3901
|
Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P, Izaurralde E. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol 2000; 20:8996-9008. [PMID: 11073998 PMCID: PMC86553 DOI: 10.1128/mcb.20.23.8996-9008.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2000] [Accepted: 09/06/2000] [Indexed: 11/20/2022] Open
Abstract
Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we show that TAP belongs to an evolutionarily conserved family of proteins that has more than one member in higher eukaryotes. Not only the overall domain organization but also residues important for p15 and nucleoporin interaction are conserved in most family members. We characterize two of four human TAP homologues and show that one of them, NXF2, binds RNA, localizes to the nuclear envelope, and exhibits RNA export activity. NXF3, which does not bind RNA or localize to the nuclear rim, has no RNA export activity. Database searches revealed that although only one p15 (nxt) gene is present in the Drosophila melanogaster and Caenorhabditis elegans genomes, there is at least one additional p15 homologue (p15-2 [also called NXT2]) encoded by the human genome. Both human p15 homologues bind TAP, NXF2, and NXF3. Together, our results indicate that the TAP-p15 mRNA export pathway has diversified in higher eukaryotes compared to yeast, perhaps reflecting a greater substrate complexity.
Collapse
Affiliation(s)
- A Herold
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
3902
|
Prokopenko SN, He Y, Lu Y, Bellen HJ. Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins. Genetics 2000; 156:1691-715. [PMID: 11102367 PMCID: PMC1461357 DOI: 10.1093/genetics/156.4.1691] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In our quest for novel genes required for the development of the embryonic peripheral nervous system (PNS), we have performed three genetic screens using MAb 22C10 as a marker of terminally differentiated neurons. A total of 66 essential genes required for normal PNS development were identified, including 49 novel genes. To obtain information about the molecular nature of these genes, we decided to complement our genetic screens with a molecular screen. From transposon-tagged mutations identified on the basis of their phenotype in the PNS we selected 31 P-element strains representing 26 complementation groups on the second and third chromosomes to clone and sequence the corresponding genes. We used plasmid rescue to isolate and sequence 51 genomic fragments flanking the sites of these P-element insertions. Database searches using sequences derived from the ends of plasmid rescues allowed us to assign genes to one of four classes: (1) previously characterized genes (11), (2) first mutations in cloned genes (1), (3) P-element insertions in genes that were identified, but not characterized molecularly (1), and (4) novel genes (13). Here, we report the cloning, sequence, Northern analysis, and the embryonic expression pattern of candidate cDNAs for 10 genes: astray, chrowded, dalmatian, gluon, hoi-polloi, melted, pebble, skittles, sticky ch1, and vegetable. This study allows us to draw conclusions about the identity of proteins required for the development of the nervous system in Drosophila and provides an example of a molecular approach to characterize en masse transposon-tagged mutations identified in genetic screens.
Collapse
Affiliation(s)
- S N Prokopenko
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
3903
|
Affiliation(s)
- F Lyko
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
3904
|
Petruti-Mot AS, Earnshaw WC. Two differentially spliced forms of topoisomerase IIalpha and beta mRNAs are conserved between birds and humans. Gene 2000; 258:183-92. [PMID: 11111056 DOI: 10.1016/s0378-1119(00)00465-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Screening of chicken cDNA libraries has identified four distinct forms of topoisomerase IIalpha and beta cDNAs. Two of these, designated topo IIalpha-1 and topo IIbeta-1, were previously deposited in the database. The other two, topo IIalpha-2 and topo IIbeta-2, are novel variants that appear to be conserved between chicken and human. Topo IIalpha-2 encodes a protein with an additional 35 amino acids inserted after K321 of the chicken topo IIalpha-1 protein sequence. Topo IIbeta-2 encodes a protein missing 86 amino acids following V27 in the topo IIbeta-1 protein sequence. We have also detected several alternatively spliced forms of human topo IIalpha. One of these, topo IIalpha-3, appears to correspond to chicken topo IIalpha-2. The other two are novel. The existence of these alternatively spliced forms in mature cytoplasmic RNA was confirmed by RT-PCR in several cell lines. Interestingly, these alternatively spliced forms carry sites for post-translational modification, suggesting that they may be subject to differential regulation from the canonical forms. These results suggest that cells express a more complex repertoire of topo II isoforms than previously thought, raising the possibility that different forms of topo II may fulfil specialized functions in chromosome dynamics.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm
- Base Sequence
- Chickens/genetics
- Conserved Sequence
- DNA/chemistry
- DNA/genetics
- DNA Topoisomerases, Type II/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins
- Genetic Variation
- HeLa Cells
- Humans
- Isoenzymes/genetics
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A S Petruti-Mot
- Wellcome Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
3905
|
|
3906
|
Carvalho AB, Lazzaro BP, Clark AG. Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proc Natl Acad Sci U S A 2000; 97:13239-44. [PMID: 11069293 PMCID: PMC27209 DOI: 10.1073/pnas.230438397] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular identity and function of the Drosophila melanogaster Y-linked fertility factors have long eluded researchers. Although the D. melanogaster genome sequence was recently completed, the fertility factors still were not identified, in part because of low cloning efficiency of heterochromatic Y sequences. Here we report a method for iterative blast searching to assemble heterochromatic genes from shotgun assemblies, and we successfully identify kl-2 and kl-3 as 1beta- and gamma-dynein heavy chains, respectively. Our conclusions are supported by formal genetics with X-Y translocation lines. Reverse transcription-PCR was successful in linking together unmapped sequence fragments from the whole-genome shotgun assembly, although some sequences were missing altogether from the shotgun effort and had to be generated de novo. We also found a previously undescribed Y gene, polycystine-related (PRY). The closest paralogs of kl-2, kl-3, and PRY (and also of kl-5) are autosomal and not X-linked, suggesting that the evolution of the Drosophila Y chromosome has been driven by an accumulation of male-related genes arising de novo from the autosomes.
Collapse
Affiliation(s)
- A B Carvalho
- Institute of Molecular Evolutionary Genetics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
3907
|
Llano E, Pendás AM, Aza-Blanc P, Kornberg TB, López-Otín C. Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem 2000; 275:35978-85. [PMID: 10964925 DOI: 10.1074/jbc.m006045200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized a cDNA encoding Dm1-MMP, the first matrix metalloproteinase (MMP) identified in Drosophila melanogaster. The isolated cDNA encodes a protein of 541 residues that has a domain organization identical to that of most vertebrate MMPs including a signal sequence, a prodomain with the activation locus, a catalytic domain with a zinc-binding site, and a COOH-terminal hemopexin domain. Northern blot analysis of Dm1-MMP expression in embryonic and larval adult tissues revealed a strong expression level in the developing embryo at 10-22 h, declining thereafter and being undetectable in adults. Western blot analysis confirmed the presence of pro- and active forms of Dm1-MMP in vivo during larval development. In situ hybridization experiments demonstrated that Dm1-MMP is expressed in a segmented pattern in cell clusters at the midline during embryonic stage 12-13, when neurons of the central nervous system start to arise. Recombinant Dm1-MMP produced in Escherichia coli exhibits a potent proteolytic activity against synthetic peptides used for analysis of vertebrate MMPs. This activity is inhibited by tissue inhibitors of metalloproteinases and by synthetic MMP inhibitors such as BB-94. Furthermore, Dm1-MMP is able to degrade the extracellular matrix and basement membrane proteins fibronectin and type IV collagen. On the basis of these data, together with the predominant expression of Dm1-MMP in embryonic neural cells, we propose that this enzyme may be involved in the extracellular matrix remodeling taking place during the development of the central nervous system in Drosophila.
Collapse
Affiliation(s)
- E Llano
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Instituto Universitario de Oncologia, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | | | |
Collapse
|
3908
|
Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408:325-30. [PMID: 11099033 DOI: 10.1038/35042517] [Citation(s) in RCA: 1281] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Complete genomic sequence is known for two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and it will soon be known for humans. However, biological function has been assigned to only a small proportion of the predicted genes in any animal. Here we have used RNA-mediated interference (RNAi) to target nearly 90% of predicted genes on C. elegans chromosome I by feeding worms with bacteria that express double-stranded RNA. We have assigned function to 13.9% of the genes analysed, increasing the number of sequenced genes with known phenotypes on chromosome I from 70 to 378. Although most genes with sterile or embryonic lethal RNAi phenotypes are involved in basal cell metabolism, many genes giving post-embryonic phenotypes have conserved sequences but unknown function. In addition, conserved genes are significantly more likely to have an RNAi phenotype than are genes with no conservation. We have constructed a reusable library of bacterial clones that will permit unlimited RNAi screens in the future; this should help develop a more complete view of the relationships between the genome, gene function and the environment.
Collapse
Affiliation(s)
- A G Fraser
- Wellcome/CRC Institute, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
3909
|
Boube M, Faucher C, Joulia L, Cribbs DL, Bourbon HM. Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification. Genes Dev 2000; 14:2906-17. [PMID: 11090137 PMCID: PMC317059 DOI: 10.1101/gad.17900] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The origins of specificity in gene expression are a central concern in understanding developmental control. Mediator protein complexes regulate transcriptional initiation, acting as modular adaptors linking specific transcription factors to core RNA polymerase II. Here, we identified the Drosophila homologs of 23 human mediator genes and mutations of two, dTRAP240 and of dTRAP80 (the putative fly homolog of yeast SRB4). Clonal analysis indicates a general role for dTRAP80 necessary for cell viability. The dTRAP240 gene is also essential, but cells lacking its function are viable and proliferate normally. Clones reveal localized developmental activities including a sex comb cell identity function. This contrasts with the ubiquitous nuclear accumulation of dTRAP240 protein in imaginal discs. Synergistic genetic interactions support shared developmental cell and segment identity functions of dTRAP240 and dTRAP80, potentially within a common complex. Further, they identify the homeotic Sex combs reduced product, required for the same cell/tissue identities, as a functional partner of these mediator proteins.
Collapse
Affiliation(s)
- M Boube
- Centre de Biologie du Développement-CNRS, 31062 Toulouse CEDEX 04, France
| | | | | | | | | |
Collapse
|
3910
|
Pile LA, Wassarman DA. Chromosomal localization links the SIN3-RPD3 complex to the regulation of chromatin condensation, histone acetylation and gene expression. EMBO J 2000; 19:6131-40. [PMID: 11080159 PMCID: PMC305822 DOI: 10.1093/emboj/19.22.6131] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Revised: 08/31/2000] [Accepted: 09/22/2000] [Indexed: 11/12/2022] Open
Abstract
Acetylation of core histone N-terminal tails influences chromatin condensation and transcription. To examine how the SIN3-RPD3 deacetylase complex contributes to these events in vivo, we examined binding of SIN3 and RPD3 to Drosophila salivary gland polytene chromosomes. The binding patterns of SIN3 and RPD3 were highly coincident, suggesting that the SIN3-RPD3 complex is the most abundant chromatin-bound RPD3 complex in salivary gland cells. SIN3- RPD3 binding was restricted to less condensed, hypoacetylated euchromatic interbands and was absent from moderately condensed, hyperacetylated euchromatic bands and highly condensed, differentially acetylated centric heterochromatin. Consistent with its demonstrated role in transcriptional repression, SIN3-RPD3 did not co-localize with RNA polymer ase II. Chromatin binding of the complex, mediated by SMRTER, decreased upon ecdysone-induced transcriptional activation but was restored when transcription was reduced. These results implicate SIN3-RPD3 in maintaining histone acetylation levels or patterns within less condensed chromatin domains and suggest that SIN3-RPD3 activity is required, in the absence of an activation signal, to repress transcription of particular genes within transcriptionally active chromatin domains.
Collapse
Affiliation(s)
- L A Pile
- National Institutes of Health, National Institute of Child Health and Human Development, Cell Biology and Metabolism Branch, Building 18T, Room 101, Bethesda, MD 20892, USA
| | | |
Collapse
|
3911
|
Niemeyer BA, Schwarz TL. SNAP-24, a Drosophila SNAP-25 homologue on granule membranes, is a putative mediator of secretion and granule-granule fusion in salivary glands. J Cell Sci 2000; 113 ( Pt 22):4055-64. [PMID: 11058092 DOI: 10.1242/jcs.113.22.4055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion of vesicles with target membranes is dependent on the interaction of target (t) and vesicle (v) SNARE (soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor) proteins located on opposing membranes. For fusion at the plasma membrane, the t-SNARE SNAP-25 is essential. In Drosophila, the only known SNAP-25 isoform is specific to neuronal axons and synapses and additional t-SNAREs must exist that mediate both non-synaptic fusion in neurons and constitutive and regulated fusion in other cells. Here we report the identification and characterization of SNAP-24, a closely related Drosophila SNAP-25 homologue, that is expressed throughout development. The spatial distribution of SNAP-24 in the nervous system is punctate and, unlike SNAP-25, is not concentrated in synaptic regions. In vitro studies, however, show that SNAP-24 can form core complexes with syntaxin and both synaptic and non-synaptic v-SNAREs. High levels of SNAP-24 are found in larval salivary glands, where SNAP-24 localizes mainly to granule membranes rather than the plasma membrane. During glue secretion, the massive exocytotic event of these glands, SNAP-24 containing granules fuse with one another and the apical membrane, suggesting that glue secretion utilizes compound exocytosis and that SNAP-24 mediates secretion.
Collapse
Affiliation(s)
- B A Niemeyer
- Department of Molecular and Cellular Physiology, Stanford Medical School, Stanford, CA 94305, USA.
| | | |
Collapse
|
3912
|
Molin L, Mounsey A, Aslam S, Bauer P, Young J, James M, Sharma-Oates A, Hope IA. Evolutionary conservation of redundancy between a diverged pair of forkhead transcription factor homologues. Development 2000; 127:4825-35. [PMID: 11044397 DOI: 10.1242/dev.127.22.4825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans gene pes-1 encodes a transcription factor of the forkhead family and is expressed in specific cells of the early embryo. Despite these observations suggesting pes-1 to have an important regulatory role in embryogenesis, inactivation of pes-1 caused no apparent phenotype. This lack of phenotype is a consequence of genetic redundancy. Whereas a weak, transitory effect was observed upon disruption of just T14G12.4 (renamed fkh-2) gene function, simultaneous disruption of the activity of both fkh-2 and pes-1 resulted in a penetrant lethal phenotype. Sequence comparison suggests these two forkhead genes are not closely related and the functional association of fkh-2 and pes-1 was only explored because of the similarity of their expression patterns. Conservation of the fkh-2/pes-1 genetic redundancy between C. elegans and the related species C. briggsae was demonstrated. Interestingly the redundancy in C. briggsae is not as complete as in C. elegans and this could be explained by alterations of pes-1 specific to the C. briggsae ancestry. With overlapping function retained on an evolutionary time-scale, genetic redundancy may be extensive and expression pattern data could, as here, have a crucial role in characterization of developmental processes.
Collapse
Affiliation(s)
- L Molin
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
3913
|
Hirosawa-Takamori M, Jäckle H, Vorbrüggen G. The class 2 selenophosphate synthetase gene of Drosophila contains a functional mammalian-type SECIS. EMBO Rep 2000; 1:441-6. [PMID: 11258485 PMCID: PMC1083760 DOI: 10.1093/embo-reports/kvd087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthesis of monoselenophosphate, the selenium donor required for the synthesis of selenocysteine (Sec) is catalyzed by the enzyme selenophosphate synthetase (SPS), first described in Escherichia coli. SPS homologs were identified in archaea, mammals and Drosophila. In the latter, however, an amino acid replacement is present within the catalytic domain and lacks selenide-dependent SPS activity. We describe the identification of a novel Drosophila homolog, Dsps2. The open reading frame of Dsps2 mRNA is interrupted by an UGA stop codon. The 3'UTR contains a mammalian-like Sec insertion sequence which causes translational readthrough in both transfected Drosophila cells and transgenic embryos. Thus, like vertebrates, Drosophila contains two SPS enzymes one with and one without Sec in its catalytic domain. Our data indicate further that the selenoprotein biosynthesis machinery is conserved between mammals and fly, promoting the use of Drosophila as a genetic tool to identify components and mechanistic features of the synthesis pathway.
Collapse
MESH Headings
- 3' Untranslated Regions
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Blotting, Western
- Catalytic Domain
- Cells, Cultured
- Cloning, Molecular
- Codon, Terminator
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Drosophila/enzymology
- Drosophila/genetics
- Drosophila Proteins
- Electrophoresis, Polyacrylamide Gel
- Embryo, Nonmammalian/metabolism
- Expressed Sequence Tags
- Humans
- In Situ Hybridization
- Models, Genetic
- Molecular Sequence Data
- Open Reading Frames
- Phosphotransferases/chemistry
- Phosphotransferases/genetics
- Protein Biosynthesis
- Proteins
- RNA, Messenger/metabolism
- Selenoproteins
- Sequence Analysis, DNA
- Transfection
Collapse
Affiliation(s)
- M Hirosawa-Takamori
- Max-Planck-Institut für biophysikalische Chemie, Abt Molekulare Entwicklungsbiologie, Göttingen, Germany
| | | | | |
Collapse
|
3914
|
Featherstone DE, Broadie K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res Bull 2000; 53:501-11. [PMID: 11165785 DOI: 10.1016/s0361-9230(00)00383-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Drosophila are excellent models for the study of synaptic development and plasticity, thanks to the availability and applicability of a wide variety of powerful molecular, genetic, and cell-biology techniques. Three decades of study have led to an intimate understanding of the sequence of events leading to a functional and plastic synapse, yet many of the molecular mechanisms underlying these events are still poorly understood. Here, we provide a review of synaptogenesis at the Drosophila glutamatergic neuromuscular junction (NMJ). Next, we discuss the role of two proteins that forward genetic screens in Drosophila have revealed to play crucial-and completely unexpected-roles in NMJ development and plasticity: the origin of replication complex protein Latheo, and the enzyme glutamate decarboxylase. The requirement for these proteins at the NMJ highlights the fact that synaptic development and plasticity involves intense inter- and intracellular signaling about which we know almost nothing.
Collapse
Affiliation(s)
- D E Featherstone
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA.
| | | |
Collapse
|
3915
|
Nakatsu Y, Asahina H, Citterio E, Rademakers S, Vermeulen W, Kamiuchi S, Yeo JP, Khaw MC, Saijo M, Kodo N, Matsuda T, Hoeijmakers JH, Tanaka K. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J Biol Chem 2000; 275:34931-7. [PMID: 10944529 DOI: 10.1074/jbc.m004936200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is a highly versatile DNA repair system responsible for elimination of a wide variety of lesions from the genome. It is comprised of two subpathways: transcription-coupled repair that accomplishes efficient removal of damage blocking transcription and global genome repair. Recently, the basic mechanism of global genome repair has emerged from biochemical studies. However, little is known about transcription-coupled repair in eukaryotes. Here we report the identification of a novel protein designated XAB2 (XPA-binding protein 2) that was identified by virtue of its ability to interact with XPA, a factor central to both nucleotide excision repair subpathways. The XAB2 protein of 855 amino acids consists mainly of 15 tetratricopeptide repeats. In addition to interacting with XPA, immunoprecipitation experiments demonstrated that a fraction of XAB2 is able to interact with the transcription-coupled repair-specific proteins CSA and CSB as well as RNA polymerase II. Furthermore, antibodies against XAB2 inhibited both transcription-coupled repair and transcription in vivo but not global genome repair when microinjected into living fibroblasts. These results indicate that XAB2 is a novel component involved in transcription-coupled repair and transcription.
Collapse
Affiliation(s)
- Y Nakatsu
- Institute for Molecular and Cellular Biology, Osaka University, and CREST, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3916
|
Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000; 14:2712-24. [PMID: 11069888 PMCID: PMC317034 DOI: 10.1101/gad.835000] [Citation(s) in RCA: 490] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70(S6K)) in vitro, and we demonstrate that overexpression of p70(S6K) in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability.
Collapse
Affiliation(s)
- H Zhang
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | |
Collapse
|
3917
|
Abstract
Protein-protein interactions mediate many important cellular processes and are central to the mechanisms by which most proteins function. Charting the interactions among the proteins involved in a process has been an essential step in characterising the function of proteins and pathways. The yeast two-hybrid system is one approach to detecting protein interactions that can now be scaled-up to assay large sets of proteins systematically, such as those being identified from genome sequencing efforts. The system has already been extensively used to acquire data that have enabled construction of large protein interaction maps (PIMs). When combined with other data, including data being generated by other functional genomics approaches, PIMs help assign function to new proteins and delineate functional networks. Hypotheses generated in such a manner often must be tested by additional experimentation, preferably in vivo. The model organism Drosophila melanogaster has a wealth of genetic and bioinformatic tools available for such analyses. The proteome predicted from the recently sequenced Drosophila genome indicates that humans have more genes in common with Drosophila than with any other invertebrate model organism characterised to date. Thus, the construction and characterisation of Drosophila PIMs will help define the functions of many conserved genes and pathways, and will provide the pharmaceutical research industry with invaluable data to assist with drug target identification and validation.
Collapse
Affiliation(s)
- C A Stanyon
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | |
Collapse
|
3918
|
Martin-Bermudo MD, Brown NH. The localized assembly of extracellular matrix integrin ligands requires cell-cell contact. J Cell Sci 2000; 113 Pt 21:3715-23. [PMID: 11034900 DOI: 10.1242/jcs.113.21.3715] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of an organism requires the interaction between different layers of cells, in many cases via an extracellular matrix. In the developing Drosophila larva, muscles attach in an integrin-dependent manner to the epidermis, via a specialized extracellular matrix called tendon matrix. Tiggrin, a tendon matrix integrin ligand, is primarily synthesized by cells distant to the muscle attachment sites, yet it accumulates specifically at these sites. Previous work has shown that the PS integrins are not required for tiggrin localization, suggesting that there is redundancy among tiggrin receptors. We have examined this by testing whether the PS2 integrin can recruit tiggrin to ectopic locations within the Drosophila embryo. We found that neither the wild type nor modified forms of the PS2 integrin, which have higher affinity for tiggrin, can recruit tiggrin to new cellular contexts. Next, we genetically manipulated the fate of the muscles and the epidermal muscle attachment cells, which demonstrated that muscles have the primary role in recruiting tiggrin to the tendon matrix and that cell-cell contact is necessary for this recruitment. Thus we propose that the inherent polarity of the muscle cells leads to a molecular specialization of their ends, and interactions between the ends produces an integrin-independent tiggrin receptor. Thus, interaction between cells generates an extracellular environment capable of nucleating extracellular matrix assembly.
Collapse
Affiliation(s)
- M D Martin-Bermudo
- Wellcome/CRC Institute, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
3919
|
Giglione C, Serero A, Pierre M, Boisson B, Meinnel T. Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 2000; 19:5916-29. [PMID: 11060042 PMCID: PMC305796 DOI: 10.1093/emboj/19.21.5916] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The N-terminal protein processing pathway is an essential mechanism found in all organisms. However, it is widely believed that deformylase, a key enzyme involved in this process in bacteria, does not exist in eukaryotes, thus making it a target for antibacterial agents such as actinonin. In an attempt to define this process in higher eukaryotes we have used Arabidopsis thaliana as a model organism. Two deformylase cDNAs, the first identified in any eukaryotic system, and six distinct methionine aminopeptidase cDNAs were cloned. The corresponding proteins were characterized in vivo and in vitro. Methionine aminopeptidases were found in the cytoplasm and in the organelles, while deformylases were localized in the organelles only. Our work shows that higher plants have a much more complex machinery for methionine removal than previously suspected. We were also able to identify deformylase homologues from several animals and clone the corresponding cDNA from human cells. Our data provide the first evidence that lower and higher eukaryotes, as well as bacteria, share a similar N-terminal protein processing machinery, indicating universality of this system.
Collapse
Affiliation(s)
- C Giglione
- Institut des Sciences Végétales, UPR40, Centre National de la Recherche Scientifique, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
3920
|
Abstract
Background (purifying) selection on deleterious mutations is expected to remove linked neutral mutations from a population, resulting in a positive correlation between recombination rate and levels of neutral genetic variation, even for markers with high mutation rates. We tested this prediction of the background selection model by comparing recombination rate and levels of microsatellite polymorphism in humans. Published data for 28 unrelated Europeans were used to estimate microsatellite polymorphism (number of alleles, heterozygosity, and variance in allele size) for loci throughout the genome. Recombination rates were estimated from comparisons of genetic and physical maps. First, we analyzed 61 loci from chromosome 22, using the complete sequence of this chromosome to provide exact physical locations. These 61 microsatellites showed no correlation between levels of variation and recombination rate. We then used radiation-hybrid and cytogenetic maps to calculate recombination rates throughout the genome. Recombination rates varied by more than one order of magnitude, and most chromosomes showed significant suppression of recombination near the centromere. Genome-wide analyses provided no evidence for a strong positive correlation between recombination rate and polymorphism, although analyses of loci with at least 20 repeats suggested a weak positive correlation. Comparisons of microsatellites in lowest-recombination and highest-recombination regions also revealed no difference in levels of polymorphism. Together, these results indicate that background selection is not a major determinant of microsatellite variation in humans.
Collapse
Affiliation(s)
- B A Payseur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
3921
|
Abstract
Reverse genetic techniques will be necessary to take full advantage of the genomic sequence data for Drosophila and other experimental organisms. To develop a method for the targeted recovery of mutations, we combined an EMS chemical mutagenesis regimen with mutation detection by denaturing high performance liquid chromatography (DHPLC). We recovered mutant strains at the high rate of approximately 4.8 mutations/kb for every 1000 mutagenized chromosomes from a screen for new mutations in the Drosophila awd gene. Furthermore, we observed that the EMS mutational spectrum in Drosophila germ cells shows a strong preference for 5'-PuG-3' sites, and for G/C within a stretch of three or more G/C base pairs. Our method should prove useful for targeted mutagenesis screens in Drosophila and other genetically tractable organisms and for more precise studies of mutagenesis and DNA repair mechanisms.
Collapse
Affiliation(s)
- A Bentley
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
3922
|
Boylan K, Serr M, Hays T. A molecular genetic analysis of the interaction between the cytoplasmic dynein intermediate chain and the glued (dynactin) complex. Mol Biol Cell 2000; 11:3791-803. [PMID: 11071907 PMCID: PMC15037 DOI: 10.1091/mbc.11.11.3791] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule motor cytoplasmic dynein performs multiple cellular functions; however, the regulation and targeting of the motor to different cargoes is not well understood. A biochemical interaction between the dynein intermediate chain subunit and the p150-Glued component of the dynein regulatory complex, dynactin, has supported the hypothesis that the intermediate chain is a key modulator of dynein attachment to cellular cargoes. In this report, we identify multiple intermediate chain polypeptides that cosediment with the 19S dynein complex and two differentially expressed transcripts derived from the single cytoplasmic dynein intermediate chain (Cdic) gene that differ in the 3' untranslated region sequence. These results support previous observations of multiple Cdic gene products that may contribute to the specialization of dynein function. Most significantly, we provide genetic evidence that the interaction between the dynein intermediate chain and p150-Glued is functionally relevant. We use a genomic Cdic transgene to show that extra copies of the dynein intermediate chain gene act to suppress the rough eye phenotype of the mutant Glued(1), a mutation in the p150-Glued subunit of dynactin. Furthermore, we show that the interaction between the dynein intermediate chain and p150-Glued is dependent on the dosage of the Cdic gene. This result suggests that the dynein intermediate chain may be a limiting component in the assembly of the dynein complex and that the regulation of the interaction between the dynein intermediate chain and dynactin is critical for dynein function.
Collapse
Affiliation(s)
- K Boylan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
3923
|
Abstract
Chromatin insulators might regulate gene expression by controlling the subnuclear organization of DNA. We found that a DNA sequence normally located inside of the nucleus moved to the periphery when the gypsy insulator was placed within the sequence. The presence of the gypsy insulator also caused two sequences, normally found in different regions of the nucleus, to come together at a single location. Alterations in this subnuclear organization imposed by the gypsy insulator correlated with changes in gene expression that took place during the heat-shock response. These global changes in transcription were accompanied by dramatic alterations in the distribution of insulator proteins and DNA. The results suggest that the nuclear organization imposed by the gypsy insulator on the chromatin fiber is important for gene expression.
Collapse
Affiliation(s)
- T I Gerasimova
- Department of Biology The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
3924
|
Amherd R, Hintermann E, Walz D, Affolter M, Meyer UA. Purification, cloning, and characterization of a second arylalkylamine N-acetyltransferase from Drosophila melanogaster. DNA Cell Biol 2000; 19:697-705. [PMID: 11098219 DOI: 10.1089/10445490050199081] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In insects, amine acetylation by the enzyme arylalkylamine N-acetyltransferase (AANAT) is involved in melatonin formation, sclerotization, and neurotransmitter inactivation. This wide spectrum of activities suggests that several AANAT enzymes are present. We recently purified a protein fraction with AANAT activity from Drosophila melanogaster and cloned the corresponding gene, aaNAT1. Following the same strategy, we now report the purification of an additional AANAT from D. melanogaster, AANAT2, and the cloning of the corresponding cDNA. The isolated protein differs from AANAT1a and AANAT1b in its molecular weight and isoelectric point. The AANAT2 shares about 30% identity with the products of the aaNAT1 gene. The enzyme does not follow one-site Michaelis-Menten kinetics when assayed with various concentrations of the arylalkylamine tryptamine and a constant concentration (0.5 mM) of the cofactor acetyl coenzyme A. The data can be interpreted in terms of an enzyme with two kinetic regimes (K(m1) = 7.2 microM, K(m2) = 0.6 mM, and v(max2) = 2.7 v(max1)) that are governed by binding of the substrate to a regulatory site (K(r) = 6.2 mM). These findings demonstrate the presence of a second expressed gene encoding an AANAT in D. melanogaster. Northern blot analysis revealed no diurnal variation of aaNAT2 transcription, similar to the results obtained for aaNAT1a and aaNAT1b.
Collapse
Affiliation(s)
- R Amherd
- Department of Pharmacology/Neurobiology, Biozentrum of the University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
3925
|
Thomson TM, Lozano JJ, Loukili N, Carrió R, Serras F, Cormand B, Valeri M, Díaz VM, Abril J, Burset M, Merino J, Macaya A, Corominas M, Guigó R. Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua, a newly identified gene. Genome Res 2000; 10:1743-56. [PMID: 11076860 PMCID: PMC310942 DOI: 10.1101/gr.gr-1405r] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
UEV proteins are enzymatically inactive variants of the E2 ubiquitin-conjugating enzymes that regulate noncanonical elongation of ubiquitin chains. In Saccharomyces cerevisiae, UEV is part of the RAD6-mediated error-free DNA repair pathway. In mammalian cells, UEV proteins can modulate c-FOS transcription and the G2-M transition of the cell cycle. Here we show that the UEV genes from phylogenetically distant organisms present a remarkable conservation in their exon-intron structure. We also show that the human UEV1 gene is fused with the previously unknown gene Kua. In Caenorhabditis elegans and Drosophila melanogaster, Kua and UEV are in separated loci, and are expressed as independent transcripts and proteins. In humans, Kua and UEV1 are adjacent genes, expressed either as separate transcripts encoding independent Kua and UEV1 proteins, or as a hybrid Kua-UEV transcript, encoding a two-domain protein. Kua proteins represent a novel class of conserved proteins with juxtamembrane histidine-rich motifs. Experiments with epitope-tagged proteins show that UEV1A is a nuclear protein, whereas both Kua and Kua-UEV localize to cytoplasmic structures, indicating that the Kua domain determines the cytoplasmic localization of Kua-UEV. Therefore, the addition of a Kua domain to UEV in the fused Kua-UEV protein confers new biological properties to this regulator of variant polyubiquitination.
Collapse
Affiliation(s)
- T M Thomson
- Institut de Biologia Molecular, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3926
|
Abstract
Among higher eukaryotes, very little of the genome codes for protein. What is in the rest of the genome, or the "junk" DNA, that, in Homo sapiens, is estimated to be almost 97% of the genome? Is it possible that much of this "junk" is intron DNA? This is not a question that can be answered just by looking at the published data, even from the finished genomes. One cannot assume that there are no genes in a sequenced region, just because no genes were annotated. We introduce another approach to this problem, based on an analysis of the cDNA-to-genomic alignments, in all of the complete or nearly-complete genomes from the multicellular organisms. Our conclusion is that, in animals but not in plants, most of the "junk" is intron DNA.
Collapse
Affiliation(s)
- G K Wong
- Human Genome Center, Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
3927
|
Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 2000; 14:2689-94. [PMID: 11069885 PMCID: PMC317036 DOI: 10.1101/gad.845700] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Accepted: 09/21/2000] [Indexed: 11/25/2022]
Abstract
The adaptation of growth in response to nutritional changes is essential for the proper development of all organisms. Here we describe the identification of the Drosophila homolog of the target of rapamycin (TOR), a candidate effector for nutritional sensing. Genetic and biochemical analyses indicate that dTOR impinges on the insulin signaling pathway by autonomously affecting growth through modulating the activity of dS6K. However, in contrast to other components in the insulin signaling pathway, partial loss of dTOR function preferentially reduces growth of the endoreplicating tissues. These results are consistent with dTOR residing on a parallel amino acid sensing pathway.
Collapse
Affiliation(s)
- S Oldham
- Zoologisches Institut, Universität Zürich, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
3928
|
Koch R, van Luenen HG, van der Horst M, Thijssen KL, Plasterk RH. Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. Genome Res 2000; 10:1690-6. [PMID: 11076854 PMCID: PMC310957 DOI: 10.1101/gr.gr-1471r] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Caenorhabditis elegans (isolate N2 from Bristol, UK) is the first animal of which the complete genome sequence was available. We sampled genomic DNA of natural isolates of C. elegans from four different locations (Australia, Germany, California, and Wisconsin) and found single nucleotide polymorphisms (SNPs) by comparing with the Bristol strain. SNPs are under-represented in coding regions, and many were found to be third base silent codon mutations. We tested 19 additional natural isolates for the presence and distribution of SNPs originally found in one of the four strains. Most SNPs are present in isolates from around the globe and thus are older than the latest contact between these strains. An exception is formed by an isolate from an island (Hawaii) that contains many unique SNPs, absent in the tested isolates from the rest of the world. It has been noticed previously that conserved genes (as defined by homology to genes in Saccharomyces cerevisiae) cluster in the chromosome centers. We found that the SNP frequency outside these regions is 4.5 times higher, supporting the notion of a higher rate of evolution of genes on the chromosome arms.
Collapse
Affiliation(s)
- R Koch
- The Hubrecht Laboratory, Centre for Biomedical Genetics, 3584 CT Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
3929
|
Abstract
For 50 years now, one of the enigmas of molecular evolution has been the C-value paradox, which refers to the often massive, counterintuitive and seemingly arbitrary differences in genome size observed among eukaryotic organisms. For example, the genome of the fruitfly Drosophila melanogaster is 180 megabases (Mb), whereas that of the European brown grasshopper Podisma pedestris is 18,000 Mb. The difference in genome size of a factor of 100 is difficult to explain in view of the apparently similar levels of evolutionary, developmental and behavioural complexity of these organisms.
Collapse
Affiliation(s)
- D L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
3930
|
Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:1-19. [PMID: 11080672 DOI: 10.1016/s1388-1981(00)00105-0] [Citation(s) in RCA: 995] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phospholipase A(2) (PLA(2)) superfamily consists of a broad range of enzymes defined by their ability to catalyze the hydrolysis of the middle (sn-2) ester bond of substrate phospholipids. The hydrolysis products of this reaction, free fatty acid and lysophospholipid, have many important downstream roles, and are derived from the activity of a diverse and growing superfamily of PLA(2) enzymes. This review updates the classification of the various PLA(2)'s now described in the literature. Four criteria have been employed to classify these proteins into one of the 11 Groups (I-XI) of PLA(2)'s. First, the enzyme must catalyze the hydrolysis of the sn-2 ester bond of a natural phospholipid substrate, such as long fatty acid chain phospholipids, platelet activating factor, or short fatty acid chain oxidized phospholipids. Second, the complete amino acid sequence of the mature protein must be known. Third, each PLA(2) Group should include all of those enzymes that have readily identifiable sequence homology. If more than one homologous PLA(2) gene exists within a species, then each paralog should be assigned a Subgroup letter, as in the case of Groups IVA, IVB, and IVC PLA(2). Homologs from different species should be classified within the same Subgroup wherever such assignments are possible as is the case with zebra fish and human Group IVA PLA(2) orthologs. The current classification scheme does allow for historical exceptions of the highly homologous Groups I, II, V, and X PLA(2)'s. Fourth, catalytically active splice variants of the same gene are classified as the same Group and Subgroup, but distinguished using Arabic numbers, such as for Group VIA-1 PLA(2) and VIA-2 PLA(2)'s. These four criteria have led to the expansion or realignment of Groups VI, VII and VIII, as well as the addition of Group XI PLA(2) from plants.
Collapse
Affiliation(s)
- D A Six
- Department of Chemistry and Biochemistry, MC 0601, Revelle College and School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
3931
|
Black DL. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 2000; 103:367-70. [PMID: 11081623 DOI: 10.1016/s0092-8674(00)00128-8] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- D L Black
- Howard Hughes Medical Institute, University of California, Los Angeles 90095, USA.
| |
Collapse
|
3932
|
Leemans R, Egger B, Loop T, Kammermeier L, He H, Hartmann B, Certa U, Hirth F, Reichert H. Quantitative transcript imaging in normal and heat-shocked Drosophila embryos by using high-density oligonucleotide arrays. Proc Natl Acad Sci U S A 2000; 97:12138-43. [PMID: 11035778 PMCID: PMC17307 DOI: 10.1073/pnas.210066997] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2000] [Indexed: 11/18/2022] Open
Abstract
Embryonic development in Drosophila is characterized by an early phase during which a cellular blastoderm is formed and gastrulation takes place, and by a later postgastrulation phase in which key morphogenetic processes such as segmentation and organogenesis occur. We have focused on this later phase in embryogenesis with the goal of obtaining a comprehensive analysis of the zygotic gene expression that occurs during development under normal and altered environmental conditions. For this, a functional genomic approach to embryogenesis has been developed that uses high-density oligonucleotide arrays for large-scale detection and quantification of gene expression. These oligonucleotide arrays were used for quantitative transcript imaging of embryonically expressed genes under standard conditions and in response to heat shock. In embryos raised under standard conditions, transcripts were detected for 37% of the 1,519 identified genes represented on the arrays, and highly reproducible quantification of gene expression was achieved in all cases. Analysis of differential gene expression after heat shock revealed substantial expression level changes for known heat-shock genes and identified numerous heat shock-inducible genes. These results demonstrate that high-density oligonucleotide arrays are sensitive, efficient, and quantitative instruments for the analysis of large scale gene expression in Drosophila embryos.
Collapse
Affiliation(s)
- R Leemans
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
3933
|
Honda S, Kashiwagi M, Miyamoto K, Takei Y, Hirose S. Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J Biol Chem 2000; 275:33151-7. [PMID: 10924498 DOI: 10.1074/jbc.m002337200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lectins, a group of proteins that bind to cell surface carbohydrates and play important roles in innate immunity, are widely used experimentally to distinguish cell types and to induce cell proliferation. Eel serum lectins have been useful as anti-H hemagglutinins and also in lectin histochemistry as fucose-binding lectins (fucolectins), but their structures have not been determined. Here we report the primary structures and the sites of synthesis of eel fucolectins. Eel serum fucolectins were separated by two-dimensional gel electrophoresis and sequenced. cDNA cloning, based on the amino acid sequence information, and Northern blot analysis indicated that 1) the fucose-binding lectins are secretory proteins and have unique structures among the lectins, exhibiting only weak similarities to frog pentraxin, horseshoe crab tachylectin-4, and fly fw protein; 2) there are at least seven closely related members; and 3) their messages are abundantly expressed in the liver and in significant levels in the gill and intestine. The lectin-producing hepatic cells were identified by immunostaining; in the gill, exocrine mucous cells were stained, suggesting that serum fucolectins derive from the liver. Using primary culture of eel hepatocytes, the message levels were shown to be increased by lipopolysaccharide, suggesting a role for fucolectins in host defense. SDS-polyacrylamide gel electrophoresis analysis showed that eel fucolectins have a SDS-resistant tetrameric structure consisting of two disulfide-linked dimers.
Collapse
Affiliation(s)
- S Honda
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
3934
|
Guichard A, Roark M, Ronshaugen M, Bier E. brother of rhomboid, a rhomboid-related gene expressed during early Drosophila oogenesis, promotes EGF-R/MAPK signaling. Dev Biol 2000; 226:255-66. [PMID: 11023685 DOI: 10.1006/dbio.2000.9851] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila rhomboid (rho) gene participates in localized activation of EGF-receptor signaling in various developmental settings. The Rhomboid protein has been proposed to promote presentation and/or processing of the membrane-bound Spitz (mSpi) EGF-related ligand to generate an active diffusible form of the ligand. Here, we report on a new rhomboid-related gene identified by sequence similarity searching that we have named brother of rhomboid (brho). In contrast to rho, which is expressed in complex patterns during many stages of development, brho appears to be expressed only during oogenesis. brho transcripts are present in early oocytes and abut posterior follicle cells which exhibit high levels of MAPK activation. brho, like rho, collaborates with Star to promote signaling through the EGF-R/MAPK pathway, and genetic evidence indicates that Brho can activate both the mSpi and the Grk precursor EGF ligands in the wing. We propose that endogenous brho may activate the oocyte-specific Gurken ligand and thereby participate in defining posterior cell fates in the early follicular epithelium.
Collapse
Affiliation(s)
- A Guichard
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0349, USA
| | | | | | | |
Collapse
|
3935
|
Zolnierowicz S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem Pharmacol 2000; 60:1225-35. [PMID: 11007961 DOI: 10.1016/s0006-2952(00)00424-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Type 2A protein phosphatase (PP2A) comprises a diverse family of phosphoserine- and phosphothreonine-specific enzymes ubiquitously expressed in eukaryotic cells. Common to all forms of PP2A is a catalytic subunit (PP2Ac) which can form two distinct complexes, one with a structural subunit termed PR65/A and another with an alpha4 protein. The PR65/A-PP2Ac dimer may further associate with a regulatory subunit and form a trimeric holoenzyme. To date, three distinct families of regulatory subunits, which control substrate selectivity and phosphatase activity and target PP2A holoenzymes to their substrates, have been identified. Other molecular mechanisms that regulate PP2Ac function include phosphorylation, carboxyl methylation, inhibition by intracellular protein inhibitors (I(1)(PP2A) and I(2)(PP2A)), and stimulation by ceramide. PP2A dephosphorylates many proteins in vitro, but in vivo protein kinases and transcription factors appear to represent two major sets of substrates. Several natural compounds can inhibit PP2A activity and are used to study its function. Mutations in genes encoding PR65/A subunits have been identified in several different human cancers and the PP2A inhibitor, termed fostriecin, is being tested as an anticancer drug. Thus, a more thorough understanding of PP2A structure and function may lead to the development of novel strategies against human diseases.
Collapse
Affiliation(s)
- S Zolnierowicz
- Intercollegiate Faculty of Biotechnology UG-MUG, Gdansk, Poland.
| |
Collapse
|
3936
|
Andrulis ED, Guzmán E, Döring P, Werner J, Lis JT. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev 2000; 14:2635-49. [PMID: 11040217 PMCID: PMC316984 DOI: 10.1101/gad.844200] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated roles for Spt4, Spt5, and Spt6 in the regulation of transcriptional elongation in both yeast and humans. Here, we show that Drosophila Spt5 and Spt6 colocalize at a large number of transcriptionally active chromosomal sites on polytene chromosomes and are rapidly recruited to endogenous and transgenic heat shock loci upon heat shock. Costaining with antibodies to Spt6 and to either the largest subunit of RNA polymerase II or cyclin T, a subunit of the elongation factor P-TEFb, reveals that all three factors have a similar distribution at sites of active transcription. Crosslinking and immunoprecipitation experiments show that Spt5 is present at uninduced heat shock gene promoters, and that upon heat shock, Spt5 and Spt6 associate with the 5' and 3' ends of heat shock genes. Spt6 is recruited within 2 minutes of a heat shock, similar to heat shock factor (HSF); moreover, this recruitment is dependent on HSF. These findings provide support for the roles of Spt5 in promoter-associated pausing and of Spt5 and Spt6 in transcriptional elongation in vivo.
Collapse
Affiliation(s)
- E D Andrulis
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
3937
|
Sekyere E, Richardson DR. The membrane-bound transferrin homologue melanotransferrin: roles other than iron transport? FEBS Lett 2000; 483:11-6. [PMID: 11033347 DOI: 10.1016/s0014-5793(00)02079-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melanotransferrin (MTf) is a membrane-bound transferrin (Tf) homologue that is found at high levels in melanoma cells. MTf has many characteristics in common with serum Tf and previous studies have shown that it can bind Fe. This has led to speculation that MTf may be involved in Fe transport. Because Fe is required for a variety of metabolic reactions including ATP and DNA synthesis, MTf could play a role in proliferation. However, recently it has been shown that MTf plays very little role in Fe uptake by melanoma cells, and unlike other Fe transport molecules (e.g. the transferrin receptor), its expression is not controlled by Fe. In the present review the function of MTf is discussed in relation to data suggesting other roles apart from Fe uptake.
Collapse
Affiliation(s)
- E Sekyere
- The Iron Metabolism and Chelation Group, The Heart Research Institute, 145 Missenden Rd, Camperdown, 2050, Sydney, N.S.W., Australia
| | | |
Collapse
|
3938
|
Abstract
It has been suggested that sexual reproduction is maintained because it reduces the load imposed by recurrent deleterious mutations. If rates of deleterious mutation per diploid genome per generation (U) exceed 1, and mutations interact synergistically, then sexuals can overcome their inherent twofold disadvantage. We have tested this hypothesis by estimating genomic point mutation rates for protein-coding genes in a range of animal taxa. We find a positive linear relationship between U and generation time. In species with short generation times, U is predicted to be far below 1, suggesting that sex is not maintained by its capacity to purge the genome of deleterious mutations.
Collapse
Affiliation(s)
- P D Keightley
- Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
3939
|
Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci U S A 2000; 97:11427-32. [PMID: 11027343 PMCID: PMC17216 DOI: 10.1073/pnas.97.21.11427] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2000] [Indexed: 11/18/2022] Open
Abstract
We show that Drosophila expresses four genes encoding proteins with significant similarities with the thiolester-containing proteins of the complement C3/alpha(2)-macroglobulin superfamily. The genes are transcribed at a low level during all stages of development, and their expression is markedly up-regulated after an immune challenge. For one of these genes, which is predominantly expressed in the larval fat body, we observe a constitutive expression in gain-of-function mutants of the Janus kinase (JAK) hop and a reduced inducibility in loss-of-function hop mutants. We also observe a constitutive expression in gain-of-function Toll mutants. We discuss the possible roles of these novel complement-like proteins in the Drosophila host defense.
Collapse
Affiliation(s)
- M Lagueux
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Propre de Recherche, Strasbourg, France.
| | | | | | | | | |
Collapse
|
3940
|
Samson ML. Drosophila arginase is produced from a nonvital gene that contains the elav locus within its third intron. J Biol Chem 2000; 275:31107-14. [PMID: 10878001 DOI: 10.1074/jbc.m001346200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of the arginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of the arginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. A Drosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginase gene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.
Collapse
Affiliation(s)
- M L Samson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-4525, USA.
| |
Collapse
|
3941
|
Ohashi K, Hosoya T, Takahashi K, Hing H, Mizuno K. A Drosophila homolog of LIM-kinase phosphorylates cofilin and induces actin cytoskeletal reorganization. Biochem Biophys Res Commun 2000; 276:1178-85. [PMID: 11027607 DOI: 10.1006/bbrc.2000.3599] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian LIM-kinases (LIMKs) phosphorylate cofilin and induce actin cytoskeletal reorganization. To elucidate the functional roles of LIMKs in vivo during developmental processes, we attempted to isolate the cDNA encoding a Drosophila homolog of LIMK (DLIMK) and identified two isoforms of DLIMK transcripts coding for proteins with 1235 and 1257 amino acids, possessing the structure composed of two LIM domains, a PDZ domain, a protein kinase domain, and an unusual long C-terminal extension. In situ hybridization analysis in Drosophila embryos detected the uniformly distributed DLIMK mRNA in stages 2 to 5. In vitro kinase reaction revealed that DLIMK efficiently phosphorylates Drosophila cofilin (twinstar) specifically at Ser-3, the site responsible for inactivation of its actin-depolymerizing activity. When expressed in cultured cells, wild-type DLIMK, but not its kinase-inactive form, induced changes in actin cytoskeletal organization. These observations suggest that the LIMK-cofilin signaling pathway for regulating actin filament dynamics is evolutionarily conserved between Drosophila and mammals.
Collapse
Affiliation(s)
- K Ohashi
- Biological Institute, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
3942
|
Ladomery M, Marshall R, Arif L, Sommerville J. 4SR, a novel zinc-finger protein with SR-repeats, is expressed during early development of Xenopus. Gene 2000; 256:293-302. [PMID: 11054559 DOI: 10.1016/s0378-1119(00)00375-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein C4SR contains two cysteine(4) (C(4)) zinc-finger motifs at its amino terminus, a stretch of acidic residues in the middle and a series of serine-arginine (SR) repeats at its carboxyl terminus. A cDNA clone encoding the zinc-finger domain was first selected from a Xenopus laevis oocyte expression library on the basis of the ability of the fusion protein to stably bind an RNA probe. The mRNA encoding C4SR is expressed during oogenesis, and the protein is present at a constant level in oocytes and early embryos. The C4SR protein is expressed in transcriptionally active erythroblasts but not in transcriptionally inert mature erythrocytes. An epitope-tagged C4SR protein, expressed in oocytes, associates with nascent transcripts at many loci in lampbrush chromosomes and is absent from storage particles (snurposomes) containing the normally recognized complement of RNA splicing components. It is likely that C4SR is involved in pre-mRNA transcription/packaging rather than in exon splicing. The zinc-finger motif, present as two copies in C4SR, is also present in a range of transcription-associated proteins. We suggest the descriptor (DW)C(4), in which DW refers to the invariant aspartic acid (D)/tryptophan (W) dipeptide that precedes the first cysteine residue, for this distinctive zinc-finger structure.
Collapse
Affiliation(s)
- M Ladomery
- Division of Cell and Molecular Biology, University of St Andrews, School of Biological and Medical Sciences, Westburn Lane, Bute Medical Buildings C17, KY16 9TS, Fife, UK
| | | | | | | |
Collapse
|
3943
|
Chu X, Thompson D, Yee LJ, Sung LA. Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments. Gene 2000; 256:271-81. [PMID: 11054557 DOI: 10.1016/s0378-1119(00)00327-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Erythrocyte tropomodulin (E-Tmod), a globular protein of 359 residues, is highly expressed in the erythrocyte, heart and skeletal muscle. By binding to the N-terminus of tropomyosin (TM) and actin, E-Tmod blocks the elongation and depolymerization of the actin filaments at the pointed end. In erythrocytes, the E-Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton. In juvenile mice, over-expression of E-Tmod is associated with dilated cardiomyopathy. We have previously cloned the human E-Tmod cDNA, identified its TM-binding region, and mapped its gene to chromosome 9q22. Through genomic library screening and PCR-based genomic walking we have now cloned the mouse E-Tmod gene, whose coding region spans approximately 60kb containing nine exons and eight introns. The human E-Tmod gene obtained by PCR has an identical exon-intron organization. In sanpodo, a Tmod homologue in Drosophila, the exon boundaries are also conserved except that exons 2-5 and 6-7 are 'fused' and alternative splicing of two additional 5' exons and the 3' exons may give rise to several sanpodo isoforms. In a Tmod-like gene of C. elegans, exons 2-3 are 'fused', boundaries of exons 1, 7, 8, and 9 are conserved and exon/intron junctions of exons 4, 5 and 6 are shifted by a few residues. Analyses of 15 Tmod members from six species show no insertions or deletions of residues in the region of exons 6 and 7. A 5' rapid amplification of cDNA ends reveals that mouse E-Tmod transcripts obtained from embryonic stem cells, skeletal muscle and heart, but not smooth muscle, contain an additional 86bp untranslated cDNA sequence further upstream from exon 1. Thus, alternative promoters may provide a possible mechanism for tissue-specific expression and regulation of E-Tmod. This study is the first to report the exon organization of E-Tmod genes, which allows their regulation, manipulation, and disease relevance to be further investigated.
Collapse
Affiliation(s)
- X Chu
- Department of Bioengineering and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | |
Collapse
|
3944
|
Abstract
Hyaluronan has been implicated in biological processes such as cell adhesion, migration and proliferation. Traditionally, it was thought to be associated with the extracellular matrix, but, hyaluronan may also have unimagined roles inside the cell. Investigation of hyaluronan synthesis and degradation, the identification of new receptors and binding proteins, and the elucidation of hyaluronan-dependent signaling pathways are providing novel insights into the true biological functions of this fascinating molecule.
Collapse
Affiliation(s)
- J Y Lee
- Rowe Program in Genetics, Department of Biological Chemistry, University of California, Davis, School of Medicine, Tupper Hall, California 95616, Davis, USA
| | | |
Collapse
|
3945
|
Brown NH. An integrin chicken and egg problem: which comes first, the extracellular matrix or the cytoskeleton? Curr Opin Cell Biol 2000; 12:629-33. [PMID: 10978900 DOI: 10.1016/s0955-0674(00)00142-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrins have the ability to organise macromolecular structures both inside and outside the cell. Analysis of integrin function in the developing embryos of worms and flies suggests that, although the extracellular matrix directs integrins to organise intracellular proteins, the cytoskeleton may have the first word.
Collapse
Affiliation(s)
- N H Brown
- Wellcome/CRC Institute and Department of Anatomy, University of Cambridge, Tennis Court Rd, CB2 1QR, Cambridge, UK.
| |
Collapse
|
3946
|
Abstract
Over the past 25 years, the genetic control of cell size has mainly been addressed in yeast, a single-celled organism. Recent insights from Drosophila have shed light on the signalling pathways responsible for adjusting and maintaining cell size in metazoans. Evidence is emerging for a signalling cascade conserved in evolution that links external nutrient sources to cell size.
Collapse
Affiliation(s)
- H Stocker
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | |
Collapse
|
3947
|
Riechmann JL, Ratcliffe OJ. A genomic perspective on plant transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:423-34. [PMID: 11019812 DOI: 10.1016/s1369-5266(00)00107-2] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Data from the Arabidopsis genome project suggest that more than 5% of the genes of this plant encode transcription factors. The necessity for the use of genomic analytical approaches becomes clear when it is considered that less than 10% of these factors have been genetically characterized. A variety of tools for functional genomic analyses in plants have been developed over the past few years. The availability of the full complement of Arabidopsis transcription factors, together with the results of recent studies that illustrate some of the challenges to their functional characterization, now provides the basic framework for future analyses of transcriptional regulation in plants.
Collapse
Affiliation(s)
- J L Riechmann
- Mendel Biotechnology, Hayward, California 94545, USA.
| | | |
Collapse
|
3948
|
Yun B, Lee K, Farkas R, Hitte C, Rabinow L. The LAMMER protein kinase encoded by the Doa locus of Drosophila is required in both somatic and germline cells and is expressed as both nuclear and cytoplasmic isoforms throughout development. Genetics 2000; 156:749-61. [PMID: 11014821 PMCID: PMC1461269 DOI: 10.1093/genetics/156.2.749] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activity of the Darkener of apricot (Doa) locus of Drosophila melanogaster is required for development of the embryonic nervous system, segmentation, photoreceptor maintenance, normal transcription, and sexual differentiation. The gene encodes a protein kinase, with homologues throughout eukaryotes known as the LAMMER kinases. We show here that DOA is expressed as at least two different protein isoforms of 105 and 55 kD throughout development, which are primarily localized to the cytoplasm and nucleus, respectively. Doa transcripts and protein are expressed in all cell types both during embryogenesis and in imaginal discs. Although it was recently shown that DOA kinase is essential for normal sexual differentiation, levels of both kinase isoforms are equal between the sexes during early pupal development. The presence of the kinase on the cell membrane and in the nuclei of polytene salivary gland cells, as well as exclusion from the nuclei of specific cells, may be indicative of regulated kinase localization. Mosaic analysis in both the soma and germline demonstrates that Doa function is essential for cell viability. Finally, in contrast to results reported in other systems and despite some phenotypic similarities, genetic data demonstrate that the LAMMER kinases do not participate in the ras-MAP kinase signal transduction pathway.
Collapse
Affiliation(s)
- B Yun
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | | | | | |
Collapse
|
3949
|
Khush RS, Lemaitre B. Genes that fight infection: what the Drosophila genome says about animal immunity. Trends Genet 2000; 16:442-9. [PMID: 11050330 DOI: 10.1016/s0168-9525(00)02095-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
From deciphering the principles of heredity to identifying the genes that control development, the fruit fly Drosophila melanogaster is being used to deconstruct an increasing number of biological processes. Genetic studies of Drosophila responses to microbial infection have identified regulators of innate immunity that are functionally conserved in mammals. These recent findings highlight the ancient origins of animal immune responses and demonstrate the potential of Drosophila for dissecting host-pathogen interactions. The sequencing of the Drosophila genome both enhances genetic approaches and provides new clues for the identification of key components of innate immunity. This article summarizes how information gained from genomic analysis contributes to our understanding of how animals cope with infectious disease.
Collapse
Affiliation(s)
- R S Khush
- Centre de Génétique Moléculaire, CNRS, 91198, Gif-sur-Yvette, France
| | | |
Collapse
|
3950
|
Abstract
The end of the beginning of the Human Genome Project was announced on 26 June when the working draft or first assembly was announced. Here, Ian Dunham who led the group at the Sanger Centre that produced the first complete sequence of a human chromosome reflects on how it felt to be with the genome project from the beginning.
Collapse
Affiliation(s)
- I Dunham
- The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, Cambridge, UK
| |
Collapse
|