351
|
Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge ASB. Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 2013; 15:31-43. [PMID: 24113829 DOI: 10.1007/s10162-013-0419-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/19/2013] [Indexed: 11/25/2022] Open
Abstract
Ouabain application to the round window can selectively destroy type-I spiral ganglion cells, producing an animal model of auditory neuropathy. To assess the long-term effects of this deafferentation on synaptic organization in the organ of Corti and cochlear nucleus, and to ask whether surviving cochlear neurons show any post-injury plasticity in the adult, we quantified the peripheral and central synapses of type-I neurons at posttreatment times ranging from 1 to 3 months. Measures of normal DPOAEs and greatly reduced auditory brainstem responses (ABRs) confirmed the neuropathy phenotype. Counts of presynaptic ribbons and postsynaptic glutamate receptor patches in the inner hair cell area decreased with post-exposure time, as did counts of cochlear nerve terminals in the cochlear nucleus. Although these counts provided no evidence of new synapse formation via branching from surviving neurons, the regular appearance of ectopic neurons in the inner hair cell area suggested that neurite extension is not uncommon. Correlations between pathophysiology and histopathology showed that ABR thresholds are very insensitive to even massive neural degeneration, whereas the amplitude of ABR wave 1 is a better metric of synaptic degeneration.
Collapse
Affiliation(s)
- Yasheng Yuan
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Physiological, anatomical, and behavioral changes after acoustic trauma in Drosophila melanogaster. Proc Natl Acad Sci U S A 2013; 110:15449-54. [PMID: 24003166 DOI: 10.1073/pnas.1307294110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is a growing health issue, with costly treatment and lost quality of life. Here we establish Drosophila melanogaster as an inexpensive, flexible, and powerful genetic model system for NIHL. We exposed flies to acoustic trauma and quantified physiological and anatomical effects. Trauma significantly reduced sound-evoked potential (SEP) amplitudes and increased SEP latencies in control genotypes. SEP amplitude but not latency effects recovered after 7 d. Although trauma produced no gross morphological changes in the auditory organ (Johnston's organ), mitochondrial cross-sectional area was reduced 7 d after exposure. In nervana 3 heterozygous flies, which slightly compromise ion homeostasis, trauma had exaggerated effects on SEP amplitude and mitochondrial morphology, suggesting a key role for ion homeostasis in resistance to acoustic trauma. Thus, Drosophila exhibit acoustic trauma effects resembling those found in vertebrates, including inducing metabolic stress in sensory cells. This report of noise trauma in Drosophila is a foundation for studying molecular and genetic sequelae of NIHL.
Collapse
|
353
|
Le Prell CG, Spankovich C, Lobariñas E, Griffiths SK. Extended high-frequency thresholds in college students: effects of music player use and other recreational noise. J Am Acad Audiol 2013; 24:725-39. [PMID: 24131608 PMCID: PMC4111237 DOI: 10.3766/jaaa.24.8.9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human hearing is sensitive to sounds from as low as 20 Hz to as high as 20,000 Hz in normal ears. However, clinical tests of human hearing rarely include extended high-frequency (EHF) threshold assessments, at frequencies extending beyond 8000 Hz. EHF thresholds have been suggested for use monitoring the earliest effects of noise on the inner ear, although the clinical usefulness of EHF threshold testing is not well established for this purpose. PURPOSE The primary objective of this study was to determine if EHF thresholds in healthy, young adult college students vary as a function of recreational noise exposure. RESEARCH DESIGN A retrospective analysis of a laboratory database was conducted; all participants with both EHF threshold testing and noise history data were included. The potential for "preclinical" EHF deficits was assessed based on the measured thresholds, with the noise surveys used to estimate recreational noise exposure. STUDY SAMPLE EHF thresholds measured during participation in other ongoing studies were available from 87 participants (34 male and 53 female); all participants had hearing within normal clinical limits (≤25 HL) at conventional frequencies (0.25-8 kHz). RESULTS EHF thresholds closely matched standard reference thresholds [ANSI S3.6 (1996) Annex C]. There were statistically reliable threshold differences in participants who used music players, with 3-6 dB worse thresholds at the highest test frequencies (10-16 kHz) in participants who reported long-term use of music player devices (>5 yr), or higher listening levels during music player use. CONCLUSIONS It should be possible to detect small changes in high-frequency hearing for patients or participants who undergo repeated testing at periodic intervals. However, the increased population-level variability in thresholds at the highest frequencies will make it difficult to identify the presence of small but potentially important deficits in otherwise normal-hearing individuals who do not have previously established baseline data.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL
| | | | | | | |
Collapse
|
354
|
Zuccotti A, Lee SC, Campanelli D, Singer W, Satheesh SV, Patriarchi T, Geisler HS, Köpschall I, Rohbock K, Nothwang HG, Hu J, Hell JW, Schimmang T, Rüttiger L, Knipper M. L-type CaV1.2 deletion in the cochlea but not in the brainstem reduces noise vulnerability: implication for CaV1.2-mediated control of cochlear BDNF expression. Front Mol Neurosci 2013; 6:20. [PMID: 23950737 PMCID: PMC3739414 DOI: 10.3389/fnmol.2013.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/20/2013] [Indexed: 01/24/2023] Open
Abstract
Voltage-gated L-type Ca2+ channels (L-VGCCs) like CaV1.2 are assumed to play a crucial role for controlling release of trophic peptides including brain-derived neurotrophic factor (BDNF). In the inner ear of the adult mouse, besides the well-described L-VGCC CaV1.3, CaV1.2 is also expressed. Due to lethality of constitutive CaV1.2 knock-out mice, the function of this ion channel as well as its putative relationship to BDNF in the auditory system is entirely elusive. We recently described that BDNF plays a differential role for inner hair cell (IHC) vesicles release in normal and traumatized condition. To elucidate a presumptive role of CaV1.2 during this process, two tissue-specific conditional mouse lines were generated. To distinguish the impact of CaV1.2 on the cochlea from that on feedback loops from higher auditory centers CaV1.2 was deleted, in one mouse line, under the Pax2 promoter (CaV1.2Pax2) leading to a deletion in the spiral ganglion neurons, dorsal cochlear nucleus, and inferior colliculus. In the second mouse line, the Egr2 promoter was used for deleting CaV1.2 (CaV1.2Egr2) in auditory brainstem nuclei. In both mouse lines, normal hearing threshold and equal number of IHC release sites were observed. We found a slight reduction of auditory brainstem response wave I amplitudes in the CaV1.2Pax2 mice, but not in the CaV1.2Egr2 mice. After noise exposure, CaV1.2Pax2 mice had less-pronounced hearing loss that correlated with maintenance of ribbons in IHCs and less reduced activity in auditory nerve fibers, as well as in higher brain centers at supra-threshold sound stimulation. As reduced cochlear BDNF mRNA levels were found in CaV1.2Pax2 mice, we suggest that a CaV1.2-dependent step may participate in triggering part of the beneficial and deteriorating effects of cochlear BDNF in intact systems and during noise exposure through a pathway that is independent of CaV1.2 function in efferent circuits.
Collapse
Affiliation(s)
- Annalisa Zuccotti
- Molecular Physiology of Hearing, Hearing Research Center Tübingen, Department of Otolaryngology, University of Tübingen Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Santarelli R, del Castillo I, Starr A. Auditory neuropathies and electrocochleography. HEARING BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.815446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
356
|
Cho SI, Gao SS, Xia A, Wang R, Salles FT, Raphael PD, Abaya H, Wachtel J, Baek J, Jacobs D, Rasband MN, Oghalai JS. Mechanisms of hearing loss after blast injury to the ear. PLoS One 2013; 8:e67618. [PMID: 23840874 PMCID: PMC3698122 DOI: 10.1371/journal.pone.0067618] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/20/2013] [Indexed: 12/21/2022] Open
Abstract
Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body's most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction.
Collapse
Affiliation(s)
- Sung-Il Cho
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Otolaryngology–Head and Neck Surgery, Chosun University, Gwangju, South Korea
| | - Simon S. Gao
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Anping Xia
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Rosalie Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Felipe T. Salles
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Patrick D. Raphael
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Homer Abaya
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Jacqueline Wachtel
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Jongmin Baek
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - David Jacobs
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - John S. Oghalai
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
357
|
Kraus KS, Ding D, Jiang H, Kermany MH, Mitra S, Salvi RJ. Up-regulation of GAP-43 in the chinchilla ventral cochlear nucleus after carboplatin-induced hearing loss: correlations with inner hair cell loss and outer hair cell loss. Hear Res 2013; 302:74-82. [PMID: 23707995 DOI: 10.1016/j.heares.2013.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/11/2022]
Abstract
Inner ear damage leads to nerve fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between hair cell loss patterns and synaptic plasticity in the chinchilla VCN using immunolabeling of the growth associated protein-43 (GAP-43), a protein associated with axon outgrowth and modification of presynaptic endings. Unilateral round window application of carboplatin caused hair cell degeneration in which inner hair cells (IHC) were more vulnerable than outer hair cells (OHC). One month after carboplatin treatment (0.5-5 mg/ml), we observed varying patterns of cochlear hair cell loss and GAP-43 expression in VCN. Both IHC loss and OHC loss were strongly correlated with increased GAP-43 immunolabeling in the ipsilateral VCN. We speculate that two factors might promote the expression of GAP-43 in the VCN; one is the loss of afferent input through IHC or the associated type I auditory nerve fibers. The other occurs when the medial olivocochlear efferent neurons lose their cochlear targets, the OHC, and may as compensation increase their synapse numbers in the VCN.
Collapse
Affiliation(s)
- K S Kraus
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
358
|
Abstract
Although protective effects of the cochlea's efferent feedback pathways have been well documented, prior work has focused on hair cell damage and cochlear threshold elevation and, correspondingly, on the high sound pressure levels (>100 dB SPL) necessary to produce them. Here we explore the noise-induced loss of cochlear neurons that occurs with lower-intensity exposures and in the absence of permanent threshold shifts. Using confocal microscopy to count synapses between hair cells and cochlear nerve fibers, and using measurement of auditory brainstem responses and otoacoustic emissions to assess cochlear presynaptic and postsynaptic function, we compare the damage from a weeklong exposure to moderate-level noise (84 dB SPL) in mice with varying degrees of cochlear de-efferentation induced by surgical lesion to the olivocochlear pathway. Such exposure causes minimal acute threshold shifts and no chronic shifts in mice with normal efferent feedback. In de-efferented animals, there was up to 40% loss of cochlear nerve synapses and a corresponding decline in the amplitude of the auditory brainstem response. Quantitative analysis of the de-efferentation in inner versus outer hair cell areas suggested that outer hair cell efferents are the most important in minimizing this neuropathy, presumably by virtue of their sound-evoked feedback reduction of cochlear amplification. The moderate nature of this acoustic overexposure suggests that cochlear neurons are at risk even in everyday acoustic environments, so the need for cochlear protection is plausible as a driving force in the design of this feedback pathway.
Collapse
|
359
|
Threshold levels of dual electrode stimulation in cochlear implants. J Assoc Res Otolaryngol 2013; 14:781-90. [PMID: 23695303 DOI: 10.1007/s10162-013-0395-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022] Open
Abstract
Simultaneous stimulation on two contacts (current steering) creates intermediate pitches between the physical contacts in cochlear implants. All recent studies on current steering have focused on Most Comfortable Loudness levels and not at low stimulation levels. This study investigates the efficacy of dual electrode stimulation at lower levels, thereby focusing on the requirements to correct for threshold variations. With a current steered signal, threshold levels were determined on 4 different electrode pairs for 7 different current steering coefficients (α). This was done psychophysically in twelve postlingually deafened cochlear implant (HiRes90K, HiFocus1J) users and, in a computer model, which made use of three different neural morphologies. The analysis on the psychophysical data taking all subjects into account showed that in all conditions there was no significant difference between the threshold level of the physical contacts and the intermediate created percepts, eliminating the need for current corrections at these very low levels. The model data showed unexpected drops in threshold in the middle of the two physical contacts (both contacts equal current). Results consistent with this prediction were obtained for a subset of 5 subjects for the apical pair with wider spacing (2.2 mm). Further analysis showed that this decrease was only observed in subjects with a long duration of deafness. For current steering on adjacent contacts, the results from the psychophysical experiments were in line with the results from computational modelling. However, the dip in the threshold profile could only be replicated in the computational model with surviving peripheral processes without an unmyelinated terminal. On the basis of this result, we put forward that the majority of the surviving spiral ganglion cells in the cochlea in humans with a long duration of deafness still retain peripheral processes, but have lost their unmyelinated terminals.
Collapse
|
360
|
Singer W, Panford-Walsh R, Knipper M. The function of BDNF in the adult auditory system. Neuropharmacology 2013; 76 Pt C:719-28. [PMID: 23688926 DOI: 10.1016/j.neuropharm.2013.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Wibke Singer
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | | |
Collapse
|
361
|
Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects. Ear Hear 2013; 33:e44-58. [PMID: 22885407 DOI: 10.1097/aud.0b013e31825f9d89] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is the availability of an established clinical paradigm with real-world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal-hearing human subjects. DESIGN Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93 to 95 (n = 10), 98 to 100 (n = 11), or 100 to 102 (n = 12) dBA in-ear exposure level for a period of 4 hr. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured before and after music exposure. Postmusic tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and 1 week later. RESULTS Changes in thresholds after the lowest-level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a "notch" configuration, with the largest changes observed at 4 kHz (mean = 6.3 ± 3.9 dB; range = 0-14 dB). Recovery was largely complete within the first 4 hr postexposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1 week postexposure. CONCLUSIONS These data provide insight into the variability of TTS induced by music-player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function after digital music-player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in future TTS studies, including protective agent evaluations, that some noise exposures have resulted in neural degeneration in animal models, even when both audiometric thresholds and DPOAE levels returned to pre-exposure values.
Collapse
|
362
|
Intraoperative round window recordings to acoustic stimuli from cochlear implant patients. Otol Neurotol 2013; 33:1507-15. [PMID: 23047261 DOI: 10.1097/mao.0b013e31826dbc80] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Acoustically evoked neural and hair cell potentials can be measured from the round window (RW) intraoperatively in the general population of cochlear implant recipients. BACKGROUND Cochlear implant performance varies greatly among patients. Improved methods to assess and monitor functional hair cell and neural substrate before and during implantation could potentially aid in enhanced nontraumatic intracochlear electrode placement and subsequent improved outcomes. METHODS Subjects (1-80 yr) undergoing cochlear implantation were included. A monopolar probe was placed at the RW after surgical access was obtained. The cochlear microphonic (CM), summating potential (SP), compound action potential (CAP), and auditory nerve neurophonic (ANN) were recorded in response to tone bursts at frequencies of 0.25 to 4 kHz at various levels. RESULTS Measurable hair cell/neural potentials were detected to 1 or more frequencies in 23 of 25 subjects. The greatest proportion and magnitude of cochlear responses were to low frequencies (<1,000 Hz). At these low frequencies, the ANN, when present, contributed to the ongoing response at the stimulus frequency. In many subjects, the ANN was small or absent, whereas hair cell responses remained. CONCLUSION In cochlear implant recipients, acoustically evoked cochlear potentials are detectable even if hearing is extremely limited. Sensitive measures of cochlear and neural status can characterize the state of hair cell and neural function before implantation. Whether this information correlates with speech performance outcomes or can help in tailoring electrode type, placement or audiometric fitting, can be determined in future studies.
Collapse
|
363
|
Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: cochlear and cortical responses after an increase in antioxidant defense. J Neurosci 2013; 33:4011-23. [PMID: 23447610 DOI: 10.1523/jneurosci.2282-12.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II-III and V-VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.
Collapse
|
364
|
Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 2013; 110:577-86. [PMID: 23596328 DOI: 10.1152/jn.00164.2013] [Citation(s) in RCA: 546] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds (Kujawa and Liberman 2009), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.
Collapse
Affiliation(s)
- Adam C Furman
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
365
|
Lobarinas E, Salvi R, Ding D. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 2013; 302:113-20. [PMID: 23566980 DOI: 10.1016/j.heares.2013.03.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/25/2022]
Abstract
Noise trauma, aging, and ototoxicity preferentially damage the outer hair cells of the inner ear, leading to increased hearing thresholds and poorer frequency resolution. Whereas outer hair cells make synaptic connections with less than 10% of afferent auditory nerve fibers (type-II), inner hair cells make connections with over 90% of afferents (type-I). Despite these extensive connections, little is known about how selective inner hair cell loss impacts hearing. In chinchillas, moderate to high doses of the anticancer compound carboplatin produce selective inner hair cell and type-I afferent loss with little to no effect on outer hair cells. To determine the effects of carboplatin-induced inner hair cell loss on the most widely used clinical measure of hearing, the audiogram, pure-tone thresholds were determined behaviorally before and after 75 mg/kg carboplatin. Following carboplatin treatment, small effects on audiometric thresholds were observed even with extensive inner hair cell losses that exceed 80%. These results suggest that conventional audiometry is insensitive to inner hair cell loss and that only small populations of inner hair cells appear to be necessary for detecting tonal stimuli in a quiet background.
Collapse
Affiliation(s)
- Edward Lobarinas
- University of Florida, Department of Speech, Language, and Hearing Sciences, Gainesville, FL, USA.
| | | | | |
Collapse
|
366
|
The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One 2013; 8:e57247. [PMID: 23516401 PMCID: PMC3596376 DOI: 10.1371/journal.pone.0057247] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/18/2013] [Indexed: 01/15/2023] Open
Abstract
Tinnitus is proposed to be caused by decreased central input from the cochlea, followed by increased spontaneous and evoked subcortical activity that is interpreted as compensation for increased responsiveness of central auditory circuits. We compared equally noise exposed rats separated into groups with and without tinnitus for differences in brain responsiveness relative to the degree of deafferentation in the periphery. We analyzed (1) the number of CtBP2/RIBEYE-positive particles in ribbon synapses of the inner hair cell (IHC) as a measure for deafferentation; (2) the fine structure of the amplitudes of auditory brainstem responses (ABR) reflecting differences in sound responses following decreased auditory nerve activity and (3) the expression of the activity-regulated gene Arc in the auditory cortex (AC) to identify long-lasting central activity following sensory deprivation. Following moderate trauma, 30% of animals exhibited tinnitus, similar to the tinnitus prevalence among hearing impaired humans. Although both tinnitus and no-tinnitus animals exhibited a reduced ABR wave I amplitude (generated by primary auditory nerve fibers), IHCs ribbon loss and high-frequency hearing impairment was more severe in tinnitus animals, associated with significantly reduced amplitudes of the more centrally generated wave IV and V and less intense staining of Arc mRNA and protein in the AC. The observed severe IHCs ribbon loss, the minimal restoration of ABR wave size, and reduced cortical Arc expression suggest that tinnitus is linked to a failure to adapt central circuits to reduced cochlear input.
Collapse
|
367
|
Hébert S, Fournier P, Noreña A. The auditory sensitivity is increased in tinnitus ears. J Neurosci 2013; 33:2356-64. [PMID: 23392665 PMCID: PMC6619157 DOI: 10.1523/jneurosci.3461-12.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 12/23/2022] Open
Abstract
Increased auditory sensitivity, also called hyperacusis, is a pervasive complaint of people with tinnitus. The high prevalence of hyperacusis in tinnitus subjects suggests that both symptoms have a common origin. It has been suggested that they may result from a maladjusted increase of central gain attributable to sensory deafferentation. More specifically, tinnitus and hyperacusis could result from an increase of spontaneous and stimulus-induced activity, respectively. One prediction of this hypothesis is that auditory sensitivity should be increased in tinnitus compared with non-tinnitus subjects. The purpose of this study was to test this prediction by examining the loudness functions in tinnitus ears (n = 124) compared with non-tinnitus human ears (n = 106). Because tinnitus is often accompanied by hearing loss and that hearing loss makes it difficult to disentangle hypersensitivity (hyperacusis) to loudness recruitment, tinnitus and non-tinnitus ears were carefully matched for hearing loss. Our results show that auditory sensitivity is enhanced in tinnitus subjects compared with non-tinnitus subjects, including subjects with normal audiograms. We interpreted these findings as compatible with a maladaptive central gain in tinnitus.
Collapse
Affiliation(s)
- Sylvie Hébert
- School of Speech Pathology and Audiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| | | | | |
Collapse
|
368
|
Martin WH, Griest SE, Sobel JL, Howarth LC. Randomized trial of four noise-induced hearing loss and tinnitus prevention interventions for children. Int J Audiol 2013; 52 Suppl 1:S41-9. [DOI: 10.3109/14992027.2012.743048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
369
|
Shi F, Edge ASB. Prospects for replacement of auditory neurons by stem cells. Hear Res 2013; 297:106-12. [PMID: 23370457 DOI: 10.1016/j.heares.2013.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
370
|
Repetitive transcranial magnetic stimulation noise levels: methodological implications for tinnitus treatment. Otol Neurotol 2013; 33:1156-60. [PMID: 22872177 DOI: 10.1097/mao.0b013e318263d37d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To measure noise levels generated by repetitive transcranial magnetic stimulation. INTERVENTION Repetitive transcranial magnetic stimulation (rTMS). MAIN OUTCOME MEASURES rTMS noise levels measured in equivalent continuous sound level (LAeq) and in peak level (LC, peak), as a function of maximum power output of the equipment. METHODS rTMS noise levels were measured for an active and a corresponding sham coil, as a function of distance and percentage power output of a MagPro X100 system (Medtronic) and compared with occupational noise exposure standards, using parameters classically used for rTMS tinnitus treatment. RESULTS Significant differences in frequency composition and intensity levels were observed between sham and active coil noises. The active coil noise reached, at 50% power, 96 LAeq (peak at 132 LC, peak), varying by 3.9 LAeq (3.9 LC, peak) per 10% of power increase, whereas the sham coil reached 87 LAeq (114 LC, peak), varying by 3.2 LAeq (3.6 LC, peak) per 10% of power increase. CONCLUSION rTMS noise levels differ significantly between active and sham coils, and can go beyond the American and European legal occupational noise limits, hence making ear protection a specific issue, particularly relevant to rTMS treatment for tinnitus.
Collapse
|
371
|
Maison SF, Pyott SJ, Meredith AL, Liberman MC. Olivocochlear suppression of outer hair cells in vivo: evidence for combined action of BK and SK2 channels throughout the cochlea. J Neurophysiol 2013; 109:1525-34. [PMID: 23282326 DOI: 10.1152/jn.00924.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic inhibition of cochlear hair cells via olivocochlear (OC)-efferent feedback is mediated by Ca(2+) entry through α9-/α10-nicotinic receptors, but the nature of the K(+) channels activated by this Ca(2+) entry has been debated (Yoshida N, Hequembourg SJ, Atencio CA, Rosowski JJ, Liberman MC. J Neurophysiol 85: 84-88, 2001). A recent in vitro study (Wersinger E, McLean WJ, Fuchs PA, Pyott SJ. PLoS One 5: e13836, 2010) suggests that small-conductance (SK2) channels mediate cholinergic effects in the apical turn, whereas large-conductance (BK) channels mediate basal turn effects. Here, we measure, as a function of cochlear frequency, the magnitude of BK and SK2 expression in outer hair cells and the strength of in vivo OC suppression in BK(+/+) mice vs. BK(-/-) lacking the obligatory α-subunit (Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW. J Biol Chem 279: 36746-36752, 2004). Except at the extreme apical tip, we see immunostaining for both BK and SK2 in BK(+/+). Correspondingly, at all testable frequencies (8-45 kHz), we see evidence for both SK2 and BK contributions to OC effects evoked by electrically stimulating the OC bundle: OC-mediated suppression was reduced, but not eliminated, at all frequencies in the BK(-/-) ears. The suppression remaining in BK nulls was blocked by strychnine, suggesting involvement of α9-/α10-cholinergic receptors, coupled to activation of the remaining SK2 channels.
Collapse
Affiliation(s)
- Stéphane F Maison
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
372
|
Guthrie OW, Xu H. Noise exposure potentiates the subcellular distribution of nucleotide excision repair proteins within spiral ganglion neurons. Hear Res 2012; 294:21-30. [DOI: 10.1016/j.heares.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 01/08/2023]
|
373
|
Liu L, Wang H, Shi L, Almuklass A, He T, Aiken S, Bance M, Yin S, Wang J. Silent damage of noise on cochlear afferent innervation in guinea pigs and the impact on temporal processing. PLoS One 2012. [PMID: 23185359 PMCID: PMC3504112 DOI: 10.1371/journal.pone.0049550] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noise-exposure at levels low enough to avoid a permanent threshold shift has been found to cause a massive, delayed degeneration of spiral ganglion neurons (SGNs) in mouse cochleae. Damage to the afferent innervation was initiated by a loss of synaptic ribbons, which is largely irreversible in mice. A similar delayed loss of SGNs has been found in guinea pig cochleae, but at a reduced level, suggesting a cross-species difference in SGN sensitivity to noise. Ribbon synapse damage occurs “silently” in that it does not affect hearing thresholds as conventionally measured, and the functional consequence of this damage is not clear. In the present study, we further explored the effect of noise on cochlear afferent innervation in guinea pigs by focusing on the dynamic changes in ribbon counts over time, and resultant changes in temporal processing. It was found that (1) contrary to reports in mice, the initial loss of ribbons largely recovered within a month after the noise exposure, although a significant amount of residual damage existed; (2) while the response threshold fully recovered in a month, the temporal processing continued to be deteriorated during this period.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
| | - Hui Wang
- Department of Otolaryngology, 6 Affiliated Hospital, Jiaotong University, Shanghai, China
| | - Lijuan Shi
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
| | - Awad Almuklass
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Canada
| | - Tingting He
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
| | - Steve Aiken
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Manohar Bance
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax, Canada
| | - Shankai Yin
- Department of Otolaryngology, 6 Affiliated Hospital, Jiaotong University, Shanghai, China
- * E-mail: (SY); (JW)
| | - Jian Wang
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
- * E-mail: (SY); (JW)
| |
Collapse
|
374
|
Noise-Induced Inner Hair Cell Ribbon Loss Disturbs Central Arc Mobilization: A Novel Molecular Paradigm for Understanding Tinnitus. Mol Neurobiol 2012; 47:261-79. [DOI: 10.1007/s12035-012-8372-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/29/2012] [Indexed: 11/27/2022]
|
375
|
Aging and implantable hearing solutions. Abstracts from the Cochlear Science and Research Seminar. Paris, France. March 19-20, 2012. Audiol Neurootol 2012; 17 Suppl 1:1-26. [PMID: 22922653 DOI: 10.1159/000341356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
376
|
Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss. J Neurosci 2012; 32:8545-53. [PMID: 22723694 DOI: 10.1523/jneurosci.1247-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The precision of sound information transmitted to the brain depends on the transfer characteristics of the inner hair cell (IHC) ribbon synapse and its multiple contacting auditory fibers. We found that brain derived neurotrophic factor (BDNF) differentially influences IHC characteristics in the intact and injured cochlea. Using conditional knock-out mice (BDNF(Pax2) KO) we found that resting membrane potentials, membrane capacitance and resting linear leak conductance of adult BDNF(Pax2) KO IHCs showed a normal maturation. Likewise, in BDNF(Pax2) KO membrane capacitance (ΔC(m)) as a function of inward calcium current (I(Ca)) follows the linear relationship typical for normal adult IHCs. In contrast the maximal ΔC(m), but not the maximal size of the calcium current, was significantly reduced by 45% in basal but not in apical cochlear turns in BDNF(Pax2) KO IHCs. Maximal ΔC(m) correlated with a loss of IHC ribbons in these cochlear turns and a reduced activity of the auditory nerve (auditory brainstem response wave I). Remarkably, a noise-induced loss of IHC ribbons, followed by reduced activity of the auditory nerve and reduced centrally generated wave II and III observed in control mice, was prevented in equally noise-exposed BDNF(Pax2) KO mice. Data suggest that BDNF expressed in the cochlea is essential for maintenance of adult IHC transmitter release sites and that BDNF upholds opposing afferents in high-frequency turns and scales them down following noise exposure.
Collapse
|
377
|
Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 2012; 75:283-93. [PMID: 22841313 PMCID: PMC3408581 DOI: 10.1016/j.neuron.2012.05.019] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/05/2023]
Abstract
Mice lacking the vesicular glutamate transporter-3 (VGLUT3) are congenitally deaf due to loss of glutamate release at the inner hair cell afferent synapse. Cochlear delivery of VGLUT3 using adeno-associated virus type 1 (AAV1) leads to transgene expression in only inner hair cells (IHCs), despite broader viral uptake. Within 2 weeks of AAV1-VGLUT3 delivery, auditory brainstem response (ABR) thresholds normalize, along with partial rescue of the startle response. Lastly, we demonstrate partial reversal of the morphologic changes seen within the afferent IHC ribbon synapse. These findings represent a successful restoration of hearing by gene replacement in mice, which is a significant advance toward gene therapy of human deafness.
Collapse
Affiliation(s)
- Omar Akil
- Department of Otolaryngology- Head & Neck Surgery, University of California San Francisco, San Francisco, CA, 94143-0449. Phone: 415-476-0728.
| | - Rebecca P. Seal
- Department of Neurology- University of Pittsburgh, Pittsburgh, PA 15213-3301. Phone: 412-624-5183.
| | - Kevin Burke
- Department of Otolaryngology- Head & Neck Surgery, University of California San Francisco, San Francisco, CA, 94143-0449. Phone: 415-476-0728.
| | - Chuansong Wang
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Phone: 614-247-4351
| | - Aurash Alemi
- Department of Otolaryngology- Head & Neck Surgery, University of California San Francisco, San Francisco, CA, 94143-0449. Phone: 415-476-0728.
| | - Matthew During
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio. Phone: 614-247-4351.
| | - Robert H. Edwards
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143-2140. Phone: 415-502-5687.
| | | |
Collapse
|
378
|
|
379
|
What factors are associated with good performance in children with cochlear implants? From the outcome of various language development tests, research on sensory and communicative disorders project in Japan: nagasaki experience. Clin Exp Otorhinolaryngol 2012; 5 Suppl 1:S59-64. [PMID: 22701149 PMCID: PMC3369984 DOI: 10.3342/ceo.2012.5.s1.s59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 11/25/2022] Open
Abstract
Objectives We conducted multi-directional language development tests as a part of the Research on Sensory and Communicative Disorders (RSVD) in Japan. This report discusses findings as well as factors that led to better results in children with severe-profound hearing loss. Methods We evaluated multiple language development tests in 33 Japanese children with cochlear implants (32 patients) and hearing aid (1 patient), including 1) Test for question and answer interaction development, 2) Word fluency test, 3) Japanese version of the Peabody picture vocabulary test-revised, 4) The standardized comprehension test of abstract words, 5) The screening test of reading and writing for Japanese primary school children, 6) The syntactic processing test of aphasia, 7) Criterion-referenced testing (CRT) for Japanese language and mathematics, 8) Pervasive development disorders ASJ rating scales, and 9) Raven's colored progressive matrices. Furthermore, we investigated the factors believed to account for the better performances in these tests. The first group, group A, consisted of 14 children with higher scores in all tests than the national average for children with hearing difficulty. The second group, group B, included 19 children that scored below the national average in any of the tests. Results Overall, the results show that 76.2% of the scores obtained by the children in these tests exceeded the national average scores of children with hearing difficulty. The children who finished above average on all tests had undergone a longer period of regular habilitation in our rehabilitation center, had their implants earlier in life, were exposed to more auditory verbal/oral communication in their education at affiliated institutions, and were more likely to have been integrated in a regular kindergarten before moving on to elementary school. Conclusion In this study, we suggest that taking the above four factors into consideration will have an affect on the language development of children with severe-profound hearing loss.
Collapse
|
380
|
Kidd Iii AR, Bao J. Recent advances in the study of age-related hearing loss: a mini-review. Gerontology 2012; 58:490-6. [PMID: 22710288 PMCID: PMC3766364 DOI: 10.1159/000338588] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
Hearing loss is a common age-associated affliction that can result from the loss of hair cells and spiral ganglion neurons (SGNs) in the cochlea. Although hair cells and SGNs are typically lost in the same cochlea, recent analysis suggests that they can occur independently, via unique mechanisms. Research has identified both environmental and genetic factors that contribute to degeneration of cochlear cells. Additionally, molecular analysis has identified multiple cell-signaling mechanisms that likely contribute to pathological changes that result in hearing deficiencies. These analyses should serve as useful primers for future work, including genomic and proteomic analysis, to elucidate the mechanisms driving cell loss in the aging cochlea. Significant progress in this field has occurred in the past decade. As our understanding of aging-induced cochlear changes continues to improve, our ability to offer medical intervention will surely benefit the growing elderly population.
Collapse
Affiliation(s)
- Ambrose R Kidd Iii
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, St. Louis, Mo., USA
| | | |
Collapse
|
381
|
Travo C, Gaboyard-Niay S, Chabbert C. Plasticity of Scarpa's Ganglion Neurons as a Possible Basis for Functional Restoration within Vestibular Endorgans. Front Neurol 2012; 3:91. [PMID: 22685444 PMCID: PMC3368229 DOI: 10.3389/fneur.2012.00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/19/2012] [Indexed: 12/21/2022] Open
Abstract
In a previous study, we observed spontaneous restoration of vestibular function in young adult rodents following excitotoxic injury of the neuronal connections within vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the animals studied and occurred within 5 days following the synaptic damage. To assess whether repair capacity is a fundamental trait of vestibular endorgans and to decipher the cellular mechanisms supporting such a repair process, we studied the neuronal regeneration and synaptogenesis in co-cultures of vestibular epithelia and Scarpa's ganglion from young and adult rodents. We demonstrate that, under specific culture conditions, primary vestibular neurons from young mice or rats exhibit robust ability to regenerate nervous processes. When co-cultured with vestibular epithelia, primary vestibular neurons were able to establish de novo contacts with hair cells. Under the present paradigm, these contacts displayed morphological features of immature synaptic contacts. Preliminary observations using co-cultures of adult rodents suggest that this reparative capacity remained in older mice although to a lesser extent. Identifying the basic mechanisms underlying the repair process may provide a basis for novel therapeutic strategies to restore mature and functional vestibular synaptic contacts following damage or loss.
Collapse
Affiliation(s)
- Cécile Travo
- INSERM U1051, Institute for Neurosciences Montpellier, France
| | | | | |
Collapse
|
382
|
Dehmel S, Eisinger D, Shore SE. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front Syst Neurosci 2012; 6:42. [PMID: 22666193 PMCID: PMC3364697 DOI: 10.3389/fnsys.2012.00042] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/08/2012] [Indexed: 11/13/2022] Open
Abstract
Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not develop tinnitus after noise exposure showed the opposite effect, a decrease in wave amplitudes for the later waves P4–P5. Changes in latencies were only observed in tinnitus animals, which showed increased latencies. Thus, tinnitus-induced changes in the discharge activity of the auditory nerve and central auditory nuclei are represented in the ABR.
Collapse
Affiliation(s)
- Susanne Dehmel
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor MI, USA
| | | | | |
Collapse
|
383
|
Konrad-Martin D, Reavis KM, McMillan GP, Dille MF. Multivariate DPOAE metrics for identifying changes in hearing: perspectives from ototoxicity monitoring. Int J Audiol 2012; 51 Suppl 1:S51-62. [PMID: 22264063 DOI: 10.3109/14992027.2011.635713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) provide a window into real-time cochlear mechanical function. Yet, relationships between the changes in DPOAE metrics and auditory sensitivity are still poorly understood. Explicating these relationships might support the use of DPOAEs in hearing conservation programs (HCPs) for detecting early damage leading to noise-induced hearing loss (NIHL) so that mitigating steps might be taken to limit any lasting damage. This report describes the development of DPOAE-based statistical models to assess the risk of hearing loss from cisplatin treatment among cancer patients. Ototoxicity risk assessment (ORA) models were constructed using a machine learning paradigm in which partial least squares and leave-one-out cross-validation were applied, yielding optimal screening algorithms from a set of known risk factors for ototoxicity and DPOAE changes from pre-exposure baseline measures. Single DPOAE metrics alone were poorer indicators of the risk of ototoxic hearing shifts than the best performing multivariate models. This finding suggests that multivariate approaches applied to the use of DPOAEs in a HCP, will improve the ability of DPOAE measures to identify ears with noise-induced mechanical damage and/or hearing loss at each monitoring interval. This prediction must be empirically assessed in noise-exposed subjects.
Collapse
Affiliation(s)
- Dawn Konrad-Martin
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), Portland VA Medical Center, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
384
|
Progress in cochlear physiology after Békésy. Hear Res 2012; 293:12-20. [PMID: 22633944 DOI: 10.1016/j.heares.2012.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
In the fifty years since Békésy was awarded the Nobel Prize, cochlear physiology has blossomed. Many topics that are now current are things Békésy could not have imagined. In this review we start by describing progress in understanding the origin of cochlear gross potentials, particularly the cochlear microphonic, an area in which Békésy had extensive experience. We then review progress in areas of cochlear physiology that were mostly unknown to Békésy, including: (1) stereocilia mechano-electrical transduction, force production, and response amplification, (2) outer hair cell (OHC) somatic motility and its molecular basis in prestin, (3) cochlear amplification and related micromechanics, including the evidence that prestin is the main motor for cochlear amplification, (4) the influence of the tectorial membrane, (5) cochlear micromechanics and the mechanical drives to inner hair cell stereocilia, (6) otoacoustic emissions, and (7) olivocochlear efferents and their influence on cochlear physiology. We then return to a subject that Békésy knew well: cochlear fluids and standing currents, as well as our present understanding of energy dependence on the lateral wall of the cochlea. Finally, we touch on cochlear pathologies including noise damage and aging, with an emphasis on where the field might go in the future.
Collapse
|
385
|
Mechanisms contributing to central excitability changes during hearing loss. Proc Natl Acad Sci U S A 2012; 109:8292-7. [PMID: 22566618 DOI: 10.1073/pnas.1116981109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Exposure to loud sound causes cochlear damage resulting in hearing loss and tinnitus. Tinnitus has been related to hyperactivity in the central auditory pathway occurring weeks after loud sound exposure. However, central excitability changes concomitant to hearing loss and preceding those periods of hyperactivity, remain poorly explored. Here we investigate mechanisms contributing to excitability changes in the dorsal cochlear nucleus (DCN) shortly after exposure to loud sound that produces hearing loss. We show that acoustic overexposure alters synaptic transmission originating from the auditory and the multisensory pathway within the DCN in different ways. A reduction in the number of myelinated auditory nerve fibers leads to a reduced maximal firing rate of DCN principal cells, which cannot be restored by increasing auditory nerve fiber recruitment. In contrast, a decreased membrane resistance of DCN granule cells (multisensory inputs) leads to a reduced maximal firing rate of DCN principal cells that is overcome when additional multisensory fibers are recruited. Furthermore, gain modulation by inhibitory synaptic transmission is disabled in both auditory and multisensory pathways. These cellular mechanisms that contribute to decreased cellular excitability in the central auditory pathway are likely to represent early neurobiological markers of hearing loss and may suggest interventions to delay or stop the development of hyperactivity that has been associated with tinnitus.
Collapse
|
386
|
Wang Y, Ren C. Effects of repeated "benign" noise exposures in young CBA mice: shedding light on age-related hearing loss. J Assoc Res Otolaryngol 2012; 13:505-15. [PMID: 22532192 DOI: 10.1007/s10162-012-0329-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 03/28/2012] [Indexed: 11/29/2022] Open
Abstract
Temporary hearing threshold shift (TTS) resulting from a "benign" noise exposure can cause irreversible auditory nerve afferent terminal damage and retraction. While hearing thresholds and acute tissue injury recover within 1-2 weeks after a noise overexposure, it is not clear if multiple TTS noise exposures would result in cumulative damage even though sufficient TTS recovery time is provided. Here, we tested whether repeated TTS noise exposures affected permanent hearing thresholds and examined how that related to inner ear histopathology. Despite a peak 35-40 dB TTS 24 hours after each noise exposure, a double dose (2 weeks apart) of 100 dB noise (8-16 kHz) exposures to young (4-week-old) CBA mice resulted in no permanent threshold shifts (PTS) and abnormal distortion product otoacoustic emissions (DPOAE). However, although auditory brainstem response (ABR) thresholds recovered fully in once- and twice-exposed animals, the growth function of ABR wave 1( p-p ) amplitude (synchronized spiral ganglion cell activity) was significantly reduced to a similar extent, suggesting that damage resulting from a second dose of the exposure was not proportional to that observed after the initial exposure. Estimate of surviving inner hair cell afferent terminals using immunostaining of presynaptic ribbons revealed ribbon loss of ∼ 40 % at the ∼ 23 kHz region after the first round of noise exposure, but no additional loss of ribbons after the second exposure. In contrast, a third dose of the same noise exposure resulted in not only TTS, but also PTS even in regions where DPOAEs were not affected. The pattern of PTS seen was not entirely tonotopically related to the noise band used. Instead, it resembled more to that of age-related hearing loss, i.e., high frequency hearing impairment towards the base of the cochlea. Interestingly, after a 3rd dose of the noise exposure, additional loss of ribbons (another ≈ 25 %) was observed, suggesting a cumulative detrimental effect from individual "benign" noise exposures, which should result in a significant deficit in central temporal processing.
Collapse
Affiliation(s)
- Yong Wang
- Division of Otolaryngology and Program in Neuroscience, University of Utah, 30 North, 1900 East, Salt Lake City, UT 84132-0002, USA.
| | | |
Collapse
|
387
|
Browne CJ, Morley JW, Parsons CH. Tracking the expression of excitatory and inhibitory neurotransmission-related proteins and neuroplasticity markers after noise induced hearing loss. PLoS One 2012; 7:e33272. [PMID: 22428005 PMCID: PMC3299769 DOI: 10.1371/journal.pone.0033272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/10/2012] [Indexed: 11/19/2022] Open
Abstract
Excessive exposure to loud noise can damage the cochlea and create a hearing loss. These pathologies coincide with a range of CNS changes including reorganisation of frequency representation, alterations in the pattern of spontaneous activity and changed expression of excitatory and inhibitory neurotransmitters. Moreover, damage to the cochlea is often accompanied by acoustic disorders such as hyperacusis and tinnitus, suggesting that one or more of these neuronal changes may be involved in these disorders, although the mechanisms remain unknown. We tested the hypothesis that excessive noise exposure increases expression of markers of excitation and plasticity, and decreases expression of inhibitory markers over a 32-day recovery period. Adult rats (n = 25) were monaurally exposed to a loud noise (16 kHz, 1/10(th) octave band pass (115 dB SPL)) for 1-hour, or left as non-exposed controls (n = 5). Animals were euthanased at either 0, 4, 8, 16 or 32 days following acoustic trauma. We used Western Blots to quantify protein levels of GABA(A) receptor subunit α1 (GABA(A)α1), Glutamic-Acid Decarboxylase-67 (GAD-67), N-Methyl-D-Aspartate receptor subunit 2A (NR2A), Calbindin (Calb1) and Growth Associated Protein 43 (GAP-43) in the Auditory Cortex (AC), Inferior Colliculus (IC) and Dorsal Cochlear Nucleus (DCN). Compared to sham-exposed controls, noise-exposed animals had significantly (p<0.05): lower levels of GABA(A)α1 in the contralateral AC at day-16 and day-32, lower levels of GAD-67 in the ipsilateral DCN at day-4, lower levels of Calb1 in the ipsilateral DCN at day-0, lower levels of GABA(A)α1 in the ipsilateral AC at day-4 and day-32. GAP-43 was reduced in the ipsilateral AC for the duration of the experiment. These complex fluctuations in protein expression suggests that for at least a month following acoustic trauma the auditory system is adapting to a new pattern of sensory input.
Collapse
Affiliation(s)
| | | | - Carl H. Parsons
- Department of Anatomy and Cell Biology, School of Medicine, The University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
388
|
Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J Neurosci 2012; 32:344-55. [PMID: 22219295 DOI: 10.1523/jneurosci.4720-11.2012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pharmacological studies suggest that dopamine release from lateral olivocochlear efferent neurons suppresses spontaneous and sound-evoked activity in cochlear nerve fibers and helps control noise-induced excitotoxicity; however, the literature on cochlear expression and localization of dopamine receptors is contradictory. To better characterize cochlear dopaminergic signaling, we studied receptor localization using immunohistochemistry or reverse transcriptase PCR and assessed histopathology, cochlear responses and olivocochlear function in mice with targeted deletion of each of the five receptor subtypes. In normal ears, D1, D2, and D5 receptors were detected in microdissected immature (postnatal days 10-13) spiral ganglion cells and outer hair cells but not inner hair cells. D4 was detected in spiral ganglion cells only. In whole cochlea samples from adults, transcripts for D1, D2, D4, and D5 were present, whereas D3 mRNA was never detected. D1 and D2 immunolabeling was localized to cochlear nerve fibers, near the first nodes of Ranvier (D2) and in the inner spiral bundle region (D1 and D2) where presynaptic olivocochlear terminals are found. No other receptor labeling was consistent. Cochlear function was normal in D3, D4, and D5 knock-outs. D1 and D2 knock-outs showed slight, but significant enhancement and suppression, respectively, of cochlear responses, both in the neural output [auditory brainstem response (ABR) wave 1] and in outer hair cell function [distortion product otoacoustic emissions (DPOAEs)]. Vulnerability to acoustic injury was significantly increased in D2, D4 and D5 lines: D1 could not be tested, and no differences were seen in D3 mutants, consistent with a lack of receptor expression. The increased vulnerability in D2 knock-outs was seen in DPOAEs, suggesting a role for dopamine in the outer hair cell area. In D4 and D5 knock-outs, the increased noise vulnerability was seen only in ABRs, consistent with a role for dopaminergic signaling in minimizing neural damage.
Collapse
|
389
|
Missing mitochondrial Mpv17 gene function induces tissue-specific cell-death pathway in the degenerating inner ear. Cell Tissue Res 2012; 347:343-56. [PMID: 22322422 DOI: 10.1007/s00441-012-1326-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/11/2012] [Indexed: 12/11/2022]
Abstract
The Mpv17 gene encodes a mitochondrial inner-membrane protein that has been implicated in the metabolism of reactive oxygen species. The loss of function in Mpv17-/- mice leads to early sensorineural deafness associated with severe inner ear degeneration and late onset of kidney failure. The present study demonstrates that the onset of the degeneration of the cochlear neuroepithelia is related to the onset of auditory function and appears to be first restricted to the outer hair cells (OHC), which subsequently undergo rapid degeneration. At the age of 18 days, the OHC lateral membrane degenerates and extensive vacuolization of the cytoplasm is followed by lysis of the OHCs. Such degenerative processes have been seen for the first time in relation to auditory dysfunction. The structural degeneration pattern of the OHC appears to be similar to the described paraptotic processes (an alternative form of programmed cell death) discussed in the literature as a cause of cytoplasmic neurodegeneration. In contrast, the melanocyte-like intermediate cells that are of neural crest origin and that are located in the stria vascularis, undergo apoptosis, as documented ultrastructurally. A lack of Mpv17 protein function in mitochondria thus seems to initiate tissue-specific cell-death pathways resulting in the pathology seen during the degeneration process.
Collapse
|