards in the choroid plexus as well as increased expression (2-fold) in the hippocampus that was delayed until 1 day after injury. Conclusion These findings suggest that GPR125 plays a functional role in choroidal and hippocampal response to injury.
Collapse
|
3913
|
Loerch PM, Lu T, Dakin KA, Vann JM, Isaacs A, Geula C, Wang J, Pan Y, Gabuzda DH, Li C, Prolla TA, Yankner BA. Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 2008; 3:e3329. [PMID: 18830410 PMCID: PMC2553198 DOI: 10.1371/journal.pone.0003329] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 08/25/2008] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.
Collapse
Affiliation(s)
- Patrick M. Loerch
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biostatistics, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Tao Lu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kelly A. Dakin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James M. Vann
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Adrian Isaacs
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chengiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, Illinois, United States of America
| | - Jianbin Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ying Pan
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dana H. Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cheng Li
- Department of Biostatistics, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Tomas A. Prolla
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bruce A. Yankner
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3914
|
Regional distribution of importin subtype mRNA expression in the nervous system: study of early postnatal and adult mouse. Neuroscience 2008; 157:864-77. [PMID: 18950688 DOI: 10.1016/j.neuroscience.2008.09.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 01/26/2023]
Abstract
Importin-alpha and beta1 mediate the translocation of macromolecules bearing nuclear localization signals across the nuclear pore complex. Five importin-alpha isoforms have been identified in mice and six in human. Some of these importins play an important role in neural activity such as long term potentiation, but the functional differences of each isoform in the CNS are still unclear. We performed in situ hybridization (ISH) using non-isotopic probes to clarify the expression patterns of importin-alpha subtypes (alpha5, alpha7, alpha1, alpha4, alpha3) and importin-beta1 in the mouse CNS of adult and early postnatal stages. The mRNAs of the importin-alpha subtypes and importin beta1 were expressed throughout the CNS with specific patterns; importin-alpha5, alpha7, alpha3, and beta1 showed moderate to high expression levels throughout the brain and spinal cord; importin-alpha4 showed a lack of expression in limited regions; and importin-alpha1 showed a low expression level throughout the brain and spinal cord but with a moderate expression level in the olfactory bulb and reticular system. We also demonstrated that importin-alphas and beta1 mRNAs were predominantly expressed in neurons in the adult mouse brain by using double-labeling fluorescence ISH and immunohistochemistry. Moreover, importin-alphas and beta1 mRNAs were detected throughout the CNS of postnatal mice and were highly expressed in the external granule layer of the cerebellar cortex on postnatal days 0, 4, and 10. This is the first report of importin-alphas and beta1 expression throughout the CNS of adult mice, as well as in the developing brain, including cell type specific localization.
Collapse
|
3915
|
Hardt O, Scholz C, Küsters D, Yanagawa Y, Pennartz S, Cremer H, Bosio A. Gene expression analysis defines differences between region-specific GABAergic neurons. Mol Cell Neurosci 2008; 39:418-28. [DOI: 10.1016/j.mcn.2008.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/10/2008] [Accepted: 07/16/2008] [Indexed: 02/08/2023] Open
|
3916
|
Ramialison M, Bajoghli B, Aghaallaei N, Ettwiller L, Gaudan S, Wittbrodt B, Czerny T, Wittbrodt J. Rapid identification of PAX2/5/8 direct downstream targets in the otic vesicle by combinatorial use of bioinformatics tools. Genome Biol 2008; 9:R145. [PMID: 18828907 PMCID: PMC2760872 DOI: 10.1186/gb-2008-9-10-r145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 01/05/2023] Open
Abstract
A novel bioinformatics pipeline is used to discover PAX2/5/8 direct downstream targets involved in inner ear development. Background The pax2/5/8 genes belonging to the PAX family of transcription factors are key developmental regulators that are involved in the patterning of various embryonic tissues. More particularly, their function in inner ear specification has been widely described. However, little is known about the direct downstream targets and, so far, no global approaches have been performed to identify these target genes in this particular tissue. Results Here we present an original bioinformatics pipeline composed of comparative genomics, database querying and text mining tools, which is designed to rapidly and specifically discover PAX2/5/8 direct downstream targets involved in inner ear development. We provide evidence supported by experimental validation in medaka fish that brain 2 (POU domain, class 3, transcription factor 2), claudin-7, secretory pathway component sec31-like and meteorin-like precursor are novel direct downstream targets of PAX2/5/8. Conclusions This study illustrates the power of extensive mining of public data repositories using bioinformatics methods to provide answers for a specific biological question. It furthermore demonstrates how the usage of such a combinatorial approach is advantageous for the biologist in terms of experimentation time and costs.
Collapse
Affiliation(s)
- Mirana Ramialison
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
3917
|
Uhl GR, Drgon T, Johnson C, Li CY, Contoreggi C, Hess J, Naiman D, Liu QR. Molecular genetics of addiction and related heritable phenotypes: genome-wide association approaches identify "connectivity constellation" and drug target genes with pleiotropic effects. Ann N Y Acad Sci 2008; 1141:318-81. [PMID: 18991966 PMCID: PMC3922196 DOI: 10.1196/annals.1441.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-wide association (GWA) can elucidate molecular genetic bases for human individual differences in complex phenotypes that include vulnerability to addiction. Here, we review (a) evidence that supports polygenic models with (at least) modest heterogeneity for the genetic architectures of addiction and several related phenotypes; (b) technical and ethical aspects of importance for understanding GWA data, including genotyping in individual samples versus DNA pools, analytic approaches, power estimation, and ethical issues in genotyping individuals with illegal behaviors; (c) the samples and the data that shape our current understanding of the molecular genetics of individual differences in vulnerability to substance dependence and related phenotypes; (d) overlaps between GWA data sets for dependence on different substances; and (e) overlaps between GWA data for addictions versus other heritable, brain-based phenotypes that include bipolar disorder, cognitive ability, frontal lobe brain volume, the ability to successfully quit smoking, neuroticism, and Alzheimer's disease. These convergent results identify potential targets for drugs that might modify addictions and play roles in these other phenotypes. They add to evidence that individual differences in the quality and quantity of brain connections make pleiotropic contributions to individual differences in vulnerability to addictions and to related brain disorders and phenotypes. A "connectivity constellation" of brain phenotypes and disorders appears to receive substantial pathogenic contributions from individual differences in a constellation of genes whose variants provide individual differences in the specification of brain connectivities during development and in adulthood. Heritable brain differences that underlie addiction vulnerability thus lie squarely in the midst of the repertoire of heritable brain differences that underlie vulnerability to other common brain disorders and phenotypes.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, National Institutes of Health (NIH), Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3918
|
Lundberg E, Gry M, Oksvold P, Kononen J, Andersson-Svahn H, Pontén F, Uhlén M, Asplund A. The correlation between cellular size and protein expression levels — Normalization for global protein profiling. J Proteomics 2008; 71:448-60. [DOI: 10.1016/j.jprot.2008.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/28/2008] [Accepted: 06/23/2008] [Indexed: 11/29/2022]
|
3919
|
Kelley DJ, Bhattacharyya A, Lahvis GP, Yin JCP, Malter J, Davidson RJ. The cyclic AMP phenotype of fragile X and autism. Neurosci Biobehav Rev 2008; 32:1533-43. [PMID: 18601949 PMCID: PMC2642647 DOI: 10.1016/j.neubiorev.2008.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/06/2008] [Accepted: 06/08/2008] [Indexed: 12/27/2022]
Abstract
Cyclic AMP (cAMP) is a second messenger involved in many processes including mnemonic processing and anxiety. Memory deficits and anxiety are noted in the phenotype of fragile X (FX), the most common heritable cause of mental retardation and autism. Here we review reported observations of altered cAMP cascade function in FX and autism. Cyclic AMP is a potentially useful biochemical marker to distinguish autism comorbid with FX from autism per se and the cAMP cascade may be a viable therapeutic target for both FX and autism.
Collapse
Affiliation(s)
- Daniel J Kelley
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
3920
|
Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: a database of long noncoding RNA expression. Nucleic Acids Res 2008; 37:D122-6. [PMID: 18829717 PMCID: PMC2686506 DOI: 10.1093/nar/gkn617] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, thousands of long non-protein-coding RNAs (ncRNAs) (>200 nt) have recently been described. However, the biological significance and function of the vast majority of these transcripts remain unclear. We have constructed a public repository, the Noncoding RNA Expression Database (NRED), which provides gene expression information for thousands of long ncRNAs in human and mouse. The database contains both microarray and in situ hybridization data, much of which is described here for the first time. NRED also supplies a rich tapestry of ancillary information for featured ncRNAs, including evolutionary conservation, secondary structure evidence, genomic context links and antisense relationships. The database is available at http://jsm-research.imb.uq.edu.au/NRED, and the web interface enables both advanced searches and data downloads. Taken together, NRED should significantly advance the study and understanding of long ncRNAs, and provides a timely and valuable resource to the scientific community.
Collapse
Affiliation(s)
- Marcel E Dinger
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
3921
|
Abstract
Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharmacotherapies to treat drug addiction.
Collapse
Affiliation(s)
- Anna M Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
3922
|
Lobo MK, Yeh C, Yang XW. Pivotal role of early B-cell factor 1 in development of striatonigral medium spiny neurons in the matrix compartment. J Neurosci Res 2008; 86:2134-46. [PMID: 18338816 DOI: 10.1002/jnr.21666] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian striatum plays a critical function in motor control, motor and reward learning, and cognition. Dysfunction and degeneration of the striatal neurons are implicated in major neurological and psychiatric disorders. The vast majority of striatal neurons are medium spiny neurons (MSNs). MSNs can be further subdivided into distinct subtypes based on their physical localization in the striatal patch vs. matrix compartments and based on their axonal projections and marker gene expression (i.e., striatonigral MSNs vs. striatopallidal MSNs). Despite our extensive knowledge on the striatal cytoarchitecture and circuitry, little is known about the molecular mechanisms controlling the development of the MSN subtypes in the striatum. Early B-cell factor 1 (Ebf1) is a critical transcription factor implicated in striatal MSN development. One study shows that Ebf1 is critical for the differentiation of MSNs in the matrix, and our separate study demonstrates that Ebf1 is selectively expressed in the striatonigral MSNs and is essential for their postnatal differentiation. In the present study, we further validate the striatonigral MSN deficits in Ebf1(-/-) mice using multiple striatonigral MSN reporter mice. Moreover, we demonstrate that the striatonigral MSN deficits in these mice are restricted to those in the matrix, with relative sparing of those in the patch. Finally, we demonstrate that Ebf1 deficiency also results in reduced expression of another striatonigral-specific transcription factor, zinc finger binding protein 521 (Zfp521), which is a known Ebf1 functional partner. Overall, our study reveals that Ebf1 may play an essential role in controlling the differentiation of the striatonigral MSNs in the matrix compartment.
Collapse
Affiliation(s)
- Mary Kay Lobo
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience, Brain Research Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
3923
|
Hirokawa J, Watakabe A, Ohsawa S, Yamamori T. Analysis of area-specific expression patterns of RORbeta, ER81 and Nurr1 mRNAs in rat neocortex by double in situ hybridization and cortical box method. PLoS One 2008; 3:e3266. [PMID: 18815614 PMCID: PMC2533703 DOI: 10.1371/journal.pone.0003266] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/04/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The mammalian neocortex is subdivided into many areas, each of which exhibits distinctive lamina architecture. To investigate such area differences in detail, we chose three genes for comparative analyses, namely, RORbeta, ER81 and Nurr1, mRNAs of which have been reported to be mainly expressed in layers 4, 5 and 6, respectively. To analyze their qualitative and quantitative coexpression profiles in the rat neocortex, we used double in situ hybridization (ISH) histochemistry and cortical box method which we previously developed to integrate the data of different staining and individuals in a standard three-dimensional space. PRINCIPAL FINDINGS Our new approach resulted in three main observations. First, the three genes showed unique area distribution patterns that are mostly complementary to one another. The patterns revealed by cortical box method matched well with the cytoarchitectonic areas defined by Nissl staining. Second, at single cell level, RORbeta and ER81 mRNAs were coexpressed in a subpopulation of layer 5 neurons, whereas Nurr1 and ER81 mRNAs were not colocalized. Third, principal component analysis showed that the order of hierarchical processing in the cortex correlates well with the expression profiles of these three genes. Based on this analysis, the dysgranular zone (DZ) in the somatosensory area was considered to exhibit a profile of a higher order area, which is consistent with previous proposal. CONCLUSIONS/SIGNIFICANCE The tight relationship between the expression of the three layer specific genes and functional areas were revealed, demonstrating the usefulness of cortical box method in the study on the cerebral cortex. In particular, it allowed us to perform statistical evaluation and pattern matching, which would become important in interpreting the ever-increasing data of gene expression in the cortex.
Collapse
Affiliation(s)
- Junya Hirokawa
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Sonoko Ohsawa
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
3924
|
Allen AM, O'Callaghan EL, Hazelwood L, Germain S, Castrop H, Schnermann J, Bassi JK. Distribution of cells expressing human renin-promoter activity in the brain of a transgenic mouse. Brain Res 2008; 1243:78-85. [PMID: 18840419 DOI: 10.1016/j.brainres.2008.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/12/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
Abstract
Renin plays a critical role in fluid and electrolyte homeostasis by cleaving angiotensinogen to produce Ang peptides. Whilst it has been demonstrated that renin mRNA is expressed in the brain, the distribution of cells responsible for this expression remains uncertain. We have used a transgenic mouse approach in an attempt to address this question. A transgenic mouse, in which a 12.2 kb fragment of the human renin promoter was used to drive expression of Cre-recombinase, was crossed with the ROSA26-lac Z reporter mouse strain. Cre-recombinase mediated excision of the floxed stop cassette resulted in expression of the reporter protein, beta-galactosidase. This study describes the distribution of beta-galactosidase in the brain of the crossed transgenic mouse. In all cases where it was examined the reporter protein was co-localized with the neuronal marker NeuN. An extensive distribution was observed with numerous cells labeled in the somatosensory, insular, piriform and retrosplenial cortices. The motor cortex was devoid of labeled cells. Several other regions were labeled including the parts of the amygdala, periaqueductal gray, lateral parabrachial nucleus and deep cerebellar nuclei. Overall the distribution shows little overlap with those regions that are known to express receptors for the renin-angiotensin system in the adult brain. This transgenic approach, which demonstrates the distribution of cells which have activated the human renin promoter at any time throughout development, yields a unique and extensive distribution of putative renin-expressing neurons. Our observations suggest that renin may have broader actions in the brain and may indicate a potential for interaction with the (pro)renin receptor or production of a ligand for non-AT(1)/AT(2) receptors.
Collapse
Affiliation(s)
- A M Allen
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
3925
|
Farrell J, Ramos L, Tresguerres M, Kamenetsky M, Levin LR, Buck J. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice. PLoS One 2008; 3:e3251. [PMID: 18806876 PMCID: PMC2532759 DOI: 10.1371/journal.pone.0003251] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex)/Sacy(tm1Lex) knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. PRINCIPAL FINDINGS We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex) knockout allele. CONCLUSIONS/SIGNIFICANCE These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.
Collapse
Affiliation(s)
- Jeanne Farrell
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lavoisier Ramos
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Martin Tresguerres
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Margarita Kamenetsky
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lonny R. Levin
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
3926
|
Homma S, Shimada T, Hikake T, Yaginuma H. Expression pattern of LRR and Ig domain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expr Patterns 2008; 9:1-26. [PMID: 18848646 DOI: 10.1016/j.gep.2008.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/10/2023]
Abstract
The combination of leucine-rich repeat (LRR) and immunoglobulin-like (Ig) domains is found in the domain architecture of the Trk neurotrophin receptor protein. Recently dozens of such proteins simultaneously carrying LRR and Ig domains as the Trk receptors have been identified. Given the significant biological roles of Trk and such newly identified proteins, we have searched the public database for human proteins with LRR and Ig domains (collectively termed the leucine-rich repeat and Ig domain-containing protein, LRRIG protein, in this study), and have analyzed the mRNA expression pattern of mouse orthologs of obtained human LRRIG proteins at embryonic day 10. The list of the LRRIG proteins includes 36 human proteins: four LINGO, three NGL, five SALM, three NLRR, three Pal, two ISLR, three LRIG, two GPR, two Adlican, two Peroxidasin-like proteins, three Trk neurotrophin receptors, a yet unnamed protein AAI11068, and three AMIGO. Some molecules (LINGO2, LINGO4, NGL1, SALM1, SALM5, and TrkB) were expressed exclusively in neuronal tissues, whereas others (ISLR1, GPR124, and Adlican2) exhibited non-neuronal expression profiles. However, the majority of LRRIG protein family exhibited broad mRNA tissue-expression profiles.
Collapse
Affiliation(s)
- Shunsaku Homma
- Department of Anatomy, School of Medicine, Fukushima Medical University, Fukushimashi, Fukushima 960-1295, Japan.
| | | | | | | |
Collapse
|
3927
|
Lécuyer E, Tomancak P. Mapping the gene expression universe. Curr Opin Genet Dev 2008; 18:506-12. [PMID: 18809490 DOI: 10.1016/j.gde.2008.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/21/2008] [Indexed: 11/17/2022]
Abstract
Methods to globally survey gene expression provide valuable insights into gene function during development. In particular, comprehensive in situ hybridization studies have demonstrated that gene expression patterns are extraordinarily diverse and new imaging techniques have been introduced to capture these patterns with higher resolution at the tissue, cellular, and subcellular levels. The analysis of massive image databases can be greatly facilitated by computer vision techniques once annotated image sets reach the crucial mass sufficient to train the computer in pattern recognition. Ultimately, genome-wide atlases of gene expression during development will record gene activity in living animals with at least cellular resolution and in the context of morphogenetic events. These emerging datasets will lead to great advances in the field of comparative genomics and revolutionize our ability to decipher and model developmental processes for a variety of organisms.
Collapse
Affiliation(s)
- Eric Lécuyer
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
3928
|
Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking. J Neurosci 2008; 28:8545-52. [PMID: 18716213 DOI: 10.1523/jneurosci.1962-08.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Twik-related K+ (TREK) channels produce background currents that regulate cell excitability. In vivo, TREK-1 is involved in neuronal processes including neuroprotection against ischemia, general anesthesia, pain perception, and mood. Recently, we demonstrated that A-kinase anchoring protein AKAP150 binds to a major regulatory domain of TREK-1, promoting drastic changes in channel regulation by polyunsaturated fatty acids, pH, and stretch, and by G-protein-coupled receptors to neurotransmitters and hormones. Here, we show that the microtubule-associated protein Mtap2 is another constituent of native TREK channels in the brain. Mtap2 binding to TREK-1 and TREK-2 does not affect directly channel properties but enhances channel surface expression and current density. This effect relies on Mtap2 binding to microtubules. Mtap2 and AKAP150 interacting sites in TREK-1 are distinct and both proteins can dock simultaneously. Their effects on TREK-1 surface expression and activation are cumulative. In neurons, the three proteins are simultaneously detected in postsynaptic dense bodies. AKAP150 and Mtap2 put TREK channels at the center of a complex protein network that finely tunes channel trafficking, addressing, and regulation.
Collapse
|
3929
|
Nakajima R, Takao K, Huang SM, Takano J, Iwata N, Miyakawa T, Saido TC. Comprehensive behavioral phenotyping of calpastatin-knockout mice. Mol Brain 2008; 1:7. [PMID: 18803809 PMCID: PMC2561015 DOI: 10.1186/1756-6606-1-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calpastatin is an endogenous inhibitor of calpain, intracellular calcium-activated protease. It has been suggested to be involved in molecular mechanisms of long-term plasticity and excitotoxic pathways. However, functions of calpastatin in vivo are still largely unknown. To examine the physiological roles of calpastatin, we subjected calpastatin-knockout mice to a comprehensive behavioral test battery. RESULTS Calpastatin-knockout mice showed decreased locomotor activity under stressful environments, and decreased acoustic startle response, but we observed no significant change in hippocampus-dependent memory function. CONCLUSION These results suggest that calpastatin is likely to be more closely associated with affective rather than cognitive aspects of brain function.
Collapse
|
3930
|
|
3931
|
Li CY, Liu QR, Zhang PW, Li XM, Wei L, Uhl GR. OKCAM: an ontology-based, human-centered knowledgebase for cell adhesion molecules. Nucleic Acids Res 2008; 37:D251-60. [PMID: 18790807 PMCID: PMC2686464 DOI: 10.1093/nar/gkn568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
‘Cell adhesion molecules’ (CAMs) are essential elements of cell/cell communication that are important for proper development and plasticity of a variety of organs and tissues. In the brain, appropriate assembly and tuning of neuronal connections is likely to require appropriate function of many cell adhesion processes. Genetic studies have linked and/or associated CAM variants with psychiatric, neurologic, neoplastic, immunologic and developmental phenotypes. However, despite increasing recognition of their functional and pathological significance, no systematic study has enumerated CAMs or documented their global features. We now report compilation of 496 human CAM genes in six gene families based on manual curation of protein domain structures, Gene Ontology annotations, and 1487 NCBI Entrez annotations. We map these genes onto a cell adhesion molecule ontology that contains 850 terms, up to seven levels of depth and provides a hierarchical description of these molecules and their functions. We develop OKCAM, a CAM knowledgebase that provides ready access to these data and ontologic system at http://okcam.cbi.pku.edu.cn. We identify global CAM properties that include: (i) functional enrichment, (ii) over-represented regulation modes and expression patterns and (iii) relationships to human Mendelian and complex diseases, and discuss the strengths and limitations of these data.
Collapse
Affiliation(s)
- Chuan-Yun Li
- Molecular Neurobiology Branch, NIH-IRP (NIDA), Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
3932
|
Wu Q, Howell MP, Palmiter RD. Ablation of neurons expressing agouti-related protein activates fos and gliosis in postsynaptic target regions. J Neurosci 2008; 28:9218-26. [PMID: 18784302 PMCID: PMC2597113 DOI: 10.1523/jneurosci.2449-08.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/22/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023] Open
Abstract
We have developed a mouse model in which a specific population of inhibitory neurons can be selectively ablated by the action of diphtheria toxin (DT). The model involves targeting the human DT receptor to the agouti-related protein (Agrp) locus so that systemic administration of DT kills all of the AgRP-expressing neurons, resulting in starvation of the mice. Ablation of AgRP neurons results in robust (5- to 10-fold) activation of Fos gene expression in many brain regions that are innervated by AgRP neurons, including the arcuate nucleus (ARC), the paraventricular nucleus, the medial preoptic area, the lateral septum, and nucleus of the solitary tract. As expected, there is robust increase in GFAP staining (astrocytes) as well as IBA1 and CD11b staining (microglia) in the ARC in response to AgRP neuron ablation. There is also a dramatic increase of these markers in most, but not all, postsynaptic targets of AgRP axons. We used a genetic approach to reduce melanocortin signaling, which attenuated Fos activation in some brain regions after ablation of AgRP neurons. We suggest that loss of inhibitory signaling onto target neurons results in unopposed excitation that is responsible for the activation of Fos and that dysregulation of these neuronal circuits is responsible for starvation. Furthermore, glial cell activation in target areas of AgRP neurons appears to be a result of excitotoxicity.
Collapse
Affiliation(s)
- Qi Wu
- Howard Hughes Medical Institute
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, and
| | | | - Richard D. Palmiter
- Howard Hughes Medical Institute
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, and
| |
Collapse
|
3933
|
Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, Takao K, Tanda K, Ohira K, Toyama K, Kanzaki K, Fukunaga K, Sudo Y, Ichinose H, Ikeda M, Iwata N, Ozaki N, Suzuki H, Higuchi M, Suhara T, Yuasa S, Miyakawa T. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 2008; 1:6. [PMID: 18803808 PMCID: PMC2562999 DOI: 10.1186/1756-6606-1-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/10/2008] [Indexed: 01/01/2023] Open
Abstract
Elucidating the neural and genetic factors underlying psychiatric illness is hampered by current methods of clinical diagnosis. The identification and investigation of clinical endophenotypes may be one solution, but represents a considerable challenge in human subjects. Here we report that mice heterozygous for a null mutation of the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII+/-) have profoundly dysregulated behaviours and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. Transcriptome analysis of the hippocampus of these mutants revealed that the expression levels of more than 2000 genes were significantly changed. Strikingly, among the 20 most downregulated genes, 5 had highly selective expression in the DG. Whereas BrdU incorporated cells in the mutant mouse DG was increased by more than 50 percent, the number of mature neurons in the DG was dramatically decreased. Morphological and physiological features of the DG neurons in the mutants were strikingly similar to those of immature DG neurons in normal rodents. Moreover, c-Fos expression in the DG after electric footshock was almost completely and selectively abolished in the mutants. Statistical clustering of human post-mortem brains using 10 genes differentially-expressed in the mutant mice were used to classify individuals into two clusters, one of which contained 16 of 18 schizophrenic patients. Nearly half of the differentially-expressed probes in the schizophrenia-enriched cluster encoded genes that are involved in neurogenesis or in neuronal migration/maturation, including calbindin, a marker for mature DG neurons. Based on these results, we propose that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders.
Collapse
Affiliation(s)
- Nobuyuki Yamasaki
- Frontier Technology Center, Kyoto University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3934
|
Hu W, Saba L, Kechris K, Bhave SV, Hoffman PL, Tabakoff B. Genomic insights into acute alcohol tolerance. J Pharmacol Exp Ther 2008; 326:792-800. [PMID: 18550690 PMCID: PMC2574863 DOI: 10.1124/jpet.108.137521] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol "sensitivity" has been proposed as a predictive factor for development of alcohol dependence (Schuckit et al., 2005). Most measures of alcohol sensitivity in humans and animals include a component that can be ascribed to acute functional tolerance (AFT). AFT is a form of tolerance that develops within a single period of alcohol exposure and has a genetic component. We used microarray technology as well as quantitative trait locus analysis of phenotypic and gene expression data across 30 BXD recombinant inbred strains of mice, 20 inbred strains of mice, and two replicate lines of mice selectively bred for differences in AFT, to identify differentially expressed candidate genes that contribute to predisposition to AFT. Eight candidate genes were identified by our statistical and filtering methods. The location of brain expression of these genes was mapped using the Allen Brain Atlas (http://www.brain-map.org), and the transcript location and molecular pathway analysis indicated that brain structures and biochemical pathways implicated in long-term potentiation and memory might also participate in the generation of acute functional alcohol tolerance.
Collapse
Affiliation(s)
- Wei Hu
- Department of Pharmacology, University of Colorado School of Medicine, Mail Stop 8303, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | | | | | | | | | |
Collapse
|
3935
|
Kato AS, Siuda ER, Nisenbaum ES, Bredt DS. AMPA Receptor Subunit-Specific Regulation by a Distinct Family of Type II TARPs. Neuron 2008; 59:986-96. [DOI: 10.1016/j.neuron.2008.07.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/20/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
|
3936
|
Sun YM, Zhang Y, Zeng LQ, Wu JP, Wei L, Ren AH, Shao W, Qiao JY, Zhao YC, Zhang L, Mitchelson KR, Cheng J. Broad profiling of DNA-binding transcription factor activities improves regulatory network construction in adult mouse tissues. J Proteome Res 2008; 7:4455-64. [PMID: 18759473 DOI: 10.1021/pr800417e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular systematics involves the description of the regulatory networks formed by the interconnections between active transcription factors and their target expressed genes. Here, we have determined the activities of 200 different transcription factors in six mouse tissues using an advanced mouse oligonucleotide array-based transcription factor assay (MOUSE OATFA). The transcription factor signatures from MOUSE OATFA were combined with public mRNA expression profiles to construct experimental transcriptional regulatory networks in each tissue. SRF-centered regulatory networks constructed for lung and skeletal muscle with OATFA data were confirmed by ChIP assays, and revealed examples of novel networks of expressed genes coregulated by sets of transcription factors. The combination of MOUSE OATFA with bioinformatics analysis of expressed genes provides a new paradigm for the comprehensive prediction of the transcriptional systems and their regulatory pathways in mouse.
Collapse
Affiliation(s)
- Yi-Min Sun
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3937
|
Abstract
The nervous system contains a multitude of cell types which are specified during development by cascades of transcription factors acting combinatorially. Some of these transcription factors are only active during development, whereas others continue to function in the mature nervous system to maintain appropriate gene-expression patterns in differentiated cells. Underpinning the function of the nervous system is its plasticity in response to external stimuli, and many transcription factors are involved in regulating gene expression in response to neuronal activity, allowing us to learn, remember and make complex decisions. Here we review some of the recent findings that have uncovered the molecular mechanisms that underpin the control of gene regulatory networks within the nervous system. We highlight some recent insights into the gene-regulatory circuits in the development and differentiation of cells within the nervous system and discuss some of the mechanisms by which synaptic transmission influences transcription-factor activity in the mature nervous system. Mutations in genes that are important in epigenetic regulation (by influencing DNA methylation and post-translational histone modifications) have long been associated with neuronal disorders in humans such as Rett syndrome, Huntington's disease and some forms of mental retardation, and recent work has focused on unravelling their mechanisms of action. Finally, the discovery of microRNAs has produced a paradigm shift in gene expression, and we provide some examples and discuss the contribution of microRNAs to maintaining dynamic gene regulatory networks in the brain.
Collapse
|
3938
|
Menuz K, O'Brien JL, Karmizadegan S, Bredt DS, Nicoll RA. TARP redundancy is critical for maintaining AMPA receptor function. J Neurosci 2008; 28:8740-6. [PMID: 18753375 PMCID: PMC3159041 DOI: 10.1523/jneurosci.1319-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 11/21/2022] Open
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that influence diverse aspects of receptor function. However, the full complement of physiological roles for TARPs in vivo remains poorly understood. Here we find that double knock-out mice lacking TARPs gamma-2 and gamma-3 are profoundly ataxic and fail to thrive. We demonstrate that these TARPs are critical for the synaptic targeting and kinetics of AMPA receptors in cerebellar Golgi cells, but that either alone is sufficient to fully preserve function. By analyzing the few remaining synaptic AMPA receptors in the gamma-2, gamma-3 double knock-out mice, we unexpectedly find that these TARPs specify AMPA receptor subunit composition. This study establishes a new role for TARPs in regulating AMPA receptor assembly and suggests that TARPs are necessary for proper AMPA receptor localization and function in most, if not all, neurons of the CNS.
Collapse
Affiliation(s)
- Karen Menuz
- Departments of Cellular and Molecular Pharmacology and
| | | | - Siavash Karmizadegan
- Physiology, University of California, San Francisco, San Francisco, California 94143
| | - David S. Bredt
- Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Roger A. Nicoll
- Departments of Cellular and Molecular Pharmacology and
- Physiology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
3939
|
Letellier M, Willson ML, Gautheron V, Mariani J, Lohof AM. Normal adult climbing fiber monoinnervation of cerebellar Purkinje cells in mice lacking MHC class I molecules. Dev Neurobiol 2008; 68:997-1006. [PMID: 18418877 DOI: 10.1002/dneu.20639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some immune system proteins have recently been implicated in the development and plasticity of neuronal connections. Notably, proteins of the major histocompatibility complex 1 (MHC class 1) have been shown to be involved in synaptic plasticity in the hippocampus and the development of projection patterns in the visual system. We examined the possible role for the MHC class 1 proteins in one well-characterized example of synaptic exuberance and subsequent refinement, the climbing fiber (CF) to Purkinje cell (PC) synapse. Cerebella from adult mice deficient for two MHC genes, H2-D1 and H2-K1, and for beta2-microglobulin gene were examined for evidence of deficient elimination of supernumerary CF synapses on their PCs. Electrophysiological and morphological evidence showed that, despite the absence of these MHC class 1 molecules, adult PCs in these transgenic mice are monoinnervated as in wild-type animals. These findings indicate that, at the level of restriction of afferent number at this synapse, functional MHC class 1 proteins are not required.
Collapse
Affiliation(s)
- Mathieu Letellier
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris, Unité Mixte de Recherche 7102-Neurobiologie des Processus Adaptatifs, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
3940
|
Abstract
A significant challenge to understanding dynamic and heterogeneous brain systems lies in the chemical complexity of secreted intercellular messengers that change rapidly with space and time. Two solid-phase extraction collection strategies are presented that relate time and location of peptide release with mass spectrometric characterization. Here, complex suites of peptide-based cell-to-cell signaling molecules are characterized from the mammalian suprachiasmatic nucleus (SCN), site of the master circadian clock. Observed SCN releasates are peptide rich and demonstrate the co-release of established circadian neuropeptides and peptides with unknown roles in circadian rhythms. Additionally, the content of SCN releasate is stimulation specific. Stimulation paradigms reported to alter clock timing, including electrical stimulation of the retinohypothalamic tract, produce releasate mass spectra that are notably different from the spectra of compounds secreted endogenously over the course of the 24-h cycle. In addition to established SCN peptides, we report the presence of proSAAS peptides in releasates. One of these peptides, little SAAS, exhibits robust retinohypothalamic tract-stimulated release from the SCN, and exogenous application of little SAAS induces a phase delay consistent with light-mediated cues regulating circadian timing. These mass spectrometry-based analyses provide a new perspective on peptidergic signaling within the SCN and demonstrate that the integration of secreted compounds with information relating time and location of release generates new insights into intercellular signaling in the brain.
Collapse
|
3941
|
Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 2008; 130:635-53. [PMID: 18696101 DOI: 10.1007/s00418-008-0485-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2008] [Indexed: 12/13/2022]
Abstract
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.
Collapse
|
3942
|
Schaffar G, Taniguchi J, Brodbeck T, Meyer AH, Schmidt M, Yamashita T, Mueller BK. LIM-only protein 4 interacts directly with the repulsive guidance molecule A receptor Neogenin. J Neurochem 2008; 107:418-31. [PMID: 18702663 DOI: 10.1111/j.1471-4159.2008.05621.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Repulsive guidance molecule A (RGM A) was recently described as a potent inhibitor of neuroregeneration in a rat spinal cord injury model. The receptor mediating RGM A's repulsive activity was shown to be Neogenin, a member of the Deleted in Colorectal Cancer (DCC) family of netrin receptors. Binding of RGM A to Neogenin induces activation of the small GTPase RhoA and of its effector Rho-kinase by an unknown mechanism. Here we show, that the cytoplasmic tail of Neogenin interacts directly with the transcriptional coactivator LIM domain only 4 (LMO4) in human SH-SY5Y cells, human Ntera neurons, and in embryonic rat cortical neurons. RGM A binding to Neogenin but not binding of Netrin-1, induces release of LMO4 from Neogenin. Down-regulation of LMO4 neutralizes the repulsive activity of RGM A in neuronal cell lines and embryonic rat cortical neurons and prevents RhoA activation. These results show for the first time that an interaction of Neogenin with LMO4 is involved in the RGM A - Neogenin signal transduction pathway for RhoA activation.
Collapse
Affiliation(s)
- Gregor Schaffar
- Neuroscience Research, Abbott GmbH and Company KG, Ludwigshafen, Germany
| | | | | | | | | | | | | |
Collapse
|
3943
|
Heimel JA, Hermans JM, Sommeijer JP, Levelt CN. Genetic control of experience-dependent plasticity in the visual cortex. GENES BRAIN AND BEHAVIOR 2008; 7:915-23. [PMID: 18700840 DOI: 10.1111/j.1601-183x.2008.00431.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Depriving one eye of visual experience during a sensitive period of development results in a shift in ocular dominance (OD) in the primary visual cortex (V1). To assess the heritability of this form of cortical plasticity and identify the responsible gene loci, we studied the influence of monocular deprivation on OD in a large number of recombinant inbred mouse strains derived from mixed C57BL/6J and DBA/2J backgrounds (BXD). The strength of imaged intrinsic signal responses in V1 to visual stimuli was strongly heritable as were various elements of OD plasticity. This has important implications for the use of mice of mixed genetic backgrounds for studying OD plasticity. C57BL/6J showed the most significant shift in OD, while some BXD strains did not show any shift at all. Interestingly, the increase in undeprived ipsilateral eye responses was not correlated to the decrease in deprived contralateral eye responses, suggesting that the size of these components of OD plasticity are not genetically controlled by only a single mechanism. We identified a quantitative trait locus regulating the change in response to the deprived eye. The locus encompasses 13 genes, two of which--Stch and Nrip1--contain missense polymorphisms. The expression levels of Stch and to a lesser extent Nrip1 in whole brain correlate with the trait identifying them as novel candidate plasticity genes.
Collapse
Affiliation(s)
- J A Heimel
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
3944
|
Xu X, Zhan M, Duan W, Prabhu V, Brenneman R, Wood W, Firman J, Li H, Zhang P, Ibe C, Zonderman AB, Longo DL, Poosala S, Becker KG, Mattson MP. Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender. Genome Biol 2008; 8:R234. [PMID: 17988385 PMCID: PMC2258177 DOI: 10.1186/gb-2007-8-11-r234] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/13/2007] [Accepted: 11/07/2007] [Indexed: 01/05/2023] Open
Abstract
The transcriptional profiles of five regions of the central nervous system (CNS) of mice varying in age, gender and dietary intake were measured by microarray. The resulting data provide insights into the mechanisms of age-, diet- and gender-related CNS plasticity and vulnerability in mammals. Background The structural and functional complexity of the mammalian central nervous system (CNS) is organized and modified by complicated molecular signaling processes that are poorly understood. Results We measured transcripts of 16,896 genes in 5 CNS regions from cohorts of young, middle-aged and old male and female mice that had been maintained on either a control diet or a low energy diet known to retard aging. Each CNS region (cerebral cortex, hippocampus, striatum, cerebellum and spinal cord) possessed its own unique transcriptome fingerprint that was independent of age, gender and energy intake. Less than 10% of genes were significantly affected by age, diet or gender, with most of these changes occurring between middle and old age. The transcriptome of the spinal cord was the most responsive to age, diet and gender, while the striatal transcriptome was the least responsive. Gender and energy restriction had particularly robust influences on the hippocampal transcriptome of middle-aged mice. Prominent functional groups of age- and energy-sensitive genes were those encoding proteins involved in DNA damage responses (Werner and telomere-associated proteins), mitochondrial and proteasome functions, cell fate determination (Wnt and Notch signaling) and synaptic vesicle trafficking. Conclusion Mouse CNS transcriptomes responded to age, energy intake and gender in a regionally distinctive manner. The systematic transcriptome dataset also provides a window into mechanisms of age-, diet- and sex-related CNS plasticity and vulnerability.
Collapse
Affiliation(s)
- Xiangru Xu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3945
|
Schilling K, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 2008; 130:601-15. [PMID: 18677503 DOI: 10.1007/s00418-008-0483-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2008] [Indexed: 01/29/2023]
Abstract
Ever since the groundbreaking work of Ramon y Cajal, the cerebellar cortex has been recognized as one of the most regularly structured and wired parts of the brain formed by a rather limited set of distinct cells. Its rather protracted course of development, which persists well into postnatal life, the availability of multiple natural mutants, and, more recently, the availability of distinct molecular genetic tools to identify and manipulate discrete cell types have suggested the cerebellar cortex as an excellent model to understand the formation and working of the central nervous system. However, the formulation of a unifying model of cerebellar function has so far proven to be a most cantankerous problem, not least because our understanding of the internal cerebellar cortical circuitry is clearly spotty. Recent research has highlighted the fact that cerebellar cortical interneurons are a quite more diverse and heterogeneous class of cells than generally appreciated, and have provided novel insights into the mechanisms that underpin the development and histogenetic integration of these cells. Here, we provide a short overview of cerebellar cortical interneuron diversity, and we summarize some recent results that are hoped to provide a primer on current understanding of cerebellar biology.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Nussalle 10, 53115 Bonn, Germany.
| | | | | | | |
Collapse
|
3946
|
Immunostaining of rat brain, spinal cord, sensory neurons and skeletal muscle for calcium channel alpha2-delta (α2-δ) type 1 protein. Neuroscience 2008; 155:510-21. [DOI: 10.1016/j.neuroscience.2008.05.053] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 11/19/2022]
|
3947
|
Rodgers BD, Garikipati DK. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr Rev 2008; 29:513-34. [PMID: 18591260 PMCID: PMC2528853 DOI: 10.1210/er.2008-0003] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The discovery of myostatin and our introduction to the "Mighty Mouse" over a decade ago spurred both basic and applied research and impacted popular culture as well. The myostatin-null genotype produces "double muscling" in mice and livestock and was recently described in a child. The field's rapid growth is by no means surprising considering the potential benefits of enhancing muscle growth in clinical and agricultural settings. Indeed, several recent studies suggest that blocking myostatin's inhibitory effects could improve the clinical treatment of several muscle growth disorders, whereas comparative studies suggest that these actions are at least partly conserved. Thus, neutralizing myostatin's effects could also have agricultural significance. Extrapolating between studies that use different vertebrate models, particularly fish and mammals, is somewhat confusing because whole genome duplication events have resulted in the production and retention of up to four unique myostatin genes in some fish species. Such comparisons, however, suggest that myostatin's actions may not be limited to skeletal muscle per se, but may additionally influence other tissues including cardiac muscle, adipocytes, and the brain. Thus, therapeutic intervention in the clinic or on the farm must consider the potential of alternative side effects that could impact these or other tissues. In addition, the presence of multiple and actively diversifying myostatin genes in most fish species provides a unique opportunity to study adaptive molecular evolution. It may also provide insight into myostatin's nonmuscle actions as results from these and other comparative studies gain visibility in biomedical fields.
Collapse
Affiliation(s)
- Buel D Rodgers
- Department of Animal Sciences, 124 ASLB, Washington State University, Pullman, Washington 99164, USA.
| | | |
Collapse
|
3948
|
Bonnefont J, Nikolaev SI, Perrier AL, Guo S, Cartier L, Sorce S, Laforge T, Aubry L, Khaitovich P, Peschanski M, Antonarakis SE, Krause KH. Evolutionary forces shape the human RFPL1,2,3 genes toward a role in neocortex development. Am J Hum Genet 2008; 83:208-18. [PMID: 18656177 DOI: 10.1016/j.ajhg.2008.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/13/2008] [Accepted: 07/07/2008] [Indexed: 12/28/2022] Open
Abstract
The size and organization of the brain neocortex has dramatically changed during primate evolution. This is probably due to the emergence of novel genes after duplication events, evolutionary changes in gene expression, and/or acceleration in protein evolution. Here, we describe a human Ret finger protein-like (hRFPL)1,2,3 gene cluster on chromosome 22, which is transactivated by the corticogenic transcription factor Pax6. High hRFPL1,2,3 transcript levels were detected at the onset of neurogenesis in differentiating human embryonic stem cells and in the developing human neocortex, whereas the unique murine RFPL gene is expressed in liver but not in neural tissue. Study of the evolutionary history of the RFPL gene family revealed that the RFPL1,2,3 gene ancestor emerged after the Euarchonta-Glires split. Subsequent duplication events led to the presence of multiple RFPL1,2,3 genes in Catarrhini ( approximately 34 mya) resulting in an increase in gene copy number in the hominoid lineage. In Catarrhini, RFPL1,2,3 expression profile diverged toward the neocortex and cerebellum over the liver. Importantly, humans showed a striking increase in cortical RFPL1,2,3 expression in comparison to their cerebellum, and to chimpanzee and macaque neocortex. Acceleration in RFPL-protein evolution was also observed with signs of positive selection in the RFPL1,2,3 cluster and two neofunctionalization events (acquisition of a specific RFPL-Defining Motif in all RFPLs and of a N-terminal 29 amino-acid sequence in catarrhinian RFPL1,2,3). Thus, we propose that the recent emergence and multiplication of the RFPL1,2,3 genes contribute to changes in primate neocortex size and/or organization.
Collapse
Affiliation(s)
- Jérôme Bonnefont
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3949
|
Sisodiya S. Brain structure, function, and genetics revealed by studies of the eye and face. Curr Opin Neurol 2008; 21:404-9. [DOI: 10.1097/wco.0b013e3283052d0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3950
|
Carson JH, Gao Y, Tatavarty V, Levin MK, Korza G, Francone VP, Kosturko LD, Maggipinto MJ, Barbarese E. Multiplexed RNA trafficking in oligodendrocytes and neurons. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:453-8. [PMID: 18442491 PMCID: PMC2584806 DOI: 10.1016/j.bbagrm.2008.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/28/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022]
Abstract
In oligodendrocytes and neurons genetic information is transmitted from the nucleus to dendrites in the form of RNA granules. Here we describe how transport of multiple different RNA molecules in individual granules is analogous to the process of multiplexing in telecommunications. In both cases multiple messages are combined into a composite signal for transmission on a single carrier. Multiplexing provides a mechanism to coordinate local expression of ensembles of genes in myelin in oligodendrocytes and at synapses in neurons.
Collapse
Affiliation(s)
- John H. Carson
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Yuanzheng Gao
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Vedakumar Tatavarty
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Mikhail K. Levin
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - George Korza
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Victor P. Francone
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda D. Kosturko
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael J. Maggipinto
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030
| | - Elisa Barbarese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|