351
|
Embryo culture media differentially alter DNA methylating enzymes and global DNA methylation in embryos and oocytes. J Mol Histol 2021; 53:63-74. [PMID: 34741214 PMCID: PMC8570397 DOI: 10.1007/s10735-021-10038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/28/2021] [Indexed: 11/06/2022]
Abstract
The effects of culture media on DNA methylation process, which is one of the epigenetic mechanisms, have not been clearly elucidated although it is known that in vitro culture conditions alter epigenetic mechanisms. This study was designed to address the question: does embryo culture media approach, sequential or single step, differentially affect DNA methylating enzymes and global DNA methylation. Mouse zygotes were cultured either in single step or sequential culture media until the blastocyst stage and in vivo developed blastocyst were utilized as control. Similarly, GV stage oocytes were in vitro matured either in single step or first step of sequential culture media. In vivo matured MII oocytes were used as control. The expression levels and cellular localization of Dnmt1 and 3a enzymes were analyzed by immunofluorescence and western blot analysis while global DNA methylation was evaluated by immunofluorescence. We found that signal intensities of Dnmt1 and Dnmt3a enzymes were significantly low in embryos or oocytes cultured in sequential media compared to single step media and control, which were comparable amongst themself. Similarly, global DNA methylation level in single step media and control groups was comparable but both was higher than the sequential media. This study demonstrated that composition of culture media may differentially affect DNA methylation levels in mouse embryos and oocytes. Since abnormal DNA methylation may cause aberrant oocyte or embryo development, we think that further studies are needed to test human embryos and oocyte, and to explain molecular mechanisms.
Collapse
|
352
|
Abstract
Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.
Collapse
Affiliation(s)
- Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
| |
Collapse
|
353
|
Li Y, Pollock CA, Saad S. Aberrant DNA Methylation Mediates the Transgenerational Risk of Metabolic and Chronic Disease Due to Maternal Obesity and Overnutrition. Genes (Basel) 2021; 12:genes12111653. [PMID: 34828259 PMCID: PMC8624316 DOI: 10.3390/genes12111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is a rapidly evolving universal epidemic leading to acute and long-term medical and obstetric health issues, including increased maternal risks of gestational diabetes, hypertension and pre-eclampsia, and the future risks for offspring's predisposition to metabolic diseases. Epigenetic modification, in particular DNA methylation, represents a mechanism whereby environmental effects impact on the phenotypic expression of human disease. Maternal obesity or overnutrition contributes to the alterations in DNA methylation during early life which, through fetal programming, can predispose the offspring to many metabolic and chronic diseases, such as non-alcoholic fatty liver disease, obesity, diabetes, and chronic kidney disease. This review aims to summarize findings from human and animal studies, which support the role of maternal obesity in fetal programing and the potential benefit of altering DNA methylation to limit maternal obesity related disease in the offspring.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Carol A. Pollock
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
| | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| |
Collapse
|
354
|
Alvarez RH, Bayeux BM, Joaquim DA, Watanabe YF, Humblot P. Antral follicle count, oocyte production and embryonic developmental competence of senescent Nellore (Bos indicus) cows. Theriogenology 2021; 174:27-35. [PMID: 34416561 DOI: 10.1016/j.theriogenology.2021.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Information on the follicular population and oocyte quality of cows in the final period of reproductive life is scarce. The present study aimed to compare the antral follicle count (AFC), oocyte production and embryonic developmental competence of young versus long-lived and senescent Bos indicus beef cows. Nellore cows (Bos indicus) were classified into three groups according to age: young (4-9 years, n = 10), long-lived (14-17 years, n = 10) and senescent (17-23 years, n = 10). At a random time in the estrus cycle, the cows received cloprostenol sodium salt (0.5 mg, IM), estradiol benzoate (1 mg, IM) and an intravaginal P4 device (1.4 g). Five days later, the P4 devise was removed and oocyte collection (OPU1) was performed. A second OPU (OPU2) was performed 5 days after the first in order to aspirate only growing follicles. During each OPU, AFC and the number and quality of cumulus-oocyte complexes (COCs) were evaluated. Then, the COCs were placed in standard maturation medium (IVM), fertilized and incubated for 9 days. The data were subjected to ANOVA and Multinomial Logistic Regression. The AFC was smaller in long-lived and senescent cows in both OPU1 and OPU2 when compared to younger cows. There was no difference in AFC between OPU1 (19.9 ± 1.8) and OPU2 (17.6 ± 1.9) in young cows, however, more follicles were punctured in long-lived and senescent cows in OPU1 (12.0 ± 2.6 and 19.3 ± 4.6) than in OPU2 (9.2 ± 1.9 and 10.3 ± 2.3), respectively (P < 0.01). The numbers of COCs recovered from young cows (OPU1 = 14.2 ± 1.8; OPU2 = 8.4 ± 0.9) were higher than those obtained from long-lived cows (OPU1 = 5.9 ± 2.3; OPU2 = 4.3 ± 1.0) and senescent cows (OPU1 = 7.2 ± 3.0; OPU2 = 4.1 ± 1.7), respectively (P < 0.05). The cleavage rate did not differ between groups. However, the rate of blastocyst formation was higher for young (64.8%) and long-lived (65.0%) compared to senescent (16.5%) cows (P < 0.01). In conclusion our results indicate that the AFC is lower in long-lived and senescent cows compared with young cows. However, unlike in senescent cows, the embryonic development of long-lived cows is similar to that of young cows. This suggests that Nellore cows aged >17 years begin to have reduced embryonic development capacity due to ovarian aging.
Collapse
Affiliation(s)
- Rafael Herrera Alvarez
- São Paulo Agribusiness Technology Agency (APTA/SAA), Polo Regional Centro Sul, Rod SP 127, Km 30 Caixa Postal 28, Piracicaba, SP, 13400-970, Brazil.
| | | | - Daniel A Joaquim
- Vitrogen, Av. Coronel José Nogueira Terra, 203, Cravinhos, SP, 14140-000, Brazil
| | - Yeda Fumie Watanabe
- Vitrogen, Av. Coronel José Nogueira Terra, 203, Cravinhos, SP, 14140-000, Brazil
| | - Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, SLU, Uppsala, Sweden
| |
Collapse
|
355
|
Ma YC, Hao GM, Zhao ZM, Cui N, Fan YL, Zhang SC, Chen JW, Cao YC, Guan FL, Geng JR, Gao BL, Du HL. Effects of Bushen-Tiaojing-Fang on the pregnancy outcomes of infertile patients with repeated controlled ovarian stimulation. Sci Rep 2021; 11:15233. [PMID: 34635680 PMCID: PMC8505422 DOI: 10.1038/s41598-021-94366-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Bushen-Tiaojing-Fang (BSTJF) is commonly used to treat infertility. This study investigated the effects of BSTJF on the pregnancy outcomes of patients with repeated controlled ovarian stimulation (COS), on mitochondrial function, and on oxidative stress in ovarian granulosa cells (GCs) and follicular fluid (FF). The samples and clinical data of 97 patients, including 35 in the control group, 29 in the placebo group and 33 in the BSTJF group, were collected for this study. The mitochondrial ultrastructure, ATP content, mitochondrial DNA (mtDNA) number, 8-hydroxy-2-deoxyguanosine (8-OHdG), Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase (GSH-Px) activity levels, and mRNA expression levels of Mn-SOD, GSH-Px, and nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) were analyzed. The high-grade embryo (P < 0.001), implantation (P = 0.033), and clinical pregnancy (P = 0.031) rates, as well as the ATP content (P = 0.014), mtDNA number (P = 0.035), GSH-Px activity (P = 0.004 in GCs and P = 0.008 in FF) and mRNA expression levels (P = 0.019), were significantly lower in the placebo group than in the control group, whereas the 8-OHdG content was significantly (P = 0.006 in FF) higher in the placebo group than in the control group. Compared with those in the placebo group, the high-grade embryo rate (P = 0.007), antioxidant enzyme activity (P = 0.037 and 0.036 in Mn-SOD; P = 0.047 and 0.030 in GSH-Px) and mRNA level (P < 0.001 in Nrf2, P = 0.039 in Mn-SOD and P = 0.002 in GSH-Px) were significantly higher in the BSTJF group, as were changes in mitochondrial ultrastructure, ATP (P = 0.040) and mtDNA number (P = 0.013). In conclusion, BSTJF can improve oxidative stress in patients with repeated COS and pregnancy outcomes.
Collapse
Affiliation(s)
- Yu-Cong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Gui-Min Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhi-Ming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Na Cui
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Li Fan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuan-Cheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jing-Wei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Yu-Cong Cao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Feng-Li Guan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jing-Ran Geng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Bu-Lang Gao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hui-Lan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China.
| |
Collapse
|
356
|
Tavares RS, Ramalho-Santos J. The role of sperm and oocyte in fetal programming: Is Lamarck making a comeback? Eur J Clin Invest 2021; 51:e13521. [PMID: 33587759 DOI: 10.1111/eci.13521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Compelling evidence has shown that parental experiences and age at conception may potentially shape the future health of the next generation(s). Certain factors may affect both the female and, strikingly, the male gametes potentially causing the transmission of acquired traits, which was strongly defended by Jean-Baptiste Lamarck. Neurodevelopmental psychiatric disorders, trinucleotide repeat-associated diseases, cardiovascular pathologies, diabetes, obesity and cancer in the offspring, among others, have now been associated with events occurring at the preconception level. The potential implications of a (trans)generational inheritance of parental disease and exposure effects should be taken into account in counselling and public policy. Further research into how exactly gametes apparently deliver more than DNA to a new generation is warranted.
Collapse
Affiliation(s)
- Renata Santos Tavares
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
357
|
Kim H, Han SJ, Hong YS, Kim SW, Ku SY, Suh CS, Kim SH. Optimal Oocyte Number in Controlled Ovarian Stimulation with Gonadotropin-Releasing Hormone Agonist/Antagonist and Day 3 Fresh Embryo Transfer. Reprod Sci 2021; 28:2861-2868. [PMID: 33763817 DOI: 10.1007/s43032-021-00550-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
We aimed to investigate the optimal number of oocytes retrieved in normal responders with the gonadotropin-releasing hormone (GnRH) antagonist (GnRHant) protocol in comparison with the GnRH agonist (GnRHa) long protocol. This retrospective study is based on a single-center cohort including 657 fresh cycles with day 3 embryo transfer using the GnRHa long protocol and the GnRHant flexible protocol at the fertility clinic of a university hospital between 2005 and 2019. The rate ratios (RR) of clinical pregnancy were evaluated using log-binomial regression depending on the categories by the number of retrieved oocytes and pituitary suppression methods. After controlling for age, body mass index, and basal follicle-stimulating hormone, women with 10-11 oocytes retrieved demonstrated a significantly higher chance of clinical pregnancy compared to the reference group (4-5 oocytes) (RR 1.68, 95% CI 1.12-2.53). However, retrieval of more than 11 oocytes did not show a significant difference in pregnancy rates (PR) from the reference group. In women treated with GnRHant, a significantly higher clinical PR was also observed in women with 10-11 oocytes retrieved compared to the reference group (RR 1.90, 95% CI 1.05-3.42). In women treated with GnRHa long protocol, a higher probability of clinical pregnancy was observed (RR 1.30, 95% CI 0.98-1.73) in the group with 8-11 oocytes retrieved and it demonstrated borderline statistical significance (P = 0.07). In summary, the optimal number of oocytes for maximizing the rate of a clinical pregnancy is different according to the method of pituitary suppression. Too many oocytes do not seem to be beneficial for achieving better clinical outcomes.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Soo Jin Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yun Soo Hong
- Departments of Epidemiology and Medicine and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21205, USA
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Seok Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| |
Collapse
|
358
|
Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem Res 2021; 46:2662-2675. [PMID: 33559106 PMCID: PMC8437874 DOI: 10.1007/s11064-021-03256-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
359
|
van Duijn L, Rousian M, Hoek J, Willemsen SP, van Marion ES, Laven JSE, Baart EB, Steegers-Theunissen RPM. Higher preconceptional maternal body mass index is associated with faster early preimplantation embryonic development: the Rotterdam periconception cohort. Reprod Biol Endocrinol 2021; 19:145. [PMID: 34537064 PMCID: PMC8449446 DOI: 10.1186/s12958-021-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Overweight and obesity affect millions of people globally, which has also serious implications for reproduction. For example, treatment outcomes after in vitro fertilisation (IVF) are worse in women with a high body mass index (BMI). However, the impact of maternal BMI on embryo quality is inconclusive. Our main aim is to study associations between preconceptional maternal BMI and morphokinetic parameters of preimplantation embryos and predicted implantation potential. In addition, associations with clinical IVF outcomes are investigated. METHODS From a tertiary hospital, 268 women undergoing IVF or IVF with intracytoplasmic sperm injection (ICSI) were included; 143 normal weight, 79 overweight and 46 obese women. The embryos of these women were cultured in the EmbryoScope, a time-lapse incubator. The morphokinetic parameters of preimplantation embryos and predicted implantation potential, assessed by the KIDScore algorithm were longitudinally evaluated as primary and secondary outcomes, respectively. The tertiary outcomes included clinical outcomes, i.e., fertilization, implantation and live birth rate. RESULTS After adjustment for patient- and treatment-related factors, we demonstrated in 938 embryos that maternal BMI is negatively associated with the moment of pronuclear appearance (βtPNa -0.070 h (95%CI -0.139, -0.001), p = 0.048), pronuclear fading (βtPNf -0.091 h (95%CI -0.180, -0.003), p = 0.043 and the first cell cleavage (βt2 -0.111 h (95%CI -0.205, -0.016), p = 0.022). Maternal BMI was not significantly associated with the KIDScore and tertiary clinical treatment outcomes. In embryos from couples with female or combined factor subfertility, the impact of maternal BMI was even larger (βtPNf -0.170 h (95%CI -0.293, -0.047), p = 0.007; βt2 -0.199 h (95%CI -0.330, -0.067), p = 0.003). Additionally, a detrimental impact of BMI per point increase was observed on the KIDScore (β -0.073 (se 0.028), p = 0.010). CONCLUSIONS Higher maternal BMI is associated with faster early preimplantation development. In couples with female or combined factor subfertility, a higher BMI is associated with a lower implantation potential as predicted by the KIDScore. Likely due to power issues, we did not observe an impact on clinical treatment outcomes. However, an effect of faster preimplantation development on post-implantation development is conceivable, especially since the impact of maternal BMI on pregnancy outcomes has been widely demonstrated.
Collapse
Affiliation(s)
- Linette van Duijn
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Jeffrey Hoek
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eva S van Marion
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Esther B Baart
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
360
|
Oishi S, Mekaru K, Nakamura R, Miyagi M, Akamine K, Heshiki C, Aoki Y. Two cases of polycystic ovary syndrome with onset of severe ovarian hyperstimulation syndrome following controlled ovarian stimulation with aromatase inhibitors for fertility preservation before breast cancer treatment. Taiwan J Obstet Gynecol 2021; 60:931-934. [PMID: 34507678 DOI: 10.1016/j.tjog.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The risks of ovarian hyperstimulation syndrome (OHSS) involve high estrogen (E2) levels. We report two breast cancer patients with polycystic ovarian syndrome who underwent fertility preservation and had severe OHSS; their E2 levels were lowered using aromatase inhibitors (AI). CASE REPORTS A 36-year-old woman underwent controlled ovarian stimulation (COS) with AI and cryopreserved 10 blastocysts. She was hospitalized with OHSS (E2 = 139.1 pg/mL). She improved with infusion alone. A 31-year-old woman underwent COS with AI and cryopreserved 8 blastocysts. She was hospitalized for OHSS (E2: 429 pg/mL). Her vascular endothelial growth factor (VEGF) levels were high (62 pg/mL) at 8 days after the procedure. She needed hospitalization for 9 days. The planned adjuvant therapy was delayed for a week in both cases. CONCLUSION Elevated VEGF levels should be considered as a risk factor of OHSS even if E2 levels are low with AI treatment.
Collapse
Affiliation(s)
- Sugiko Oishi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan.
| | - Keiko Mekaru
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Rie Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Maho Miyagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Kozue Akamine
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Chiaki Heshiki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Yoichi Aoki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
361
|
Tao YR, Zhang YT, Han XY, Zhang L, Jiang LG, Ma Y, Meng LJ, He QL, Liu SZ. Intrauterine exposure to 2,3',4,4',5-pentachlorobiphenyl alters spermatogenesis and testicular DNA methylation levels in F1 male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112652. [PMID: 34461319 DOI: 10.1016/j.ecoenv.2021.112652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are synthetic biphenyl compounds with high toxicity. There are a total of 209 homologs, among which 2,3',4,4',5-pentachlorobiphenyl (PCB118) is one of the dioxin-like PCBs. PCB118 can accumulate in pregnant mice, leading to fetus directly exposure during development. The stage of migration of mouse primordial germ cells ranges from 8.5 to 13.5 days of pregnancy, which is the stage undergoing a genome-wide DNA demethylation process. In this study, the mice were exposed to 20 μg/kg/day and 100 μg/kg/day PCB118 from 8.5 to 13.5 days of pregnancy. During the embryo stage at 18.5 days (E18.5 days), the expression level of DNA methyltransferase 1 (Dnmt1) was reduced in the testes, and the DNA methylation level in mouse testes were also decreased. We found that the seminiferous tubules showed vacuolization and that the sperm deformity rate increased in the treated groups compared with the control group in 7-week-old mice. Because exposure to PCB118 during pregnancy causes damage to the reproductive system of male offspring mice, attention should be devoted to the toxicity transmission of persistent environmental pollutants such as PCBs.
Collapse
Affiliation(s)
- Yu-Rong Tao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yong-Tao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Shandong First Medical University, Jinan 250062, Shandong, China
| | - Xiao-Ying Han
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lin Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li-Gang Jiang
- Infertility Center, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ying Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ling-Jiao Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qi-Long He
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
362
|
Jiang L, Wang J, Wang K, Wang H, Wu Q, Yang C, Yu Y, Ni P, Zhong Y, Song Z, Xie E, Hu R, Min J, Wang F. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 2021; 138:689-705. [PMID: 33895792 PMCID: PMC8394904 DOI: 10.1182/blood.2020008986] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Ferroportin (FPN), the body's sole iron exporter, is essential for maintaining systemic iron homeostasis. In response to either increased iron or inflammation, hepatocyte-secreted hepcidin binds to FPN, inducing its internalization and subsequent degradation. However, the E3 ubiquitin ligase that underlies FPN degradation has not been identified. Here, we report the identification and characterization of a novel mechanism involving the RNF217-mediated degradation of FPN. A combination of 2 different E3 screens revealed that the Rnf217 gene is a target of Tet1, mediating the ubiquitination and subsequent degradation of FPN. Interestingly, loss of Tet1 expression causes an accumulation of FPN and an impaired response to iron overload, manifested by increased iron accumulation in the liver together with decreased iron in the spleen and duodenum. Moreover, we found that the degradation and ubiquitination of FPN could be attenuated by mutating RNF217. Finally, using 2 conditional knockout mouse lines, we found that knocking out Rnf217 in macrophages increases splenic iron export by stabilizing FPN, whereas knocking out Rnf217 in intestinal cells appears to increase iron absorption. These findings suggest that the Tet1-RNF217-FPN axis regulates iron homeostasis, revealing new therapeutic targets for FPN-related diseases.
Collapse
Affiliation(s)
- Li Jiang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Jiaming Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Qian Wu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Yu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Ni
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueyang Zhong
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijun Song
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Enjun Xie
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| |
Collapse
|
363
|
Zhu Y, Wang X, Zhou X, Ding L, Liu D, Xu H. DNMT1-mediated PPARα methylation aggravates damage of retinal tissues in diabetic retinopathy mice. Biol Res 2021; 54:25. [PMID: 34362460 PMCID: PMC8348846 DOI: 10.1186/s40659-021-00347-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background Peroxisome proliferator-activated receptor alpha (PPARα) is associated with diabetic retinopathy (DR), and the underlying mechanism is still unclear. Aim of this work was to investigate the mechanism of PPARα in DR. Methods Human retinal capillary pericytes (HRCPs) were treated with high glucose (HG) to induce DR cell model. DR mouse model was established by streptozotocin injection, and then received 5-Aza-2-deoxycytidine (DAC; DNA methyltransferase inhibitor) treatment. Hematoxylin–eosin staining was performed to assess retinal tissue damage. PPARα methylation was examined by Methylation-Specific PCR. Flow cytometry and DCFH-DA fluorescent probe was used to estimate apoptosis and reactive oxygen species (ROS). The interaction between DNA methyltransferase-1 (DNMT1) and PPARα promoter was examined by Chromatin Immunoprecipitation. Quantitative real-time PCR and western blot were performed to assess gene and protein expression. Results HG treatment enhanced the methylation levels of PPARα, and repressed PPARα expression in HRCPs. The levels of apoptotic cells and ROS were significantly increased in HRCPs in the presence of HG. Moreover, DNMT1 was highly expressed in HG-treated HRCPs, and DNMT1 interacted with PPARα promoter. PPARα overexpression suppressed apoptosis and ROS levels of HRCPs, which was rescued by DNMT1 up-regulation. In DR mice, DAC treatment inhibited PPARα methylation and reduced damage of retinal tissues. Conclusion DNMT1-mediated PPARα methylation promotes apoptosis and ROS levels of HRCPs and aggravates damage of retinal tissues in DR mice. Thus, this study may highlight novel insights into DR pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00347-1.
Collapse
Affiliation(s)
- Ying Zhu
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Xinru Wang
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Xiaoyun Zhou
- Department of Ophthalmology, The First Hospital of Changsha, 311 Yingpan Road, Hunan, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China.
| |
Collapse
|
364
|
Ge W, Yan ZH, Wang L, Tan SJ, Liu J, Reiter RJ, Luo SM, Sun QY, Shen W. A hypothetical role for autophagy during the day/night rhythm-regulated melatonin synthesis in the rat pineal gland. J Pineal Res 2021; 71:e12742. [PMID: 33960014 DOI: 10.1111/jpi.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Melatonin is a highly conserved molecule that regulates day/night rhythms; it is associated with sleep improvement, reactive oxygen species (ROS) scavenging, anti-aging effects, and seasonal and circadian rhythms and has been a hot topic of research for decades. Using single-cell RNA sequencing, a recent study describes a single-cell transcriptome atlas for the rat pineal gland. Based on a more comprehensive analysis of the retrieved data (Mays et al., PLoS One, 2018, 13, e0205883), results from the current study unveiled the underappreciated gene regulatory network behind different cell populations in the pineal gland. More importantly, our study here characterized, for the first time, the day/night activation of autophagy flux in the rat pineal gland, indicating a potential role of autophagy in regulating melatonin synthesis in the rat pineal gland. These findings emphasized a hypothetical role of day/night autophagy in linking the biological clock with melatonin synthesis. Furthermore, ultrastructure analysis of pinealocytes provided fascinating insights into differences in their intracellular structure between daytime and nighttime. In addition, we also provide a preliminary description of cell-cell communication in the rat pineal gland. In summary, the current study unveils the day/night regulation of autophagy in the rat pineal gland, raising a potential role of autophagy in day/night-regulated melatonin synthesis.
Collapse
Affiliation(s)
- Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zi-Hui Yan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lu Wang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shao-Jing Tan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jing Liu
- Central Laboratory of Qingdao Agricultural University, Qingdao Agricultural University, Qingdao, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
365
|
Harner R, Lira-Albarrán S, Chalas C, Lee SH, Liu X, Rinaudo P. Ovulation induction is associated with altered growth but with preservation of normal metabolic function in murine offspring. F&S SCIENCE 2021; 2:259-267. [PMID: 35560276 PMCID: PMC10434990 DOI: 10.1016/j.xfss.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study the effects of ovulation induction on mouse postnatal health, with a focus on growth pattern and glucose tolerance. To study the effect of ovulation induction on DNA methylation, we took advantage of the agouti viable yellow (Avy) mouse. DESIGN Animal study. SETTING University Setting. ANIMALS Agouti viable yellow (Avy) mice on a C57BL/6 background. INTERVENTION(S) Avy female mice were either allowed to mate spontaneously (control group, C) or after superovulation with 5 IU of PMSG and hCG (ovulation induction group, OI). MAIN OUTCOME MEASURE(S) Birth parameters and postnatal growth of the offspring were followed up to 29 weeks of age. Body composition analysis was performed by EchoMRI; fasting insulin, intraperitoneal glucose tolerance tests, and glucose-stimulated insulin secretion by beta cells were assessed to study glucose metabolism. RESULT(S) Mice born to superovulated dams had lower survival rates, shorter anogenital distances, and shorter crown-rump lengths. Female mice generated by OI weighed less at birth, whereas male mice generated by OI had lower weight gain and had reduced lean mass. Glucose parameters, including islet functions, did not differ between the groups. No difference in agouti coat color was noted between the groups. CONCLUSION(S) Ovulation induction resulted in mice having increased morphometric differences at birth and male mice showing reduced weight gain but no difference in glucose tolerance or agouti coat color.
Collapse
Affiliation(s)
- Royce Harner
- University of California San Francisco, San Francisco, California
| | | | - Céline Chalas
- University of California San Francisco, San Francisco, California
| | - Seok Hee Lee
- University of California San Francisco, San Francisco, California
| | - Xiaowei Liu
- University of California San Francisco, San Francisco, California
| | - Paolo Rinaudo
- University of California San Francisco, San Francisco, California.
| |
Collapse
|
366
|
The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging. Cell Death Dis 2021; 12:744. [PMID: 34315853 PMCID: PMC8316443 DOI: 10.1038/s41419-021-04016-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Multifunctional N6-methyladenosine (m6A) has been revealed to be an important epigenetic component in various physiological and pathological processes, but its role in female ovarian aging remains unclear. Thus, we demonstrated m6A demethylase FTO downregulation and the ensuing increased m6A in granulosa cells (GCs) of human aged ovaries, while FTO-knockdown GCs showed faster aging-related phenotypes mediated. Using the m6A-RNA-sequence technique (m6A-seq), increased m6A was found in the FOS-mRNA-3'UTR, which is suggested to be an erasing target of FTO that slows the degradation of FOS-mRNA to upregulate FOS expression in GCs, eventually resulting in GC-mediated ovarian aging. FTO acts as a senescence-retarding protein via m6A, and FOS knockdown significantly alleviates the aging of FTO-knockdown GCs. Altogether, the abovementioned results indicate that FTO in GCs retards FOS-dependent ovarian aging, which is a potential diagnostic and therapeutic target against ovarian aging and age-related reproductive diseases.
Collapse
|
367
|
Dong MZ, Li QN, Fan LH, Li L, Shen W, Wang ZB, Sun QY. Diabetic Uterine Environment Leads to Disorders in Metabolism of Offspring. Front Cell Dev Biol 2021; 9:706879. [PMID: 34381787 PMCID: PMC8350518 DOI: 10.3389/fcell.2021.706879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Aims Research evidence indicates that epigenetic modifications of gametes in obese or diabetic parents may contribute to metabolic disorders in offspring. In the present study, we sought to address the effect of diabetic uterine environment on the offspring metabolism. Methods Type 2 diabetes mouse model was induced by high-fat diet combined with streptozotocin (STZ) administration. We maintained other effect factors constant and changed uterine environment by zygote transfers, and then determined and compared the offspring numbers, symptoms, body weight trajectories, and metabolism indices from different groups. Result We found that maternal type 2 diabetes mice had lower fertility and a higher dystocia rate, accompanying the increased risk of offspring malformations and death. Compared to only a pre-gestational exposure to hyperglycemia, exposure to hyperglycemia both pre- and during pregnancy resulted in offspring growth restriction and impaired metabolism in adulthood. But there was no significant difference between a pre-gestational exposure group and a no exposure group. The deleterious effects, no matter bodyweight or glucose tolerance, could be rescued by transferring the embryos from diabetic mothers into normal uterine environment. Conclusion Our data demonstrate that uterine environment of maternal diabetes makes critical impact on the offspring health.
Collapse
Affiliation(s)
- Ming-Zhe Dong
- Institute of Reproductive Science, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Shen
- Institute of Reproductive Science, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
368
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
369
|
Singina GN, Shedova EN, Lopukhov AV, Mityashova OS, Lebedeva IY. Delaying Effects of Prolactin and Growth Hormone on Aging Processes in Bovine Oocytes Matured In Vitro. Pharmaceuticals (Basel) 2021; 14:684. [PMID: 34358110 PMCID: PMC8308928 DOI: 10.3390/ph14070684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Aging processes accelerate dramatically in oocytes that have reached the metaphase-II (M-II) stage. The present work aimed to study the patterns and intracellular pathways of actions of prolactin (PRL) and growth hormone (GH) on age-associated changes in bovine M-II oocytes aging in vitro. To this end, we analyzed spontaneous parthenogenetic activation (cytogenetic assay), apoptosis (TUNEL assay), and the developmental capacity (IVF/IVC) of in vitro-matured oocytes after prolonged culturing. Both PRL and GH reduced the activation rate of aging cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs), and their respective hormone receptors were revealed in the ova. The inhibitor of Src-family tyrosine kinases PP2 eliminated the effects of PRL and GH on meiotic arrest in DOs, whereas the MEK inhibitor U0126 only abolished the PRL effect. Furthermore, PRL was able to maintain the apoptosis resistance and developmental competence of aging CEOs. The protein kinase C inhibitor calphostin C suppressed both the actions of PRL. Thus, PRL and GH can directly support meiotic arrest in aging M-II oocytes by activating MAP kinases and/or Src-family kinases. The effect of PRL in maintaining the developmental capacity of aging oocytes is cumulus-dependent and related to the pro-survival action of the protein kinase C-mediated signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Irina Y. Lebedeva
- Department of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (G.N.S.); (E.N.S.); (A.V.L.); (O.S.M.)
| |
Collapse
|
370
|
Liu H, Jiang W, Ye Y, Yang B, Shen X, Lu S, Zhu J, Liu M, Yang C, Kuang H. Maternal exposure to tributyltin during early gestation increases adverse pregnancy outcomes by impairing placental development. ENVIRONMENTAL TOXICOLOGY 2021; 36:1303-1315. [PMID: 33720505 DOI: 10.1002/tox.23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Tributyltin (TBT) is a persistent organotin pollutant widely used as agricultural and wood biocides, exhibiting well-documented toxicity to reproductive functions in aquatic organisms. However, the effect of TBT on early pregnancy and placental development has been rarely studied in mice. Pregnant mice were fed with 0, 0.2, and 2 mg/kg/day TBT from gravid day 1 to day 8 or 13. TBT exposure led to an increase in the number of resorbed embryo and a reduction in the weight of fetus at gestational days 13. Further study showed that TBT significantly decreased placental weight and area, lowered laminin immunoreactivity and the expressions of placental development-related molecules including Fra1, Eomes, Hand1, and Ascl2. Moreover, TBT treatment markedly inhibited the placental proliferation and induced up-regulation of p53 and cleaved caspase-3 proteins, and down-regulation of Bcl-2 protein. In addition, TBT administration increased levels of malondialdehyde and H2 O2 and decreased activities of catalase and superoxide dismutase. Collectively, these results suggested TBT-induced adverse pregnancy outcomes during early pregnancy might be involved in developmental disorders of the placenta via dysregulation of key molecules, proliferation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Wenyu Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yafen Ye
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
371
|
Jiang T, Zhang HW, Wen YP, Yin YS, Yang LH, Yang J, Lan T, Tang CW, Yu JK, Tai WL, Yang JH. 5-Aza-2-deoxycytidine alleviates the progression of primary biliary cholangitis by suppressing the FoxP3 methylation and promoting the Treg/Th17 balance. Int Immunopharmacol 2021; 96:107820. [PMID: 34162167 DOI: 10.1016/j.intimp.2021.107820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis (PBC) is a common autoimmune liver disease manifested by the infiltration of CD4+ T cells, and the subsequent targeted injury of biliary epithelial cells (BECs). As important components of CD4 subsets, the Treg/Th17 axis maintains an immunological balance between self-tolerance and inflammation in the liver microenvironment. However, the role and regulatory mechanism of the Treg/Th17 axis in PBC remain unclear. In this study, we examined the Treg/Th17 axis in PBC patients and found that the Treg/Th17 axis was imbalanced in PBC at both the transcriptional and cellular levels, with Treg being a weak candidate, which correlates with the PBC progression. This imbalanced Treg/Th17 axis was likely to be affected by the FoxP3 hypermethylation, which was related to the increase of DNA methyltransferase. Furthermore, the effect of 5-Aza-2-deoxycytidine (DAC)-mediated FoxP3 demethylation on PBC mice was investigated. We verified that DAC significantly suppressed the FoxP3 methylation and rebuilt the Treg/Th17 balance, resulting in the alleviation of liver lesions and inflammation. Taken together, our data indicate that DAC plays a positive role in alleviating the progression of PBC through the inhibition of DNA methylation of FoxP3 to rebuild the balanced Treg/Th17 axis. DAC could be considered as a potential candidate for the development of new anti-inflammation strategies in the treatment of PBC.
Collapse
Affiliation(s)
- Ting Jiang
- Digestive Diseases Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong-Wei Zhang
- The Central Laboratory, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Yan-Ping Wen
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Shan Yin
- Digestive Diseases Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-Hong Yang
- Digestive Diseases Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Yang
- Digestive Diseases Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tian Lan
- Digestive Diseases Department, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng-Wei Tang
- Digestive Diseases Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Yu
- The Central Laboratory, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China.
| | - Wen-Lin Tai
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jin-Hui Yang
- Digestive Diseases Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
372
|
Xiao Y, Yuan B, Hu W, Qi J, Jiang H, Sun B, Zhang J, Liang S. Tributyltin Oxide Exposure During in vitro Maturation Disrupts Oocyte Maturation and Subsequent Embryonic Developmental Competence in Pigs. Front Cell Dev Biol 2021; 9:683448. [PMID: 34262900 PMCID: PMC8273238 DOI: 10.3389/fcell.2021.683448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
Tributyltin oxide (TBTO), an organotin compound, has been demonstrated to have toxic effects on several cell types. Previous research has shown that TBTO impairs mouse denuded oocyte maturation. However, limited information is available on the effects of TBTO exposure on livestock reproductive systems, especially on porcine oocytes in the presence of dense cumulus cells. In the present research, we evaluated the effects of TBTO exposure on porcine oocyte maturation and the possible underlying mechanisms. Porcine cumulus-oocyte complexes were cultured in maturation medium with or without TBTO for 42 h. We found that TBTO exposure during oocyte maturation prevented polar body extrusion, inhibited cumulus expansion and impaired subsequent blastocyst formation after parthenogenetic activation. Further analysis revealed that TBTO exposure not only induced intracellular reactive oxygen species (ROS) accumulation but also caused a loss of mitochondrial membrane potential and reduced intracellular ATP generation. In addition, TBTO exposure impaired porcine oocyte quality by disrupting cellular iron homeostasis. Taken together, these results demonstrate that TBTO exposure impairs the porcine oocyte maturation process by inducing intracellular ROS accumulation, causing mitochondrial dysfunction, and disrupting cellular iron homeostasis, thus decreasing the quality and impairing the subsequent embryonic developmental competence of porcine oocytes.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Weiyi Hu
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiajia Qi
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Boxing Sun
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animal Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
373
|
Arand J, Reijo Pera RA, Wossidlo M. Reprogramming of DNA methylation is linked to successful human preimplantation development. Histochem Cell Biol 2021; 156:197-207. [PMID: 34179999 PMCID: PMC8460514 DOI: 10.1007/s00418-021-02008-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Human preimplantation development is characterized by low developmental rates that are poorly understood. Early mammalian embryogenesis is characterized by a major phase of epigenetic reprogramming, which involves global DNA methylation changes and activity of TET enzymes; the importance of DNA methylation reprogramming for successful human preimplantation development has not been investigated. Here, we analyzed early human embryos for dynamic changes in 5-methylcytosine and its oxidized derivatives generated by TET enzymes. We observed that 5-methylcytosine and 5-hydroxymethylcytosine show similar, albeit less pronounced, asymmetry between the parental pronuclei of human zygotes relative to mouse zygotes. Notably, we detected low levels of 5-formylcytosine and 5-carboxylcytosine, with no apparent difference in maternal or paternal pronuclei of human zygotes. Analysis of later human preimplantation stages revealed a mosaic pattern of DNA 5C modifications similar to those of the mouse and other mammals. Strikingly, using noninvasive time-lapse imaging and well-defined cell cycle parameters, we analyzed normally and abnormally developing human four-cell embryos for global reprogramming of DNA methylation and detected lower 5-methylcytosine and 5-hydroxymethylcytosine levels in normal embryos compared to abnormal embryos. In conclusion, our results suggest that DNA methylation reprogramming is conserved in humans, with human-specific dynamics and extent. Furthermore, abnormalities in the four-cell-specific DNA methylome in early human embryogenesis are associated with abnormal development, highlighting an essential role of epigenetic reprogramming for successful human embryogenesis. Further research should identify the underlying genomic regions and cause of abnormal DNA methylation reprogramming in early human embryos.
Collapse
Affiliation(s)
- Julia Arand
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Renee A Reijo Pera
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.,McLaughlin Research Institute, Great Falls, MT, 59405, USA
| | - Mark Wossidlo
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria. .,Department of Genetics, Stanford University, Stanford, CA, 94305, USA. .,Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, 94305, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
374
|
Abstract
An environmental enrichment (EE) cage consisting of a broad living area and various stimulators triggers social, cognitive, and physical activities. EE has been utilized in a wide range of neurological and non-neurological studies. However, the details of the environmental enrichment protocol were not well described in these studies. This has resulted in uncertainty and inconsistency in methodology, which may thus fail to replicate environmental enrichment effects, influencing the study outcome. Here we describe the basic guidelines and present an easy-to-follow protocol for environmental enrichment in rat models. © 2021 Wiley Periodicals LLC. Basic Protocol: Environmental enrichment housing.
Collapse
Affiliation(s)
- Teh Rasyidah Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor Darul Ehsan, Malaysia
| | - Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Narendra Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
375
|
Wang L, Tang J, Wang L, Tan F, Song H, Zhou J, Li F. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol 2021; 236:7966-7983. [PMID: 34121193 DOI: 10.1002/jcp.30468] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
In a healthy body, reactive oxygen species (ROS) and antioxidants remain balanced. When the balance is broken toward an overabundance of ROS, oxidative stress appears and may lead to oocyte aging. Oocyte aging is mainly reflected as the gradual decrease of oocyte quantity and quality. Here, we aim to review the relationship between oxidative stress and oocyte aging. First, we introduced that the defective mitochondria, the age-related ovarian aging, the repeated ovulation, and the high-oxygen environment were the ovarian sources of ROS in vivo and in vitro. And we also introduced other sources of ROS accumulation in ovaries, such as overweight and unhealthy lifestyles. Then, we figured that oxidative stress may act as the "initiator" for oocyte aging and reproductive pathology, which specifically causes follicular abnormally atresia, abnormal meiosis, lower fertilization rate, delayed embryonic development, and reproductive disease, including polycystic ovary syndrome and ovary endometriosis cyst. Finally, we discussed current strategies for delaying oocyte aging. We introduced three autophagy antioxidant pathways like Beclin-VPS34-Atg14, adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR), and p62-Keap1-Nrf2. And we also describe the different antioxidants used to combat oocyte aging. In addition, the hypoxic (5% O2 ) culture environment for oocytes avoiding oxidative stress in vitro. So, this review not only contribute to our general understanding of oxidative stress and oocyte aging but also lay the foundations for the therapies to treat premature ovarian failure and oocyte aging in women.
Collapse
Affiliation(s)
- Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Jinhua Tang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Lei Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Feng Tan
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
376
|
Contextualizing Autophagy during Gametogenesis and Preimplantation Embryonic Development. Int J Mol Sci 2021; 22:ijms22126313. [PMID: 34204653 PMCID: PMC8231133 DOI: 10.3390/ijms22126313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Mammals face environmental stressors throughout their lifespan, which may jeopardize cellular homeostasis. Hence, these organisms have acquired mechanisms to cope with stressors by sensing, repairing the damage, and reallocating resources to increase the odds of long-term survival. Autophagy is a pro-survival lysosome-mediated cytoplasm degradation pathway for organelle and macromolecule recycling. Furthermore, autophagy efflux increases, and this pathway becomes idiosyncratic depending upon developmental and environmental contexts. Mammalian germ cells and preimplantation embryos are attractive models for dissecting autophagy due to their metastable phenotypes during differentiation and exposure to varying environmental cues. The aim of this review is to explore autophagy during mammalian gametogenesis, fertilization and preimplantation embryonic development by contemplating its physiological role during development, under key stressors, and within the scope of assisted reproduction technologies.
Collapse
|
377
|
Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol 2021; 18:2168-2182. [PMID: 34110970 DOI: 10.1080/15476286.2021.1935572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial noncoding RNAs (mt-ncRNAs) include noncoding RNAs inside the mitochondria that are transcribed from the mitochondrial genome or nuclear genome, and noncoding RNAs transcribed from the mitochondrial genome that are transported to the cytosol or nucleus. Recent findings have revealed that mt-ncRNAs play important roles in not only mitochondrial functions, but also other cellular activities. This review proposes a classification of mt-ncRNAs and outlines the emerging understanding of mitochondrial circular RNAs (mt-circRNAs), mitochondrial microRNAs (mitomiRs), and mitochondrial long noncoding RNAs (mt-lncRNAs), with an emphasis on their identification and functions.
Collapse
Affiliation(s)
- Huixin Liang
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shicheng Su
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
378
|
Ral GTPase is essential for actin dynamics and Golgi apparatus distribution in mouse oocyte maturation. Cell Div 2021; 16:3. [PMID: 34112192 PMCID: PMC8194175 DOI: 10.1186/s13008-021-00071-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.
Collapse
|
379
|
Yang R, Niu ZR, Chen LX, Liu P, Li R, Qiao J. Analysis of related factors affecting cumulative live birth rates of the first ovarian hyperstimulation in vitro fertilization or intracytoplasmic sperm injection cycle: a population-based study from 17,978 women in China. Chin Med J (Engl) 2021; 134:1405-1415. [PMID: 34091521 PMCID: PMC8213303 DOI: 10.1097/cm9.0000000000001586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND More and more scholars have called for the cumulative live birth rate (CLBR) of a complete ovarian stimulation cycle as a key indicator for assisted reproductive technology. This research aims to study the CLBR of the first ovarian hyperstimulation cycles and analyze the related prognosis factors that might affect the CLBR. METHODS Our retrospective study included first in vitro fertilization or intracytoplasmic sperm injection (IVF/ICSI) cycles performed between January 2013 to December 2014. A total of 17,978 couples of first ovarian hyperstimulation IVF/ICSI cycles were included. The study was followed up for 4 years to observe the CLBR. The multivariable logistic regression model was used to analyze the prognosis factor, P value of <0.05 was considered statistically significant. RESULTS The cumulative pregnancy rate was 58.14% (10,452/17,978), and the CLBR was 49.66% (8928/17,978). The female age was younger in the live birth group when compared with the non-live birth group (30.81 ± 4.05 vs. 33.09 ± 5.13, P < 0.001). The average duration of infertility was shorter than the non-live birth cohort (4.22 ± 3.11 vs. 5.06 ± 4.08, P < 0.001). The preliminary gonadotropin used and the total number of gonadotropin used were lower in the live birth group when compared with the non-live birth group (both P < 0.001). Meanwhile, the number of oocytes retrieved and transferrable embryos were both significantly higher in the live birth group (15.35 ± 7.98 vs. 11.35 ± 7.60, P < 0.001; 6.66 ± 5.19 vs. 3.62 ± 3.51, P < 0.001, respectively). CONCLUSIONS The women's age, body mass index, duration of infertility years, infertility factors, controlled ovarian hyperstimulation protocol, the number of acquired oocytes, and number of transferrable embryos are the prognosis factors that significantly affected the CLBR.
Collapse
Affiliation(s)
- Rui Yang
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zi-Ru Niu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Li-Xue Chen
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
380
|
Waghmare SG, Samarin AM, Samarin AM, Danielsen M, Møller HS, Policar T, Linhart O, Dalsgaard TK. Histone Acetylation Dynamics during In Vivo and In Vitro Oocyte Aging in Common Carp Cyprinus carpio. Int J Mol Sci 2021; 22:ijms22116036. [PMID: 34204879 PMCID: PMC8199789 DOI: 10.3390/ijms22116036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022] Open
Abstract
Aging is the most critical factor that influences the quality of post-ovulatory oocytes. Age-related molecular pathways remain poorly understood in fish oocytes. In this study, we examined the effect of oocyte aging on specific histone acetylation in common carp Cyprinus carpio. The capacity to progress to the larval stage in oocytes that were aged for 28 h in vivo and in vitro was evaluated. Global histone modifications and specific histone acetylation (H3K9ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac, and H4K16ac) were investigated during oocyte aging. Furthermore, the activity of histone acetyltransferase (HAT) was assessed in fresh and aged oocytes. Global histone modifications did not exhibit significant alterations during 8 h of oocyte aging. Among the selected modifications, H4K12ac increased significantly at 28 h post-stripping (HPS). Although not significantly different, HAT activity exhibited an upward trend during oocyte aging. Results of our current study indicate that aging of common carp oocytes for 12 h results in complete loss of egg viability rates without any consequence in global and specific histone modifications. However, aging oocytes for 28 h led to increased H4K12ac. Thus, histone acetylation modification as a crucial epigenetic mediator may be associated with age-related defects, particularly in oocytes of a more advanced age.
Collapse
Affiliation(s)
- Swapnil Gorakh Waghmare
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
- Correspondence:
| | - Azin Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Azadeh Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Marianne Danielsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (M.D.); (H.S.M.); (T.K.D.)
- Center of Innovative Food Research, Aarhus University Centre for Innovative Food Research, 8000 Aarhus, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8000 Aarhus, Denmark
| | - Hanne Søndergård Møller
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (M.D.); (H.S.M.); (T.K.D.)
| | - Tomáš Policar
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Trine Kastrup Dalsgaard
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (M.D.); (H.S.M.); (T.K.D.)
- Center of Innovative Food Research, Aarhus University Centre for Innovative Food Research, 8000 Aarhus, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8000 Aarhus, Denmark
| |
Collapse
|
381
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
382
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
383
|
Chen C, Jiang Y, Yan T, Chen Y, Yang M, Lv M, Xi F, Lu J, Zhao B, Luo Q. Placental maternally expressed gene 3 differentially methylated region methylation profile is associated with maternal glucose concentration and newborn birthweight. J Diabetes Investig 2021; 12:1074-1082. [PMID: 33090678 PMCID: PMC8169366 DOI: 10.1111/jdi.13432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Emerging evidence shows that epigenetic modifications occurring during fetal development in response to intrauterine exposures could be one of the mechanisms involved in the early determinants of adult metabolic disorders. This study aimed to investigate whether the placental maternally expressed gene 3 (MEG3) deoxyribonucleic acid (DNA) methylation profile is associated with maternal gestational diabetes mellitus status and newborn birthweight. MATERIALS AND METHODS Samples for measurement were collected from 23 women with gestational diabetes mellitus and 23 healthy controls. MEG3 gene expression and DNA methylation levels were assessed using quantitative real-time polymerase chain reaction and MethylTargetTM, respectively. Pearson correlation analyses were used to examine associations between placental DNA methylation levels and clinical variables of interest. The associated results were adjusted by multivariate linear regression for maternal age, body mass index, height, gestational age and newborn sex as confounders. RESULTS We found that the DNA methylation levels in the MEG3 differentially methylated region were significantly different between the gestational diabetes mellitus and control groups on the maternal side of the placenta (40.64 ± 2.15 vs 38.33 ± 2.92; P = 0.004). Furthermore, the mean MEG3 DNA methylation levels were correlated positively with maternal fasting glucose concentrations (R = 0.603, P < 0.001) and newborn birthweight (R = 0.568, P < 0.001). CONCLUSIONS The placental DNA methylation status in the MEG3 differentially methylated region was correlated with maternal glucose concentrations and newborn birthweight. These epigenetic adaptations might contribute to late-onset obesity, underlining the adverse intrauterine environment.
Collapse
Affiliation(s)
- Cheng Chen
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Ying Jiang
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Ting Yan
- Jinhua Municipal Central HospitalJinhuaChina
| | - Yuan Chen
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Mengmeng Yang
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Min Lv
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Fangfang Xi
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Juefei Lu
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Baihui Zhao
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiong Luo
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
384
|
Dholpuria S, Kumar S, Kumar M, Sarwalia P, Kumar R, Datta TK. A novel lincRNA identified in buffalo oocytes with protein binding characteristics could hold the key for oocyte competence. Mol Biol Rep 2021; 48:3925-3934. [PMID: 34014469 DOI: 10.1007/s11033-021-06388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
Studying the maternal oocyte-specific genes, in farm animals is a significant step towards delineating the underlying mechanisms that regulate oocyte quality, early embryonic development and survival. With the creation of buffalo oocyte-specific subtracted cDNA library, it has raised new questions which need to be answered. The present study has characterized one of the ESTs selected from the library and highlighted its importance in the oocyte quality. The selected EST was made full length by RLM-RACE and four transcript variants were identified. Bioinformatics analysis indicated the novelty of full-length transcript along with conserved intergenic nature. The largest transcript was identified as long intergenic noncoding RNA based upon coding potential calculator output. The expression analysis at different hours of oocyte maturation showed a significant variation in developmentally competent oocytes to that of incompetent ones. Along with this, the transcript was also found to have protein binding ability which was confirmed by RNA electrophoretic mobility shift assay. The protein used in the experiment was isolated from oocyte and cumulus cells via sonication. A novel lincRNA has been reported here that might have an important role in maturation of oocytes, inferred from its relative gene expression study and protein binding characteristics.
Collapse
Affiliation(s)
- Sunny Dholpuria
- Department of Life Science, Sharda University, Greater Noida, India.
| | - Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
385
|
Comizzoli P, Ottinger MA. Understanding Reproductive Aging in Wildlife to Improve Animal Conservation and Human Reproductive Health. Front Cell Dev Biol 2021; 9:680471. [PMID: 34095152 PMCID: PMC8170016 DOI: 10.3389/fcell.2021.680471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Similar to humans and laboratory animals, reproductive aging is observed in wild species-from small invertebrates to large mammals. Aging issues are also prevalent in rare and endangered species under human care as their life expectancy is longer than in the wild. The objectives of this review are to (1) present conserved as well as distinctive traits of reproductive aging in different wild animal species (2) highlight the value of comparative studies to address aging issues in conservation breeding as well as in human reproductive medicine, and (3) suggest next steps forward in that research area. From social insects to mega-vertebrates, reproductive aging studies as well as observations in the wild or in breeding centers often remain at the physiological or organismal scale (senescence) rather than at the germ cell level. Overall, multiple traits are conserved across very different species (depletion of the ovarian reserve or no decline in testicular functions), but unique features also exist (endless reproductive life or unaltered quality of germ cells). There is a broad consensus about the need to fill research gaps because many cellular and molecular processes during reproductive aging remain undescribed. More research in male aging is particularly needed across all species. Furthermore, studies on reproductive aging of target species in their natural habitat (sentinel species) are crucial to define more accurate reproductive indicators relevant to other species, including humans, sharing the same environment. Wild species can significantly contribute to our general knowledge of a crucial phenomenon and provide new approaches to extend the reproductive lifespan.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
386
|
Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J (Engl) 2021; 133:1961-1970. [PMID: 32826460 PMCID: PMC7462214 DOI: 10.1097/cm9.0000000000000976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus and metabolic disorders have become an epidemic globally. However, the pathogenesis remains largely unclear and the prevention and treatment are still limited. In addition to environmental factors during adulthood, early life is the critical developmental window with high tissue plasticity, which might be modified by external environmental cues. Substantial evidence has demonstrated the vital role of early-life nutrition in programming the metabolic disorders in later life. In this review, we aim to overview the concepts of fetal programming and investigate the effects of early-life nutrition on energy metabolism in later life and the potential epigenetic mechanism. The related studies published on PubMed database up to March 2020 were included. The results showed that both maternal overnutrition and undernutrition increased the riskes of metabolic disorders in offspring and epigenetic modifications, including DNA methylation, miRNAs, and histone modification, might be the vital mediators. The beneficial effects of early-life lifestyle modifications as well as dietary and nutritional interventions on these deleterious metabolic remolding were initially observed. Overall, characterizing the early-life malnutrition that reshapes metabolic disease trajectories may yield novel targets for early prevention and intervention and provide a new point of view to the energy metabolism.
Collapse
|
387
|
Schliep KC, Feldkamp ML, Hanson HA, Hollingshaus M, Fraser A, Smith KR, Panushka KA, Varner MW. Are paternal or grandmaternal age associated with higher probability of trisomy 21 in offspring? A population-based, matched case-control study, 1995-2015. Paediatr Perinat Epidemiol 2021; 35:281-291. [PMID: 33258505 PMCID: PMC8058293 DOI: 10.1111/ppe.12737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fetal aneuploidy risk increases with maternal age, but the majority of pregnancies complicated by trisomy 21 occur in younger women. It has been suggested that grandmaternal and/or paternal age may also play a role. OBJECTIVES To assess the association between grandmaternal and paternal age and trisomy 21. METHODS For the grandmaternal assessments, we included all offspring with trisomy 21 in a statewide birth defects surveillance system (1995-2015) that could be linked to 3-generation matrilineal pedigrees in the Utah Population Database. Ten sex/birth year-matched controls were selected for each case (770 cases and 7700 controls). For the paternal assessments, our cohort included all trisomy 21 cases (1995-2015) where both the mother and father resided in Utah at the time of birth (1409 cases and 14 090 controls). Ages were categorised by 5-year intervals (reference: 25-29 years). Conditional logistic regression, adjusting for potential confounding factors, was used to model the association between grandmaternal and paternal age and trisomy 21. RESULTS No association between grandmaternal age and trisomy 21 was detected, whether age was assessed continuously (adjusted odds ratio [OR] 1.01, 95% confidence interval [CI] 0.98, 1.03) or categorically after adjusting for grandmaternal and grandpaternal race/ethnicity and grandpaternal age. Compared to fathers aged 20-29 years, fathers <20 years (OR 3.15, 95% CI 1.99, 4.98) and 20-24 years (OR 1.39, 95% CI 1.11, 1.73) had increased odds of trisomy 21 offspring, after adjusting for maternal and paternal race/ethnicity and maternal age. Results were consistent after excluding stillbirths, multiples, and trisomy 21 due to translocation or mosaicism. CONCLUSIONS Maternal age is an important risk factor for trisomy 21 offspring; however, this population-based study shows that that young paternal age is also associated with trisomy 21, after taking into account maternal age and race/ethnicity.
Collapse
Affiliation(s)
- Karen C. Schliep
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Heidi A. Hanson
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
- Department of Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | - Alison Fraser
- Department of Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ken R. Smith
- Department of Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Family and Consumer Studies, University of Utah, Salt Lake City, UT, USA
| | - Katherine A. Panushka
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| | - Michael W. Varner
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
388
|
Breastfeeding and growth trajectory from birth to 5 years among children exposed and unexposed to gestational diabetes mellitus in utero. J Perinatol 2021; 41:1033-1042. [PMID: 33510423 DOI: 10.1038/s41372-021-00932-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES This study aims to evaluate the association between exposure to gestational diabetes mellitus and growth trajectory from birth to 5 years and to test whether breastfeeding influences this association among children exposed and unexposed to gestational diabetes. STUDY DESIGN Weight at 0, 6, 12, and 18 months and 2, 3, 4, and 5 years were retrospectively collected for 103 children exposed and 63 children unexposed to gestational diabetes. Weight-for-age z-score was calculated. Mixed linear model for repeated measurements were computed to test whether breastfeeding was associated differently with weight-for-age z-score of children exposed or unexposed to diabetes. RESULTS Children exposed to gestational diabetes had greater z-score values at 6 months and 4 and 5 years (p < 0.10). Breastfeeding duration was not associated with weight-for-age z-score trajectory in any children. CONCLUSION Children exposed to gestational diabetes had a different growth trajectory in early life, but breastfeeding duration did not seem to influence this association.
Collapse
|
389
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
390
|
Integrin-Linked-Kinase Overexpression Is Implicated in Mechanisms of Genomic Instability in Human Colorectal Cancer. Dig Dis Sci 2021; 66:1510-1523. [PMID: 32495257 DOI: 10.1007/s10620-020-06364-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genomic instability is a hallmark of cancer cells contributing to tumor development and progression. Integrin-linked kinase (ILK) is a focal adhesion protein with well-established role in carcinogenesis. We have previously shown that ILK overexpression is critically implicated in human colorectal cancer (CRC) progression. In light of the recent findings that ILK regulates centrosomes and mitotic spindle formation, we aimed to determine its implication in mechanisms of genomic instability in human CRC. METHODS Association of ILK expression with markers of genomic instability (micronuclei formation, nucleus size, and intensity) was investigated in diploid human colon cancer cells HCT116 upon ectopic ILK overexpression, by immunofluorescence and in human CRC samples by Feulgen staining. We also evaluated the role of ILK in mitotic spindle formation, by immunofluorescence, in HCT116 cells upon inhibition and overexpression of ILK. Finally, we evaluated association of ILK overexpression with markers of DNA damage (p-H2AX, p-ATM/ATR) in human CRC tissue samples by immunohistochemistry and in ILK-overexpressing cells by immunofluorescence. RESULTS We showed that ILK overexpression is associated with genomic instability markers in human colon cancer cells and tissues samples. Aberrant mitotic spindles were observed in cells treated with specific ILK inhibitor (QLT0267), while ILK-overexpressing cells failed to undergo nocodazole-induced mitotic arrest. ILK overexpression was also associated with markers of DNA damage in HCT116 cells and human CRC tissue samples. CONCLUSIONS The above findings indicate that overexpression of ILK is implicated in mechanisms of genomic instability in CRC suggesting a novel role of this protein in cancer.
Collapse
|
391
|
Zhang X, Xia Z, Lv X, Li D, Liu M, Zhang R, Ji T, Liu P, Ren R. DDB1- and CUL4-associated factor 8 plays a critical role in spermatogenesis. Front Med 2021; 15:302-312. [PMID: 33855678 DOI: 10.1007/s11684-021-0851-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/20/2021] [Indexed: 11/26/2022]
Abstract
Cullin-RING E3 ubiquitin ligase (CRL)-4 is a member of the large CRL family in eukaryotes. It plays important roles in a wide range of cellular processes, organismal development, and physiological and pathological conditions. DDB1- and CUL4-associated factor 8 (DCAF8) is a WD40 repeat-containing protein, which serves as a substrate receptor for CRL4. The physiological role of DCAF8 is unknown. In this study, we constructed Dcaf8 knockout mice. Homozygous mice were viable with no noticeable abnormalities. However, the fertility of Dcaf8-deficient male mice was markedly impaired, consistent with the high expression of DCAF8 in adult mouse testis. Sperm movement characteristics, including progressive motility, path velocity, progressive velocity, and track speed, were significantly lower in Dcaf8 knockout mice than in wild-type (WT) mice. However, the total motility was similar between WT and Dcaf8 knockout sperm. More than 40% of spermatids in Dcaf8 knockout mice showed pronounced morphological abnormalities with typical bent head malformation. The acrosome and nucleus of Dcaf8 knockout sperm looked similar to those of WT sperm. In vitro tests showed that the fertilization rate of Dcaf8 knockout mice was significantly reduced. The results demonstrated that DCAF8 plays a critical role in spermatogenesis, and DCAF8 is a key component of CRL4 function in the reproductive system.
Collapse
Affiliation(s)
- Xiuli Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhizhou Xia
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xingyu Lv
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
392
|
Anesetti G, Chávez-Genaro R. Neonatal androgenization in rats affects oocyte maturation. Reprod Sci 2021; 28:2799-2806. [PMID: 33825168 DOI: 10.1007/s43032-021-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Androgens are relevant in order to achieve a normal growth and maturation of the follicle and oocyte, since both excess and absence of androgens may affect the correct ovarian function. The current study analyzes the impact of neonatal androgenization in the first ovulation and oocyte maturation in response to exogenous gonadotrophin stimulation. Neonatal rats were daily treated with testosterone, dihydrotestosterone, or vehicle during follicle assembly period (days 1 to 5). At juvenile period, rats were stimulated sequentially with PMSG and hCG. Ovulation, ovarian histology, hormonal milieu, morphological characteristics of meiotic spindle, and in vitro fertilization rate in oocytes were analyzed. Our data shows that oocytes from androgenized rats displayed a major proportion of aberrant spindles and altered meiotic advance that control animals. These alterations were accompanied with an increase in both fertilization rate and aberrant embryos after 48 h of culture. Our findings showed a direct impact of neonatal androgens on oocyte development; their effects may be recognized at adulthood, supporting the idea of a programming effect exerted by neonatal androgens. These results could be relevant to explain the low fertility rate seen in polycystic ovary syndrome patients after in vitro fertilization procedures.
Collapse
Affiliation(s)
- Gabriel Anesetti
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rebeca Chávez-Genaro
- Laboratorio de Biología de la Reproducción, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
393
|
Raad G, Serra F, Martin L, Derieppe MA, Gilleron J, Costa VL, Pisani DF, Amri EZ, Trabucchi M, Grandjean V. Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice. eLife 2021; 10:61736. [PMID: 33783350 PMCID: PMC8051948 DOI: 10.7554/elife.61736] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a growing societal scourge. Recent studies have uncovered that paternal excessive weight induced by an unbalanced diet affects the metabolic health of offspring. These reports mainly employed single-generation male exposure. However, the consequences of multigenerational unbalanced diet feeding on the metabolic health of progeny remain largely unknown. Here, we show that maintaining paternal Western diet feeding for five consecutive generations in mice induces an enhancement in fat mass and related metabolic diseases over generations. Strikingly, chow-diet-fed progenies from these multigenerational Western-diet-fed males develop a 'healthy' overweight phenotype characterized by normal glucose metabolism and without fatty liver that persists for four subsequent generations. Mechanistically, sperm RNA microinjection experiments into zygotes suggest that sperm RNAs are sufficient for establishment but not for long-term maintenance of epigenetic inheritance of metabolic pathologies. Progressive and permanent metabolic deregulation induced by successive paternal Western-diet-fed generations may contribute to the worldwide epidemic of metabolic diseases.
Collapse
Affiliation(s)
- Georges Raad
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Fabrizio Serra
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | - Luc Martin
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Jérôme Gilleron
- Université Côte d'Azur, Inserm, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes (7), Nice, France
| | - Vera L Costa
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | | | | | - Michele Trabucchi
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | - Valerie Grandjean
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| |
Collapse
|
394
|
Lin L, Lu C, Chen W, Li C, Guo VY. Parity and the risks of adverse birth outcomes: a retrospective study among Chinese. BMC Pregnancy Childbirth 2021; 21:257. [PMID: 33771125 PMCID: PMC8004392 DOI: 10.1186/s12884-021-03718-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Nulliparity is considered to be a risk factor of preterm birth (PTB), low birth weight (LBW) and small for gestational age (SGA). With the new two-child policy launched in 2016, more Chinese women have delivered their 2nd baby. Yet few studies have assessed the impact of parity on adverse birth outcomes in China. This study aimed to examine the association between parity and risks of PTB, LBW and SGA in a Chinese population. The combined effects of maternal age and parity on adverse birth outcomes were also assessed. Methods This retrospective study included all non-malformed live births born during January 1, 2014 and December 31, 2018 in Chengdu, China. A total of 746,410 eligible live singletons with complete information were included in the analysis. Parity was classified into nulliparity (i.e. has never delivered a newborn before) and multiparity (i.e. has delivered at least one newborn before). Log-binomial regression analyses were applied to evaluate the association between parity and PTB, LBW and SGA. We further divided maternal age into different groups (< 25 years, 25–29 years, 30–34 years and ≥ 35 years) to assess the combined effects of maternal age and parity on adverse birth outcomes. Results Multiparity was associated with reduced risks of PTB (aRR = 0.91, 95% CI: 0.89–0.93), LBW (aRR = 0.74, 95% CI: 0.72–0.77) and SGA (aRR = 0.67, 95% CI: 0.66–0.69) compared with nulliparity. In each age group, we observed that multiparity was associated with lower risks of adverse birth outcomes. Compared to nulliparous women aged between 25 and 29 years, women aged ≥35 years had greater risks of PTB and LBW, regardless of their parity status. In contrast, multiparous women aged ≥35 years (aRR = 0.73, 95% CI: 0.70–0.77) and those aged < 25 years (aRR = 0.88, 95% CI: 0.84–0.93) were at lower risk of SGA compared with nulliparous women aged between 25 and 29 years. Conclusion Multiparity was associated with lower risks of all adverse birth outcomes. Special attention should be paid to nulliparous mothers and those with advanced age during antenatal care, in order to reduce the risks of adverse birth outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-03718-4.
Collapse
Affiliation(s)
- Li Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ciyong Lu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Chunrong Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Vivian Yawei Guo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
395
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
396
|
Pan MH, Wu YK, Liao BY, Zhang H, Li C, Wang JL, Hu LL, Ma B. Bisphenol A Exposure Disrupts Organelle Distribution and Functions During Mouse Oocyte Maturation. Front Cell Dev Biol 2021; 9:661155. [PMID: 33834027 PMCID: PMC8021768 DOI: 10.3389/fcell.2021.661155] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Bisphenol A (BPA) is one of the ubiquitous environmental endocrine disruptors (EEDs). Previous studies have shown that the reproduction toxicity of BPA could cause severe effects on the mammal oocytes and disturb the quality of mature oocytes. However, the toxic effects of BPA on the organelles of mouse oocytes have not been reported. In this study, to investigate whether BPA can be toxic to the organelles, we used different concentrations of BPA (50, 100, and 200 μM) to culture mouse oocytes in vitro. The results showed that 100 μM BPA exposure could significantly decrease the developmental capacity of oocytes. Then, we used the immunofluorescence staining, confocal microscopy, and western blotting to investigate the toxic effects of BPA on the organelles. The results revealed that mitochondrial dysfunction is manifested by abnormal distribution and decreased mitochondrial membrane potential. Moreover, the endoplasmic reticulum (ER) is abnormally distributed which is accompanied by ER stress showing increased expression of GRP78. For the Golgi apparatus, BPA-exposed dose not disorder the Golgi apparatus distribution but caused abnormal structure of Golgi apparatus, which is manifested by the decrease of GM130 protein expression. Moreover, we also found that BPA-exposed led to the damage of lysosome, which were shown by the increase of LAMP2 protein expression. Collectively, our findings demonstrated that the exposure of BPA could damage the normal function of the organelles, which may explain the reduced maturation quality of oocytes.
Collapse
Affiliation(s)
- Meng-Hao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yu-Ke Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bi-Yun Liao
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Chan Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun-Li Wang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lin-Lin Hu
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
397
|
Oocyte Ageing in Zebrafish Danio rerio (Hamilton, 1822) and Its Consequence on the Viability and Ploidy Anomalies in the Progeny. Animals (Basel) 2021; 11:ani11030912. [PMID: 33810200 PMCID: PMC8004945 DOI: 10.3390/ani11030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The maintenance and manipulation of AB strain zebrafish oocytes at 26 °C was found to be possible for 2 h without incurring a marked reduction in fertilization potential. However, the post-ovulatory ageing of oocytes for 6 h resulted in an almost complete loss of egg viability. All larvae derived from the 4- and 6-h aged oocytes were characterized by physical abnormalities. Ageing oocytes for 4 h resulted in the incidence of ploidy anomalies having a four-fold increase. These results make a valuable contribution with respect to the control of experimental reproduction in zebrafish, which is currently accepted as an excellent model animal. Abstract Fish egg quality can be markedly influenced by the oocyte age after ovulation. In this study, we examined the duration of oocyte ageing in the zebrafish (Danio rerio) and whether prolonged ageing is associated with the incidence of ploidy anomalies in the resulting embryos. Oocytes were incubated in vitro for 6 h post-stripping (HPS) at 26 °C and fertilized at 2-h intervals. Meanwhile, for eggs fertilized immediately after stripping, the fertilization, embryo survival, and hatching rates started at ~80%; these rates decreased to 39%, 24%, and 16%, respectively, for oocytes that had been stored for 4 h (p ˂ 0.05), and there was an almost complete loss of egg viability at 6 HPS. Furthermore, almost 90% of the embryos derived from 6-h aged oocytes died prior to hatching, and all larvae originating from 4- and 6-h aged oocytes showed malformations. The proportion of ploidy abnormal embryos was significantly greater at 4 HPS (18.5%) than at either 0 or 2 HPS (4.7% and 8.8%, respectively). The results revealed that zebrafish oocytes retained their fertilization potential for up to 2 h after stripping at 26 °C and indicated the contribution of post-ovulatory oocyte ageing in the occurrence of ploidy anomalies in the resulting embryos.
Collapse
|
398
|
Lyamzaev KG, Knorre DA, Chernyak BV. Mitoptosis, Twenty Years After. BIOCHEMISTRY (MOSCOW) 2021; 85:1484-1498. [PMID: 33705288 DOI: 10.1134/s0006297920120020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of "mitoptotic body" surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
399
|
Feng Y, Cirera S, Taşöz E, Liu Y, Olsen LH, Christoffersen BØ, Pedersen HD, Ludvigsen TP, Kirk RK, Schumacher-Petersen C, Deng Y, Fredholm M, Gao F. Diet-Dependent Changes of the DNA Methylome Using a Göttingen Minipig Model for Obesity. Front Genet 2021; 12:632859. [PMID: 33777102 PMCID: PMC7991730 DOI: 10.3389/fgene.2021.632859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Environmental factors can influence obesity by epigenetic mechanisms. The aim of this study was to investigate obesity-related epigenetic changes and the potential for reversal of these changes in the liver of Göttingen minipigs subjected to diet interventions. Methods: High-throughput liquid hybridization capture-based bisulfite sequencing (LHC-BS) was used to quantify the methylation status of gene promotor regions in liver tissue in three groups of male castrated Göttingen minipigs: a standard chow group (SD, N = 7); a group fed high fat/fructose/cholesterol diet (FFC, N = 10) and a group fed high fat/fructose/cholesterol diet during 7 months and reversed to standard diet for 6 months (FFC/SD, N = 12). Expression profiling by qPCR of selected metabolically relevant genes was performed in liver tissue from all pigs. Results: The pigs in the FFC diet group became morbidly obese. The FFC/SD diet did not result in a complete reversal of the body weight to the same weight as in the SD group, but it resulted in reversal of all lipid related metabolic parameters. Here we identified widespread differences in the patterning of cytosine methylation of promoters between the different feeding groups. By combining detection of differentially methylated genes with a rank-based hypergeometric overlap algorithm, we identified 160 genes showing differential methylation in corresponding promoter regions in the FFC diet group when comparing with both the SD and FFC/SD groups. As expected, this differential methylation under FFC diet intervention induced de-regulation of several metabolically-related genes involved in lipid/cholesterol metabolism, inflammatory response and fibrosis generation. Moreover, five genes, of which one is a fibrosis-related gene (MMP9), were still perturbed after diet reversion. Conclusion: Our findings highlight the potential of exploring diet-epigenome interactions for treatment of obesity.
Collapse
Affiliation(s)
- Y Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - S Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - E Taşöz
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Y Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - L H Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - H D Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark.,Medical Evaluation & Biostatistics, Danish Medicines Agency, Copenhagen, Denmark
| | - T P Ludvigsen
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - R K Kirk
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - C Schumacher-Petersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Y Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - M Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - F Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
400
|
Mitochondrial DNA Copy Number in Human Blastocyst: A Novel Biomarker for the Prediction of Implantation Potential. J Mol Diagn 2021; 23:637-642. [PMID: 33662585 DOI: 10.1016/j.jmoldx.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/07/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
The relationship between mitochondrial DNA (mtDNA) copy number and the outcome of embryo transfer is under debate. Our aim was to explore the relationship between mtDNA copy number in human blastocysts and embryonic development to determine whether mtDNA represents a novel biomarker for the prediction of implantation potential. A total of 246 blastocysts were analyzed by next-generation sequencing. There was no correlation between mtDNA copy number and maternal age in all blastocyst groups and euploid blastocyst groups. Additionally, the mtDNA copy number was not significantly higher in aneuploid blastocysts. Subsequently, no relationship was observed between mtDNA copy number and blastocyst quality. The assessment of clinical pregnancy outcome after the transfer of euploid blastocysts to the uterus indicated that the mtDNA copy number was significantly lower in the clinical pregnancy group than in those who failed implantation. The cut-off value of mtDNA copy number was 320.5, which was a highly predictive value. Blastocysts with an increased mtDNA copy number had lower implantation potential, and mtDNA copy number was largely equal in terms of maternal age, chromosome ploidy, and quality of blastocysts.
Collapse
|