351
|
Tomás-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 2004; 16:190-201. [PMID: 15207276 DOI: 10.1016/j.nbd.2004.01.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 01/08/2004] [Accepted: 01/14/2004] [Indexed: 12/14/2022] Open
Abstract
We have evaluated the potential neuroprotectant activity of minocycline in an animal model of Parkinson's disease induced by intranigral injection of lipopolysaccharide. Minocycline treatment was very effective in protecting number of nigral dopaminergic neurons and loss of reactive astrocytes at 7 days postlesion. Evaluation of microglia revealed that minocycline treatment highly prevented the lipopolysaccharide-induced activation of reactive microglia as visualized by OX-42 and OX-6 immunohistochemistry. Short-term RT-PCR analysis demonstrated that minocycline partially prevented the lipopolysaccharide-induced increases of mRNA levels for interleukin-1alpha and tumor necrosis factor-alpha. In addition, lipopolysaccharide highly induced protein nitration as seen by 3-nitrotyrosine immunoreactivity in the ventral mesencephalon. Minocycline treatment strongly diminished the extent of 3-nitrotyrosine immunoreactivity. We also found a direct correlation between location of IgG immunoreactivity-a marker of blood-brain barrier disruption-and neurodegenerative processes including death of nigral dopaminergic cells and reactive astrocytes. There was also a precise spatial correlation between disruption of blood-brain barrier and 3-nitrotyrosine immunoreactivity. We discuss potential involvement of lipopolysaccharide-induced formation of peroxynitrites and cytokines in the pathological events in substantia nigra in response to inflammation. If inflammation is proved to be involved in the ethiopathology of Parkinson's disease, our data support the use of minocycline in parkinsonian patients.
Collapse
Affiliation(s)
- Mayka Tomás-Camardiel
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal Facultad de Farmacia, Universidad de Sevilla, E-41012-Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
352
|
Kim S, Jeon BS, Heo C, Im PS, Ahn TB, Seo JH, Kim HS, Park CH, Choi SH, Cho SH, Lee WJ, Suh YH. Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson's disease. FASEB J 2004; 18:1615-7. [PMID: 15289452 DOI: 10.1096/fj.04-1917fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Though the etiology of Parkinson's disease (PD) remains unclear, alpha-synuclein (alpha-SN) is regarded as a major causative agent of PD. Several lines of evidence indicate that immunological abnormalities are associated with PD for unknown reasons. The present study was performed to assess whether peripheral blood mononuclear cells (PBMCs) show altered alpha-SN expression in PD patients and to identify its functions, which may be related to peripheral immune abnormalities in PD. alpha-SN was found to be expressed more in 151 idiopathic PD (IPD) patients than in 101 healthy controls, who nevertheless showed as age-dependent increases. By in vitro transfection, alpha-SN expression was shown to be correlated with glucocorticoid sensitive apoptosis, possibly caused by the enhanced expression of glucocorticoid receptor (GR), caspase activations (caspase-8, caspase-9), CD95 up-regulation, and reactive oxygen species (ROS) production. An understanding of the correlation between alpha-SN levels and apoptosis in the presence of the coordinated involvement of multiple processes would provide an insight into the molecular basis of the disease. The present study provides a clue that the alpha-SN may be one of the primary causes of the immune abnormalities observed in PD and offers new targets for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Huang Y, Cheung L, Rowe D, Halliday G. Genetic contributions to Parkinson's disease. ACTA ACUST UNITED AC 2004; 46:44-70. [PMID: 15297154 DOI: 10.1016/j.brainresrev.2004.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 01/12/2023]
Abstract
Sporadic Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by the loss of midbrain dopamine neurons and Lewy body inclusions. It is thought to result from a complex interaction between multiple predisposing genes and environmental influences, although these interactions are still poorly understood. Several causative genes have been identified in different families. Mutations in two genes [alpha-synuclein and nuclear receptor-related 1 (Nurr1)] cause the same pathology, and a third locus on chromosome 2 also causes this pathology. Other familial PD mutations have identified genes involved in the ubiquitin-proteasome system [parkin and ubiquitin C-terminal hydroxylase L1 (UCHL1)], although such cases do not produce Lewy bodies. These studies highlight critical cellular proteins and mechanisms for dopamine neuron survival as disrupted in Parkinson's disease. Understanding the genetic variations impacting on dopamine neurons may illuminate other molecular mechanisms involved. Additional candidate genes involved in dopamine cell survival, dopamine synthesis, metabolism and function, energy supply, oxidative stress, and cellular detoxification have been indicated by transgenic animal models and/or screened in human populations with differing results. Genetic variation in genes known to produce different patterns and types of neurodegeneration that may impact on the function of dopamine neurons are also reviewed. These studies suggest that environment and genetic background are likely to have a significant influence on susceptibility to Parkinson's disease. The identification of multiple genes predisposing to Parkinson's disease will assist in determining the cellular pathway/s leading to the neurodegeneration observed in this disease.
Collapse
Affiliation(s)
- Yue Huang
- Prince of Wales Medical Research Institute and the University of New South Wales, Barker Street, Randwick, Sydney 2031, Australia
| | | | | | | |
Collapse
|
354
|
Kim S, Seo JH, Suh YH. Alpha-synuclein, Parkinson's disease, and Alzheimer's disease. Parkinsonism Relat Disord 2004; 10 Suppl 1:S9-13. [PMID: 15109581 DOI: 10.1016/j.parkreldis.2003.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2003] [Accepted: 11/30/2003] [Indexed: 11/21/2022]
Abstract
Alpha synuclein (alpha-SN) is a ubiquitous protein that is especially abundant in the brain and has been postulated to play a central role in the pathogenesis of Parkinson's disease (PD), Alzheimer's disease, and other neurodegenerative disorders. Here, we show that alpha-SN plays dual role of neuroprotection and neurotoxicity depending on its concentration or level of expression. In addition, our study shows that alpha-synuclein is differentially expressed in human peripheral blood mononuclear cells. PD patients expressed more alpha-synuclein than healthy controls. Thus, the alpha-synuclein expression in the peripheral immune system might be one of the primary causes of immune abnormalities in PD patients.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, National Creative Research Initiative Center for Alzheimer's Dementia, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, South Korea
| | | | | |
Collapse
|
355
|
Furuya T, Hayakawa H, Yamada M, Yoshimi K, Hisahara S, Miura M, Mizuno Y, Mochizuki H. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci 2004; 24:1865-72. [PMID: 14985426 PMCID: PMC6730410 DOI: 10.1523/jneurosci.3309-03.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to elucidate the inflammatory and apoptotic mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in a model of Parkinson's disease. Our results showed that mutant mice lacking the caspase-11 gene were significantly more resistant to the effects of acute treatment with MPTP than their wild-type mice. Thus, the neurotoxicity of MPTP seems to be mediated by the induction of both mitochondrial dysfunction and free radical generation. Previously, we showed that overexpression of the Apaf-1 dominant-negative inhibitor inhibited the mitochondrial apoptotic cascade in chronic MPTP treatment but not in acute MPTP treatment. The present results indicate that MPTP neurotoxicity may be mediated via activation of the caspase-11 cascade and inflammatory cascade, as well as the mitochondrial apoptotic cascade.
Collapse
Affiliation(s)
- Tsuyoshi Furuya
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Ross OA, O'Neill C, Rea IM, Lynch T, Gosal D, Wallace A, Curran MD, Middleton D, Gibson JM. Functional promoter region polymorphism of the proinflammatory chemokine IL-8 gene associates with Parkinson's disease in the Irish. Hum Immunol 2004; 65:340-6. [PMID: 15120188 DOI: 10.1016/j.humimm.2004.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 01/09/2004] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders and is characterized by the progressive loss of dopamine neurons in the substantia nigra. There is increasing evidence to suggest the inflammatory response of the brain contributes to the pathogenesis of PD. This study investigated the frequency of polymorphism located in the critical promoter region of the proinflammatory cytokine genes: interleukin (IL)-2, IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) within a cohort of patients with PD in comparison to a group of healthy elderly individuals. No association was observed for single nucleotide polymorphism in the promoter regions of the IL-2, IL-6, and TNF-alpha genes. The single nucleotide polymorphism in the chemokine IL-8 gene was observed to associate with PD and appeared to be independent of age at onset. This association further supports the theory that the proinflammatory response in the brains of patients with PD plays a role in the pathogenesis of the disease and warrants further investigation into the role of chemokines in the brain, and a more detailed analysis of the genetics involved in the immune response of the brain.
Collapse
Affiliation(s)
- Owen A Ross
- Department of Geriatric Medicine, Belfast, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MBH. Neuroprotective strategies in Parkinson's disease : an update on progress. CNS Drugs 2003; 17:729-62. [PMID: 12873156 DOI: 10.2165/00023210-200317100-00004] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In spite of the extensive studies performed on postmortem substantia nigra from Parkinson's disease patients, the aetiology of the disease has not yet been established. Nevertheless, these studies have demonstrated that, at the time of death, a cascade of events had been initiated that may contribute to the demise of the melanin-containing nigro-striatal dopamine neurons. These events include increased levels of iron and monoamine oxidase (MAO)-B activity, oxidative stress, inflammatory processes, glutamatergic excitotoxicity, nitric oxide synthesis, abnormal protein folding and aggregation, reduced expression of trophic factors, depletion of endogenous antioxidants such as reduced glutathione, and altered calcium homeostasis. To a large extent, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) animal models of Parkinson's disease confirm these findings. Furthermore, neuroprotection can be afforded in these models with iron chelators, radical scavenger antioxidants, MAO-B inhibitors, glutamate antagonists, nitric oxide synthase inhibitors, calcium channel antagonists and trophic factors. Despite the success obtained with animal models, clinical neuroprotection is much more difficult to accomplish. Although the negative studies obtained with the MAO-B inhibitor selegiline (deprenyl) and the antioxidant tocopherol (vitamin E) may have resulted from an inappropriate choice of drug (selegiline) or an inadequate dose (tocopherol), the niggling problem that still remains is why these drugs, and others, do work in animals while they fail in the clinic. One reason for this may be related to the fact that in normal human brains the number of dopaminergic neurons falls by around 3-5% every decade, while in Parkinson's disease this decline is greater. Brain autopsy studies have shown that by the time the disease is identified, some 70-75% of the dopamine-containing neurons have been lost. More sensitive reliable methods and clinical correlative markers are required to discern between confoundable symptomatic effects versus a possible neuroprotective action of drugs, namely, the ability to delay or forestall disease progression by protecting or rescuing the remaining dopamine neurons or even restoring those that have been lost.A number of other possibilities for the clinical failure of potential neuroprotectants also exist. First, the animal models of Parkinson's disease may not be totally reflective of the disease and, therefore, the chemical pathologies established in the animal models may not cause, or contribute to, the progression of the disease clinically. Second, because of the series of events occurring in neurodegeneration and our ignorance about which of these factors constitutes the primary event in the pathogenic process, a single drug may not be adequate to induce neuroprotection and, as a consequence, use of a cocktail of drugs may be more appropriate. The latter concept receives support from recent complementary DNA (cDNA) microarray gene expression studies, which show the existence of a gene cascade of events occurring in the nigrostriatal pathway of MPTP, 6-OHDA and methamphetamine animal models of Parkinson's disease. Even with the advent of powerful new tools such as genomics, proteomics, brain imaging, gene replacement therapy and knockout animal models, the desired end result of neuroprotection is still beyond our current capability.
Collapse
Affiliation(s)
- Silvia Mandel
- Department of Pharmacology, Technion - Faculty of Medicine, Eve Topf and US National Parkinson's Foundation Centers for Neurodegenerative Diseases, Bruce Rappaport Family Research Institute, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
358
|
Liu B, Gao HM, Hong JS. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1065-73. [PMID: 12826478 PMCID: PMC1241555 DOI: 10.1289/ehp.6361] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Idiopathic Parkinson's disease (PD) is a devastating movement disorder characterized by selective degeneration of the nigrostriatal dopaminergic pathway. Neurodegeneration usually starts in the fifth decade of life and progresses over 5-10 years before reaching the fully symptomatic disease state. Despite decades of intense research, the etiology of sporadic PD and the mechanism underlying the selective neuronal loss remain unknown. However, the late onset and slow-progressing nature of the disease has prompted the consideration of environmental exposure to agrochemicals, including pesticides, as a risk factor. Moreover, increasing evidence suggests that early-life occurrence of inflammation in the brain, as a consequence of either brain injury or exposure to infectious agents, may play a role in the pathogenesis of PD. Most important, there may be a self-propelling cycle of inflammatory process involving brain immune cells (microglia and astrocytes) that drives the slow yet progressive neurodegenerative process. Deciphering the molecular and cellular mechanisms governing those intricate interactions would significantly advance our understanding of the etiology and pathogenesis of PD and aid the development of therapeutic strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bin Liu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | | | | |
Collapse
|
359
|
Collier TJ, Steece-Collier K, McGuire S, Sortwell CE. Cellular models to study dopaminergic injury responses. Ann N Y Acad Sci 2003; 991:140-51. [PMID: 12846983 DOI: 10.1111/j.1749-6632.2003.tb07472.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The study of immature midbrain dopamine (DA) neurons and dopaminergic cell lines in culture provides an opportunity to analyze mechanisms of cell death and avenues of potential intervention relevant to Parkinson's disease (PD) in a controlled environment. Use of cell culture models has provided evidence for different sets of intracellular changes associated with DA neuron death following exposure to the neurotoxins 6-hydroxydopamine and MPP+, supporting roles for oxidative stress and impaired energy metabolism as significant factors endangering these cells. Interference with death of cultured DA neurons has provided an initial test system that has yielded all the identified neurotrophic factors for DA neurons. More recent work suggests that combinations of molecules secreted by myelinating glial cells and their precursors provide even greater neuroprotection for DA neurons. Most recently, culture systems have been used to implicate microglial activation in DA neuron injury, providing impetus to the investigation of antiinflammatory agents as potential therapeutics for PD. Thus, cell culture models provide an important bidirectional link between mechanistic studies and clinically relevant observations.
Collapse
Affiliation(s)
- Timothy J Collier
- Department of Neurological Sciences, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
360
|
Carreño-Müller E, Herrera AJ, de Pablos RM, Tomás-Camardiel M, Venero JL, Cano J, Machado A. Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia. J Neurochem 2003; 84:1201-14. [PMID: 12603843 DOI: 10.1046/j.1471-4159.2003.01634.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven days after the injection of different concentrations of thrombin into the nigrostriatal pathway, a strong macrophage/microglial reaction was observed in the substantia nigra (SN), indicated by immunostaining, using OX-42 and OX-6 antibodies, and by the induction of iNOS, IL-1alpha, Il-1beta and TNF-alpha. Moreover, selective damage to dopaminergic neurones was produced after thrombin injection, evidenced by loss of tyrosine hydroxylase immunostaining and tyrosine hydroxylase mRNA-expressing cell bodies, and the unaltered transcription of glutamic acid decarboxylase mRNA in the SN and striatum. These thrombin effects could be produced by its ability to induce the activation of microglia described in in vitro studies, and are in agreement with the effects described for other proinflammatory compounds. Thrombin effects are produced by its biological activity since they almost disappeared when thrombin was heat-inactivated or injected along with its inhibitor alpha-NAPAP. Thrombin is a multi-functional serine protease rapidly produced from prothrombin at the sites of tissue injury, and also upon breakdown of the blood-brain barrier, which strongly suggests it could easily enter into the CNS. These results could have special importance in some degenerative processes of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Eloisa Carreño-Müller
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
361
|
Armstrong ME, Loscher CE, Lynch MA, Mills KHG. IL-1beta-dependent neurological effects of the whole cell pertussis vaccine: a role for IL-1-associated signalling components in vaccine reactogenicity. J Neuroimmunol 2003; 136:25-33. [PMID: 12620640 DOI: 10.1016/s0165-5728(02)00468-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunization with the whole cell pertussis vaccine (Pw), but not the acellular pertussis vaccine (Pa), is associated with a number of neurological side effects. Previously, we have demonstrated a role for interleukin-1beta (IL-1beta) in Pw reactogenicity. Here we report that parenteral Pw administration resulted in a concomitant increase IL-1 type I receptor (IL-1RI) mRNA and a decrease in IL-1 type II receptor (IL-1RII) mRNA expression in the murine hypothalamus. These Pw-induced changes were accompanied by an increase in caspase-1 and interleukin-1beta (IL-1beta), and were associated with increased activity of the stress-activated kinase, p38. In contrast, immunization with Pa failed to activate pro-inflammatory IL-1 responses but resulted in increased IL-1 receptor antagonist (IL-1ra) production. These results suggest that the neurological effects of Pw are associated with central activation of IL-1beta and IL-1-associated signalling components.
Collapse
Affiliation(s)
- Michelle E Armstrong
- Immune Regulation Research Group, Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
362
|
Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, Vila M, Jackson-Lewis V, Przedborski S. Pathogenic role of glial cells in Parkinson's disease. Mov Disord 2003; 18:121-9. [PMID: 12539204 DOI: 10.1002/mds.10332] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Alternatively, this glial response can also mediate a variety of deleterious events related to the production of pro-oxidant reactive species, and pro-inflammatory prostaglandin and cytokines. We discuss the potential protective and deleterious effects of glial cells in the SNpc of PD and examine how those factors may contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Peter Teismann
- Neuroscience Research, Movement Disorder Division, Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Przedborski S, E. Goldman J. Pathogenic role of glial cells in Parkinson's disease. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
364
|
Palomo T, Beninger RJ, Kostrzewa RM, Archer T. Brain sites of movement disorder: genetic and environmental agents in neurodevelopmental perturbations. Neurotox Res 2003; 5:1-26. [PMID: 12832221 DOI: 10.1007/bf03033369] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In assessing and assimilating the neurodevelopmental basis of the so-called movement disorders it is probably useful to establish certain concepts that will modulate both the variation and selection of affliction, mechanisms-processes and diversity of disease states. Both genetic, developmental and degenerative aberrations are to be encompassed within such an approach, as well as all deviations from the necessary components of behaviour that are generally understood to incorporate "normal" functioning. In the present treatise, both conditions of hyperactivity/hypoactivity, akinesia and bradykinesia together with a constellation of other symptoms and syndromes are considered in conjunction with the neuropharmacological and brain morphological alterations that may or may not accompany them, e.g. following neonatal denervation. As a case in point, the neuroanatomical and neurochemical points of interaction in Attention Deficit and Hyperactivity disorder (ADHD) are examined with reference to both the perinatal metallic and organic environment and genetic backgrounds. The role of apoptosis, as opposed to necrosis, in cell death during brain development necessitates careful considerations of the current explosion of evidence for brain nerve growth factors, neurotrophins and cytokines, and the processes regulating their appearance, release and fate. Some of these processes may possess putative inherited characteristics, like alpha-synuclein, others may to greater or lesser extents be endogenous or semi-endogenous (in food), like the tetrahydroisoquinolines, others exogenous until inhaled or injested through environmental accident, like heavy metals, e.g. mercury. Another central concept of neurodevelopment is cellular plasticity, thereby underlining the essential involvement of glutamate systems and N-methyl-D-aspartate receptor configurations. Finally, an essential assimilation of brain development in disease must delineate the relative merits of inherited as opposed to environmental risks not only for the commonly-regarded movement disorders, like Parkinson's disease, Huntington's disease and epilepsy, but also for afflictions bearing strong elements of psychosocial tragedy, like ADHD, autism and Savantism.
Collapse
Affiliation(s)
- T Palomo
- Servicio de Psiquiatria, Hospital 12 de Octobre, Ctra. Andalucia Km. 5,400, 28041 Madrid, Spain.
| | | | | | | |
Collapse
|
365
|
Barcia C, Fernández Barreiro A, Poza M, Herrero MT. Parkinson's disease and inflammatory changes. Neurotox Res 2003; 5:411-8. [PMID: 14715444 DOI: 10.1007/bf03033170] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 1988 McGeer and colleagues (Neurology 38, 1285-91) observed an activation of the microglia in substantia nigra pars compacta (SNpc) and striatum of brains from patients with Parkinson's disease. In the years that followed several studies performed in the cerebrospinal fluid and during post-mortem analysis in parkinsonian patients revealed increased levels of cytokines, suggesting the activation of a proinflammatory response. Moreover, Langston and his group described the presence of active microglia in the SNpc of three patients who had been exposed to MPTP several years before death. These results suggested that the inflammatory response may increase negative feed-back into the damaged area of the cerebral parenchyma, inducing an imbalance that could perpetuate and/or accelerate neuronal death over a period of years. Similar results have been obtained in parkinsonian monkeys, rats and mice. For these reasons, several groups have treated parkinsonian animals with different anti-inflammatory drugs and obtained promising results. However, it is still not known whether inflammatory changes are responsible for active nerve cell death or whether they play a protective role in neurodegeneration. These changes are putatively related to neuronal loss and suggest that anti-inflammatory treatment for parkinsonian patients could have beneficial effects in the progression of the disease by slowing down the process of neuronal loss.
Collapse
Affiliation(s)
- Carlos Barcia
- Experimental Neurology and Neurosurgery Group, School of Medicine, Campus Espinardo, University of Murcia, 30071 Murcia, Spain.
| | | | | | | |
Collapse
|
366
|
Wu DC, Tieu K, Cohen O, Choi DK, Vila M, Jackson-Lewis V, Teismann P, Przedborski S. Glial cell response: A pathogenic factor in Parkinson's disease. J Neurovirol 2002; 8:551-8. [PMID: 12476349 DOI: 10.1080/13550280290100905] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Alternatively, this glial response can also mediate a variety of deleterious events related to the production of pro-oxidant reactive species, proinflammatory prostaglandin, and cytokines. In this review, the authors discuss the potential protective and deleterious effects of glial cells in the SNpc of PD and examine how these factors may contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Du Chu Wu
- Neuroscience Research, Movement Disorder Division, Department of Neurology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Abstract
The symptoms of Parkinson's disease (PD) were first described nearly two centuries ago and its characteristic pathology identified nearly a century ago, yet its pathogenesis is still poorly understood. Parkinson's disease is the most prevalent neurodegenerative movement disorder and research into its pathogenesis recently accelerated following the identification of a number of causal genetic mutations. The mutant gene products all cause dysfunction of the ubiquitin-proteosome system, identifying protein modification and degradation as critical for pathogenesis. Modified non-degraded intracellular proteins accumulate in certain neuronal populations in all forms of the disease. However, neuronal degeneration is more highly selective and associates with substantial activation of microglia, the inflammatory cells of the brain. We review the current change in thinking regarding the role of microglia in the brain in the context of Parkinson's disease and animal models of the disease. Comparison of the cellular tissue changes across a number of animal models using diverse stimuli to mimic Parkinson's disease reveals a consistent pattern implicating microglia as the effector for the selective degeneration of dopaminergic neurons. While previous reviews have concentrated on the intracellular neuronal changes in Parkinson's disease, we highlight the cell to cell interactions and immune regulation critical for neuronal homeostasis and survival in Parkinson's disease.
Collapse
Affiliation(s)
- C F Orr
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney 2031, Royal North Shore Hospital, Sydney 2065, Australia
| | | | | |
Collapse
|
368
|
Youdim MB, Grünblatt E, Levites Y, Maor G, Mandel S. Early and late molecular events in neurodegeneration and neuroprotection in Parkinson's disease MPTP model as assessed by cDNA microarray; the role of iron. Neurotox Res 2002; 4:679-689. [PMID: 12709306 DOI: 10.1080/1029842021000045507] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Possible cell death mechanisms for pars compacta nigro-striatal dopamine neurons in Parkinson's disease include oxidative stress, inflammatory processes, nitric oxide iron accumulation, glutamate toxicity and diminished neurotrophic factor responses. There is a notion that Parkinson's disease is not a single disorder but a syndrome that can be initiated by several factors. Because of limitations of biochemical methods in the global analysis of neuronal death, a full picture of events has not been established. However, recently developed cDNA microarray or microchips, in which the global expression of thousands of genes can be assessed simultaneously, is changing the prospect for understanding the disease process, its progression, response to drugs, etc. The neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is considered the most valid model of Parkinson's disease. We employed the technique of cDNA microarray gene expression to determine the mechanism of action of MPTP in mouse substantia nigra. Also, we studied neuroprotective processes induced by several compounds, including R-apomorphine and the green tea polyphenol epigallo-catechin-3-gallate (EGCG). This was done in two ways: (1) the time-dependent acute effect of MPTP, for determining which of the initial genes might lead to dopamine neuron death and (2) gene expression at the time of MPTP-induced dopamine neuron death. We observed that early (acute MPTP) gene expression differs from effects seen at the time of death (chronic MPTP), and that early gene changes are crucial for setting into action genes that eventually cause dopamine neuron death. Furthermore, this process is a cascade of "domino" effects, some of which were previously established by biochemical means. However, our findings show an additional large number of events previously unknown. The neuroprotective drugs reversed some but not all of the gene expression, suggesting involvement of these genes in the neurodegenerative process. Because of the profound complexity of "domino" effect it is now reasonable to understand why a single neuroprotective drug has not shown clinical neuroprotective efficacy. Future multi neuroprotective drugs may be necessary for treatment of not only Parkinson's disease, but other neurodegenerative diseases (e.g. Alzheimer's disease) and detrimental states (e.g. ischaemia).
Collapse
Affiliation(s)
- Moussa B.H. Youdim
- Department of Pharmacology, Technion-Faculty of Medicine, Eve Topf and US National Parkinson's Foundation Centers for Neurodegenerative Diseases, P.O.B. 9697, Efron St., Haifa, 31096, Israel
| | | | | | | | | |
Collapse
|
369
|
Mandel S, Grünblatt E, Maor G, Youdim MBH. Early and late gene changes in MPTP mice model of Parkinson's disease employing cDNA microarray. Neurochem Res 2002; 27:1231-43. [PMID: 12462421 DOI: 10.1023/a:1020989812576] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recently, we reported specific brain gene expression changes in the chronic MPTP model inthe late stage of degeneration, employing cDNA expression array, which indicate a "domino" cascade of events involved in neuronal cell death. In an attempt to elucidate early gene expression profile in the region of the substantia nigra (SN) and the striatum of acute MPTP-treated mice (3-24 h), we elected a restricted number of genes affected by the long-term MPTP treatment, and their expression was examined. Specifically, we detected alterations in the expression of genes implicated in oxidative-stress, inflammatory processes, signal transduction and glutamate toxicity. These pro-toxic genes appear to be compensated by the elevated expression in trophic factors and antioxidant defenses, which are also activated by short exposure to MPTP. The time course of these gene expression changes indicates the importance of investigating the early gene cascade of events occurring prior to late nigrostriatal dopamine neuronal cell death.
Collapse
Affiliation(s)
- Silvia Mandel
- Eye Topf and U.S. National Parkinson's Foundation Centers of Excellence for Neurodegenerative Diseases, Bruce Rappaport Family Research Institute and Department of Pharmacology, Haifa, Israel
| | | | | | | |
Collapse
|
370
|
Abstract
Motor complications associated with long-term levodopa application, which follow the so-called honeymoon period of well-tolerated levodopa administration and are looked upon as one clinical marker for progression of Parkinson's disease (PD), initiated a long and controversial debate on the putative neurotoxicity of levodopa. Since dopamine agonists (DA) delay onset of motor complications, they support the neuroprotective treatment strategy in PD. Efficacy and tolerability of DA differs in particular due to their affinity to various dopamine receptor subtypes. The accumulating evidence for levodopa-associated homocysteinaemia, which represents a risk factor for increased incidence of vascular disease in PD, supports the strategy of initial DA application and the use of levodopa as an add-on compound in as low a dose as possible in young PD patients.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.
| |
Collapse
|
371
|
Bolin LM, Strycharska-Orczyk I, Murray R, Langston JW, Di Monte D. Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. J Neurochem 2002; 83:167-75. [PMID: 12358740 DOI: 10.1046/j.1471-4159.2002.01131.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test the hypothesis that neuroinflammation contributes to dopaminergic neuron death in the MPTP-lesioned mouse, we compared nigrostriatal degeneration in interleukin (IL)-6 (+/+) with IL-6 (-/-) mice. In the absence of IL-6, a single injection of MPTP (30 mg/kg) resulted in significantly greater striatal dopamine depletion than that measured in IL-6 (+/+) mice. The observed dopamine depletion was MPTP dose dependent. This loss of striatal dopamine and a significantly greater loss of TH+ cells in the substantia nigra pars compacta in IL-6 (-/-) mice as compared with control IL-6 (+/+) mice, suggest that IL-6 is neuroprotective in the MPTP-lesioned nigrostriatal system. Co-localization experiments identified striatal astrocytes as the source of IL-6 in IL-6 (+/+) mice at 1 and 7 days postinjection of MPTP. The increased sensitivity of dopaminergic neurons to neurotoxicant in the absence of IL-6, is compatible with a neuroprotective activity of IL-6 in the injured nigrostriatal system.
Collapse
Affiliation(s)
- Laurel M Bolin
- The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, CA 94089, USA.
| | | | | | | | | |
Collapse
|
372
|
Rousselet E, Callebert J, Parain K, Joubert C, Hunot S, Hartmann A, Jacque C, Perez-Diaz F, Cohen-Salmon C, Launay JM, Hirsch EC. Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol 2002; 177:183-92. [PMID: 12429221 DOI: 10.1006/exnr.2002.7960] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loss of dopaminergic neurons in Parkinson's disease is associated with a glial reaction and the overproduction of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha). TNF-alpha acts via two different receptors, TNFR1 and TNFR2, and is believed to have both a neuroprotective and a deleterious role for neurons. In order to analyze the putative role of TNF-alpha in parkinsonism, we compared the effect of the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice lacking TNFR1, TNFR2, or both receptors and in wild-type littermates. We show that MPTP does not affect spontaneous activity or anxiety in any of the groups and that it reduces motor activity on a rotarod in double knock out mice but not in mice lacking only one receptor. Postmortem analysis revealed no differences in the number of nigral dopaminergic neurons whatever the group. In contrast, striatal dopamine level was slightly decreased in double knock-out mice and more reduced by MPTP in this group than in the other groups of mice. In addition, dopamine turnover was significantly more increased in double knock out mice after MPTP injection. These data suggest that TNF-alpha does not participate in the death of dopaminergic neurons in parkinsonism but that it slightly alters dopamine metabolism or the survival of dopaminergic terminals by a mechanism involving both receptors.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Antigens, CD/genetics
- Dopamine/genetics
- Dopamine/metabolism
- MPTP Poisoning/genetics
- MPTP Poisoning/metabolism
- MPTP Poisoning/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/genetics
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Necrosis Factor-alpha/metabolism
Collapse
|
373
|
Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O'Callaghan JP. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. FASEB J 2002; 16:1474-6. [PMID: 12205053 DOI: 10.1096/fj.02-0216fje] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pathogenic mechanisms underlying idiopathic Parkinson's disease (PD) remain enigmatic. Recent findings suggest that inflammatory processes are associated with several neurodegenerative disorders, including PD. Enhanced expression of the proinflammatory cytokine, tumor necrosis factor (TNF)-alpha, has been found in association with glial cells in the substantia nigra of patients with PD. To determine the potential role for TNF-alpha in PD, we examined the effects of the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP), a dopaminergic neurotoxin that mimics some of the key features associated with PD, using transgenic mice lacking TNF receptors. Administration of MPTP to wild-type (+/+) mice resulted in a time-dependent expression of TNF-alpha in striatum, which preceded the loss of dopaminergic markers and reactive gliosis. In contrast, transgenic mice carrying homozygous mutant alleles for both the TNF receptors (TNFR-DKO), but not the individual receptors, were completely protected against the dopaminergic neurotoxicity of MPTP. The data indicate that the proinflammatory cytokine TNF-alpha is an obligatory component of dopaminergic neurodegeneration. Moreover, because TNF-alpha is synthesized predominantly by microglia and astrocytes, our findings implicate the participation of glial cells in MPTP-induced neurotoxicity. Similar mechanisms may underlie the etiopathogenesis of PD.
Collapse
Affiliation(s)
- Krishnan Sriram
- Centers for Disease Control and Prevention-NIOSH, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | |
Collapse
|
374
|
Beaulieu JM, Kriz J, Julien JP. Induction of peripherin expression in subsets of brain neurons after lesion injury or cerebral ischemia. Brain Res 2002; 946:153-61. [PMID: 12137917 DOI: 10.1016/s0006-8993(02)02830-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peripherin is a type III intermediate filament predominantly expressed in neurons having direct axonal projections toward peripheral structures. Here, we report that brain injuries can trigger expression of peripherin and the formation of peripherin accumulations in neurons that are normally silent for this gene. Stab lesions made with nitrocellulose implants induced within 4 days the formation of peripherin accumulations, devoid of neurofilament proteins, in thalamic neurites at the site of the lesion. The local administration of interleukin-6 or leukemia inhibitory factor at the site of the stab lesion extended the expression pattern of peripherin to other neuronal subsets in areas of the cortex and/or of the hippocampus adjacent to injury. We also show that transient focal ischemia in mice, a model of stroke, can trigger within 72 h the formation of neuronal peripherin accumulations in neurons of the cortex, thalamus and hippocampus. This new type of potentially noxious intermediate filament protein accumulations, composed of peripherin, may be of relevance to many brain degenerative disorders with occurrence of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Centre for Research in Neurosciences, McGill University, The Montreal General Hospital Research Institute, 1650 Cedar Avenue, Quebec H3G 1A4, Canada
| | | | | |
Collapse
|
375
|
Schulte T, Schöls L, Müller T, Woitalla D, Berger K, Krüger R. Polymorphisms in the interleukin-1 alpha and beta genes and the risk for Parkinson's disease. Neurosci Lett 2002; 326:70-2. [PMID: 12052541 DOI: 10.1016/s0304-3940(02)00301-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several lines of evidence indicate that immune mechanisms are involved in the pathogenesis of neurodegenerative disorders. Activated immunocompetent cells and inflammatory cytokines are present in affected brain regions in patients with Alzheimer's (AD) and Parkinson's disease (PD). For AD biochemical and pathological data are supported by genetic studies identifying risk alleles for polymorphisms in regulatory regions of the interleukin-1 alpha (IL-1 alpha-889) and interleukin-1 beta (IL-1 beta-511) gene, respectively. The partially overlapping pathology and inflammatory reaction pattern between AD and PD led us to investigate these polymorphisms in a large sample of 295 German PD patients and 270 healthy controls. We found T in position -511 in the IL-1 beta gene more frequent in patients compared to controls (chi(2)=4.44, P=0.034). For the IL-1 alpha-889 polymorphism no significant difference between patients and controls was observed.
Collapse
Affiliation(s)
- Thorsten Schulte
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
376
|
Garthoff LH, Sobotka TJ. From farm to table to brain: foodborne pathogen infection and the potential role of the neuro-immune-endocrine system in neurotoxic sequelae. Nutr Neurosci 2002; 4:333-74. [PMID: 11845817 DOI: 10.1080/1028415x.2001.11747373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The American diet is among the safest in the world; however, diseases transmitted by foodborne pathogens (FBPs) still pose a public health hazard. FBPs are the second most frequent cause of all infectious illnesses in the United States. Numerous anecdotal and clinical reports have demonstrated that central nervous system inflammation, infection, and adverse neurological effects occur as complications of foodborne gastroenteritis. Only a few well-controlled clinical or experimental studies, however, have investigated the neuropathogenesis. The full nature and extent of neurological involvement in foodborne illness is therefore unclear. To our knowledge, this review and commentary is the first effort to comprehensively discuss the issue of FBP induced neurotoxicity. We suggest that much of this information supports the role of a theoretical model, the neuro-immune-endocrine system, in organizing and helping to explain the complex pathogenesis of FBP neurotoxicity.
Collapse
Affiliation(s)
- L H Garthoff
- United States FDA, Center for Food Safety & Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Toxicology and Nutrition Product Studies, Neurotoxicology Branch, Laurel, MD 20708, USA.
| | | |
Collapse
|
377
|
|
378
|
Abstract
Parkinsonism as a manifestation of central nervous system (CNS) lupus is extremely rare. We report the first patient with systemic lupus erythematosus (SLE) who developed a reversible parkinsonian syndrome associated with enhancing subcortical lesions on magnetic resonance imaging (MRI). Following treatment with prednisolone and cyclophosphamide, her bradyphrenia, bradykinesia, hypophonia, rigidity, and abnormal gait progressively improved. Three months after she commenced treatment, repeat MRI scanning demonstrated resolution of the abnormal subcortical white matter enhancement. Our case illustrates unusual clinico-radiologic correlates of reversible parkinsonism in a SLE patient; these findings suggest that disruption of the subcortical frontal pathways may be a possible pathophysiologic mechanism for parkinsonism in cerebral lupus.
Collapse
Affiliation(s)
- E K Tan
- Department of Neurology, Singapore General Hospital, Outram Road, 169608, Singapore.
| | | | | |
Collapse
|
379
|
Abstract
Microglial activation and oxidative stress are significant components of the pathology of Parkinson's disease (PD), but their exact contributions to disease pathogenesis are unclear. We have developed an in vitro model of nigral injury, in which lipopolysaccharide-induced microglial activation leads to injury of a dopaminergic cell line (MES 23.5 cells) and dopaminergic neurons in primary mesencephalic cell cultures. The microglia are also activated by PD IgGs in the presence of low-dose dopa-quinone- or H(2)O(2)-modified dopaminergic cell membranes but not cholinergic cell membranes. The activation requires the microglial FCgammaR receptor as demonstrated by the lack of activation with PD IgG Fab fragments or microglia from FCgammaR-/- mice. Although microglial activation results in the release of several cytokines and reactive oxygen species, only nitric oxide and H(2)O(2) appear to mediate the microglia-induced dopaminergic cell injury. These studies suggest a significant role for microglia in dopaminergic cell injury and provide a mechanism whereby immune/inflammatory reactions in PD could target oxidative injury relatively specifically to dopaminergic cells.
Collapse
|
380
|
Fiszer U. Does Parkinson's disease have an immunological basis? The evidence and its therapeutic implications. BioDrugs 2001; 15:351-5. [PMID: 11520246 DOI: 10.2165/00063030-200115060-00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative movement disorder of unknown aetiology. Immune abnormalities have been described in PD including the occurrence of autoantibodies against neuronal structures and high numbers of microglia cells expressing the histocompatibility glycoprotein human leucocyte antigen-DR in the substantia nigra. An infectious cause for PD has been discussed for years. Disturbed cellular and humoral immune functions in peripheral blood of patients with PD have been also reported. An elevated gammadelta(+) T cell population and increased immunoglobulin G immunity in CSF to heat shock proteins have been found in PD. Cytokines and apoptosis-related proteins were elevated in the striatum in patients with PD. Activated glial cells may participate in neuronal cell death in PD by providing toxic substances. We may conclude that the immune system is involved in the pathogenesis of PD. However, we are not able to determine whether the disturbances described above constitute a primary or secondary phenomenon. Immunomodulatory agents may have important applications in the development of new therapies for PD.
Collapse
Affiliation(s)
- U Fiszer
- Department of Neurology and Epileptology, Medical Center for Postgraduate Education, 231 Czerniakowska Str., 00-416 Warsaw, Poland
| |
Collapse
|
381
|
Vila M, Jackson-Lewis V, Guégan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S. The role of glial cells in Parkinson's disease. Curr Opin Neurol 2001; 14:483-9. [PMID: 11470965 DOI: 10.1097/00019052-200108000-00009] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons in the substantia nigra pars compacta. The loss of these neurons is associated with a glial response composed mainly of activated microglial cells and, to a lesser extent, of reactive astrocytes. This glial response may be the source of trophic factors and can protect against reactive oxygen species and glutamate. Aside from these beneficial effects, the glial response can mediate a variety of deleterious events related to the production of reactive species, and pro-inflammatory prostaglandin and cytokines. This article reviews the potential protective and deleterious effects of glial cells in the substantia nigra pars compacta of Parkinson's disease.
Collapse
Affiliation(s)
- M Vila
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Rosenstiel P, Lucius R, Deuschl G, Sievers J, Wilms H. From theory to therapy: implications from an in vitro model of ramified microglia. Microsc Res Tech 2001; 54:18-25. [PMID: 11526952 DOI: 10.1002/jemt.1116] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microglia are the principal immune cells in the central nervous system (CNS), characterized by a highly specific morphology and unusual antigenic phenotype. An increasing number of studies have focused on the role of microglia in the pathogenesis of neurodegenerative diseases. To elucidate the function of microglial cells under several neuropathological conditions, we have studied and established a cell culture model that allows us to cultivate microglial cells in their inactive, resting (ramified) phenotype. In the first part of this work, we describe the interaction of microglia cells with their epithelial (astrocytic) microenvironment. The second part reviews experiments with microglia cell cultures to elucidate underlying signalling pathways and summarizes recent advances of our knowledge in microglial molecular pathways that may ultimately lead to neurodegeneration.
Collapse
Affiliation(s)
- P Rosenstiel
- Department of Anatomy, Christian-Albrechs-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
383
|
Grünblatt E, Mandel S, Maor G, Youdim MB. Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease using cDNA microarray: effect of R-apomorphine. J Neurochem 2001; 78:1-12. [PMID: 11432968 DOI: 10.1046/j.1471-4159.2001.00397.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To establish the possible roles of oxidative stress, inflammatory processes and other unknown mechanisms in neurodegeneration, we investigated brain gene alterations in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of Parkinson's disease using Atlas mouse cDNA expression array membrane. The expression of 51 different genes involved in oxidative stress, inflammation, glutamate and neurotrophic factors pathways as well as in still undefined processes, such as cell cycle regulators and signal transduction molecules, was differentially affected by the treatment. The present study indicates the involvement of an additional cascade of events that might act in parallel to oxidative stress and inflammation to converge eventually into a common pathway leading to neurodegeneration. The attenuation of these gene changes by R-apomorphine, an iron chelator-radical scavenger drug, supports our previous findings in vivo where R-apomorphine was neuroprotective.
Collapse
Affiliation(s)
- E Grünblatt
- Technion Faculty of Medicine, Eve Topf and US National Parkinson's Foundation Centers for Neurodegenerative Diseases, Department of Pharmacology, Haifa, Israel
| | | | | | | |
Collapse
|
384
|
Mandel S, Grünblatt E, Youdim M. cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: implications for idiopathic Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:117-24. [PMID: 11205134 DOI: 10.1007/978-3-7091-6301-6_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
cDNA microarray membranes comprising 1,200 different gene fragments have been employed to identify gene expression profile in MPTP-induced nigro striatal dopamine neurodegeneration and its protection with Rapomorphine. Both MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and R-apomorphine (R-APO) induced alterations in specific patterns of gene expression. MPTP altered the expression of 49 different genes involved in oxidative stress (oxidative stress-induced protein A 170, cytochrome P450 1A1 and Osp94), inflammation (cytotoxic cytokines, eg: IL-1, IL-6, TNF-alpha), protective cytokines (IL-10), glutamate receptors (NMDA but not AMPA receptors), neurotrophic factors (GDNF, EGF), nitric oxide synthase and transferrin receptor, as determined by microarray membrane hybridization. Furthermore, an additional cascade of further, yet undefined events, also occurred (cell cycle regulators and signal transduction factors), that might act in parallel to oxidative stress (OS) and inflammation, to converge eventually into a common pathway leading to neurodegeneration. R-APO, previously shown by us to protect against MPTP neurotoxicity, prevented the over expression of several genes known to participate in cell death. cDNA microarrays will provide new prospects to study and identify various mechanism of neurodegeneration and neuroprotection not feasible with conventional biochemical procedures, as well as new prospects to develop effective neuroprotective drugs.
Collapse
Affiliation(s)
- S Mandel
- Department of Pharmacology, Eve Topf and US National Parkinson's Foundation Centers for Neurodegenerative Diseases, Bruce Rappaport Family Research Institute, Technion--Faculty of Medicine, Haifa, Israel
| | | | | |
Collapse
|
385
|
Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:277-90. [PMID: 11205147 DOI: 10.1007/978-3-7091-6301-6_19] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Degeneration of the dopamine (DA) neurons of the substantia nigra pars compacta and the resulting loss of nerve terminals accompanied by DA deficiency in the striatum are responsible for most of the movement disturbances called parkinsonism, observed in Parkinson's disease (PD). One hypothesis of the cause of degeneration of the nigrostriatal DA neurons is that PD is caused by programmed cell death (apoptosis) due to increased levels of cytokines and/or decreased ones of neurotrophins. We and other workers found markedly increased levels of cytokines, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-2, IL-4, IL-6, transforming growth factor (TFG)-alpha, TGF-beta1, and TGF-beta2, and decreased ones of neurotrophins, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in the nigrostriatal DA regions and ventricular and lumbar cerebrospinal fluid of PD patients. Furthermore, the levels of TNF-alpha receptor R1 (TNF-R1, p55), bcl-2, soluble Fas (sFas), and the activities of caspase-1 and caspase-3 were also elevated in the nigrostriatal DA regions in PD. In experimental animal models of PD, IL-1beta level was increased and NGF one decreased in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian mice, and TNF-alpha level was increased in the substantia nigra and striatum of the 6-hydroxydopamine (6OHDA)-injected side of hemiparkinsonian rats. L-DOPA alone or together with 6OHDA does not increase the level of TNF-alpha in the brain in vivo. Increased levels of proinflammatory cytokines, cytokine receptors and caspase activities, and reduced levels of neurotrophins in the nigrostriatal region in PD patients, and in MPTP- and 6OHDA-produced parkinsonian animals suggest increased immune reactivity and programmed cell death (apoptosis) of neuronal and/or glial cells. These data indicate the presence of such proapoptotic environment in the substantia nigra in PD that may induce increased vulnerability of neuronal or glial cells towards a variety of neurotoxic factors. The probable causative linkage among the increased levels of proinflammatory cytokines and the decreased levels of neurotrophins, candidate parkinsonism-producing neurotoxins such as isoquinoline neurotoxins (Review; Nagatsu, 1997), and the genetic susceptibility to toxic factors, remains for further investigation in the molecular mechanism of PD. The increased cytokine levels, decreased neurotrophin ones, and the possible immune response in the nigrostriatal region in PD indicate new neuroprotective therapy including nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, immunosuppressive or immunophilin-binding drugs such as FK-506, and drugs increasing neurotrophins.
Collapse
Affiliation(s)
- T Nagatsu
- Institute for Comprehensive Medical Science, Graduate School of Medicine, Fujita Health University Toyoake, Aichi, Japan.
| | | | | | | |
Collapse
|
386
|
Zhao X, Bausano B, Pike BR, Newcomb-Fernandez JK, Wang KK, Shohami E, Ringger NC, DeFord SM, Anderson DK, Hayes RL. TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. J Neurosci Res 2001; 64:121-31. [PMID: 11288141 DOI: 10.1002/jnr.1059] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Primary septo-hippocampal cell cultures were incubated in varying concentrations of tumor necrosis factor (TNF-alpha; 0.3-500 ng/ml) to examine proteolysis of the cytoskeletal protein alpha-spectrin (240 kDa) to a signature 145 kDa fragment by calpain and to the apoptotic-linked 120-kDa fragment by caspase-3. The effects of TNF-alpha incubation on morphology and cell viability were assayed by fluorescein diacetate-propidium iodide (FDA-PI) staining, assays of lactate dehydrogenase (LDH) release, nuclear chromatin alterations (Hoechst 33258), and internucleosomal DNA fragmentation. Incubation with varying concentrations of TNF-alpha produced rapid increases in LDH release and nuclear PI uptake that were sustained over 48 hr. Incubation with 30 ng/ml TNF-alpha yielded maximal, 3-fold, increase in LDH release and was associated with caspase-specific 120-kDa fragment but not calpain-specific 145-kDa fragment as early as 3.5 hr after injury. Incubation with the pan-caspase inhibitor, carbobenzosy- Asp-CH(2)-OC (O)-2-6-dichlorobenzene (Z-D-DCB, 50-140 microM) significantly reduced LDH release produced by TNF-alpha. Apoptotic-associated oligonucleosomal-sized DNA fragmentation on agarose gels was detected from 6 to 72 hr after exposure to TNF-alpha. Histochemical changes included chromatin condensation, nuclear fragmentation, and formation of apoptotic bodies. Results of this study suggest TNF-alpha may induce caspase-3 activation but not calpain activation in septo-hippocampal cultures and that this activation of caspase-3 at least partially contributes to TNF-alpha-induced apoptosis.
Collapse
Affiliation(s)
- X Zhao
- The Vivian L. Smith Center for Neurologic Research, Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 2000; 166:29-43. [PMID: 11031081 DOI: 10.1006/exnr.2000.7489] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In situ end labeling combined with YOYO staining was used to mark apoptotic DNA fragmentation and chromatin condensation respectively in human postmortem brain sections. Increased numbers of apoptotic neuronal nuclei were identified in the Parkinson's disease (PD) nigra compared with age-matched controls. Caspase 3 and Bax showed increased immunoreactivity in melanized neurons of the PD nigra compared with controls. Importantly, GAPDH nuclear accumulation was also observed in the PD nigra, suggesting apoptotic rather than necrotic cell death. Interestingly, both Lewy bodies and the intranuclear Marinesco's bodies were GAPDH immunoreactive in the PD brain.
Collapse
Affiliation(s)
- N A Tatton
- Department of Neurology, Mt. Sinai School of Medicine/NYU, New York, New York 10029, USA
| |
Collapse
|
388
|
Loscher CE, Donnelly S, Mills KH, Lynch MA. Interleukin-1beta-dependent changes in the hippocampus following parenteral immunization with a whole cell pertussis vaccine. J Neuroimmunol 2000; 111:68-76. [PMID: 11063823 DOI: 10.1016/s0165-5728(00)00366-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurological side effects are a major cause of concern following immunization with a number of vaccines, especially the whole cell pertussis vaccine (Pw). In this study we report that IL-1beta concentrations were significantly increased in the hippocampus following subcutaneous (s.c.) injection of Pw, and that this was accompanied by increased activity of the stress-activated kinase, c-Jun-N-terminal kinase (JNK) and a decrease in glutamate release. These effects were mimicked by s.c injection of active pertussis toxin (PT) or lipopolysaccharide (LPS). Incubation of hippocampal synaptosomes in the presence of Pw, PT or LPS also resulted in increased JNK activation and decreased glutamate release, effects which were mimicked by IL-1beta and blocked by the IL-1 receptor antagonist (IL-ra). Our observations are consistent with the hypothesis that IL-1beta induced by active bacterial toxins present in vaccine preparations, mediate the neurochemical and perhaps the neurological effects of Pw.
Collapse
Affiliation(s)
- C E Loscher
- Infection and Immunity Group, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
389
|
Scalabrino G, Tredici G, Buccellato FR, Manfridi A. Further evidence for the involvement of epidermal growth factor in the signaling pathway of vitamin B12 (cobalamin) in the rat central nervous system. J Neuropathol Exp Neurol 2000; 59:808-14. [PMID: 11005261 DOI: 10.1093/jnen/59.9.808] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to get further evidence for a mandatory involvement of epidermal growth factor (EGF) in the neutrophic action of vitamin B12 (cobalamin (Cbl)) in the central nervous system (CNS) of the rat, we observed the effects of repeated intracerebroventricular (ICV) microinjections of EGF in rats made Cbl-deficient through total gastrectomy. Morphometric analysis demonstrated a significant reduction in both intramyelinic and interstitial edema in the white matter of the spinal cord (SC) of totally gastrectomized (TGX) rats after treatment. Intramyelinic and interstitial edema are characteristic of Cbl-deficient central neuropathy in the rat. Similar lesions were also present in SC white matter of rats treated with repeated ICV microinjections of specific anti-EGF antibodies without any modification in their Cbl status. These results, together with those of a previous study showing the cessation of EGF synthesis in the CNS of TGX rats, demonstrate that: a) EGF is necessarily involved in the signaling pathway of Cbl in the rat CNS; and b) the lack of a neurotrophic growth factor EGF, and not the mere withdrawal of Cbl, causes or at least contributes to neurodegenerative Cbl-deficient central neuropathy.
Collapse
Affiliation(s)
- G Scalabrino
- Institute of General Pathology, Faculty of Medicine, University of Milan, Italy
| | | | | | | |
Collapse
|
390
|
Dobbs RJ, Charlett A, Dobbs SM, Weller C, Peterson DW. Parkinsonism: differential age-trend in Helicobacter pylori antibody. Aliment Pharmacol Ther 2000; 14:1199-205. [PMID: 10971237 DOI: 10.1046/j.1365-2036.2000.00815.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Parkinsonism is associated with prodromal peptic ulceration. Dopamine antagonists provoke experimental ulcer, dopaminergic agents protect, and might inhibit growth of Helicobacter pylori. OBJECTIVE To describe the relationship between H. pylori serology and parkinsonism. METHODS Serum H. pylori anti-urease-IgG antibody was measured in 105 people with (idiopathic) parkinsonism, 210 without, from same locality. None had received specific eradication therapy. RESULTS Controls showed a birth-cohort effect: antibody titre rose from 30 to 90 years (P < 0. 001). Parkinsonism obliterated this (disease status. age interaction, P < 0.05), the differential age trend not being attributable to social class. Those with diagnosed parkinsonism were more likely to be seropositive (odds ratio 2.04 (95% CI: 1.04, 4.22) P < 0.04) before 72.5 years. Overall, titre fell (P=0.01) by 5 (1, 9)% per unit increase in a global, 30-point rating (median 14 (interquartile range 10.5, 17)) of disease severity. No individual category of anti-parkinsonian medication (92% taking) had a differential lowering effect. CONCLUSIONS Higher prevalence of seropositivity in parkinsonism, before 8th decade, may be due to host susceptibility/reaction, or, conversely, infection with particular H. pylori strain(s) lowering dopaminergic status. Absence of a birth cohort effect in parkinsonism, despite similar social class representation, may be consequent on eradication, spontaneous (gastric atrophy) or by anti-parkinsonian medication.
Collapse
Affiliation(s)
- R J Dobbs
- Therapeutics in the Elderly, Research Group, Northwick Park and St Mark's Hospitals, Harrow, UK.
| | | | | | | | | |
Collapse
|
391
|
Vereker E, Campbell V, Roche E, McEntee E, Lynch MA. Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1. J Biol Chem 2000; 275:26252-8. [PMID: 10856294 DOI: 10.1074/jbc.m002226200] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipopolysaccharide, a component of the cell wall of Gram-negative bacteria, may be responsible for at least some of the pathophysiological sequelae of bacterial infections, probably by inducing an increase in interleukin-1beta (IL-1beta) concentration. We report that intraperitoneal injection of lipopolysaccharide increased hippocampal caspase-1 activity and IL-1beta concentration; these changes were associated with increased activity of the stress-activated kinase c-Jun NH(2)-terminal kinase, decreased glutamate release, and impaired long term potentiation. The degenerative changes in hippocampus and entorhinal cortical neurones were consistent with apoptosis because translocation of cytochrome c and poly(ADP-ribose) polymerase cleavage were increased. Inhibition of caspase-1 blocked these changes, suggesting that IL-1beta mediated the lipopolysaccharide-induced changes.
Collapse
Affiliation(s)
- E Vereker
- Physiology Department, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
392
|
Dobbs SM, Dobbs RJ, Weller C, Charlett A. Link between Helicobacter pylori infection and idiopathic parkinsonism. Med Hypotheses 2000; 55:93-8. [PMID: 10904422 DOI: 10.1054/mehy.2000.1110] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The conventional concept for an environmental cause of idiopathic parkinsonism is an insult (e.g. neurotoxin or encephalitis), superimposed on age-related attrition of nigral dopaminergic neurons, and temporally remote from neurological diagnosis. To the contrary, we describe the fit of Helicobacter pylori. This commonest of known bacterial infections, usually acquired in childhood, persists, and has been linked with peptic ulcer/non-ulcer dyspepsia, immunosuppression and autoimmunity. Acquired immunosuppression, predisposing to auto-immunity, is assessed as a model for the pathogenesis of parkinsonism and parkinsonian-like attributes of ageing. Eradication of a trigger has potential to change the approach to parkinsonism, just as it did to peptic ulcer. The tenet of inevitable age-related attrition of dopaminergic neurons may also require revision.
Collapse
Affiliation(s)
- S M Dobbs
- Therapeutics in the Elderly, Research Group, Northwick Park & St Mark's Hospitals, Harrow, UK.
| | | | | | | |
Collapse
|
393
|
Grünblatt E, Mandel S, Youdim MB. Neuroprotective strategies in Parkinson's disease using the models of 6-hydroxydopamine and MPTP. Ann N Y Acad Sci 2000; 899:262-73. [PMID: 10863545 DOI: 10.1111/j.1749-6632.2000.tb06192.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The etiology of Parkinson's disease is not known. Nevertheless a significant body of biochemical data from human brain autopsy studies and those from animal models point to an on going process of oxidative stress in the substantia nigra which could initiate dopaminergic neurodegeneration. It is not known whether oxidative stress is a primary or secondary event. Nevertheless, oxidative stress as induced by neurotoxins 6-hydroxydopamine and MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) has been used in animal models to investigate the process of neurodegeneration with intend to develop antioxidant neuroprotective drugs. It is apparent that in these animal models radical scavengers, iron chelators, dopamine agonists, nitric oxide synthase inhibitors and certain calcium channel antagonists do induce neuroprotection against such toxins if given prior to the insult. Furthermore, recent work from human and animal studies has provided also evidence for an inflammatory process. This expresses itself by proliferation of activated microglia in the substantia nigra, activation and translocation of transcription factors, NF kappa-beta and elevation of cytotoxic cytokines TNF alpha, IL1-beta, and IL6. Both radical scavengers and iron chelators prevent LPS (lipopolysaccharide) and iron induced activation of NF kappa-B. If an inflammatory response is involved in Parkinson's disease it would be logical to consider antioxidants and the newly developed non-steroid anti-inflammatory drugs such as COX2 (cyclo-oxygenase) inhibitors as a form of treatment. However to date there has been little or no success in the clinical treatment of neurodegenerative diseases per se (Parkinson's disease, ischemia etc.), where neurons die, while in animal models the same drugs produce neuroprotection. This may indicate that either the animal models employed are not reflective of the events in neurodegenerative diseases or that because neuronal death involves a cascade of events, a single neuroprotective drug would not be effective. Thus, consideration should be given to multi-neuroprotective drug therapy in Parkinson's disease, similar to the approach taken in AIDS and cancer therapy.
Collapse
|
394
|
Heyen JR, Ye S, Finck BN, Johnson RW. Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-kappaB. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:138-47. [PMID: 10814840 DOI: 10.1016/s0169-328x(00)00042-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to determine if interleukin (IL)-10 inhibits lipopolysaccharide (LPS)-induced IL-6 production in microglia by inhibiting activation of nuclear factor-kappaB (NF-kappaB). N13 microglia (a murine microglial cell line) and primary microglia from neonatal mice were cultured in the presence or absence of LPS and increasing amounts of murine IL-10 for 24 h. As predicted, LPS treatment increased supernatant IL-6 concentration in both N13 and primary microglia cultures. Pretreatment with IL-10, however, decreased LPS-induced IL-6 secretion in a dose-dependent manner in both culture systems. Likewise, ribonuclease protection assays showed that LPS increased steady-state IL-6 mRNA levels, but that pretreatment with IL-10 blocked the LPS-induced increase in IL-6 mRNA. Because NF-kappaB is the predominant transcription factor responsible for IL-6 transcription in response to inflammatory stimuli, it was hypothesized that IL-10 inhibited IL-6 production by preventing nuclear translocation of NF-kappaB. Consistent with this idea, LPS increased nuclear translocation of NF-kappaB as assessed by gel mobility shift assay. Supershift assays and immunocytochemical staining showed that both the p50 and p65 subunits of NF-kappaB translocated from the cytoplasm to the nucleus upon LPS stimulation. Pretreatment with IL-10, however, inhibited LPS-induced activation of NF-kappaB. Furthermore, inhibition of NF-kappaB activity with tosyl-Phe-chloromethlyketone (a serine protease inhibitor that prevents degradation of the NF-kappaB-IkappaB complex), completely blocked LPS-induced IL-6 production. These data suggest that IL-10 inhibited IL-6 production in microglia by decreasing the activity of NF-kappaB and, therefore, extend what little is known of the intricate relationship between anti-inflammatory and inflammatory cytokines in the central nervous system.
Collapse
Affiliation(s)
- J R Heyen
- Laboratory of Integrative Biology, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | |
Collapse
|
395
|
Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 2000; 95:425-32. [PMID: 10658622 DOI: 10.1016/s0306-4522(99)00455-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virtually any neurological disorder leads to activation of resident microglia and invasion of blood-borne macrophages, which are accompanied by an increase in number and change in phenotype of astrocytes, a phenomenon generally termed reactive astrocytosis. One of the functions attributed to activation of astrocytes is thought to involve restoration of tissue damage. Hitherto, the role of astrocytes in the inflammatory reaction occurring in Parkinson's disease has not received much attention. In the present study, we examined the inflammatory events in autopsies of the substantia nigra and putamen from Parkinson's disease patients using age-matched autopsies from normal patients as controls. In the substantia nigra, activation of microglia was consistently observed in all Parkinson's disease autopsies as verified from immunohistochemical detection of CR3/43 and ferritin. Activation of resident microglia was not observed in the putamen. No differences were observed between controls and Parkinson's disease autopsies from the substantia nigra and putamen, in terms of distribution, cellular density or cellular morphology of astrocytes stained for glial fibrillary acidic protein or metallothioneins I and II, the latter sharing high affinity for metal ions and known to be induced in reactive astrocytes, possibly to exert anti-oxidative effects. Together, these findings indicate that the inflammatory process in Parkinson's disease is characterized by activation of resident microglia without reactive astrocytosis, suggesting that the progressive loss of dopaminergic neurons in Parkinson's disease is an ongoing neurodegenerative process with a minimum of involvement of the surrounding nervous tissue. The absence of reactive astrocytosis in Parkinson's disease contrasts what follows in virtually any other neurological disorder and may indicate that the inflammatory process in Parkinson's disease is a unique phenomenon.
Collapse
Affiliation(s)
- B Mirza
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
396
|
Quan N, Mhlanga JD, Whiteside MB, McCoy AN, Kristensson K, Herkenham M. Chronic overexpression of proinflammatory cytokines and histopathology in the brains of rats infected with Trypanosoma brucei. J Comp Neurol 1999; 414:114-30. [PMID: 10494082 DOI: 10.1002/(sici)1096-9861(19991108)414:1<114::aid-cne9>3.0.co;2-g] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Overproduction of proinflammatory cytokines in the brains of transgenic animals causes brain pathology. To investigate the relationship between brain cytokines and pathology in the brains of animals with adult-onset, pathophysiologically induced brain cytokine expression, we studied rats infected with the parasite Trypanosoma brucei. Several weeks after infection, in situ hybridization histochemistry showed a pattern of chronic overexpression of the mRNAs for proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha in the brains of the animals. Similar spatiotemporal inductions of mRNAs for inhibitory factor kappaBalpha and interleukin-1beta converting enzyme were found and quantified. The mRNAs for inducible nitric oxide synthase and interleukin-1 receptor antagonist were highly localized to the choroid plexus, which showed evidence of structural abnormalities associated with the parasites' presence there. The mRNAs for interleukin-6, interferon-gamma, and inducible cyclooxygenase showed restricted induction patterns. Another set of animals was processed for degeneration-induced silver staining, TdT-mediated dUTP-digoxigenin nick end-labeling (TUNEL) staining, glial fibrillary acidic protein (GFAP) immunohistochemistry, and several other histological markers. Apoptosis of scattered small cells and degeneration of certain nerve fibers was found in patterns spatially related to the cytokine mRNA patterns and to cerebrospinal fluid diffusion pathways. Furthermore, striking cytoarchitectonically defined clusters of degenerating non-neuronal cells, probably astrocytes, were found. The results reveal chronic overexpression of potentially cytotoxic cytokines in the brain and selective histopathology patterns in this natural disease model. J. Comp. Neurol. 414:114-130, 1999. Published 1999 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- N Quan
- Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, Maryland 20892-4070, USA
| | | | | | | | | | | |
Collapse
|
397
|
Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999; 46:598-605. [PMID: 10514096 DOI: 10.1002/1531-8249(199910)46:4<598::aid-ana7>3.0.co;2-f] [Citation(s) in RCA: 657] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This report provides the first detailed neuropathological study of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in humans. All 3 subjects self-administered the drug under the impression it was "synthetic heroin" and subsequently developed severe and unremitting parkinsonism, which was L-dopa responsive, at least in the earlier stages of illness. Survival times ranged from 3 to 16 years. Neuropathological examination revealed moderate to severe depletion of pigmented nerve cells in the substantia nigra in each case. Lewy bodies were not present. In Patients 1 and 2, there was gliosis and clustering of microglia around nerve cells. Patient 3 had a similar picture and also showed large amounts of extraneuronal melanin. These findings are indicative of active, ongoing nerve cell loss, suggesting that a time-limited insult to the nigrostriatal system can set in motion a self-perpetuating process of neurodegeneration. Although the mechanism by which this occurs is far from clear, the precedent set by the cases could have broad implications for human neurodegenerative disease.
Collapse
Affiliation(s)
- J W Langston
- The Parkinson's Institute, Sunnyvale, CA 94089-1605, USA
| | | | | | | | | | | |
Collapse
|
398
|
Kaku K, Shikimi T, Kamisaki Y, Shinozuka K, Ishino H, Okunishi H, Takaori S. Elevation of striatal interleukin-6 and serum corticosterone contents in MPTP-treated mice. Clin Exp Pharmacol Physiol 1999; 26:680-3. [PMID: 10499156 DOI: 10.1046/j.1440-1681.1999.03113.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Changes in the content of striatal interleukins (IL-1 beta and IL-6) and serum corticosterone in relation to deterioration of the dopaminergic system induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; a dopaminergic neurotoxin; 20 mg/kg i.p., four administrations/12 h) in C57BL/6J mice were investigated. 2. Striatal dopamine, IL-1 beta, IL-6 and serum corticosterone were measured on days 1 and 7 post-MPTP. 3. Dopamine depletion was more severe on day 7 than on day 1 post-treatment. 4. Increases in IL-6 were observed on days 1 and 7 post-MPTP. The increase in striatal IL-6 content varied with the extent of dopamine depletion, although the IL-1 beta concentration remained unchanged compared with control values on days 1 and 7 post-treatment. 5. Serum corticosterone was not different from control on day 1 post-MPTP. However, marked increases in the serum corticosterone were observed on day 7 post-treatment. 6. These results suggest that changes in striatal IL-6 and serum corticosterone are closely associated with the severity of MPTP-induced dopaminergic degeneration.
Collapse
Affiliation(s)
- K Kaku
- Department of Psychiatry, Shimane Medical University, Izumo, Japan.
| | | | | | | | | | | | | |
Collapse
|
399
|
Wandinger KP, Hagenah JM, Klüter H, Rothermundt M, Peters M, Vieregge P. Effects of amantadine treatment on in vitro production of interleukin-2 in de-novo patients with idiopathic Parkinson's disease. J Neuroimmunol 1999; 98:214-20. [PMID: 10430055 DOI: 10.1016/s0165-5728(99)00093-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An involvement of immunological events in the process of neurodegeneration has frequently been reported. We investigated the cytokine producing capacity for interleukin-2 (IL-2), interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) in whole blood cultures of de-novo patients with idiopathic Parkinson's disease (PD) at the time of first diagnosis and after oral amantadine treatment. Before treatment, productions of IL-2 and IFN-gamma were markedly decreased in PD patients compared to patients with major depressive disorder and healthy controls. After amantadine treatment, the in vitro IL-2 secretion defect was corrected to normal levels in half of the patients, and the increase in IL-2 production was correlated with an increase in IFN-gamma secretion. Our findings suggest that immunological abnormalities occur in the course of PD and that a formerly unappreciated therapeutic potential of amantadine may arise from its immunomodulatory effects on altered T cell function in patients with PD.
Collapse
Affiliation(s)
- K P Wandinger
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, Germany.
| | | | | | | | | | | |
Collapse
|
400
|
Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 1999; 100:34-41. [PMID: 10416510 DOI: 10.1111/j.1600-0404.1999.tb00721.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION We propose that the increase in TNF-alpha and IL-6 in the brain in idiopathic parkinsonism is in response to a peripheral immune/ inflammatory process, so ubiquitous as to be responsible for the resemblance between ageing and parkinsonism. METHODS Circulating cytokine was measured in 78 subjects with idiopathic parkinsonism and 140 without, aged 30 to 90 years, all obeying inclusion/exclusion criteria. RESULTS Serum TNF-alpha increased (P<0.0001) by 1.37 (95% CI 0.75, 2.00)% x y(-1), IL-6 by 2.63 (1.75, 3.52) (P<0.0005). TNF-alpha appeared elevated in parkinsonians whose postural and psychomotor responses were abnormal, being suppressed where they were normal: trends which contrasted with those in controls (P = 0.015 and 0.05, respectively). Parkinsonism appeared (P = 0.08) to have an effect on IL-6, equivalent to that of >10 years of ageing (28(-3, 69)%), but was not immediately related to between-subject differences in performance. CONCLUSION Ageing and pathogenetic insult may be confounded, age being a progression, not a risk, factor.
Collapse
Affiliation(s)
- R J Dobbs
- Therapeutics in the Elderly, Research Group, The Hillingdon Hospital Postgraduate and Research Centre, Uxbridge, Hatfield, Hertfordshire, UK
| | | | | | | | | | | |
Collapse
|