351
|
Tran WT, Lu FI, Salgado R. Tumor infiltrating lymphocytes: current pathways to a standard biomarker in breast cancer. Expert Rev Anticancer Ther 2021; 21:1299-1301. [PMID: 34236013 DOI: 10.1080/14737140.2021.1953987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- William T Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Fang-I Lu
- Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Canada
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium.,Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| |
Collapse
|
352
|
Loi S, Michiels S, Adams S, Loibl S, Budczies J, Denkert C, Salgado R. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann Oncol 2021; 32:1236-1244. [PMID: 34311075 DOI: 10.1016/j.annonc.2021.07.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
In 2014, we described a method to quantify percentage of tumor-infiltrating lymphocytes (TILs) on hematoxylin and eosin-stained slides of breast cancer samples using light microscopy that could be performed easily by pathologists with no extra stains. The aim of detailing the method was to facilitate independent research groups replicating our prognostic findings using TIL quantity in early-stage breast cancers. A global working group of breast pathologists was convened to standardize, test reproducibility, and refine the method. A website was also established which allowed free training (www.tilsinbreastcancer.org). As a result of this work, TIL data have been collected in over 20 000 primary breast cancer samples worldwide and the robust associations with better prognoses in triple-negative breast cancer (TNBC) and HER2+ BC have been confirmed. This has resulted in the inclusion of the TIL biomarker in several international breast cancer guidelines as well as in national criteria for routine pathology reporting. TIL therefore represents the first biological prognostic biomarker for early-stage TNBCs, and here its prognostic effect is linear, with values of 30%-50% being suggested as suitable for use in potential chemotherapy de-escalation studies. The efficacy of immune checkpoint-targeted agents in breast cancer now provides direct evidence that host immune responses can modify tumor growth in some patients. With the recent granting of accelerated approvals for the first PD-1/PD-L1 targeting agents in early and advanced TNBC, our focus has now moved to investigating the clinical utility of TIL in the setting of immune checkpoint agents, with or without PD-L1 protein assessment. Emerging data suggest that TIL quantity can help clinicians identify patients with breast cancer who benefit most from PD-1/PD-L1 inhibition. In patients with advanced TNBC and HER2+ disease a TIL cut-off of 5% or 10%, with PD-L1 expression can define 'immune-enriched' tumors and currently seems to have the most clinical relevance in this context.
Collapse
Affiliation(s)
- S Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.
| | - S Michiels
- Department of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, University Paris-Saclay, Villejuif, France; Oncostat INSERM U1018, labeled Ligue Contre le Cancer, University Paris-Saclay, Villejuif, France
| | - S Adams
- Perlmutter Cancer Center, New York University School of Medicine, New York, USA
| | - S Loibl
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; German Breast Group, c/o GBG Forschungs GmbH, Frankfurt; Goethe University, Frankfurt
| | - J Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UK-GM), Marburg, Germany
| | - R Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| |
Collapse
|
353
|
Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021; 9:biomedicines9080876. [PMID: 34440080 PMCID: PMC8389539 DOI: 10.3390/biomedicines9080876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer associated with a high rate of metastasis, poor prognosis, and lack of therapeutic targets. Although target-based therapeutic options are approved for other cancers, only limited therapeutic options are available for TNBC. Cell signaling and receptor-specific targets are reportedly effective in patients with TNBC under specific clinical conditions. However, most of these cancers are unresponsive, and there is a requirement for more effective treatment modalities. Further, there is a lack of effective biomarkers that can distinguish TNBC from other BC subtypes. ER, PR, and HER2 help identify TNBC and are widely used to identify patients who are most likely to respond to diverse therapeutic strategies. In this review, we discuss the possible treatment options for TNBC based on its inherent subtype receptors and pathways, such as p53 signaling, AKT signaling, cell cycle regulation, DNA damage, and programmed cell death, which play essential roles at multiple stages of TNBC development. We focus on poly-ADP ribose polymerase 1, androgen receptor, vascular endothelial growth factor receptor, and epidermal growth factor receptor as well as the application of nanomedicine and immunotherapy in TNBC and discuss their potential applications in drug development for TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: ; Tel.: +82-32-820-4948
| |
Collapse
|
354
|
Badve SS, Penault-Llorca F, Reis-Filho JS, Deurloo R, Siziopikou KP, D'Arrigo C, Viale G. Determining PD-L1 Status in Patients with Triple-Negative Breast Cancer: Lessons Learned from IMpassion130. J Natl Cancer Inst 2021; 114:664-675. [PMID: 34286340 DOI: 10.1093/jnci/djab121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 12% to 17% of all breast cancers and has an aggressive clinical behavior. Increased tumor-infiltrating lymphocyte counts are prognostic for survival in TNBC, making this disease a potential target for cancer immunotherapy (CIT). Research on immunophenotyping of tumor-infiltrating lymphocytes is revealing molecular and structural organization in the tumor microenvironment that may predict patient prognosis. The anti-programmed death-ligand 1 (PD-L1) antibody atezolizumab plus nab-paclitaxel was the first CIT combination to demonstrate progression-free survival benefit and clinically meaningful overall survival benefit in the first-line treatment of metastatic TNBC (mTNBC) in patients with PD-L1-expressing tumor-infiltrating immune cells (IC) in ≥ 1% of the tumor area. This led to its US and EU approval for mTNBC and US approval of the VENTANA PD-L1 (SP142) assay as a companion diagnostic immunohistochemistry (IHC) assay. Subsequently, the anti- programmed death-1 (PD-1) antibody pembrolizumab plus chemotherapy was approved by the FDA for mTNBC based on progression-free survival benefit in patients with a combined positive score ≥10 by its concurrently approved 22C3 companion diagnostic assay. Treatment guidelines now recommend PD-L1 testing for patients with mTNBC, and the testing landscape will likely become increasingly complex as new anti-PD-L1/PD-1 agents and diagnostics are approved for TNBC. Integrating PD-L1 testing into current diagnostic workflows for mTNBC may provide more treatment options for these patients. Therefore, it is critical for medical oncologists and pathologists to understand the available assays and their relevance to therapeutic options to develop an appropriate workflow for IHC testing.
Collapse
Affiliation(s)
- Sunil S Badve
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Regula Deurloo
- Oncology Biomarker Development, F. Hoffmann-La Roche, Ltd, ., Basel, Switzerland
| | - Kalliopi P Siziopikou
- Breast Pathology Section, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Giuseppe Viale
- University of Milan, Milan, Italy.,European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
355
|
Crosstalk between Tumor-Infiltrating Immune Cells and Cancer-Associated Fibroblasts in Tumor Growth and Immunosuppression of Breast Cancer. J Immunol Res 2021; 2021:8840066. [PMID: 34337083 PMCID: PMC8294979 DOI: 10.1155/2021/8840066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.
Collapse
|
356
|
Criscitiello C, Guerini-Rocco E, Viale G, Fumagalli C, Sajjadi E, Venetis K, Piciotti R, Invernizzi M, Malapelle U, Fusco N. Immunotherapy in Breast Cancer Patients: A Focus on the Use of the Currently Available Biomarkers in Oncology. Anticancer Agents Med Chem 2021; 22:787-800. [PMID: 34229592 DOI: 10.2174/1871520621666210706144112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have remarkably modified the way solid tumors are managed, including breast cancer. Unfortunately, only a relatively small number of breast cancer patients significantly respond to these treatments. To maximize the immunotherapy benefit in breast cancer, several efforts are currently being put forward for the identification of i) the best therapeutic strategy (i.e. ICI monotherapy or in association with chemotherapy, radiotherapy, or other drugs); ii) the optimal timing for administration (e.g. early/advanced stage of disease; adjuvant/neoadjuvant setting); iii) the most effective and reliable predictive biomarkers of response (e.g. tumor-infiltrating lymphocytes, programmed death-ligand 1, microsatellite instability associated with mismatch repair deficiency, and tumor mutational burden). This article reviews the impacts and gaps in the characterization of immune-related biomarkers raised by clinical and translational research studies with immunotherapy treatments. Particular emphasis has been put on the documented evidence of significant clinical benefits of ICI in different randomized clinical trials, along with preanalytical and analytical issues in predictive biomarkers pathological assessment.
Collapse
Affiliation(s)
| | | | - Giulia Viale
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Caterina Fumagalli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | | | - Roberto Piciotti
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Viale Piazza D'Armi 1, Novara, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| |
Collapse
|
357
|
Zhang J, Tian Q, Zhang M, Wang H, Wu L, Yang J. Immune-related biomarkers in triple-negative breast cancer. Breast Cancer 2021; 28:792-805. [PMID: 33837508 PMCID: PMC8213542 DOI: 10.1007/s12282-021-01247-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is a commonly diagnosed female cancer in the world. Triple-negative breast cancer (TNBC) is the most dangerous and biologically aggressive subtype in breast cancer which has a high mortality, high rates of relapse and poor prognosis, representing approximately 15-20% of breast cancers. TNBC has unique and special biological molecular characteristics and higher immunogenicity than other breast cancer types. On the basis of molecular features, TNBC is divided into different subtypes and gets various treatments. Especially, immunotherapy becomes a promising and effective treatment to TNBC. However, not all of the TNBC patients are sensitive to immunotherapy, the need of selecting the patients suitable for immunotherapy is imperative. In this review, we discussed recent discoveries about the immune-related factors of TNBC, including tumor-infiltrating lymphocytes (TILs), programmed death-ligand protein-1 (PD-L1), immune gene signatures, some other emerging biomarkers for immunotherapy effectivity and promising biomarkers for immunotherapy resistance. In addition, we summarized the features of these biomarkers contributing to predict the prognosis and effect of immunotherapy. We hope we can provide some helps or evidences to clinical immunotherapy and combined treatment for TNBC patients.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road of Xi’an, Xi’an, 710061 People’s Republic of China
| | - Qi Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road of Xi’an, Xi’an, 710061 People’s Republic of China
| | - Mi Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road of Xi’an, Xi’an, 710061 People’s Republic of China
| | - Hui Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road of Xi’an, Xi’an, 710061 People’s Republic of China
| | - Lei Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road of Xi’an, Xi’an, 710061 People’s Republic of China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road of Xi’an, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
358
|
First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol 2021; 32:983-993. [PMID: 34272041 DOI: 10.1016/j.annonc.2021.05.355] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Guidelines recommend atezolizumab plus nab-paclitaxel (A + nP) for first-line treatment of unresectable, locally advanced, or metastatic triple-negative breast cancer expressing programmed death-ligand 1 (PD-L1) on tumor-infiltrating immune cells (IC), based on IMpassion130. We report the final overall survival (OS) and safety of that study as per the prespecified analysis plan. PATIENTS AND METHODS Patients were randomized to nP 100 mg/m2 (days 1, 8, and 15 of a 28-day cycle) with atezolizumab 840 mg (A + nP) or placebo (P + nP; days 1 and 15), until progression or unacceptable toxicity. Coprimary endpoints were progression-free survival [intention-to-treat (ITT) and PD-L1 IC-positive populations] and OS (tested hierarchically in the ITT population and, if significant, in the PD-L1 IC-positive population). RESULTS Each arm comprised 451 patients; 666 (73.8%) had died by the final OS analysis cut-off (median follow-up, 18.8 months; interquartile range, 8.9-34.7 months). Median OS in the ITT population was 21.0 months [95% confidence interval (CI), 19.0-23.4 months] with A + nP, and 18.7 months (95% CI, 16.9-20.8 months) with P + nP [stratified hazard ratio (HR), 0.87; 95% CI, 0.75-1.02; P = 0.077]. Exploratory analysis in the PD-L1 IC-positive population showed a median OS of 25.4 months (95% CI, 19.6-30.7 months) with A + nP (n = 185) and 17.9 months (95% CI, 13.6-20.3 months) with P + nP (n = 184; stratified HR, 0.67; 95% CI, 0.53-0.86). Safety outcomes were consistent with previous analyses and the known toxicity profiles of each agent. Immune-mediated adverse events of special interest were reported in 58.7% and 41.6% of patients treated with A + nP and P + nP, respectively. CONCLUSION Although the OS benefit in the ITT population was not statistically significant, precluding formal testing, clinically meaningful OS benefit was observed with A + nP in PD-L1 IC-positive patients, consistent with prior interim analyses. This combination remained safe and tolerable with longer follow-up.
Collapse
|
359
|
Huang D, Chen X, Zeng X, Lao L, Li J, Xing Y, Lu Y, Ouyang Q, Chen J, Yang L, Su F, Yao H, Liu Q, Su S, Song E. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer. Nat Immunol 2021; 22:865-879. [PMID: 34140678 DOI: 10.1038/s41590-021-00939-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Reduced infiltration of anti-tumor lymphocytes remains a major cause of tumor immune evasion and is correlated with poor cancer survival. Here, we found that upregulation of regulator of G protein signaling (RGS)1 in helper TH1 cells and cytotoxic T lymphocytes (CTLs) reduced their trafficking to and survival in tumors and was associated with shorter survival of patients with breast and lung cancer. RGS1 was upregulated by type II interferon (IFN)-signal transducer and activator of transcription (STAT)1 signaling and impaired trafficking of circulating T cells to tumors by inhibiting calcium influx and suppressing activation of the kinases ERK and AKT. RGS1 knockdown in adoptively transferred tumor-specific CTLs significantly increased their infiltration and survival in breast and lung tumor grafts and effectively inhibited tumor growth in vivo, which was further improved when combined with programmed death ligand (PD-L)1 checkpoint inhibition. Our findings reveal RGS1 is important for tumor immune evasion and suggest that targeting RGS1 may provide a new strategy for tumor immunotherapy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Cell Line, Tumor
- Chemokines/metabolism
- Chemotaxis, Leukocyte
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- Humans
- Immunotherapy, Adoptive
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/transplantation
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Microscopy, Video
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Time Factors
- Time-Lapse Imaging
- Tumor Cells, Cultured
- Tumor Escape
- Mice
Collapse
Affiliation(s)
- Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Xin Zeng
- Bioland Laboratory, Guangzhou, China
- Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Qian Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
- Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
360
|
Cao J, Zhang M, Wang B, Zhang L, Fang M, Zhou F. Chemoresistance and Metastasis in Breast Cancer Molecular Mechanisms and Novel Clinical Strategies. Front Oncol 2021; 11:658552. [PMID: 34277408 PMCID: PMC8281885 DOI: 10.3389/fonc.2021.658552] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Breast cancer is the most common malignant tumor in females worldwide. Chemotherapy is the standard breast cancer treatment; however, chemoresistance is often seen in patients with metastatic breast cancer. Owing to high heterogeneity, the mechanisms of breast cancer chemoresistance and metastasis have not been fully investigated. The possible molecular mechanisms of chemoresistance in breast cancer include efflux transporters, signaling pathways, non-coding RNAs, and cancer stem cells. However, to overcome this hurdle, the use of novel clinical strategies such as drug carriers, immunotherapy, and autophagy regulation, are being investigated. The goal of this review is to summarize the current data about the molecular mechanisms of breast cancer chemoresistance and the novel clinical strategies; thus, providing a useful clinical tool to explore optimal treatment for breast cancer.
Collapse
Affiliation(s)
- Jun Cao
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengdi Zhang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bin Wang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Long Zhang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meiyu Fang
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
361
|
Ronchi A, Pagliuca F, Zito Marino F, Accardo M, Cozzolino I, Franco R. Current and potential immunohistochemical biomarkers for prognosis and therapeutic stratification of breast carcinoma. Semin Cancer Biol 2021; 72:114-122. [PMID: 32165319 DOI: 10.1016/j.semcancer.2020.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
Abstract
The identification of biomarkers on cancer tissue samples could be obtained through several technologies. In this setting, the immunohistochemistry and in situ hybridization are accessible in most pathology laboratories. Particularly, immunohistochemistry can be used not only for diagnostic issues, but also to define prognostic classes and to define response to specific therapies. Particularly the last applications have been firstly developed in the breast cancer pathology. In addition, the development of molecular classification proposed some prognostic/predictive classes that could be easily defined by immunohistochemistry. Thus, the role of the pathologists has become increasingly important in the definition of prognosis and in the choice therapy, because the immunohistochemical biomarkers are used to guide treatment, to classify breast cancer into biologically and prognostically distinct subtypes. In this review, we will provide information on the current application of the immunohistochemical biomarkers useful in the management of breast cancer patients. Moreover, we consider the application of immunohistochemistry in the definition of the most promising biomarkers derived from molecular studies of the breast cancer, that in the future could integrate the characterization of breast cancer into clinical practice.
Collapse
Affiliation(s)
- Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Via Luciano Armanni 5, 80100, Naples, Italy
| | - Francesca Pagliuca
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Via Luciano Armanni 5, 80100, Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Via Luciano Armanni 5, 80100, Naples, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Via Luciano Armanni 5, 80100, Naples, Italy
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Via Luciano Armanni 5, 80100, Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "L. Vanvitelli", Via Luciano Armanni 5, 80100, Naples, Italy.
| |
Collapse
|
362
|
Miles D, Gligorov J, André F, Cameron D, Schneeweiss A, Barrios C, Xu B, Wardley A, Kaen D, Andrade L, Semiglazov V, Reinisch M, Patel S, Patre M, Morales L, Patel SL, Kaul M, Barata T, O'Shaughnessy J. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol 2021; 32:994-1004. [PMID: 34219000 DOI: 10.1016/j.annonc.2021.05.801] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the phase III IMpassion130 trial, combining atezolizumab with first-line nanoparticle albumin-bound-paclitaxel for advanced triple-negative breast cancer (aTNBC) showed a statistically significant progression-free survival (PFS) benefit in the intention-to-treat (ITT) and programmed death-ligand 1 (PD-L1)-positive populations, and a clinically meaningful overall survival (OS) effect in PD-L1-positive aTNBC. The phase III KEYNOTE-355 trial adding pembrolizumab to chemotherapy for aTNBC showed similar PFS effects. IMpassion131 evaluated first-line atezolizumab-paclitaxel in aTNBC. PATIENTS AND METHODS Eligible patients [no prior systemic therapy or ≥12 months since (neo)adjuvant chemotherapy] were randomised 2:1 to atezolizumab 840 mg or placebo (days 1, 15), both with paclitaxel 90 mg/m2 (days 1, 8, 15), every 28 days until disease progression or unacceptable toxicity. Stratification factors were tumour PD-L1 status, prior taxane, liver metastases and geographical region. The primary endpoint was investigator-assessed PFS, tested hierarchically first in the PD-L1-positive [immune cell expression ≥1%, VENTANA PD-L1 (SP142) assay] population, and then in the ITT population. OS was a secondary endpoint. RESULTS Of 651 randomised patients, 45% had PD-L1-positive aTNBC. At the primary PFS analysis, adding atezolizumab to paclitaxel did not improve investigator-assessed PFS in the PD-L1-positive population [hazard ratio (HR) 0.82, 95% confidence interval (CI) 0.60-1.12; P = 0.20; median PFS 6.0 months with atezolizumab-paclitaxel versus 5.7 months with placebo-paclitaxel]. In the PD-L1-positive population, atezolizumab-paclitaxel was associated with more favourable unconfirmed best overall response rate (63% versus 55% with placebo-paclitaxel) and median duration of response (7.2 versus 5.5 months, respectively). Final OS results showed no difference between arms (HR 1.11, 95% CI 0.76-1.64; median 22.1 months with atezolizumab-paclitaxel versus 28.3 months with placebo-paclitaxel in the PD-L1-positive population). Results in the ITT population were consistent with the PD-L1-positive population. The safety profile was consistent with known effects of each study drug. CONCLUSION Combining atezolizumab with paclitaxel did not improve PFS or OS versus paclitaxel alone. CLINICALTRIALS.GOV: NCT03125902.
Collapse
Affiliation(s)
- D Miles
- Mount Vernon Cancer Centre, Northwood, UK.
| | - J Gligorov
- Medical Oncology Department, Institut Universitaire de Cancérologie Assistance Publique-Hôpitaux de Paris-Sorbonne Université, Paris, France
| | - F André
- Department of Medical Oncology, Gustave Roussy, Université Paris Sud, Villejuif, France
| | - D Cameron
- University of Edinburgh, Edinburgh, UK
| | - A Schneeweiss
- Division of Gynecologic Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - C Barrios
- Latin American Cooperative Oncology Group, Porto Alegre RS, Brazil
| | - B Xu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - A Wardley
- National Institute for Health Research Manchester Clinical Research Facility at The Christie NHS Foundation Trust, Manchester, UK; Outreach Research & Innovation Group, Manchester, UK
| | - D Kaen
- Centro Oncológico Riojano Integral and Universidad Nacional de La Rioja, La Rioja, Argentina
| | - L Andrade
- Clinical Oncology, Santa Casa de Misericórdia da Bahia, Salvador, Brazil
| | - V Semiglazov
- NN Petrov Research Institute of Oncology, St. Petersburg, Russia
| | | | - S Patel
- Product Development Oncology, Genentech, Inc., South San Francisco, USA
| | - M Patre
- Global Product Development Medical Affairs Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - L Morales
- Global Product Development Medical Affairs Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - S L Patel
- Patient-Centered Outcomes Research, Genentech, Inc., South San Francisco, USA
| | - M Kaul
- Product Development Oncology, Genentech, Inc., South San Francisco, USA
| | - T Barata
- Pharma Development Biostatistics Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - J O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, USA
| |
Collapse
|
363
|
Dameri M, Ferrando L, Cirmena G, Vernieri C, Pruneri G, Ballestrero A, Zoppoli G. Multi-Gene Testing Overview with a Clinical Perspective in Metastatic Triple-Negative Breast Cancer. Int J Mol Sci 2021; 22:7154. [PMID: 34281208 PMCID: PMC8268401 DOI: 10.3390/ijms22137154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) is the technology of choice for the routine screening of tumor samples in clinical practice. In this setting, the targeted sequencing of a restricted number of clinically relevant genes represents the most practical option when looking for genetic variants associated with cancer, as well as for the choice of targeted treatments. In this review, we analyze available NGS platforms and clinical applications of multi-gene testing in breast cancer, with a focus on metastatic triple-negative breast cancer (mTNBC). We make an overview of the clinical utility of multi-gene testing in mTNBC, and then, as immunotherapy is emerging as a possible targeted therapy for mTNBC, we also briefly report on the results of the latest clinical trials involving immune checkpoint inhibitors (ICIs) and TNBC, where NGS could play a role for the potential predictive utility of homologous recombination repair deficiency (HRD) and tumor mutational burden (TMB).
Collapse
Affiliation(s)
- Martina Dameri
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
| | - Lorenzo Ferrando
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
| | - Gabriella Cirmena
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- IFOM, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- School of Medicine, University of Milan, 20122 Milan, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (M.D.); (L.F.); (G.C.); (A.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
364
|
Naing A, Thistlethwaite F, De Vries EGE, Eskens FALM, Uboha N, Ott PA, LoRusso P, Garcia-Corbacho J, Boni V, Bendell J, Autio KA, Randhawa M, Durm G, Gil-Martin M, Stroh M, Hannah AL, Arkenau HT, Spira A. CX-072 (pacmilimab), a Probody ® PD-L1 inhibitor, in advanced or recurrent solid tumors (PROCLAIM-CX-072): an open-label dose-finding and first-in-human study. J Immunother Cancer 2021; 9:e002447. [PMID: 34301809 PMCID: PMC8311335 DOI: 10.1136/jitc-2021-002447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Probody® therapeutics are antibody prodrugs that are activated in the tumor microenvironment by tumor-associated proteases, thereby restricting the activity to the tumor microenvironment and minimizing 'off-tumor' toxicity. We report dose-escalation and single-agent expansion phase data from the first-in-human study of CX-072 (pacmilimab), a Probody checkpoint inhibitor directed against programmed death-ligand 1 (PD-L1). METHODS In the dose-escalation phase of this multicenter, open-label study (NCT03013491), adults with advanced solid tumors (naive to programmed-death-1/PD-L1 or cytotoxic T-lymphocyte-associated antigen 4 inhibitors) were enrolled into one of seven dose-escalation cohorts, with pacmilimab administered intravenously every 14 days. The primary endpoints were safety and determination of the maximum tolerated dose (MTD). In the expansion phase, patients with one of six prespecified malignancies (triple-negative breast cancer [TNBC]; anal squamous cell carcinoma [aSCC]; cutaneous SCC [cSCC]; undifferentiated pleomorphic sarcoma [UPS]; small bowel adenocarcinoma [SBA]; and thymic epithelial tumor [TET]); or high tumor mutational burden (hTMB) tumors were enrolled. The primary endpoint was objective response (Response Evaluation Criteria In Solid Tumors v.1.1). RESULTS An MTD was not reached with doses up to 30 mg/kg. A recommended phase 2 dose (RP2D) of 10 mg/kg was chosen based on pharmacokinetic and pharmacodynamic findings in the expansion phase. Ninety-eight patients enrolled in the expansion phase: TNBC (n=14), aSCC (n=14), cSCC (n=14), UPS (n=20), SBA (n=14), TET (n=8), and hTMB tumors (n=14). Of 114 patients receiving pacmilimab at the RP2D, grade ≥3 treatment-related adverse events (TRAEs) were reported in 10 patients (9%), serious TRAEs in six patients (5%), and treatment discontinuation due to TRAEs in two patients (2%). Grade ≥3 immune-related AEs occurred in two patients (rash, myocarditis). High PD-L1 expression (ie, >50% Tumor Proportion Score) was observed in 22/144 (19%) patients. Confirmed objective responses were observed in patients with cSCC (n=5, including one complete response), hTMB (n=4, including one complete response), aSCC (n=2), TNBC (n=1), UPS (n=1), and anaplastic thyroid cancer (n=1). CONCLUSIONS Pacmilimab can be administered safely at the RP2D of 10 mg/kg every 14 days. At this dose, pacmilimab had a low rate of immune-mediated toxicity and showed signs of antitumor activity in patients not selected for high PD-L1 expression. TRIAL REGISTRATION NUMBER NCT03013491.
Collapse
Affiliation(s)
- Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fiona Thistlethwaite
- Department of Medical Oncology, The Christie Hospital NHS Foundation Trust and University of Manchester, Manchester, UK
| | - Elisabeth G E De Vries
- Department of Medical Oncology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Nataliya Uboha
- Department of Medicine, Section of Hematology and Oncology, University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patricia LoRusso
- Department of Medical Oncology, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut, USA
| | | | - Valentina Boni
- Department of Medical Oncology, START Madrid-CIOCC, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee, USA
| | - Karen A Autio
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Manreet Randhawa
- Department of Medical Oncology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Greg Durm
- Department of Medical Oncology, Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, USA
| | - Marta Gil-Martin
- Medical Oncology Department, Institut Català d'Oncologia - IDIBELL, L'Hospitalet-Barcelona, Barcelona, Spain
| | - Mark Stroh
- CytomX Therapeutics Inc, South San Francisco, California, USA
| | - Alison L Hannah
- CytomX Therapeutics Inc, South San Francisco, California, USA
| | - Hendrik-Tobias Arkenau
- Drug Development Unit, Sarah Cannon Research Institute and University College London Cancer Institute, London, UK
| | - Alexander Spira
- Department of Medical Oncology, Virginia Cancer Specialists, Fairfax, Virginia, USA
| |
Collapse
|
365
|
Boman C, Zerdes I, Mårtensson K, Bergh J, Foukakis T, Valachis A, Matikas A. Discordance of PD-L1 status between primary and metastatic breast cancer: A systematic review and meta-analysis. Cancer Treat Rev 2021; 99:102257. [PMID: 34237488 DOI: 10.1016/j.ctrv.2021.102257] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Programmed cell death ligand 1 (PD-L1) expression is predictive for benefit from immunotherapy in several human malignancies including triple negative breast cancer. Lower positivity rates but a larger relative benefit from atezolizumab has been implied when PD-L1 status is assessed at metastatic sites. We aimed to study the discordance of PD-L1 expression between primary tumor and metastasis in breast cancer due to its potential clinical utility. METHODS Cochrane Library, Embase, Medline and Web of science were searched for studies reporting on PD-L1 expression in primary and metastatic breast cancer, followed by data extraction. Outcomes included pooled PD-L1 positivity rates in tumor cells, immune cells or both in primary tumor and metastasis, PD-L1 discordance between matched primary tumors and metastasis and direction of discordance. RESULTS Of 2552 identified entries following de-duplication, 20 studies fulfilled the predefined inclusion criteria. Pooled PD-L1 positivity rate was higher in primary tumors compared to metastasis when assessed in immune cells (51.2% vs 37.1% p < 0.001) and tumor/immune cells (30.1% vs 14.6% p < 0.001), but not in tumor cells (18.7% vs 17.8% p = 0.65). PD-L1 positivity was lowest when assessed in bone metastases (12%) and highest in lymph nodes (60%). Discordance between primary tumors and metastasis was bidirectional, with higher pooled discordance rates when PD-L1 expression was assessed in immune compared to tumor cells (39.5% vs 13.6%, p < 0.001). CONCLUSION The observed considerable discordance between PD-L1 status in primary and metastatic breast cancer emphasizes the importance of appropriate tissue sampling when selecting patients for immunotherapy.
Collapse
Affiliation(s)
- Caroline Boman
- Department of Oncology-Pathology, Karolinska Institutet Visionsgatan 4, Bioclinicum, 171 74 Stockholm, Sweden; Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Gävlegatan 55, 171 64 Solna, Sweden.
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet Visionsgatan 4, Bioclinicum, 171 74 Stockholm, Sweden; Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Gävlegatan 55, 171 64 Solna, Sweden
| | - Kira Mårtensson
- Department of Clinical Pathology and Cytology, Karolinska University Laboratory, 171 76 Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet Visionsgatan 4, Bioclinicum, 171 74 Stockholm, Sweden; Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Gävlegatan 55, 171 64 Solna, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet Visionsgatan 4, Bioclinicum, 171 74 Stockholm, Sweden; Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Gävlegatan 55, 171 64 Solna, Sweden
| | - Antonios Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet Visionsgatan 4, Bioclinicum, 171 74 Stockholm, Sweden; Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Gävlegatan 55, 171 64 Solna, Sweden
| |
Collapse
|
366
|
Ahn SG, Kim SK, Shepherd JH, Cha YJ, Bae SJ, Kim C, Jeong J, Perou CM. Clinical and genomic assessment of PD-L1 SP142 expression in triple-negative breast cancer. Breast Cancer Res Treat 2021; 188:165-178. [PMID: 33770313 PMCID: PMC8233296 DOI: 10.1007/s10549-021-06193-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE The SP142 PD-L1 assay is a companion diagnostic for atezolizumab in metastatic triple-negative breast cancer (TNBC). We strove to understand the biological, genomic, and clinical characteristics associated with SP142 PD-L1 positivity in TNBC patients. METHODS Using 149 TNBC formalin-fixed paraffin-embedded tumor samples, tissue microarray (TMA) and gene expression microarrays were performed in parallel. The VENTANA SP142 assay was used to identify PD-L1 expression from TMA slides. We next generated a gene signature reflective of SP142 status and evaluated signature distribution according to TNBCtype and PAM50 subtypes. A SP142 gene expression signature was identified and was biologically and clinically evaluated on the TNBCs of TCGA, other cohorts, and on other malignancies treated with immune checkpoint inhibitors (ICI). RESULTS Using SP142, 28.9% of samples were PD-L1 protein positive. The SP142 PD-L1-positive TNBC had higher CD8+ T cell percentage, stromal tumor-infiltrating lymphocyte levels, and higher rate of the immunomodulatory TNBCtype compared to PD-L1-negative samples. The recurrence-free survival was prolonged in PD-L1-positive TNBC. The SP142-guided gene expression signature consisted of 94 immune-related genes. The SP142 signature was associated with a higher pathologic complete response rate and better survival in multiple TNBC cohorts. In the TNBC of TCGA, this signature was correlated with lymphocyte-infiltrating signature scores, but not with tumor mutational burden or total neoantigen count. In other malignancies treated with ICIs, the SP142 genomic signature was associated with improved response and survival. CONCLUSIONS We provide multi-faceted evidence that SP142 PDL1-positive TNBC have immuno-genomic features characterized as highly lymphocyte-infiltrated and a relatively favorable survival.
Collapse
Affiliation(s)
- Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eon-juro, Gangnam-gu, Seoul, Republic of Korea
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB),, Daejeon, Korea
| | - Jonathan H Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eon-juro, Gangnam-gu, Seoul, Republic of Korea
| | - Chungyeul Kim
- Department of Pathology, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eon-juro, Gangnam-gu, Seoul, Republic of Korea.
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
367
|
Qi Y, Zhang L, Wang Z, Kong X, Zhai J, Fang Y, Wang J. Efficacy and Safety of Anti-PD-1/ PD-L1 Monotherapy for Metastatic Breast Cancer: Clinical Evidence. Front Pharmacol 2021; 12:653521. [PMID: 34267656 PMCID: PMC8276035 DOI: 10.3389/fphar.2021.653521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Success has been reported in PD-1/PD-L1 blockade via pembrolizumab, atezolizumab, or avelumab monotherapy in manifold malignancies including metastatic breast cancer. Due to lack of large-scale study, here we present interim analyses to evaluate the safety and efficacy of these promising strategies in patients with advanced breast cancer. Methods: Six studies including 586 advanced breast cancer patients treated with anti-PD-1/PD-L1 monotherapy agents before July 1, 2020, were included. The anti-PD-1/PD-L1 agents include pembrolizumab, atezolizumab, land avelumab. Statistics was analyzed by R software and IBM SPSS Statistics 22. Results: Global analysis showed that for this monotherapy, the complete response was 1.26%, partial response was 7.65%, objective response rate (ORR) was 9.85%, and disease control rate (DCR) was 18.33%. 1-year overall survival rate and 6-month progression-free survival rate were 43.34 and 17.24%. Overall incidence of adverse events (AEs) was 64.18% in any grade and 12.94% in severe grade, while the incidence of immune-related AEs (irAEs) was approximately 14.75%: the most common treatment-related AEs of any grade that occurred in at least 5% of patients were arthralgia and asthenia; the most common severe treatment-related AEs occurred in at least 1% of patients were anemia and autoimmune hepatitis; the most common irAEs were hypothyroidism. Besides, the incidence of discontinue and death due to treatment-related AEs was about 3.06 and 0.31%, respectively. Additionally, by comparing efficacy indicators between PD-L1-positive and PD-L1-negative groups, an implicated correspondence between efficacy and the expression of PD-L1 biomarker was found: the PR was 9.93 vs 2.69%; the ORR was 10.62 vs. 3.07%; the DCR was 17.95 vs. 4.71%. Conclusion: Anti-PD-1/PD-L1 monotherapy showed a manageable safety profile and had a promising and durable anti-tumor efficacy in metastatic breast cancer patients. Higher PD-L1 expression may be closely correlated to a better clinical efficacy.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia.,Centre of Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
368
|
Xia Y, Wei J, Zhao S, Guo B, Meng F, Klumperman B, Zhong Z. Systemic administration of polymersomal oncolytic peptide LTX-315 combining with CpG adjuvant and anti-PD-1 antibody boosts immunotherapy of melanoma. J Control Release 2021; 336:262-273. [PMID: 34174350 DOI: 10.1016/j.jconrel.2021.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023]
Abstract
Oncolytic peptide LTX-315 while showing clinical promise in treating solid tumors is limited to intratumoral administration, which is not applicable for inaccessible or metastatic tumors. The cationic and amphipathic nature of oncolytic peptides engenders formidable challenges to developing systems for their systemic delivery. Here, we describe cRGD-functionalized chimaeric polymersomes (cRGD-CPs) as a robust systemic delivery vehicle for LTX-315, which in combination with CpG adjuvant and anti-PD-1 boost immunotherapy of malignant B16F10 melanoma in mice. cRGD-CPs containing 14.9 wt% LTX-315 (cRGD-CPs-L) exhibited a size of 53 nm, excellent serum stability, and strong and selective killing of B16F10 cells (versus L929 fibroblasts) in vitro, which provoked similar immunogenic effects to free LTX-315 as revealed by release of danger-associated molecular pattern molecules. The systemic administration of cRGD-CPs-L gave a notable tumor accumulation of 4.8% ID/g and significant retardation of tumor growth. More interestingly, the treatment of B16F10 tumor-bearing mice was further boosted by co-administration of polymersomal CpG and anti-PD-1 antibody, in which two out of seven mice were cured as a result of strong immune response and long-term immune memory protection. The immunotherapeutic effect was evidenced by secretion of IL-6, IFN-γ and TNF-α, tumor infiltration of CD8+ CTLs and Th, and induction of TEM and TCM in spleen. This study opens a new avenue to oncolytic peptides, which enables durable immunotherapy of tumors via systemic administration.
Collapse
Affiliation(s)
- Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Songsong Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
369
|
Shome R, Ghosh SS. Transferrin Coated d-penicillamine-Au-Cu Nanocluster PLGA Nanocomposite Reverses Hypoxia-Induced EMT and MDR of Triple-Negative Breast Cancers. ACS APPLIED BIO MATERIALS 2021; 4:5033-5048. [PMID: 35007052 DOI: 10.1021/acsabm.1c00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, lacks effective targeted therapies due to negative expression of the targetable bioreceptors. Additionally, hypoxic condition in solid tumors contributes to the epithelial to mesenchymal transition (EMT), which aggravates cancer progression, multidrug resistance (MDR), migration, and stemness of the TNBC. A therapeutic module has been established in this regard by coating PLGA nanoparticle with d-penicillamine templated Au-Cu bimetallic nanoclusters. Further, the resultant nanomaterials were coated with recombinant transferrin protein to specifically target transferrin receptor overexpressing TNBC. The synthesized nanocomposites showed strong orange emission band at 630 nm with fluorescence quantum yield of 2%, rendering it suitable for theranostic applications. Experimental results demonstrated efficient cellular internalization and significant innate anti-cell proliferative potential of the nanocomposites. The fabricated nanocomposites were also able to induce cell death in spheroids, which was confirmed by live/dead dual staining results. Furthermore, when EMT-induced TNBC cells were treated with nanocomposites, they generated reactive oxygen species (ROS), depolarized the mitochondrial membrane potential, and induced apoptosis. Gene expression by real-time PCR indicated that treatment of EMT-induced TNBC cells with nanocomposites facilitated mesenchymal to epithelial transition (MET). In MDA-MB-468 cells, treatment with nanocomposites resulted in a 1.35-fold rise in E-cadherin an epithelial marker and a 1.36-fold decrease in vimentin a mesenchymal marker. Similarly, 2.87-fold and 1.76-fold decrease in stemness markers ALDH1A3 and EpCAM were observed in MDA-MB-231. Furthermore, 4.63-fold decrease in expression of ABCC1, a prominent contributor of MDR, was observed in MDA-MB-231. Protein expression studies revealed that nanocomposites reduced p-STAT-3 by 1.61-fold in MDA-MB-231 and by 7.8-fold in MDA-MB-468. Importantly, nanocomposites downregulated the expression of β-catenin by 3-fold in MDA-MB-231 and by 3.11-fold in MDA-MB-468. Downregulation of EMT with concomitant alteration of STAT-3 and β-catenin signaling pathways led to reduced migration ability of the TNBC cells.
Collapse
Affiliation(s)
- Rajib Shome
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam India
| |
Collapse
|
370
|
Kern R, Panis C. CTLA-4 Expression and Its Clinical Significance in Breast Cancer. Arch Immunol Ther Exp (Warsz) 2021; 69:16. [PMID: 34148159 DOI: 10.1007/s00005-021-00618-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer is the leading cause of women's death among all cancers. The main reason associated with this is the development of metastasis and therapy-resistant breast carcinoma (BC), which pose the main challenge of oncology nowadays. Evidence suggest that these tumors seem to have inhibitory mechanisms that may favor their progression and surveillance. Cancer cells can evade antitumor T cell responses by expressing some immune inhibitory molecules such as the cytotoxic T-lymphocyte antigen-4 (CTLA-4), whose clinical meaning has emerged in the last few years and is poorly understood in the BC context. This systematic literature review aims at identifying studies on CTLA-4 expression in BC, and address what is known about its clinical meaning. A literature search was performed in PubMed and LILACS databases, using the MESH terms "breast cancer"; "CTLA-4 Antigen/antagonists and inhibitors"; and "Lymphocytes, Tumor-Infiltrating/immunology", published in the last 10 years. In total, 12 studies were included in this review. Systematic review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Despite the small number of eligible studies, the literature reports some associations between CTLA-4 expression in the tumor microenvironment and worse BC outcomes, regardless of its molecular subtype. CTLA-4 expression in BC is a putative marker of clinical significance and a rationale therapeutic target in the emerging field of immunotherapy.
Collapse
Affiliation(s)
- Rodrigo Kern
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil.
- State University of Western Paraná, Health Sciences Center, Vitório Traiano Highway, Km 2, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
371
|
Immune checkpoint inhibitors for triple-negative breast cancer: From immunological mechanisms to clinical evidence. Int Immunopharmacol 2021; 98:107876. [PMID: 34146865 DOI: 10.1016/j.intimp.2021.107876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer type in women worldwide. Triple-negative breast cancer (TNBC), which is characterized by the absence of estrogen receptor/progesterone receptor (ER/PR) and human epidermal growth factor receptor 2 (Her2) expressions, has a poorer prognosis compared with non-TNBC breast tumors. Until recently systemic treatment for TNBC was confined to chemotherapy owing to the lack of actionable targets. Immune checkpoint molecules are expressed on malignant cells or tumor-infiltrating immune cells and can inhibit anti-cancer immune responses. Immune checkpoint inhibitors (ICI), including anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1), and anti-programmed cell death 1 ligand 1 (PD-L1), induce immune responses in different types of neoplasms. They have recently gained attention for their possible role in TNBC treatment. Several clinical trials have been conducted on the role of immune checkpoint blockade in different settings for TNBC treatment. Available evidence justifies the application of ICI and chemotherapy combination in the management of metastatic TNBC and early-stage TNBC in neoadjuvant setting. This study aims to provide information on the mechanisms of action of ICIs, review the efficacy results of clinical trials using ICIs for TNBC treatment, and assess the side effects of such drugs.
Collapse
|
372
|
Ensenyat-Mendez M, Llinàs-Arias P, Orozco JIJ, Íñiguez-Muñoz S, Salomon MP, Sesé B, DiNome ML, Marzese DM. Current Triple-Negative Breast Cancer Subtypes: Dissecting the Most Aggressive Form of Breast Cancer. Front Oncol 2021; 11:681476. [PMID: 34221999 PMCID: PMC8242253 DOI: 10.3389/fonc.2021.681476] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease defined by the absence of estrogen receptor (ER) and progesterone receptor (PR) expression, and human epidermal growth factor receptor 2 (HER2) overexpression that lacks targeted treatments, leading to dismal clinical outcomes. Thus, better stratification systems that reflect intrinsic and clinically useful differences between TNBC tumors will sharpen the treatment approaches and improve clinical outcomes. The lack of a rational classification system for TNBC also impacts current and emerging therapeutic alternatives. In the past years, several new methodologies to stratify TNBC have arisen thanks to the implementation of microarray technology, high-throughput sequencing, and bioinformatic methods, exponentially increasing the amount of genomic, epigenomic, transcriptomic, and proteomic information available. Thus, new TNBC subtypes are being characterized with the promise to advance the treatment of this challenging disease. However, the diverse nature of the molecular data, the poor integration between the various methods, and the lack of cost-effective methods for systematic classification have hampered the widespread implementation of these promising developments. However, the advent of artificial intelligence applied to translational oncology promises to bring light into definitive TNBC subtypes. This review provides a comprehensive summary of the available classification strategies. It includes evaluating the overlap between the molecular, immunohistochemical, and clinical characteristics between these approaches and a perspective about the increasing applications of artificial intelligence to identify definitive and clinically relevant TNBC subtypes.
Collapse
Affiliation(s)
- Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Matthew P Salomon
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Borja Sesé
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maggie L DiNome
- Department of Surgery, David Geffen School of Medicine, University California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| |
Collapse
|
373
|
Saini KS, Punie K, Twelves C, Bortini S, de Azambuja E, Anderson S, Criscitiello C, Awada A, Loi S. Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in breast cancer therapeutics. Expert Opin Biol Ther 2021; 21:945-962. [PMID: 34043927 DOI: 10.1080/14712598.2021.1936494] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Advanced breast cancer (aBC) remains incurable and the quest for more effective systemic anticancer agents continues. Promising results have led to the FDA approval of three antibody-drug conjugates (ADCs) and two immune checkpoint inhibitors (ICIs) to date for patients with aBC. AREAS COVERED With the anticipated emergence of newer ADCs and ICIs for patients with several subtypes of breast cancer, and given their potential synergy, their use in combination is of clinical interest. In this article, we review the use of ADCs and ICIs in patients with breast cancer, assess the scientific rationale for their combination, and provide an overview of ongoing trials and some early efficacy and safety results of such dual therapy. EXPERT OPINION Improvement in the medicinal chemistry of next-generation ADCs, their rational combination with ICIs and other agents, and the development of multiparametric immune biomarkers could help to significantly improve the outlook for patients with refractory aBC.
Collapse
Affiliation(s)
- Kamal S Saini
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chris Twelves
- Leeds Institute of Medical Research, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK
| | | | - Evandro de Azambuja
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium.,Faculté de Médecine, Université Libre De Bruxelles (U.L.B.), Brussels, Belgium
| | - Steven Anderson
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ahmad Awada
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
374
|
Gumusay O, Wabl CA, Rugo HS. Trials of Immunotherapy in Triple Negative Breast Cancer. CURRENT BREAST CANCER REPORTS 2021. [DOI: 10.1007/s12609-021-00418-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
375
|
Baram T, Erlichman N, Dadiani M, Balint-Lahat N, Pavlovski A, Meshel T, Morzaev-Sulzbach D, Gal-Yam EN, Barshack I, Ben-Baruch A. Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells 2021; 10:cells10061429. [PMID: 34201054 PMCID: PMC8229590 DOI: 10.3390/cells10061429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is primarily treated via chemotherapy; in parallel, efforts are made to introduce immunotherapies into TNBC treatment. CD4+ TNFR2+ lymphocytes were reported as Tregs that contribute to tumor progression. However, our published study indicated that TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs) were associated with improved survival in TNBC patient tumors. Based on our analyses of the contents of CD4+ and CD8+ TILs in TNBC patient tumors, in the current study, we determined the impact of chemotherapy on CD4+ and CD8+ TIL subsets in TNBC mouse tumors. We found that chemotherapy led to (1) a reduction in CD4+ TNFR2+ FOXP3+ TILs, indicating that chemotherapy decreased the content of CD4+ TNFR2+ Tregs, and (2) an elevation in CD8+ TNFR2+ and CD8+ TNFR2+ PD-1+ TILs; high levels of these two subsets were significantly associated with reduced tumor growth. In spleens of tumor-bearing mice, chemotherapy down-regulated CD4+ TNFR2+ FOXP3+ cells but the subset of CD8+ TNFR2+ PD-1+ was not present prior to chemotherapy and was not increased by the treatment. Thus, our data suggest that chemotherapy promotes the proportion of protective CD8+ TNFR2+ TILs and that, unlike other cancer types, therapeutic strategies directed against TNFR2 may be detrimental in TNBC.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Nofar Erlichman
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Maya Dadiani
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Nora Balint-Lahat
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Anya Pavlovski
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Tsipi Meshel
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Dana Morzaev-Sulzbach
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Einav Nili Gal-Yam
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Iris Barshack
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978-01, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
- Correspondence: ; Tel.: +972-3-6407933 or +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
376
|
Liu J, Liu Q, Li Y, Li Q, Su F, Yao H, Su S, Wang Q, Jin L, Wang Y, Lau WY, Jiang Z, Song E. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase II trial. J Immunother Cancer 2021; 8:jitc-2020-000696. [PMID: 32448804 PMCID: PMC7252975 DOI: 10.1136/jitc-2020-000696] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Previous trials showed that antiangiogenesis or anti-programmed death protein 1/programmed death ligand 1 (PD-1/PD-L1) monotherapy only showed marginal effect in triple-negative breast cancer (TNBC). Preclinical studies demonstrated that antiangiogenic therapy could sensitize breast cancer to PD-1/PD-L1 blockade via reprogramming tumor microenvironment. Combinational treatment of checkpoint blockade and antiangiogenesis for TNBC has not been reported. Methods Patients with advanced TNBC with less than three lines of systemic therapy were enrolled in an open-label, non-comparative, two-arm, phase II trial at Sun Yat-sen Memorial Hospital. Camrelizumab (intravenously every 2 weeks) with apatinib orally at either continuous dosing (d1–d14) or intermittent dosing (d1–d7) was given until disease progression or unacceptable toxicities. Primary endpoint was objective response rate (ORR). Results From January 2018 to April 2019, 40 patients were enrolled, including 10 in the apatinib intermittent dosing cohort and 30 in the apatinib continuous dosing cohort. The ORR was 43.3% (13 of 30) in the continuous dosing cohort, while no objective response was observed in the intermittent dosing cohort. The disease control rate was 63.3% (19 of 30) in the apatinib continuous dosing cohort, and 40.0% (4 of 10) in the apatinib intermittent dosing cohort, respectively. The median progression-free survival (PFS) was 3.7 (95% CI 2.0 to 6.4) months and 1.9 (95% CI 1.8 to 3.7) months in the continuous dosing and intermittent dosing cohort, respectively. In the continuous dosing cohort, the median PFS of patients with partial response (8.3 months, 95% CI 5.9 to not reached) was significantly longer than that of patients with stable disease/progressive disease/not evaluable (2.0 months, 95% CI 1.7 to 3.0). The most common adverse events (AEs) included elevated aspartate aminotransferase/alanine aminotransferase and hand-foot syndrome. Overall, 26.7% and 20.0% of patients experienced grade ≥3 AEs in the continuous dosing and intermittent dosing cohort, respectively. In the continuous dosing cohort, a high percentage of baseline tumor-infiltrating lymphocytes (>10%) was associated with higher ORR and favorable PFS (p=0.029, 0.054, respectively). Conclusions The ORR by this chemo-free regimen was dramatically higher than previously reported ORR by anti-PD-1/PD-L1 antibody or apatinib monotherapy. Camrelizumab combined with apatinib demonstrated favorable therapeutic effects and a manageable safety profile in patients with advanced TNBC. Trial registration number NCT03394287.
Collapse
Affiliation(s)
- Jieqiong Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quanren Wang
- Jiangsu Hengrui Medicine Co., Ltd, Jiangsu, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wan Yee Lau
- Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hongkong, China
| | - Zefei Jiang
- Department of Oncology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China .,Fountain-Valley Institue for Life Sciences, 4th Floor, Building D, Guangzhou Institue of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
377
|
Li L, Lu G, Liu Y, Gong L, Zheng X, Zheng H, Gu W, Yang L. Low Infiltration of CD8+ PD-L1+ T Cells and M2 Macrophages Predicts Improved Clinical Outcomes After Immune Checkpoint Inhibitor Therapy in Non-Small Cell Lung Carcinoma. Front Oncol 2021; 11:658690. [PMID: 34150625 PMCID: PMC8213070 DOI: 10.3389/fonc.2021.658690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
Background Many clinical studies have shown that patients with non-small cell lung carcinoma (NSCLC) can benefit from immune checkpoint inhibitor (ICI) therapy; however, PD-L1 and tumor mutation burden (TMB), which are recommended by the NCCN guidelines, are still insufficient in predicting the response to and prognosis of immunotherapy. Given the widespread use of ICIs, it is important to find biomarkers that can predict immunotherapy outcomes in NSCLC patients, and the exploration of additional effective biomarkers for ICI therapy is urgently needed. Methods A total of 33 stage II-IV NSCLC patients were included in this study. We analyzed immune markers in biopsy and surgical tissue resected from these patients before treatment with ICIs. We examined the infiltration of immune cells and expression of PD-L1 in immune cells using fluorescent multiplex immunohistochemistry (mIHC) stained with CD8/CD68/CD163/PD-L1 antibodies. Results In this cohort, we observed that the levels of CD8+ T cells, CD8+PD-L1+ T cells, and CD68+CD163+ M2 macrophages in the total region were independent prognostic factors for progression-free survival (PFS) in NSCLC patients treated with ICIs (HR=0.04, P=0.013; HR=17.70, P=0.026; and HR=17.88, P=0.011, respectively). High infiltration of CD8+ T cells and low infiltration of CD8+PD-L1+ T cells throughout the region were correlated with prolonged PFS (P=0.016 and P=0.02, respectively). No statistically significant difference was observed for CD68+CD163+ M2 macrophages. The joint parameters CD8+ high/CD8+PD-L1+ low, CD8+ high/CD68+CD163+ low and CD8+PD-L1+ low/CD68+CD163+ low predicted better PFS than other joint parameters (P<0.01, P<0.01, and P<0.001, respectively), and they also demonstrated stronger stratification than single biomarkers. The response rate of patients with high infiltration of CD8+ T cells was significantly higher than that of those with low infiltration (P<0.01), and the joint parameters CD8+/CD8+PD-L1+ and CD8+/CD68+CD163+ also demonstrated stronger stratification than single biomarkers. Conclusions This retrospective study identified the predictive value of CD8+PD-L1+ T cells, CD8+ T cells, and CD68+CD163+ M2 macrophages in NSCLC patients who received ICIs. Interestingly, our results indicate that the evaluation of joint parameters has certain significance in guiding ICI treatment in NSCLC patients.
Collapse
Affiliation(s)
- Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guojie Lu
- Department of Thoracic Surgery (Respiratory Center Area 1), Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Liu
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Longlong Gong
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Xue Zheng
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Hongbo Zheng
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Weiguang Gu
- Oncology Department, Nanhai People's Hospital/Second School of Clinical Medical, Southern Medical University, Guangzhou, China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital/2nd Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
378
|
Zheng C, Yan S, Lu L, Yao H, He G, Chen S, Li Y, Peng X, Cheng Z, Wu M, Zhang Q, Li G, Fu S, Deng X. Lovastatin Inhibits EMT and Metastasis of Triple-Negative Breast Cancer Stem Cells Through Dysregulation of Cytoskeleton-Associated Proteins. Front Oncol 2021; 11:656687. [PMID: 34150623 PMCID: PMC8212055 DOI: 10.3389/fonc.2021.656687] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and has poorer prognosis compared to other subtypes of breast cancer. Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal-like cells capable of migration, invasion, and metastasis. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, could inhibit stemness properties of cancer stem cells (CSCs) derived from TNBC cell in vitro and in vivo. This study is aimed at investigating whether lovastatin inhibits TNBC CSCs by inhibiting EMT and suppressing metastasis and the mechanism involved. In the present study, we found that lovastatin dysregulated lysine succinylation of cytoskeleton-associated proteins in CSCs derived from TNBC MDA-MB-231 cell. Lovastatin inhibited EMT as demonstrated by down-regulation of the protein levels of Vimentin and Twist in MDA-MB-231 CSCs in vitro and vivo and by reversal of TGF-β1-induced morphological change in MCF10A cells. Lovastatin also inhibited the migration of MDA-MB-231 CSCs. The disruption of cytoskeleton in TNBC CSCs by lovastatin was demonstrated by the reduction of the number of pseudopodia and the relocation of F-actin cytoskeleton. Combination of lovastatin with doxorubicin synergistically inhibited liver metastasis of MDA-MB-231 CSCs. Bioinformatics analysis revealed that higher expression levels of cytoskeleton-associated genes were characteristic of TNBC and predicted survival outcomes in breast cancer patients. These data suggested that lovastatin could inhibit the EMT and metastasis of TNBC CSCs in vitro and in vivo through dysregulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China.,Department of Preventive Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Shichao Yan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | | | | | - Mi Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Qiuting Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guifei Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| |
Collapse
|
379
|
Heeke AL, Tan AR. Checkpoint inhibitor therapy for metastatic triple-negative breast cancer. Cancer Metastasis Rev 2021; 40:537-547. [PMID: 34101053 PMCID: PMC8184866 DOI: 10.1007/s10555-021-09972-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/27/2021] [Indexed: 12/03/2022]
Abstract
Immunotherapy has become a mainstay of cancer treatment in many malignancies, though its application in breast cancer remains limited. Of the breast cancer subtypes, triple-negative breast cancers (TNBCs) are characterized by immune activation and infiltration and more commonly express biomarkers associated with response to immunotherapy. Checkpoint inhibitor therapy has shown promising activity in metastatic TNBC. In 2019, the US FDA granted accelerated approval of atezolizumab, a programmed death-ligand 1 (PD-L1) inhibitor, in combination with nab-paclitaxel for unresectable locally advanced or metastatic PD-L1-positive TNBC, based on the results of the phase III IMpassion130 trial. In 2020, the FDA also granted accelerated approval of pembrolizumab, a PD-1 inhibitor, in combination with chemotherapy for locally recurrent unresectable and metastatic PD-L1-positive TNBC, based on results of the phase III KEYNOTE-355 trial. Additional combination strategies are being explored in the treatment of metastatic TNBC, with the goal of augmenting antitumor activity. In this review, the clinical development of checkpoint inhibitors in the treatment of metastatic TNBC will be discussed, including clinical outcomes with monotherapy and combination therapy regimens, biomarkers that may predict for benefit, and future directions in the field.
Collapse
|
380
|
Nelson MA, Ngamcherdtrakul W, Luoh SW, Yantasee W. Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer Metastasis Rev 2021; 40:519-536. [PMID: 33963482 PMCID: PMC8424653 DOI: 10.1007/s10555-021-09968-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Increased levels of total tumor-infiltrating lymphocytes (TILs) are generally associated with good prognosis in several breast cancer subtypes. Subtypes of TILs impact both tumor cells and immune cells in a variety of different ways, leading to either a pro-tumor or antitumor effect. Tumor-infiltrating CD8+ T cells and natural killer (NK) cells perform as effector cells against tumor cells and are associated with better clinical outcome. Immunotherapy approaches that improve the antitumor activity and proliferation of CD8+ T and NK cells include PD-1/PD-L1 blockade, CAR T cell therapy, or ex vivo-stimulated NK cells. A subset of CD8+ T cells, tissue-resident memory T cells, has also recently been associated with good prognosis in breast cancer patients, and has potential to serve as a predictive biomarker and therapeutic target. Tumor-infiltrating B cells also secrete apoptosis-inducing IgG antibodies and can act as antigen-presenting cells to prime CD4+ and CD8+ T cells. On the other hand, regulatory T and regulatory B cells modulate the immune response from CD8+ T cells and NK cells by secreting immunosuppressive cytokines and inhibiting maturation of antigen-presenting cells (APCs). These regulatory cells are typically associated with poor prognosis, therefore rendering suppression of their regulatory function a key immunotherapeutic strategy.
Collapse
Affiliation(s)
| | | | - Shiuh-Wen Luoh
- VA Portland Health Care System, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Wassana Yantasee
- PDX Pharmaceuticals, Inc., Portland, OR, USA.
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
381
|
Managing side effects of immune checkpoint inhibitors in breast cancer. Crit Rev Oncol Hematol 2021; 162:103354. [PMID: 34029683 DOI: 10.1016/j.critrevonc.2021.103354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) represent a major development in cancer therapy. The indications for these agents continue to expand across malignancies and disease settings. For years breast cancer (BC) has been considered immunologically quiescent compared with other tumor types. However, recent findings highlighted the immunogenicity of some BCs and paved the way for clinical trials of immunotherapy in BC that led to recent landmark approvals. As a drawback, the safety profile of ICIs is shaped by a specific spectrum of immune-related adverse events (irAEs) that can vary according to ICI class and tumor histology. This review will discuss the epidemiology of these adverse events, their kinetics, risk factors and the most important aspects in their management. A particular focus will be put on BC as the current landscape of immunotherapy for this disease is rapidly increasing the number of people treated with ICIs, thus susceptible to irAEs.
Collapse
|
382
|
Yi H, Li Y, Tan Y, Fu S, Tang F, Deng X. Immune Checkpoint Inhibition for Triple-Negative Breast Cancer: Current Landscape and Future Perspectives. Front Oncol 2021; 11:648139. [PMID: 34094935 PMCID: PMC8170306 DOI: 10.3389/fonc.2021.648139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the lack of clinically significant levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Owing to the aggressive nature and the emergence of resistance to chemotherapeutic drugs, patients with TNBC have a worse prognosis than other subtypes of breast cancer. Currently, immunotherapy using checkpoint blockade has been shown to produce unprecedented rates of long-lasting responses in patients with a variety of cancers. Although breast tumors, in general, are not highly immunogenic, TNBC has a higher level of lymphocyte infiltration, suggesting that TNBC patients may be more responsive to immunotherapy. The identification/characterization of immune checkpoint molecules, i.e., programmed cell death protein 1 (PD1), programmed cell death ligand 1 (PDL1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA4), represents a major advancement in the field of cancer immunotherapy. These molecules function to suppress signals downstream of T cell receptor (TCR) activation, leading to elimination of cytotoxic T lymphocytes (CTLs) and suppression of anti-tumor immunity. For TNBC, which has not seen substantial advances in clinical management for decades, immune checkpoint inhibition offers the opportunity of durable response and potential long-term benefit. In clinical investigations, immune checkpoint inhibition has yielded promising results in patients with early-stage as well as advanced TNBC. This review summarizes the recent development of immune checkpoint inhibition in TNBC, focusing on humanized antibodies targeting the PD1/PDL1 and the CTLA4 pathways.
Collapse
Affiliation(s)
- Huimei Yi
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| | - Yuan Tan
- Hunan Key Laboratory of Oncotarget Gene, Changsha, China
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Changsha, China
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
- Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China
| |
Collapse
|
383
|
Kumar A, Swain CA, Shevde LA. Informing the new developments and future of cancer immunotherapy : Future of cancer immunotherapy. Cancer Metastasis Rev 2021; 40:549-562. [PMID: 34003425 DOI: 10.1007/s10555-021-09967-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
The application of cancer immunotherapy (CIT) in reinforcing anti-tumor immunity in response to carcinogenesis and metastasis has shown promising advances, along with new therapeutic challenges, in the landscape of cancer care. To promote tumor growth and metastasis, cancer cells aim to manipulate their microenvironment by mediating a crosstalk with various immune cells through the secretion of chemokines, cytokines, and other associated factors. Understanding this crosstalk is the key to discovering the best targets for improved immunotherapies and clinical strategies in cancer treatment. Here, we review the tumor immune crosstalk in cancer growth and metastasis. This review also highlights the development and expansion of CIT over the years. Moreover, we highlight clinical challenges and limitations involving immune-related adverse events, treating cancer patients with pre-existing autoimmune diseases, and the management of immunotherapy-induced treatment resistance. Possible clinical solutions to these current challenges in CIT are also proposed. Altogether, this review can contribute to the formation of pre-clinical and treatment-related strategies that further develop the availability and effectiveness of CIT.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Courtney A Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
384
|
Dyrka K, Witasik D, Czarnywojtek A, Łącka K. The influence of monoclonal antibodies for cancer
treatment on the endocrine system. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Thanks to scientific research, new
methods of cancer treatment, including molecularly targeted therapy, are being developed.
Monoclonal antibodies are used to treat many diseases, including some types of cancer, and
affect various systems of the human body. The presented article aims to present the adverse
effects of molecularly targeted cancer therapy on the endocrine system based on the current
literature data. Immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1 or its
ligand PD-L1, can cause a variety of autoimmune adverse effects, among others, thyroid dysfunction,
hypophysitis, and diabetes mellitus. The authors also paid attention to monitoring
selected diagnostic parameters to prevent endocrine adverse effects during a therapy with
monoclonal antibodies. The development of adverse effects may sometimes progress atypically
and rapidly, and may be a life-threatening condition. Clinicians should choose individual
schemes of treatment for particular patients. The patient’s condition should also be monitored
before, during and after the therapy. The decision about the continuation of treatment with
monoclonal antibodies should be based especially on a risk connected with the cessation of
treatment. Clinical trials should be continued to improve knowledge about the side effects of
monoclonal antibodies.
Collapse
Affiliation(s)
- Kamil Dyrka
- Student’s Scientific Group of Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Daria Witasik
- Student’s Scientific Group of Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Czarnywojtek
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Łącka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
385
|
Hamilton EP, Kaklamani V, Falkson C, Vidal GA, Ward PJ, Patre M, Chui SY, Rotmensch J, Gupta K, Molinero L, Li Y, Emens LA. Impact of Anti-HER2 Treatments Combined With Atezolizumab on the Tumor Immune Microenvironment in Early or Metastatic Breast Cancer: Results From a Phase Ib Study. Clin Breast Cancer 2021; 21:539-551. [PMID: 34154926 DOI: 10.1016/j.clbc.2021.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Despite advances, there continues to be unmet need in breast cancer. Combining anti-programmed death-ligand 1 (PD-L1) cancer immunotherapy atezolizumab with other targeted therapies may enhance T-cell-dependent cytolytic antitumor activity. METHODS This open-label, phase Ib study evaluated the safety of atezolizumab-based combinations with antibody-dependent cellular cytotoxicity or antibody-drug conjugate (ADC) agents. Patients with unresectable human epidermal growth factor receptor 2-positive (HER2+) locally advanced or metastatic breast cancer (mBC) received atezolizumab with trastuzumab/pertuzumab, atezolizumab with the ADC ado-trastuzumab emtansine (T-DM1), or atezolizumab with trastuzumab/pertuzumab and docetaxel. In an early-breast cancer (eBC) "window of opportunity" study, patients with operable HER2+ locally advanced or inflammatory eBC received neoadjuvant atezolizumab with trastuzumab/pertuzumab or atezolizumab/T-DM1, followed by docetaxel, carboplatin, and trastuzumab/pertuzumab. Exploratory outcomes included tumor response and biomarkers. RESULTS By March 15, 2019, 73 patients were enrolled. Safety findings were consistent with the treatment components' individual profiles. Objective responses were observed in 2 of 6 and 5 of 14 patients in 2 mBC cohorts receiving atezolizumab/T-DM1 and in 6 of 6 patients with mBC receiving atezolizumab, trastuzumab/pertuzumab, and docetaxel. PD-L1 in immune cells was the only biomarker that increased with atezolizumab/T-DM1. In the window of opportunity cohorts, PD-L1 levels and CD8+ T-cell infiltration increased from baseline in HER2+ eBC tumors receiving atezolizumab with trastuzumab/pertuzumab or T-DM1, irrespective of response. Despite increases in T-cell and B-cell gene signatures with trastuzumab/pertuzumab, but not T-DM1, neither combination promoted T-cell receptor clonal expansion. CONCLUSION Atezolizumab with antibody-dependent cellular cytotoxicity or ADC agents appears safe and may activate the adaptive immune system of patients with HER2+ eBC tumors more than those with mBC tumors.
Collapse
Affiliation(s)
- Erika P Hamilton
- Breast and Gynecologic Cancer Research, Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA.
| | - Virginia Kaklamani
- Division of Hematology/Oncology, Mays Cancer Center, UT Health San Antonio, San Antonio, TX, USA
| | - Carla Falkson
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Gregory A Vidal
- Department of Hematology/Oncology, West Cancer Center and Research Institute and University of Tennessee Health Science Center, Germantown, TN, USA
| | | | | | - Stephen Y Chui
- Product Development Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Jacob Rotmensch
- Product Development Safety, Genentech Inc, South San Francisco, CA, USA
| | - Kushagra Gupta
- Biostatistics, IQVIA-RDS India Pvt Ltd, Mumbai, Maharashtra, India
| | - Luciana Molinero
- Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - Yijin Li
- Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - Leisha A Emens
- Department of Medicine, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
386
|
Sun LZ, Wu C, Li X, Chen C, Schmidt EV. Independent action models and prediction of combination treatment effects for response rate, duration of response and tumor size change in oncology drug development. Contemp Clin Trials 2021; 106:106434. [PMID: 34004341 DOI: 10.1016/j.cct.2021.106434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/05/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
An unprecedented number of new cancer targets are in development, and most are being developed in combination therapies. Early oncology development is strategically challenged in choosing the best combinations to move forward to late stage development. The most common early endpoints to be assessed in such decision-making include objective response rate, duration of response and tumor size change. In this paper, using independent-drug-action and Bliss-drug-independence concepts as a foundation, we introduce simple models to predict combination therapy efficacy for duration of response and tumor size change. These models complement previous publications using the independent action models (Palmer 2017, Schmidt 2020) to predict progression-free survival and objective response rate and serve as new predictive models to understand drug combinations for early endpoints. The models can be applied to predict the combination treatment effect for early endpoints given monotherapy data, or to estimate the possible effect of one monotherapy in the combination if data are available from the combination therapy and the other monotherapy. Such quantitative work facilitates strategic planning and decision making in early stage oncology drug development.
Collapse
Affiliation(s)
- Linda Z Sun
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Cai Wu
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xiaoyun Li
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Cong Chen
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Emmett V Schmidt
- Oncology Early Development, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| |
Collapse
|
387
|
Ouyang T, Cao Y, Kan X, Chen L, Ren Y, Sun T, Yan L, Xiong B, Liang B, Zheng C. Treatment-Related Serious Adverse Events of Immune Checkpoint Inhibitors in Clinical Trials: A Systematic Review. Front Oncol 2021; 11:621639. [PMID: 34046338 PMCID: PMC8144509 DOI: 10.3389/fonc.2021.621639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Immune Checkpoint Inhibitors (ICI) have been progressively used in cancer treatment and produced unique toxicity profiles. This systematic review aims to comprehend the patterns and occurrence of treatment-related adverse events (trAEs) based on ICI. Methods PICOS/PRISMA methods were used to identify published English-language on PubMed, Web of Science, and Scopus from 2015 to 2020. Published clinical trials on ICI monotherapy, combined ICIs, and ICI plus other treatment with tabulated data on grade≥3 trAEs were included. Odds ratio (OR), χ2 tests were used to analyze for effect size and associations. Results This review included 145 clinical trials involving 21786 patients. Grade 3-5 trAEs were more common with ICI when they were plused with other treatments compared with ICI monotherapy(54.3% versus 17.7%, 46.1%, p<0.05). Grade 3-5 trAEs were also more common with CTLA-4 mAbs compared with anti-PD-1 and anti-PD-L1 (34.2% versus 15.1%, 13.6%, p<0.05). Hyperthyroidism (OR 3.8, 95%CI 1.7–8.6), nausea (OR 3.7, 95%CI 2.5–5.3), diarrhea (OR 2.7, 95%CI 2.2–3.2), colitis (OR 3.4, 95%CI 2.7–4.3), ALT increase (OR 4.9, 95%CI 3.9–6.1), AST increase (OR 3.8, 95%CI 3.0–4.9), pruritus (OR 2.4, 95%CI 1.5–3.9), rash (OR 2.8, 95%CI 2.1–3.8), fatigue (OR 2.8, 95%CI 2.2–3.7), decreased appetite (OR 2.4, 95%CI 1.5–3.8), and hypophysitis (OR 2.0, 95%CI 1.2–3.3) were more frequent with combined ICIs. Diarrhea (OR 8.1, 95%CI 6.4–10.3), colitis (OR 12.2, 95%CI 8.7–17.1), ALT increase (OR 5.1, 95%CI 3.5–7.4), AST increase (OR 4.2, 95%CI 2.8–6.3), pruritus (OR 4.1, 95%CI 2.0–8.4), rash (OR 4.4, 95%CI 2.9–6.8), hypophysitis (OR 12.1, 95%CI 6.3–23.4) were more common with CTLA-4 mAbs; whereas pneumonitis (OR 4.7, 95% CI 2.1–10.3) were more frequent with PD-1 mAbs. Conclusions Different immune checkpoint inhibitors are associated with different treatment-related adverse events profiles. A comprehensive data in this systematic review will provide comprehensive information for clinicians.
Collapse
Affiliation(s)
- Tao Ouyang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Liangliang Yan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
388
|
Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol 2021; 226:108707. [DOI: 10.1016/j.clim.2021.108707] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 12/30/2022]
|
389
|
Peng Y, Yu H, Jin Y, Qu F, Ren H, Tang Z, Zhang Y, Qu C, Zong B, Liu S. Construction and Validation of an Immune Infiltration-Related Gene Signature for the Prediction of Prognosis and Therapeutic Response in Breast Cancer. Front Immunol 2021; 12:666137. [PMID: 33986754 PMCID: PMC8110914 DOI: 10.3389/fimmu.2021.666137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer patients show significant heterogeneity in overall survival. Current assessment models are insufficient to accurately predict patient prognosis, and models for predicting treatment response are lacking. We evaluated the relationship between various immune cells and breast cancer and confirmed the association between immune infiltration and breast cancer progression. Different bioinformatics and statistical approaches were combined to construct a robust immune infiltration-related gene signature for predicting patient prognosis and responses to immunotherapy and chemotherapy. Our research found that a higher immune infiltration-related risk score (IRS) indicates that the patient has a worse prognosis and is not very sensitive to immunotherapy. In addition, a new nomogram was constructed based on the gene signature and clinicopathological features to improve the risk stratification and quantify the risk assessment of individual patients. Our study might contribute to the optimization of the risk stratification for survival and the personalized management of breast cancer.
Collapse
Affiliation(s)
- Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yudi Jin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanli Qu
- Department of Breast Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haoyu Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzi Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Qu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beige Zong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
390
|
de Melo Gagliato D, Buzaid AC, Perez-Garcia J, Cortes J. Immunotherapy in Breast Cancer: Current Practice and Clinical Challenges. BioDrugs 2021; 34:611-623. [PMID: 32870473 DOI: 10.1007/s40259-020-00436-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapy is currently approved for a subset of patients diagnosed with advanced triple negative breast cancer (TNBC), based on the phase III randomized controlled trial, IMpassion130. The anti-programmed cell death ligand-1 (PD-L1) immune checkpoint inhibitor atezolizumab combined with nanoparticle albumin-bound (nab)-paclitaxel is currently the standard first-line therapy in patients with metastatic TNBC who have a PD-L1-positive peritumoral immune infiltrate. Although this approval is limited to only a subset of patients, strategies to expand indications in breast cancer for this treatment modality are being extensively evaluated. A substantial need exists for the identification of patient characteristics, disease settings, immune markers, ideal partners for combination with immune checkpoint inhibitors, and the ideal sequence with traditional anticancer therapies. Additionally, in light of the results of the KEYNOTE-522 study of adjuvant pembrolizumab in TNBC, evaluation of immunotherapy in the early disease setting is a subject of great interest. This review article discusses current knowledge on immune checkpoint inhibitors in clinical practice, and provides an overview of a variety of markers evaluated to predict benefit of immunotherapy and of promising new strategies to enhance immune response and enable more patients to benefit from immunotherapy.
Collapse
Affiliation(s)
| | - Antonio C Buzaid
- Centro Oncológico da Beneficência Portuguesa de São Paulo, São Paulo, Brazil
- Centro Oncológico do Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Perez-Garcia
- IOB Institute of Oncology, Quiron Group, Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | - Javier Cortes
- IOB Institute of Oncology, Quiron Group, Barcelona, Spain.
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain.
- Medica Scientia Innovation Research (MedSIR), New Jersey, USA.
- Vall D´Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
391
|
Hall PE, Schmid P. Emerging drugs for the treatment of triple-negative breast cancer: a focus on phase II immunotherapy trials. Expert Opin Emerg Drugs 2021; 26:131-147. [PMID: 33870839 DOI: 10.1080/14728214.2021.1916468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Triple-negative breast cancer accounts for 10-20% of invasive breast cancers and is characterized by an aggressive phenotype and poor outcomes in the early and advanced settings compared to other breast cancer subtypes. Chemotherapy continues to be the mainstay of treatment, but recent advances have demonstrated the benefit of adding immune checkpoint inhibitors (ICIs) to chemotherapy regimens for patients with both early and advanced TNBC, particularly if PD-L1-positive. Despite these results, further improvements are needed.Areas covered: This review covers immunotherapy drugs which have recently completed, involved in ongoing or due to start phase II trials. This includes approaches to augment the response to existing ICIs, next-generation ICIs, combination treatments with targeted agents and drugs that target the tumor microenvironment. Potential development issues are also discussed.Expert opinion: The field of immunotherapy is developing rapidly and holds great promise for patients with TNBC. Promising avenues of research currently in phase II trials include targeting multiple immune checkpoints simultaneously and the addition of phosphatidylinositol 3-kinase (PI3K)/AKT inhibitors to ICI/chemotherapy regimens. A better understanding of the immunosuppressive role played by the tumor microenvironment has also been important. However, challenges remain, particularly regarding the need for more effective predictive biomarkers.
Collapse
Affiliation(s)
- Peter E Hall
- Dept. Of Medical Oncology, Barts Health NHS Trust, London, UK
| | - Peter Schmid
- Dept. Of Medical Oncology, Barts Health NHS Trust, London, UK.,Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
392
|
Spagnolo F, Boutros A, Cecchi F, Croce E, Tanda ET, Queirolo P. Treatment beyond progression with anti-PD-1/PD-L1 based regimens in advanced solid tumors: a systematic review. BMC Cancer 2021; 21:425. [PMID: 33865350 PMCID: PMC8052683 DOI: 10.1186/s12885-021-08165-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Treatment beyond progression with immunotherapy may be appropriate in selected patients based on the potential for late responses. The aim of this systematic review was to explore the impact of treatment beyond progression in patients receiving an anti-PD-1/PD-L1 based regimen for an advanced solid tumor. METHODS A systematic literature search was performed to identify prospective clinical trials reporting data on overall response rate by immune-related criteria and/or the number of patients treated beyond conventional criteria-defined PD and/or the number of patients achieving a clinical benefit after an initial PD with regimens including an anti-PD-1/PD-L1 agent which received the FDA approval for the treatment of an advanced solid tumor. RESULTS 254 (4.6%) responses after an initial RECIST-defined progressive disease were observed among 5588 patients, based on 35 trials included in our analysis reporting this information. The overall rate of patients receiving treatment beyond progressive disease was 30.2%, based on data on 5334 patients enrolled in 36 trials, and the rate of patients who achieved an unconventional response among those treated beyond progressive disease was 19.7% (based on 25 trials for a total of 853 patients). CONCLUSION The results of our systematic review support the clinical relevance of unconventional responses to anti-PD-1/PD-L1-based regimens; however, most publications provided only partial information regarding immune-related clinical activity, or did not provide any information at all, highlighting the need of a more comprehensive report of such data in trials investigating immunotherapy for the treatment of patients with advanced tumors.
Collapse
Affiliation(s)
- Francesco Spagnolo
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Andrea Boutros
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Federica Cecchi
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Elena Croce
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Enrica Teresa Tanda
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Paola Queirolo
- Melanoma, Sarcoma & Rare Tumors Division, European Institute of Oncology (IEO), Milan, Italy
| |
Collapse
|
393
|
Chen S, Zhang Z, Zheng X, Tao H, Zhang S, Ma J, Liu Z, Wang J, Qian Y, Cui P, Huang D, Huang Z, Wu Z, Hu Y. Response Efficacy of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:562315. [PMID: 33937012 PMCID: PMC8085334 DOI: 10.3389/fonc.2021.562315] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Immune checkpoint inhibitors targeting the PD-1/PD-L1 pathway have demonstrated promise in treating a variety of advanced cancers; however, little is known regarding their efficacy under various clinical situations, including different cancer types, treatment lines, drug combinations, and therapeutic regimens. Methods Published articles and conference abstracts (in English) in PubMed, Embase, the Cochrane Central Register, and Web of Science were searched up to February 10, 2020. The data were analyzed by the meta-analysis program in Stata. Results A total of 16,400 patients from 91 clinical trials were included in this meta-analysis. PD-1/PD-L1 inhibitors had a mean ORR of 19.56% (95% CI: 15.09–24.03), a median TTR of 2.05 months (m) (95%CI: 1.85–2.26), and a median DOR of 10.65 m (95%CI: 7.78–13.52). First-line treatment had a higher ORR (36.57% vs. 13.18%) but a shorter DOR (9.00 m vs. 13.42 m) compared to the second-line or subsequent treatment. Immunotherapy combined with chemotherapy (I+C) (46.81% [95%CI: 36.02–57.60]) had a statistically significant higher ORR compared to immunotherapy (I) (17.75% [95%CI: 14.47–21.03]) or immunotherapy combined with immunotherapy (I+O) (12.25% [95%CI: 1.56–22.94]), while I+C (8.09 m [95%CI: 6.86–9.32]) appeared to reduce the DOR compared to I (12.39 m [95%CI: 7.60–17.18]). PD-1 inhibitors were associated with better ORR (21.65% vs. 17.60%) and DOR (11.26 m vs. 10.03 m) compared to PD-L1 inhibitors. There were no significant differences in TTR under different situations. Conclusions PD-1/PD-L1 inhibitors were promising immunotherapeutic agents to achieve satisfactory response efficacies with different cancer types, treatment lines, drug combinations, and therapeutic regimens. This comprehensive summary of the response efficacy of PD-1/PD-L1 inhibitors serves as a reference for clinicians to make evidence-based decisions.
Collapse
Affiliation(s)
- Shixue Chen
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China
| | - Zhibo Zhang
- Department of Cardiothoracic Surgery, The 78th Group Army Hospital of Chinese PLA, Mudanjiang, China
| | - Xuan Zheng
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China
| | - Haitao Tao
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Sujie Zhang
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Junxun Ma
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhefeng Liu
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jinliang Wang
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuanyu Qian
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Pengfei Cui
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China
| | - Di Huang
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ziwei Huang
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhaozhen Wu
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yi Hu
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
394
|
Fundytus A, Booth CM, Tannock IF. How low can you go? PD-L1 expression as a biomarker in trials of cancer immunotherapy. Ann Oncol 2021; 32:833-836. [PMID: 33839260 DOI: 10.1016/j.annonc.2021.03.208] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- A Fundytus
- Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, Canada; Department of Oncology, Queen's University, Kingston, Canada
| | - C M Booth
- Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, Canada; Department of Oncology, Queen's University, Kingston, Canada; Department of Public Health Sciences, Queen's University, Kingston, Canada
| | - I F Tannock
- Division of Medical Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada.
| |
Collapse
|
395
|
Ghosh J, Chatterjee M, Ganguly S, Datta A, Biswas B, Mukherjee G, Agarwal S, Ahmed R, Chatterjee S, Dabkara D. PDL1 expression and its correlation with outcomes in non-metastatic triple-negative breast cancer (TNBC). Ecancermedicalscience 2021; 15:1217. [PMID: 34158821 PMCID: PMC8183644 DOI: 10.3332/ecancer.2021.1217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) has a poor outcome compared to other subtypes, even in those with early disease. Immune checkpoint inhibitors (ICIs) have been approved in metastatic diseases and are being tested as a neoadjuvant strategy also. The response to ICIs is largely determined by the programmed death ligand 1 (PDL1) score, which also acts as a prognostic marker for outcomes. Here, we report the proportion of PDL1 expression in non-metastatic TNBC and its correlation with response to chemotherapy and outcomes. Methods We included all patients who had non-metastatic TNBC treated with neoadjuvant chemotherapy, followed by surgery with/without adjuvant radiotherapy between September 2011 and November 2017. PDL1 testing was carried out on pre-treatment tumour cells with immunohistochemistry (Ventana SP142) and was correlated with pathological response, relapse-free survival (RFS) and overall survival (OS). PDL1 staining was interpreted as negative or positive (more than 1% staining). Results A total of 107 patients were included for analysis with a median age of 47 years (28–65 yrs). The PDL1 expression of more than 1% was seen in 31 (28.97%) patients. After a median follow-up of 55 months (range: 4–93 months), median RFS and OS were not reached. PDL1 expression did not affect the achievement of pathological complete response (pCR). However, PDL1 expression improved OS (p = 0.016) and trend towards RFS (p = 0.05). Patients who achieved pCR had better RFS and OC compared to those who did not. Conclusion Our study shows PDL1 expression in 29% of the cases. PDL1 expression leads to better RFS and OS. Also, pCR improves survival.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Meheli Chatterjee
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Anupurva Datta
- Department of Pathology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Geetashree Mukherjee
- Department of Pathology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Sanjit Agarwal
- Department of Breast Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Rosina Ahmed
- Department of Breast Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Sanjoy Chatterjee
- Department of Radiation Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Deepak Dabkara
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| |
Collapse
|
396
|
Nguyen AT, Shiao SL, McArthur HL. Advances in Combining Radiation and Immunotherapy in Breast Cancer. Clin Breast Cancer 2021; 21:143-152. [PMID: 33810972 DOI: 10.1016/j.clbc.2021.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022]
Abstract
Breast irradiation has long been utilized in the adjuvant or metastatic setting to eliminate microscopic disease or to palliate existing disease, respectively. However, preclinical data have demonstrated that radiation can also alter the tumor microenvironment and induce antitumor immune responses. As a result, multiple clinical studies have been undertaken and have reported synergy between radiation and immune checkpoint blockade across various cancer types. Given recent clinical successes with immune checkpoint blockade in both early-stage and metastatic breast cancer, there has been substantial interest in combining radiation and immunotherapy to enhance local and systemic immune responses. Herein, we review the preclinical rationale for combining radiotherapy and immunotherapy, the early clinical trials that have adopted this strategy in breast cancer, and the landscape of ongoing relevant clinical trials. Finally, we propose future directions based on promising preclinical studies that integrate radiation, checkpoint blockade, and novel agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Anthony T Nguyen
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA; Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Heather L McArthur
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
397
|
Zhou W, Yu M, Pan H, Qiu W, Wang H, Qian M, Che N, Zhang K, Mao X, Li L, Wang R, Xie H, Ling L, Zhao Y, Liu X, Wang C, Ding Q, Wang S. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer. J Immunother Cancer 2021; 9:jitc-2021-002343. [PMID: 33795388 PMCID: PMC8021888 DOI: 10.1136/jitc-2021-002343] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite great advances in the treatment of breast cancer, innovative approaches are still needed to reduce metastasis. As a minimally invasive local therapy (not standard therapy for breast cancer), microwave ablation (MWA) has been attempted to treat breast cancer, but the local effect and immune response induced by MWA have seldom been reported. METHODS The clinical study was performed to determine the complete ablation rate of MWA for early-stage breast cancer. Secondary endpoints included safety and antitumor immune response. 35 subjects from this clinical study were enrolled in the current report, and the local effect was determined by pathological examinations or follow-up. To investigate MWA-induced immune response, patients treated with surgery (n=13) were enrolled as control, and blood samples were collected before and after MWA or surgery. The immune cell populations, serum cytokines, secretory immune checkpoint molecules, and T-cell receptor sequencing were analyzed. RESULTS Of 35 enrolled patients, 32 (91.4%) showed complete ablation. Compared with surgery, MWA induced significantly increased levels of inducible co-stimulator (ICOS)+ activated CD4+ T cells and serum interferon gamma, indicating a shift in the Th1/Th2 balance toward Th1. The activated ICOS pathway was involved in the MWA-induced adaptive immune response. T-cell receptor sequencing revealed MWA of primary tumor activated T lymphocytes expansion and recognized some cancer-specific antigens. Moreover, CD4+ effector memory T-cell response was induced by MWA, and the immune response still existed after surgical resection of the ablated tumor. CONCLUSIONS MWA may not only be a promising local therapy but also a trigger of antitumor immunity for breast cancer, opening new avenues for the treatment of breast cancer. Combinatorial strategy using additional agents which boost MWA-induced immune response could be considered as potential treatment for clinical study for early breast cancer therapy.
Collapse
Affiliation(s)
- Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Muxin Yu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong Pan
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Mengjia Qian
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Nan Che
- Department of Rheumatology and Immunology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Kai Zhang
- Pancreatic Center and Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xinrui Mao
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Li Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoxi Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijun Ling
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Zhao
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cong Wang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
398
|
Peg V, López-García MÁ, Comerma L, Peiró G, García-Caballero T, López ÁC, Suárez-Gauthier A, Ruiz I, Rojo F. PD-L1 testing based on the SP142 antibody in metastatic triple-negative breast cancer: summary of an expert round-table discussion. Future Oncol 2021; 17:1209-1218. [DOI: 10.2217/fon-2020-1100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive than other breast cancer subtypes. TNBC is characterized by increased expression of Programmed Death-ligand 1 (PD-L1), a signal used by many tumors to escape the immune response. Expression of PD-L1 is a positive predictor of response to immunotherapy; therefore, it should be investigated in TNBC in order to select patients who may benefit from anti-PD-L1 therapies. While many PD-L1 assays are available, only the VENTANA platform with the anti-PD-L1 (SP142) antibody is licensed as a companion diagnostic device for selecting patients with metastatic/advanced TNBC who are candidates for treatment with atezolizumab. In this article, we provide a summary of an expert round-table discussion about PD-L1 testing, using the SP142 antibody in metastatic TNBC.
Collapse
Affiliation(s)
- Vicente Peg
- Departamento de Anatomia Patològica, Vall d’Hebron Hospital Universitari, Barcelona Hospital Campus, Barcelona, Spain; Grupo de Patología Molecular, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Ángeles López-García
- Servicio de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla (Spain); Centro de Investigacion Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Comerma
- Departamento de Anatomía Patológica, Hospital del Mar, Barcelona, Spain
| | - Gloria Peiró
- Departamento de Patología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Tomás García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Odontología, Universidad de Santiago, Santiago de Compostela, Spain
| | - Ángel Concha López
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario A Coruña, Biobanco INIBIC, A Coruña, Spain
| | - Ana Suárez-Gauthier
- Departamento de Anatomía Patológica, Laboratorio de Dianas Terapéuticas, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Irune Ruiz
- Servicio de Patología, Hospital Universitario Donostia, Donostia, Spain
| | - Federico Rojo
- Servicio de Anatomía Patológica, IIS-Fundación Jiménez Díaz-CIBERONC, Madrid, Spain
| |
Collapse
|
399
|
Li Y, Vennapusa B, Chang CW, Tran D, Nakamura R, Sumiyoshi T, Hegde P, Molinero L. Prevalence Study of PD-L1 SP142 Assay in Metastatic Triple-negative Breast Cancer. Appl Immunohistochem Mol Morphol 2021; 29:258-264. [PMID: 33030848 PMCID: PMC8132905 DOI: 10.1097/pai.0000000000000857] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Metastatic triple-negative breast cancer (mTNBC) is the most aggressive breast cancer subtype. Programmed death ligand 1 (PD-L1) on immune cells (IC) using the VENTANA SP142 assay is linked to improved clinical outcome in atezolizumab plus nab-paclitaxel-treated patients with mTNBC in the IMpassion130 study. The goal of the current study was to evaluate prevalence of VENTANA SP142 PD-L1 assay by anatomic location in 670 histologically confirmed TNBC cases from subjects with metastatic disease screened for the phase 1 study PCD4989g (NCT01375842). PD-L1 immunohistochemistry was centrally tested on tumor cells (TC) and on tumor infiltrating IC, following manufacturer's instructions. At a 1% cutoff, tumor PD-L1 was more prevalent in IC than TC: 46% were PD-L1 IC+/TC-, 3% were PD-L1 IC-/TC+, and 10% were PD-L1 IC+/TC+. PD-L1 IC and TC immunostaining correlated with CD274 RNA expression, as assessed by fluidigm. Analyses of anatomic locations suggest that prevalence of PD-L1 IC+ was highest in lymph nodes (65.0%), lowest in liver metastases (26.9%), while breast tissue was intermediate (57.1%). Matched paired samples from the same subject collected synchronously or asynchronously showed a PD-L1 IC status agreement of 80% (8/10) and 75% (15/20), respectively. Our results suggest that the anatomic location of metastases and time of collection may influence the detection of PD-L1.
Collapse
Affiliation(s)
- Yijin Li
- Genentech, South San Francisco, CA
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Noguchi E, Shien T, Iwata H. Current status of PD-1/PD-L1 blockade immunotherapy in breast cancer. Jpn J Clin Oncol 2021; 51:321-332. [PMID: 33324990 DOI: 10.1093/jjco/hyaa230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
Over the past 10 years, immunotherapy with immune checkpoint inhibitors has revolutionized the management of various cancers. However, immunotherapy in breast cancer has not been successful. Breast cancer has long been recognized as an immunologically 'cold' tumor, although a higher frequency of tumor-infiltrating lymphocytes present in certain subtypes and an association between tumor-infiltrating lymphocytes and favorable prognosis have been reported. In March 2019, the combination of atezolizumab and nanoparticle albumin-bound paclitaxel was granted accelerated approval in the United States for the treatment of programmed death-ligand 1-positive advanced or metastatic triple-negative breast cancer. This finally opened the door for immune checkpoint blockade therapy for breast cancer. Several clinical trials have been conducted using different combinations of immune checkpoint inhibitors and chemotherapy or targeted agents in various treatment settings for metastatic breast cancer and early-stage breast cancer. In this review, we summarize recent advances in immune checkpoint blockade therapy and predictive biomarkers in breast cancer.
Collapse
Affiliation(s)
- Emi Noguchi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tadahiko Shien
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|