351
|
Zhou F, Xu X, Wu J, Wang D, Wang J. NF-κB controls four genes encoding core enzymes of tricarboxylic acid cycle. Gene 2017; 621:12-20. [PMID: 28400269 DOI: 10.1016/j.gene.2017.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
NF-κB may promote tumor progression by altering cell metabolism. Hence, finding its target genes that are involved in cell metabolism is helpful for understanding its role in tumor growth. Here we discovered four metabolism-related target genes of this transcription factor. By analyzing a chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) data that characterizing the global binding sites (BSs) of NF-κB RelA in the TNFα-stimulated HeLa cells, we found that four genes that encode core enzymes of the tricarboxylic acid (TCA) cycle, including IDH1, IDH3A, ACO2, and SUCLA2, were multiply bound by this transcription factor. The subsequent bioinformatic analysis revealed that the NF-κB BSs contained many canonical κB sequences and the NF-κB-like DNA-binding motifs. Detection of ChIPed DNA with polymerase chain reaction (ChIP-PCR) also indicated that the NF-κB BSs were bound by NF-κB in both TNFα-treated HeLa and HepG2 cells. The reporter construct showed that the NF-κB BSs could activate the luciferase expression in cells in a NF-κB-specific manner. The quantitative PCR and Western blot detections demonstrated that NF-κB could regulate the expressions of IDH1, IDH3A, and ACO2 genes at both mRNA and protein levels and that of SUCLA2 gene at mRNA level in the TNFα-treated HeLa and HepG2 cells. Based on these investigations we identified the four genes as new target genes of NF-κB. The finding provides new insights into the role of NF-κB in cellular energetic metabolism, which may be beneficial for understanding the metabolic physiology of tumor growth.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
352
|
IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-κB pathway and reduction of JNK in HNSCC. Oncotarget 2017; 8:56375-56388. [PMID: 28915597 PMCID: PMC5593568 DOI: 10.18632/oncotarget.16914] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
This investigation identifies interleukin 8 (IL-8) as the main inflammatory mediator in head and neck squamous cell carcinoma (HNSCC). The expressions of chemokines of IL-8, IL-1β and IL-6 and the cytokines of tumor necrosis factor-α (TNF-α) were higher in HNSCC patient tissues than in non-cancerous matched tissues (NCMT) whereas the expression of IL-10 was lower. IL-8 is most highly expressed in the tissues of patients with HNSCC. Treatment of HNSCC cells with IL-8 increased the secretion of IL-1β, IL-6 and TNF-α and reduced IL-10 expression; the increase in the expression of IL-1β was particularly considerable. IL-8 silencing by siRNA reduced IL-1β expression in HNSCC cells, suggesting that IL-8 as a main inflammatory mediator improved IL-1β expression in HNSCC. The expressions of p-p38 mitogen-activated protein kinases (MAPK) and p-extracellular signal regulated kinase (p-ERK) were higher and that of p-c-Jun-NH2-terminal kinase (p-JNK) was lower in HNSCC patient tissues than in NCMT. IL-8 treatment induced p-p38 MAPK and p-ERK expression, but reduced p-JNK expressions in HNSCC cells. IL-8 siRNA suppressed p38 MAPK and ERK but increased JNK expression in HNSCC cells. Exposure of SCC25 cells to IL-8, increased the expressions of p-IκB-α and nuclear factor (NF)-κB, suggesting that IL-8 regulates inflammatory response by modulating the MAPK and NF-κB pathway in HNSCC cells. IL-8 promotes the migration of SCC25 cells and increases matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. These results reveal that IL-8 is the major stimulus of inflammatory mediation in HNSCC progression and migration by activating the p38 MAPK/ERK-NF-κB pathway and reducing JNK.
Collapse
|
353
|
Zhou F, Xu X, Wang D, Wu J, Wang J. Identification of novel NF-κB transcriptional targets in TNFα-treated HeLa and HepG2 cells. Cell Biol Int 2017; 41:555-569. [PMID: 28276104 DOI: 10.1002/cbin.10762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
Abstract
Identification of target genes of NF-κB is critical for deeply understanding its biological functions. Here, we identified five novel NF-κB target genes. Firstly, we found that 20 NF-κB potential target genes (PTGs) identified by ChIP-Seq and Genechip assay were enriched into the KEGG term of Pathways in cancer, 16 of them were enriched into the KEGG pathways of small cell lung cancer, chronic myeloid leukemia, basal cell carcinoma, pancreatic cancer, and colorectal cancer. Among these PTGs, there are many documented NF-κB target genes. Therefore, NF-κB may play important role in cancer progression by transcriptionally regulating these genes. Apart from the known target genes, we also found some novel PTGs including CYCS, MITF, FZD1, FZD8, and PIAS1. We subsequently demonstrated whether NF-κB transcriptionally control the five PTGs. The ChIP-Seq assay revealed that NF-κB/p65 bound to these genes in TNFα-treated HeLa. The bioinformatic analysis indicated that the NF-κB binding regions (i.e., ChIP-Seq peaks) contained κB sites and NF-κB/RelA DNA-binding motif. The ChIP-qPCR assay also confirmed that NF-κB bound to these regions in both TNFα-treated HeLa and HepG2 cells. The reporter construct showed that NF-κB could regulate luciferase expression via its binding region. Finally, qPCR and Western blot assay demonstrated that NF-κB indeed regulated the expression of these genes in the TNFα-treated HeLa and HepG2 cells. In a word, CYCS, MITF, FZD1, FZD8, and PIAS1 were identified as bona fide NF-κB target genes. These findings provide more insights into the role of NF-κB in cancers.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.,School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
| | - Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
354
|
O'Keeffe SM, Beynon AL, Davies JS, Moynagh PN, Coogan AN. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock. Eur J Neurosci 2017; 45:1111-1123. [DOI: 10.1111/ejn.13553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S. M. O'Keeffe
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| | - A. L. Beynon
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - J. S. Davies
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - P. N. Moynagh
- Department of Biology; Maynooth University; National University of Ireland; Maynooth Ireland
| | - A. N. Coogan
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| |
Collapse
|
355
|
Evodiamine Inhibits Zymosan-Induced Inflammation In Vitro and In Vivo: Inactivation of NF-κB by Inhibiting IκBα Phosphorylation. Inflammation 2017; 40:1012-1027. [DOI: 10.1007/s10753-017-0546-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
356
|
Wang W, Liu P, Hao C, Wu L, Wan W, Mao X. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways. Sci Rep 2017; 7:44252. [PMID: 28266652 PMCID: PMC5339798 DOI: 10.1038/srep44252] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Neoagaro-oligosaccharides derived from agarose have been demonstrated to possess a variety of biological activities, such as anti-bacteria and anti-oxidative activities. In this study, we mainly explored the inhibitory effects and the mechanisms of neoagaro-oligosaccharide monomers against LPS-induced inflammatory responses in mouse macrophage RAW264.7 cells. The results indicated that neoagaro-oligosaccharide monomers especially neoagarotetraose could significantly reduce the production and release of NO in LPS-induced macrophages. Neoagarotetraose significantly suppressed the expression and secretion of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines such as TNF-α and IL-6. The inhibition mechanisms may be associated with the inhibition of the activation of p38MAPK, Ras/MEK/ERK and NF-κB signaling pathways. Thus, neoagarotetraose may attenuate the inflammatory responses through downregulating the MAPK and NF-κB signaling pathways in LPS-stimulated macrophages. In summary, the marine-derived neoagaro-oligosaccharide monomers merit further investigation as novel anti-inflammation agents in the future.
Collapse
Affiliation(s)
- Wei Wang
- College of Food Science and Engineering, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Pei Liu
- College of Food Science and Engineering, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Cui Hao
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003, China
| | - Lijuan Wu
- College of Food Science and Engineering, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wenjin Wan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
357
|
Rho-kinase inhibitor prevents acute injury against transient focal cerebral ischemia by enhancing the expression and function of GABA receptors in rats. Eur J Pharmacol 2017; 797:134-142. [DOI: 10.1016/j.ejphar.2017.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/01/2023]
|
358
|
Guarneri C, Bevelacqua V, Polesel J, Falzone L, Cannavò PS, Spandidos DA, Malaponte G, Libra M. NF‑κB inhibition is associated with OPN/MMP‑9 downregulation in cutaneous melanoma. Oncol Rep 2017; 37:737-746. [PMID: 28075446 PMCID: PMC5355753 DOI: 10.3892/or.2017.5362] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
The development of cutaneous melanoma is influenced by genetic factors, including BRAF mutations and environmental factors, such as ultraviolet exposure. Its progression has been also associated with the involvement of several tumour microenvironmental molecules. Among these, nuclear factor‑κB (NF‑κB) has been indicated as a key player of osteopontin (OPN) and matrix metalloproteinase‑9 (MMP‑9) activation. However, whether NF‑κB plays a role in the development and progression of melanoma in association with the OPN/MMP‑9 axis according to the BRAFV600E mutation status has not been investigated in detail to date. Thus, in the present study, in order to shed light on this matter, 148 patients with melanoma and 53 healthy donors were recruited for the analysis of OPN, MMP‑9 and NF‑κB. Significantly higher circulating levels of OPN and MMP‑9 were observed in the patients with melanoma when compared to the healthy donors. Similar data were obtained for NF‑κB p65 activity. The OPN levels did not differ significantly between melanomas with or without BRAFV600E mutation. However, as regards NF‑κB and MMP‑9, significant differences were observed between the melanomas with or without BRAFV600E mutation. To determine whether NF‑κB inhibition is associated with a decrease in the levels of OPN and MMP‑9, peripheral blood mononuclear cells from 29 patients with melanoma were treated with the NF‑κB inhibitor, dehydroxymethylepoxyquinomycin (DHMEQ), with or without OPN. As expected, the inhibition of NF‑κB induced a marked decrease in both the OPN and MMP‑9 levels. Furthermore, the decrease in MMP‑9 levels was higher among melanomas harbouring the BRAFV600E mutation. Overall, our data suggest that the activation of MMP‑9 is associated with the BRAFV600E mutation status. Furthermore, such an activation is mediated by NF‑κB, suggesting its role as therapeutic target in patients with melanoma.
Collapse
Affiliation(s)
- Claudio Guarneri
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, I-98125 Messina, Italy
| | - Valentina Bevelacqua
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Patrizia S. Cannavò
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, I-98125 Messina, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Grazia Malaponte
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| |
Collapse
|
359
|
Torquato HFV, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells. Curr Genomics 2017; 18:156-174. [PMID: 28367074 PMCID: PMC5345336 DOI: 10.2174/1389202917666160803162309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Márcia I Goettert
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário Univates, Rio Grande do Sul, Brazil
| | - Giselle Z Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
360
|
Pires BRB, Mencalha AL, Ferreira GM, de Souza WF, Morgado-Díaz JA, Maia AM, Corrêa S, Abdelhay ESFW. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells. PLoS One 2017; 12:e0169622. [PMID: 28107418 PMCID: PMC5249109 DOI: 10.1371/journal.pone.0169622] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Bruno R. B. Pires
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
- * E-mail:
| | - Andre L. Mencalha
- Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gerson M. Ferreira
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| | - Waldemir F. de Souza
- Grupo de Biologia Estrutural, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
| | - José A. Morgado-Díaz
- Grupo de Biologia Estrutural, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
| | - Amanda M. Maia
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| | - Stephany Corrêa
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| | - Eliana S. F. W. Abdelhay
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
361
|
Widen JC, Kempema AM, Villalta PW, Harki DA. Targeting NF-κB p65 with a Helenalin Inspired Bis-electrophile. ACS Chem Biol 2017; 12:102-113. [PMID: 28103680 DOI: 10.1021/acschembio.6b00751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The canonical NF-κB signaling pathway is a mediator of the cellular inflammatory response and a target for developing therapeutics for multiple human diseases. The furthest downstream proteins in the pathway, the p50/p65 transcription factor heterodimer, have been recalcitrant toward small molecule inhibition despite the substantial number of compounds known to inhibit upstream proteins in the activation pathway. Given the roles of many of these upstream proteins in multiple biochemical pathways, targeting the p50/p65 heterodimer offers an opportunity for enhanced on-target specificity. Toward this end, the p65 protein presents two nondisulfide cysteines, Cys38 and Cys120, at its DNA-binding interface that are amenable to targeting by covalent molecules. The natural product helenalin, a sesquiterpene lactone, has been previously shown to target Cys38 on p65 and ablate its DNA-binding ability. Using helenalin as inspiration, simplified helenalin analogues were designed, synthesized, and shown to inhibit induced canonical NF-κB signaling in cell culture. Moreover, two simplified helenalin probes were proficient at forming covalent protein adducts, binding to Cys38 on recombinant p65, and targeting p65 in HeLa cells without engaging canonical NF-κB signaling proteins IκBα, p50, and IKKα/β. These studies further support that targeting the p65 transcription factor-DNA interface with covalent small molecule inhibitors is a viable approach toward regulating canonical NF-κB signaling.
Collapse
Affiliation(s)
- John C. Widen
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Aaron M. Kempema
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Daniel A. Harki
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
362
|
Ambrozova N, Ulrichova J, Galandakova A. Models for the study of skin wound healing. The role of Nrf2 and NF-κB. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:1-13. [PMID: 28115750 DOI: 10.5507/bp.2016.063] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
Nrf2 and NF-κB transcription factors act in wound healing via their anti-inflammatory and anti-oxidant effects or through the immune response. Studying this process is a matter of some importance given the high cost of wound treatment. A major contribution in this regard is being made by models that enable investigation of the involvement of multiple factors in wound healing and testing new curative substances. This literature review was carried out via searches in the PubMed and Web of Science databases up to 2016. It covers skin wound healing, available models for its study (part I), the role of Nrf2 and NF-κB, substances that influence them and whether they can be used as markers (part II). Was found that in vitro assays are used for their availability but a holistic view must be established in vivo. In silico approaches are facilitating assessment of a vast amount of research data. Nfr2 and NF-κB play a crucial and reciprocal role in wound healing. Nrf2 controls repair-associated inflammation and protects against excessive accumulation of ROS while Nf-κB activates the innate immune reaction, proliferation and migration of cells, modulates expression of matrix metalloproteinases, secretion and stability of cytokines and growth factors for wound healing.
Collapse
Affiliation(s)
- Nikola Ambrozova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jitka Ulrichova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Adela Galandakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
363
|
Kim C, Shores L, Guo Q, Aly A, Jeon OH, Kim DH, Bernstein N, Bhattacharya R, Chae JJ, Yarema KJ, Elisseeff JH. Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration. Tissue Eng Part A 2017; 22:689-97. [PMID: 27019285 DOI: 10.1089/ten.tea.2015.0469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineering strategies offer promising tools for repairing cartilage damage; however, these strategies suffer from limitations under pathological conditions. As a model disease for these types of nonideal systems, the inflammatory environment in an osteoarthritic (OA) joint limits the efficacy of engineered therapeutics by disrupting joint homeostasis and reducing its capacity for regeneration. In this work, we investigated a sugar-based drug candidate, a tributanoylated N-acetyl-d-glucosamine analogue, called 3,4,6-O-Bu3GlcNAc, that is known to reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in osteoarthritis. 3,4,6-O-Bu3GlcNAc not only inhibited NFκB signaling but also exerted chondrogenic and anti-inflammatory effects on chondrocytes isolated from patients with osteoarthritis. 3,4,6-O-Bu3GlcNAc also increased the expression of extracellular matrix proteins and induced cartilage tissue production in three-dimensional in vitro hydrogel culture systems. To translate these chondrogenic and anti-inflammatory properties to tissue regeneration in osteoarthritis, we implanted 3,4,6-O-Bu3GlcNAc-loaded poly(lactic-co-glycolic acid) microfiber scaffolds into rats. The drug-laden scaffolds were biocompatible, and when seeded with human OA chondrocytes, similarly promoted cartilage tissue formation. 3,4,6-O-Bu3GlcNAc combined with the appropriate structural environment could be a promising therapeutic approach for osteoarthritis.
Collapse
Affiliation(s)
- Chaekyu Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Lucas Shores
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Qiongyu Guo
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Ahmed Aly
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Do Hun Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Nicholas Bernstein
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Rahul Bhattacharya
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Jemin Jeremy Chae
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Kevin J Yarema
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
364
|
Tsolou A, Liousia M, Kalamida D, Pouliliou S, Giatromanolaki A, Koukourakis M. Inhibition of IKK-NFκB pathway sensitizes lung cancer cell lines to radiation. Cancer Biol Med 2017; 14:293-301. [PMID: 28884046 PMCID: PMC5570606 DOI: 10.20892/j.issn.2095-3941.2017.0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective : Cancer cell radioresistance is a stumbling block in radiation therapy. The activity in the nuclear factor kappa B (NFκB) pathway correlates with anti-apoptotic mechanisms and increased radioresistance. The IKK complex plays a major role in NFκB activation upon numerous signals. In this study, we examined the interaction between ionizing radiation (IR) and different members of the IKK-NFκB pathway, as well as upstream activators, RAF1, ERK, and AKT1. Methods : The effect of 4 Gy of IR on the expression of the RAF1-ERK-IKK-NFκB pathway was examined in A549 and H1299 lung cancer cell lines using Western blot analysis and confocal microscopy. We examined changes in radiation sensitivity using gene silencing or pharmacological inhibitors of ERK and IKKβ. Results : IKKα, IKKγ, and IκBα increased upon exposure to IR, thereby affecting nuclear levels of NFκB (phospho-p65). ERK inhibition or siRNA-mediated down-regulation of RAF1 suppressed the post-irradiation survival of the examined lung cancer cell lines. A similar effect was detected on survival upon silencing IKKα/IKKγ or inhibiting IKKβ. Conclusions : Exposure of lung cancer cells to IR results in NFκB activation via IKK. The genetic or pharmacological blockage of the RAF1-ERK-IKK-NFκB pathway sensitizes cells to therapeutic doses of radiation. Therefore, the IKK pathway is a promising target for therapeutic intervention in combination with radiotherapy.
Collapse
|
365
|
Molecular Genetic and Epigenetic Basis of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:65-90. [DOI: 10.1007/978-3-319-47861-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
366
|
Qian Z, Rhodes CA, McCroskey LC, Wen J, Appiah-Kubi G, Wang DJ, Guttridge DC, Pei D. Enhancing the Cell Permeability and Metabolic Stability of Peptidyl Drugs by Reversible Bicyclization. Angew Chem Int Ed Engl 2016; 56:1525-1529. [PMID: 28035784 DOI: 10.1002/anie.201610888] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/01/2016] [Indexed: 12/27/2022]
Abstract
Therapeutic applications of peptides are currently limited by their proteolytic instability and impermeability to the cell membrane. A general, reversible bicyclization strategy is now reported to increase both the proteolytic stability and cell permeability of peptidyl drugs. A peptide drug is fused with a short cell-penetrating motif and converted into a conformationally constrained bicyclic structure through the formation of a pair of disulfide bonds. The resulting bicyclic peptide has greatly enhanced proteolytic stability as well as cell-permeability. Once inside the cell, the disulfide bonds are reduced to produce a linear, biologically active peptide. This strategy was applied to generate a cell-permeable bicyclic peptidyl inhibitor against the NEMO-IKK interaction.
Collapse
Affiliation(s)
- Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Lucas C McCroskey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jin Wen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - George Appiah-Kubi
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - David J Wang
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
367
|
Qian Z, Rhodes CA, McCroskey LC, Wen J, Appiah-Kubi G, Wang DJ, Guttridge DC, Pei D. Enhancing the Cell Permeability and Metabolic Stability of Peptidyl Drugs by Reversible Bicyclization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziqing Qian
- Department of Chemistry and Biochemistry; The Ohio State University; 484 West 12th Avenue Columbus OH 43210 USA
| | - Curran A. Rhodes
- Department of Chemistry and Biochemistry; The Ohio State University; 484 West 12th Avenue Columbus OH 43210 USA
| | - Lucas C. McCroskey
- Department of Chemistry and Biochemistry; The Ohio State University; 484 West 12th Avenue Columbus OH 43210 USA
| | - Jin Wen
- Department of Chemistry and Biochemistry; The Ohio State University; 484 West 12th Avenue Columbus OH 43210 USA
| | - George Appiah-Kubi
- Department of Chemistry and Biochemistry; The Ohio State University; 484 West 12th Avenue Columbus OH 43210 USA
| | - David J. Wang
- Department of Molecular Virology, Immunology, and Medical Genetics; The Ohio State University; Columbus OH 43210 USA
| | - Denis C. Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics; The Ohio State University; Columbus OH 43210 USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry; The Ohio State University; 484 West 12th Avenue Columbus OH 43210 USA
| |
Collapse
|
368
|
Vaine CA, Shin D, Liu C, Hendriks WT, Dhakal J, Shin K, Sharma N, Bragg DC. X-linked Dystonia-Parkinsonism patient cells exhibit altered signaling via nuclear factor-kappa B. Neurobiol Dis 2016; 100:108-118. [PMID: 28017799 DOI: 10.1016/j.nbd.2016.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is a progressive neurodegenerative disease involving the loss of medium spiny neurons within the striatum. An XDP-specific haplotype has been identified, consisting of seven sequence variants which cluster around the human TAF1 gene, but a direct relationship between any of these variants and disease pathogenesis has not yet been demonstrated. Because the pathogenic gene lesion remains unclear, it has been difficult to predict cellular pathways which are affected in XDP cells. To address that issue, we assayed expression of defined gene sets in XDP vs. control fibroblasts to identify networks of functionally-related transcripts which may be dysregulated in XDP patient cells. That analysis derived a 51-gene signature distinguishing XDP vs. control fibroblasts which mapped strongly to nuclear factor-kappa B (NFκB), a transcription factor pathway also implicated in the pathogenesis of other neurodegenerative diseases, including Parkinson's (PD) and Huntington's disease (HD). Constitutive and TNFα-evoked NFκB signaling was further evaluated in XDP vs. control fibroblasts based on luciferase reporter activity, DNA binding of NFκB subunits, and endogenous target gene transcription. Compared to control cells, XDP fibroblasts exhibited decreased basal NFκB activity and decreased levels of the active NFκB p50 subunit, but increased target gene expression in response to TNFα. NFκB signaling was further examined in neural stem cells differentiated from XDP and control induced pluripotent stem cell (iPSC) lines, revealing a similar pattern of increased TNFα responses in the patient lines compared to controls. These data indicate that an NFκB signaling phenotype is present in both patient fibroblasts and neural stem cells, suggesting this pathway as a site of dysfunction in XDP.
Collapse
Affiliation(s)
- Christine A Vaine
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - David Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Liu
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - William T Hendriks
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Jyotsna Dhakal
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Kyle Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
369
|
Guo X, Zheng L, Jiang J, Zhao Y, Wang X, Shen M, Zhu F, Tian R, Shi C, Xu M, Li X, Peng F, Zhang H, Feng Y, Xie Y, Xu X, Jia W, He R, Xie C, Hu J, Ye D, Wang M, Qin R. Blocking NF-κB Is Essential for the Immunotherapeutic Effect of Recombinant IL18 in Pancreatic Cancer. Clin Cancer Res 2016; 22:5939-5950. [PMID: 27297583 DOI: 10.1158/1078-0432.ccr-15-1144] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 04/27/2016] [Accepted: 05/11/2016] [Indexed: 01/16/2023]
Abstract
PURPOSE We sought to find new immune-based treatments for pancreatic cancer. EXPERIMENTAL DESIGN We detected IL18 expression in plasma and specimens from patients with pancreatic cancer. We then investigated whether IL18 had a therapeutic effect for pancreatic cancer in vitro and in vivo and any underlying mechanisms. RESULTS Higher plasma IL18 was associated with longer overall survival (OS), but higher IL18 in pancreatic cancer tissues was associated with shorter OS and increased invasion and metastasis. Recombinant IL18 alone had no antitumor effect in the syngeneic mice with orthotopically transplanted tumors and promoted tumors in immunocompromised mice; it also facilitated immune responses in vitro and in vivo by augmenting the activity of cytotoxic T cells and NK cells in peripheral blood and lymph nodes. However, IL18 promoted the proliferation and invasion of pancreatic cancer cells, in vitro and in vivo, through the NF-κB pathway. Nevertheless, by coadministrating IL18 with BAY11-7082, an NF-κB inhibitor, we were able to prevent the procancerous effects of IL18 and prolong the survival time of the mice. CONCLUSIONS IL18 has both cancer-promoting and cancer-suppressing functions. Although its single-agent treatment has no therapeutic effect on pancreatic cancer, when combined with the NF-κB pathway inhibitor, IL18 improved survival in a murine pancreatic cancer model. Our study implies the possibility of a combinational immunotherapy that uses IL18 and targets NF-κB pathway. Clin Cancer Res; 22(23); 5939-50. ©2016 AACR.
Collapse
Affiliation(s)
- Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Cancer Center, and the Skip Viragh Center for Pancreatic Cancer Research & Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Sidney Kimmel Cancer Center, and the Skip Viragh Center for Pancreatic Cancer Research & Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianxin Jiang
- Department of hepatic-biliary-pancreatic surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tian
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengjian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yechen Feng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Xu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jia
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chencheng Xie
- Department of Bioengineering and Therapeutic Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Jun Hu
- Department of Colon Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dawei Ye
- Department of Oncology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
370
|
Targeting Chromatin Remodeling in Inflammation and Fibrosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:1-36. [PMID: 28215221 DOI: 10.1016/bs.apcsb.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mucosal surfaces of the human body are lined by a contiguous epithelial cell surface that forms a barrier to aerosolized pathogens. Specialized pattern recognition receptors detect the presence of viral pathogens and initiate protective host responses by triggering activation of the nuclear factor κB (NFκB)/RelA transcription factor and formation of a complex with the positive transcription elongation factor (P-TEFb)/cyclin-dependent kinase (CDK)9 and Bromodomain-containing protein 4 (BRD4) epigenetic reader. The RelA·BRD4·P-TEFb complex produces acute inflammation by regulating transcriptional elongation, which produces a rapid genomic response by inactive genes maintained in an open chromatin configuration engaged with hypophosphorylated RNA polymerase II. We describe recent studies that have linked prolonged activation of the RelA-BRD4 pathway with the epithelial-mesenchymal transition (EMT) by inducing a core of EMT corepressors, stimulating secretion of growth factors promoting airway fibrosis. The mesenchymal state produces rewiring of the kinome and reprogramming of innate responses toward inflammation. In addition, the core regulator Zinc finger E-box homeodomain 1 (ZEB1) silences the expression of the interferon response factor 1 (IRF1), required for type III IFN expression. This epigenetic silencing is mediated by the Enhancer of Zeste 2 (EZH2) histone methyltransferase. Because of their potential applications in cancer and inflammation, small-molecule inhibitors of NFκB/RelA, CDK9, BRD4, and EZH2 have been the targets of medicinal chemistry efforts. We suggest that disruption of the RelA·BRD4·P-TEFb pathway and EZH2 methyltransferase has important implications for reversing fibrosis and restoring normal mucosal immunity in chronic inflammatory diseases.
Collapse
|
371
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
372
|
Zhang S, Qin F, Yang L, Xian J, Zou Q, Jin H, Wang L, Zhang L. Nucleophosmin Mutations Induce Chemosensitivity in THP-1 Leukemia Cells by Suppressing NF-κB Activity and Regulating Bax/Bcl-2 Expression. J Cancer 2016; 7:2270-2279. [PMID: 27994664 PMCID: PMC5166537 DOI: 10.7150/jca.16010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/22/2016] [Indexed: 01/30/2023] Open
Abstract
Nucleophosmin (NPM1) - a gene that encodes for a nuclear protein with multiple functions. Mutations in NPM1 are seen in approximately one-third of acute myeloid leukemia (AML) and are generally associated with good response to induction chemotherapy. However, the mechanisms underlying this chemosensitivity are still unknown. Recent studies have established that nuclear factor-κB (NF-κB) activation is a key response of leukemia cell to chemotherapy. In this study, we transfected human monocytic leukemia THP-1 cells with the vector expressing NPM1 mutation variant (NPM1mA), and confirmed overexpression of NPM1mA at mRNA and protein levels by reverse transcription PCR (RT-PCR) and immunohistochemistry, respectively. The effects of NPM1 mutations on chemotherapeutical agents induced apoptosis, NF-κB activity and gene expression were examined using flow cytometry, luciferase reporter assays, quantitative real time PCR (qRT-PCR) and Western blot. We found that overexpression of NPM1mA in THP-1 cells sensitized these cells to apoptosis induced by chemotherapeutical agents such as daunorubicin (DNR) and cytarabine (Ara-C). Moreover, we demonstrated that expression of NPM1 mA reduced the NF-κB transcription activity of THP-1 cells upon drug treatment. In addition, restoration of NF-κB activity via TNF-α stimulation could attenuate the effect of NPM1mA overexpression on DNR-and Ara-C-induced apoptosis. Interestingly, expression of NPM1mA could upregulate Bax and downregulate Bcl-2 at mRNA and protein levels in THP-1 cells when treated with DNR or Ara-C. We also demonstrated that restoration of NF-κB activity via TNF-α pre-treatment reversed the effect of NPM1mA on the Bax/Bcl-2 expression. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that NPM1-mutated patients showed a higher expression of Bax and a lower expression of Bcl-2. These results suggest that the NPM1 gene mutations could confer increased sensitivity to chemotherapeutic agents, at least in part, by suppressing NF-κB activity and regulating Bax/Bcl-2 expression.
Collapse
Affiliation(s)
- Shuaishuai Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fengxian Qin
- Department of clinical laboratory, Liuzhou Worker's Hospital, Guangxi, China
| | - Liyuan Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jingrong Xian
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qin Zou
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hongjun Jin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
373
|
de Mingo Á, de Gregorio E, Moles A, Tarrats N, Tutusaus A, Colell A, Fernandez-Checa JC, Morales A, Marí M. Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death Dis 2016; 7:e2464. [PMID: 27831566 PMCID: PMC5260902 DOI: 10.1038/cddis.2016.368] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022]
Abstract
Sirtuin-1 (SIRT1) regulates hepatic metabolism but its contribution to NF-κB-dependent inflammation has been overlooked. Cysteine cathepsins (Cathepsin B or S, CTSB/S) execute specific functions in physiological processes, such as protein degradation, having SIRT1 as a substrate. We investigated the roles of CTSB/S and SIRT1 in the regulation of hepatic inflammation using primary parenchymal and non-parenchymal hepatic cell types and cell lines. In all cells analyzed, CTSB/S inhibition reduces nuclear p65-NF-κB and κB-dependent gene expression after LPS or TNF through enhanced SIRT1 expression. Accordingly, SIRT1 silencing was sufficient to enhance inflammatory gene expression. Importantly, in a dietary mouse model of non-alcoholic steatohepatitis, or in healthy and fibrotic mice after LPS challenge, cathepsins as well as NF-κB-dependent gene expression are activated. Consistent with the prominent role of cathepsin/SIRT1, cysteine cathepsin inhibition limits NF-κB-dependent hepatic inflammation through the regulation of SIRT1 in all in vivo settings, providing a novel anti-inflammatory therapeutic target in liver disease.
Collapse
Affiliation(s)
- Álvaro de Mingo
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Núria Tarrats
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain.,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| |
Collapse
|
374
|
Lephart ED. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev 2016; 31:36-54. [PMID: 27521253 DOI: 10.1016/j.arr.2016.08.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
Oxygen in biology is essential for life. It comes at a cost during normal cellular function, where reactive oxygen species (ROS) are generated by oxidative metabolism. Human skin exposed to solar ultra-violet radiation (UVR) dramatically increases ROS production/oxidative stress. It is important to understand the characteristics of human skin and how chronological (intrinsic) aging and photo-aging (extrinsic aging) occur via the impact of ROS production by cascade signaling pathways. The goal is to oppose or neutralize ROS insults to maintain good dermal health. Botanicals, as active ingredients, represent one of the largest categories used in dermatology and cosmeceuticals to combat skin aging. An emerging botanical is equol, a polyphenolic/isoflavonoid molecule found in plants and food products and via gastrointestinal metabolism from precursor compounds. Introductory sections cover oxygen, free radicals (ROS), oxidative stress, antioxidants, human skin aging, cellular/molecular ROS events in skin, steroid enzymes/receptors/hormonal actions and genetic factors in aging skin. The main focus of this review covers the characteristics of equol (phytoestrogenic, antioxidant and enhancement of extracellular matrix properties) to reduce skin aging along with its anti-aging skin influences via reducing oxidative stress cascade events by a variety of biochemical/molecular actions and mechanisms to enhance human dermal health.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Physiology and Developmental Biology and The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
375
|
Arulselvan P, Tan WS, Gothai S, Muniandy K, Fakurazi S, Esa NM, Alarfaj AA, Kumar SS. Anti-Inflammatory Potential of Ethyl Acetate Fraction of Moringa oleifera in Downregulating the NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated Macrophages. Molecules 2016; 21:molecules21111452. [PMID: 27809259 PMCID: PMC6273666 DOI: 10.3390/molecules21111452] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023] Open
Abstract
In the present investigation, we prepared four different solvent fractions (chloroform, hexane, butanol, and ethyl acetate) of Moringa oleifera extract to evaluate its anti-inflammatory potential and cellular mechanism of action in lipopolysaccharide (LPS)-induced RAW264.7 cells. Cell cytotoxicity assay suggested that the solvent fractions were not cytotoxic to macrophages at concentrations up to 200 µg/mL. The ethyl acetate fraction suppressed LPS-induced production of nitric oxide and proinflammatory cytokines in macrophages in a concentration-dependent manner and was more effective than the other fractions. Immunoblot observations revealed that the ethyl acetate fraction effectively inhibited the expression of inflammatory mediators including cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor (NF)-κB p65 through suppression of the NF-κB signaling pathway. Furthermore, it upregulated the expression of the inhibitor of κB (IκBα) and blocked the nuclear translocation of NF-κB. These findings indicated that the ethyl acetate fraction of M. oleifera exhibited potent anti-inflammatory activity in LPS-stimulated macrophages via suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Woan Sean Tan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Sivapragasam Gothai
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Katyakyini Muniandy
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
376
|
Tonby K, Wergeland I, Lieske NV, Kvale D, Tasken K, Dyrhol-Riise AM. The COX- inhibitor indomethacin reduces Th1 effector and T regulatory cells in vitro in Mycobacterium tuberculosis infection. BMC Infect Dis 2016; 16:599. [PMID: 27776487 PMCID: PMC5078976 DOI: 10.1186/s12879-016-1938-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) causes a major burden on global health with long and cumbersome TB treatment regimens. Host-directed immune modulating therapies have been suggested as adjunctive treatment to TB antibiotics. Upregulated cyclooxygenase-2 (COX-2)-prostaglandin E2 (PGE2) signaling pathway may cause a dysfunctional immune response that favors survival and replication of Mycobacterium tuberculosis (Mtb). METHODS Blood samples were obtained from patients with latent TB (n = 9) and active TB (n = 33) before initiation of anti-TB chemotherapy. COX-2 expression in monocytes and ESAT-6 and Ag85 specific T cell cytokine responses (TNF-α, IFN-γ, IL-2), proliferation (carboxyfluorescein succinimidyl ester staining) and regulation (FOXP3+ T regulatory cells) were analysed by flow cytometry and the in vitro effects of the COX-1/2 inhibitor indomethacin were measured. RESULTS We demonstrate that indomethacin significantly down-regulates the fraction of Mtb specific FOXP3+ T regulatory cells (ESAT-6; p = 0.004 and Ag85; p < 0.001) with a concomitant reduction of Mtb specific cytokine responses and T cell proliferation in active TB. Although active TB tend to have higher levels, there are no significant differences in COX-2 expression between unstimulated monocytes from patients with active TB compared to latent infection. Monocytes in both TB groups respond with a significant upregulation of COX-2 after in vitro stimulation. CONCLUSIONS Taken together, our in vitro data indicate a modulation of the Th1 effector and T regulatory cells in Mtb infection in response to the COX-1/2 inhibitor indomethacin. The potential role as adjunctive host-directed therapy in TB disease should be further evaluated in both animal studies and in human clinical trials.
Collapse
Affiliation(s)
- Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| | - Ida Wergeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nora V Lieske
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Dag Kvale
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Kjetil Tasken
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Biotechnology Centre, University of Oslo, Oslo, Norway
| | - Anne M Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| |
Collapse
|
377
|
Nandakumar N, Muthuraman S, Gopinath P, Nithya P, Gopas J, Kumar RS. Synthesis of coumaperine derivatives: Their NF-κB inhibitory effect, inhibition of cell migration and their cytotoxic activity. Eur J Med Chem 2016; 125:1076-1087. [PMID: 27810594 DOI: 10.1016/j.ejmech.2016.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023]
Abstract
Coumaperine (an amide alkaloid, present in white piper) and its derivatives were synthesized and investigated for their cytotoxicity against L428 and A549 cells and their NF-κB inhibitory activity. It was found that the coumaperine derivatives CP-9 and CP-38 suppress NF-κB subunits p50 and p65 in nuclear fractions by western blot and by NF-κB luciferase reporter gene assay in a dose dependent manner. Confirmation of these results was obtained by confocal microscopy. CP-9, CP-32 and CP-38 also exhibited dose dependent cell cytotoxicity in a L428 cells expressing constitutively active NF-κB and in A549 cells, with an IC50 value of 43.25 μg/ml, 0.39 μg/ml and 16.85 μg/ml respectively against L428 cells and 57.15 μg/ml, 69.1 μg/ml and 63.2 μg/ml respectively against A549 cells. In addition, the coumaperine derivatives show remarkable inhibitory activity on the cancer cell migration assay against A549 lung adenocarcinoma cells at the concentrations of 5 μg/ml, 10 μg/ml, and 5 μg/ml of CP-9, CP-32 and CP-38 respectively. Aromatic substituents and number of olefinic double bond in coumaperine derivatives found to influence the inhibitory activity. In luciferase reporter gene assay, di-olefin conjugated coumaperine derivatives, CP-38, CP-32 and PIP exhibited higher inhibitory activity than their corresponding tri-olefin conjugated coumaperine derivatives, CP-102, CP-146 and PIP-155 respectively. CP-32 with a stronger electron donating group (-N(CH3)2) showed better inhibitory activity in luciferase reporter gene assay and in cell proliferation of L428 cells. Simple coumaperine derivative (CP-9, with no substituent) effectively inhibited A549 cells proliferation and migration than the other coumaperine derivatives. CP-9 and CP-38 diminish significantly the NF-κB subunits (p50 and p65) of L428 cells in nuclear fractions at the dosage of 10 μg/ml and 30 μg/ml respectively. Which clearly shows that CP-9 and CP-38 inactivate the NF-κB pathway in vitro.
Collapse
Affiliation(s)
- Natarajan Nandakumar
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and Oncology Laboratory, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Subramani Muthuraman
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai, Tamilnadu, India
| | | | - Pattusamy Nithya
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai, Tamilnadu, India
| | - Jacob Gopas
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and Oncology Laboratory, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rajendran Saravana Kumar
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai, Tamilnadu, India.
| |
Collapse
|
378
|
Nirvanappa AC, Mohan CD, Rangappa S, Ananda H, Sukhorukov AY, Shanmugam MK, Sundaram MS, Nayaka SC, Girish KS, Chinnathambi A, Zayed ME, Alharbi SA, Sethi G, Rangappa KS. Novel Synthetic Oxazines Target NF-κB in Colon Cancer In Vitro and Inflammatory Bowel Disease In Vivo. PLoS One 2016; 11:e0163209. [PMID: 27685808 PMCID: PMC5042377 DOI: 10.1371/journal.pone.0163209] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrant activation of nuclear factor kappa B (NF-κB) has been linked with the pathogenesis of several proinflammatory diseases including number of cancers and inflammatory bowel diseases. In the present work, we evaluated the anticancer activity of 1,2-oxazines derivatives against colorectal cancer cell lines and identified 2-((2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl)isoindoline-1,3-dione (API) as the lead anticancer agent among the tested compounds. The apoptosis inducing effect of API was demonstrated using flow cytometry analysis and measuring the caspase 3/7 activity in API treated cells. Based on the literature on inhibition of NF-κB by oxazines, we evaluated the effect of 1,2-oxazines against the ability of NF-κB binding to DNA, NF-κB-dependent luciferase expression and IκBα phosphorylation. We found that, API abrogate constitutive activation of NF-κB and inhibits IκBα phosphorylation in HCT116 cells. Our in silico analysis revealed the binding of oxazines to the hydrophobic cavity that present between the interface of p65 and IκBα. Given the relevance with aberrant activation of NF-κB in inflammation bowel disease (IBD), we evaluated the effect of API on dextran sulphate sodium-induced IBD mice model. The treatment of IBD induced mice with API decreased the myeloperoxidase activity in colonic extract, modulated the colon length and serum levels of pro- and anti-inflammatory cytokines such as TNF-α, IFN-γ, IL-6, IL-1β and IL-10. Furthermore, the histological analysis revealed the restoration of the distorted cryptic epithelial structure of colon in the API treated animals. In conclusion, we comprehensively validated the NF-κB inhibitory efficacy of API that targets NF-κB in in vitro colon cancer and an in vivo inflammatory bowel disease model.
Collapse
Affiliation(s)
- Anilkumar C. Nirvanappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College campus, Bangalore-560001, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570005, India
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 0600808, Japan
| | - Hanumappa Ananda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Alexey Yu Sukhorukov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| | - Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 597, Singapore, Singapore
| | - Mahalingam S. Sundaram
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Siddaiah Chandra Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Kesturu S. Girish
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570005, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - M. E. Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 597, Singapore, Singapore
| | - Kanchugarakoppal S. Rangappa
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570005, India
- * E-mail: (KSR); (Basappa)
| |
Collapse
|
379
|
Wang Z, Potoyan DA, Wolynes PG. Molecular stripping, targets and decoys as modulators of oscillations in the NF-κB/IκBα/DNA genetic network. J R Soc Interface 2016; 13:rsif.2016.0606. [PMID: 27683001 PMCID: PMC5046959 DOI: 10.1098/rsif.2016.0606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic transcription factors in the NF-κB family are central components of an extensive genetic network that activates cellular responses to inflammation and to a host of other external stressors. This network consists of feedback loops that involve the inhibitor IκBα, numerous downstream functional targets, and still more numerous binding sites that do not appear to be directly functional. Under steady stimulation, the regulatory network of NF-κB becomes oscillatory, and temporal patterns of NF-κB pulses appear to govern the patterns of downstream gene expression needed for immune response. Understanding how the information from external stress passes to oscillatory signals and is then ultimately relayed to gene expression is a general issue in systems biology. Recently, in vitro kinetic experiments as well as molecular simulations suggest that active stripping of NF-κB by IκBα from its binding sites can modify the traditional systems biology view of NF-κB/IκBα gene circuits. In this work, we revise the commonly adopted minimal model of the NF-κB regulatory network to account for the presence of the large number of binding sites for NF-κB along with dissociation from these sites that may proceed either by passive unbinding or by active molecular stripping. We identify regimes where the kinetics of target and decoy unbinding and molecular stripping enter a dynamic tug of war that may either compensate each other or amplify nuclear NF-κB activity, leading to distinct oscillatory patterns. Our finding that decoys and stripping play a key role in shaping the NF-κB oscillations suggests strategies to control NF-κB responses by introducing artificial decoys therapeutically.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
380
|
Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int J Mol Sci 2016; 17:ijms17101605. [PMID: 27669218 PMCID: PMC5085638 DOI: 10.3390/ijms17101605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.
Collapse
|
381
|
Leibowitz SM, Yan J. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications. Front Mol Neurosci 2016; 9:84. [PMID: 27695399 PMCID: PMC5023675 DOI: 10.3389/fnmol.2016.00084] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are involved in cell immune responses, apoptosis and infections. In multiple sclerosis (MS), NF-κB pathways are changed, leading to increased levels of NF-κB activation in cells. This may indicate a key role for NF-κB in MS pathogenesis. NF-κB signaling is complex, with many elements involved in its activation and regulation. Interestingly, current MS treatments are found to be directly or indirectly linked to NF-κB pathways and act to adjust the innate and adaptive immune system in patients. In this review, we will first focus on the intricacies of NF-κB signaling, including the activating pathways and regulatory elements. Next, we will theorize about the role of NF-κB in MS pathogenesis, based on current research findings, and discuss some of the associated therapeutic implications. Lastly, we will review four new MS treatments which interrupt NF-κB pathways—fingolimod, teriflunomide, dimethyl fumarate (DMF) and laquinimod (LAQ)—and explain their mechanisms, and the possible strategy for MS treatments in the future.
Collapse
Affiliation(s)
- Saskia M Leibowitz
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Jun Yan
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
382
|
Aggarwal R, Jha M, Shrivastava A, Jha AK. Natural Compounds: Role in Reversal of Epigenetic Changes. BIOCHEMISTRY (MOSCOW) 2016; 80:972-89. [PMID: 26547065 DOI: 10.1134/s0006297915080027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hallmarks of carcinogenesis are characterized by alterations in the expression of multiple genes that occur via genetic and epigenetic alterations, leading to genome rearrangements and instability. The reversible process of epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression that alter phenotype without any change in the DNA sequence, is recognized as a key mechanism in cancer cell metabolism. Recent advancements in the rapidly evolving field of cancer epigenetics have shown the anticarcinogenic potential of natural compounds targeting epigenetic mechanism as a common molecular approach for cancer treatment. This review summarizes the potential of natural chemopreventive agents to reverse cancer-related epigenetic aberrations by regulating the activity of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. Furthermore, there is impetus for determining novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents that exhibit similar properties, for improving the therapeutic aspects of cancer.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Biotechnology, IMS Engineering College, U. P. 201009, India.
| | | | | | | |
Collapse
|
383
|
Sarisozen C, Dhokai S, Tsikudo EG, Luther E, Rachman IM, Torchilin VP. Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models. Eur J Pharm Biopharm 2016; 108:54-67. [PMID: 27569031 DOI: 10.1016/j.ejpb.2016.08.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/09/2016] [Accepted: 08/21/2016] [Indexed: 11/29/2022]
Abstract
NF-κB is strongly associated with poor prognosis of different cancer types and an important factor responsible for the malignant phenotype of glioblastoma. Overcoming chemotherapy-induced resistance caused by activation of PI3K/Akt and NF-κB pathways is crucial for successful glioblastoma therapy. We developed an all-in-one nanomedicine formulation for co-delivery of a chemotherapeutic agent (topoisomerase II inhibitor, doxorubicin) and a multidrug resistance modulator (NF-κB inhibitor, curcumin) for treatment of glioblastoma due to their synergism. Both agents were incorporated into PEG-PE-based polymeric micelles. The glucose transporter-1 (GLUT1) is overexpressed in many tumors including glioblastoma. The micellar system was decorated with GLUT1 antibody single chain fragment variable (scFv) as the ligand to promote blood brain barrier transport and glioblastoma targeting. The combination treatment was synergistic (combination index, CI of 0.73) against U87MG glioblastoma cells. This synergism was improved by micellar encapsulation (CI: 0.63) and further so with GLUT1 targeting (CI: 0.46). Compared to non-targeted micelles, GLUT1 scFv surface modification increased the association of micelles (>20%, P<0.01) and the nuclear localization of doxorubicin (∼3-fold) in U87MGcells, which also translated into enhanced cytotoxicity. The increased caspase 3/7 activation by targeted micelles indicates successful apoptosis enhancement by combinatory treatment. Moreover, GLUT1 targeted micelles resulted in deeper penetration into the 3D spheroid model. The increased efficacy of combination nanoformulations on the spheroids compared to a single agent loaded, or to non-targeted formulations, reinforces the rationale for selection of this combination and successful utilization of GLUT1 scFv as a targeting agent for glioblastoma treatment.
Collapse
Affiliation(s)
- Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Shekhar Dhokai
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Edcar G Tsikudo
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
384
|
Ben Lagha A, Grenier D. Black tea theaflavins attenuate Porphyromonas gingivalis virulence properties, modulate gingival keratinocyte tight junction integrity and exert anti-inflammatory activity. J Periodontal Res 2016; 52:458-470. [PMID: 27549582 DOI: 10.1111/jre.12411] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Over the last 10 years, bioactive plant food compounds have received considerable attention in regard to their beneficial effects against periodontal disease. In this study, we investigated the effects of black tea theaflavins (TFs) on the virulence properties of Porphyromonas gingivalis and gingival keratinocyte tight junction integrity. In addition, the effects of black tea TFs on the nuclear factor-κB (NF-κB) signaling pathway and proinflammatory cytokine/matrix metalloproteinase (MMP) secretion by monocytes/macrophages were assessed. MATERIAL AND METHODS Virulence factor gene expression in P. gingivalis was investigated by quantitative real-time PCR. A fluorescence assay was used to determine P. gingivalis adherence to, and invasion of, a gingival keratinocyte monolayer. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. Proinflammatory cytokine and MMP secretion by P. gingivalis-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Gelatin degradation was monitored using a fluorogenic assay. RESULTS Black tea TFs dose-dependently inhibited the expression of genes encoding the major virulence factors of P. gingivalis and attenuated its adherence to gingival keratinocytes. A treatment of gingival keratinocytes with black tea TFs significantly enhanced tight junction integrity and prevented P. gingivalis-mediated tight junction damage as well as bacterial invasion. Black tea TFs reduced the secretion of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, chemokine (C-X-C) ligand 8, MMP-3, MMP-8 and MMP-9 by P. gingivalis-stimulated macrophages and attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. Lastly, black tea TFs inhibited gelatin degradation by MMP-9. CONCLUSION This study provides clear evidence that black tea TFs represent promising multifunctional therapeutic agents for prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- A Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - D Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| |
Collapse
|
385
|
Li HK, Morokoshi Y, Daino K, Furukawa T, Kamada T, Saga T, Hasegawa S. Transcriptomic Signatures of Auger Electron Radioimmunotherapy Using Nuclear Targeting (111)In-Trastuzumab for Potential Combination Therapies. Cancer Biother Radiopharm 2016; 30:349-58. [PMID: 26447839 DOI: 10.1089/cbr.2015.1882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
(111)In-labeled trastuzumab modified with nuclear localizing signal (NLS) peptides ((111)In-trastuzumab-NLS) efficiently delivers an Auger electron (AE) emitter (111)In into the cell nucleus and is thus a promising radiopharmaceutical in AE radioimmunotherapy (AE-RIT) for targeted killing of HER2-positive cancer. However, further improvement of its therapeutic efficacy is required. In this study, the authors show a transcriptomic approach to identify potential targets for enhancing the cytotoxic effects of (111)In-trastuzumab-NLS. They generated two types of (111)In-trastuzumab-NLS harboring different numbers of NLS peptides, (111)In-trastuzumab-NLS-S and -L. These radioimmunoconjugates (230 and 460 kBq) showed a significant higher cytotoxicity to SKBR3 human breast cancer cells overexpressing HER2 compared to (111)In-trastuzumab. Microarray analysis revealed that NF-kB-related genes (38 genes) were significantly changed in transcription by (111)In trastuzumab-NLS-L (230 kBq) treatment. Quantitative reverse transcription polymerase chain reaction confirmed the microarray data by showing transcriptional alternation of selected NF-κB target genes in cells treated with (111)In-trastuzumab-NLS-L. Interestingly, bortezomib, a drug known as a NF-κB modulator, significantly enhanced the cytotoxicity of (111)In-trastuzumab-NLS-L in SKBR3 cells. Taken together, the transcriptome data suggest the possibility that the modulation of NF-kB signaling activity is a molecular signature of (111)In-trastuzumab-NLS and coadministration of bortezomib may be efficacious in enhancement of AE-RIT with (111)In-trastuzumab-NLS.
Collapse
Affiliation(s)
- Huizi Keiko Li
- 1 Molecular Imaging Center, National Institute of Radiological Sciences , Chiba, Japan .,2 Graduate School of Medical and Pharmaceutical Sciences, Chiba University , Chiba, Japan .,3 Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Yukie Morokoshi
- 1 Molecular Imaging Center, National Institute of Radiological Sciences , Chiba, Japan
| | - Kazuhiro Daino
- 4 Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Takako Furukawa
- 1 Molecular Imaging Center, National Institute of Radiological Sciences , Chiba, Japan
| | - Tadashi Kamada
- 2 Graduate School of Medical and Pharmaceutical Sciences, Chiba University , Chiba, Japan .,3 Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Tsuneo Saga
- 1 Molecular Imaging Center, National Institute of Radiological Sciences , Chiba, Japan
| | - Sumitaka Hasegawa
- 1 Molecular Imaging Center, National Institute of Radiological Sciences , Chiba, Japan
| |
Collapse
|
386
|
Zeligs KP, Neuman MK, Annunziata CM. Molecular Pathways: The Balance between Cancer and the Immune System Challenges the Therapeutic Specificity of Targeting Nuclear Factor-κB Signaling for Cancer Treatment. Clin Cancer Res 2016; 22:4302-8. [PMID: 27422962 DOI: 10.1158/1078-0432.ccr-15-1374] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/29/2016] [Indexed: 12/23/2022]
Abstract
The NF-κB signaling pathway is a complex network linking extracellular stimuli to cell survival and proliferation. Cytoplasmic signaling to activate NF-κB can occur as part of the DNA damage response or in response to a large variety of activators, including viruses, inflammation, and cell death. NF-κB transcription factors play a fundamental role in tumorigenesis and are implicated in the origination and propagation of both hematologic and solid tumor types, including melanoma, breast, prostate, ovarian, pancreatic, colon, lung, and thyroid cancers. On the other hand, NF-κB signaling is key to immune function and is likely necessary for antitumor immunity. This presents a dilemma when designing therapeutic approaches to target NF-κB. There is growing interest in identifying novel modulators to inhibit NF-κB activity as impeding different steps of the NF-κB pathway has potential to slow tumor growth, progression, and resistance to chemotherapy. Despite significant advances in our understanding of this pathway, our ability to effectively clinically block key targets for cancer therapy remains limited due to on-target effects in normal tissues. Tumor specificity is critical to developing therapeutic strategies targeting this antiapoptotic signaling pathway to maintain antitumor immune surveillance when applying such therapy to patients. Clin Cancer Res; 22(17); 4302-8. ©2016 AACR.
Collapse
Affiliation(s)
- Kristen P Zeligs
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland. Department of Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Monica K Neuman
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | |
Collapse
|
387
|
Armstrong MJ, Stang MT, Liu Y, Yan J, Pizzoferrato E, Yim JH. IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition. Cancer Biol Ther 2016; 16:1029-41. [PMID: 26011589 DOI: 10.1080/15384047.2015.1046646] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.
Collapse
Key Words
- Ad, adenovirus
- Cdk, cyclin-dependent kinase
- DISC, death-inducing signaling complex
- DMEM, Dulbecco's Modified Eagle's Medium
- DR, death receptor
- EGFP, enhanced green fluorescent protein
- ER, estrogen receptor
- FADD, fas-associated death domain
- FBS, Fetal Bovine Serum
- FITC, fluorescein isothiocyanate
- FLICE, fas-associated death domain protein interleukin-1 β-converting enzyme
- IAP
- IFN-β, interferon-β
- IFN-γ, interferon-gamma
- IKK, IκB, kinase complex
- IRF-1
- IRF-1, interferon regulatory factor-1
- IκB, Inhibitory kappaB
- MOI, multiplicity of infection
- MTT, methylthiazoltetrazolium
- NEMO, NF-κB essential modulator
- NF-κB
- NF-κB, nuclear factor of kappa Beta
- RIP1, receptor interacting protein 1
- SCID, severe combined immunodeficiency
- STAT, signal transducer and activator of transcription
- Smac/DIABLO, Second mitochondria-derived activator of caspase/Direct IAP-binding protein with low pI
- TNF-α, tumor necrosis factor-α
- TNFR, tumor necrosis factor receptor
- TRADD, TNF receptor associated protein with a death domain
- TRAF2, tumor necrosis factor receptor-associated factor 2
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- XIAP, X-linked inhibitor of apoptosis protein
- apoptosis
- breast cancer
- cFLIP, cellular FLICE inhibitory protein
- cIAP1, c-inhibitor of apoptosis
- p53
- siRNA, small interfering RNA
- tumor suppressor
- β-gal, β-galactosidase
Collapse
Affiliation(s)
- Michaele J Armstrong
- a Department of Surgery; University of Pittsburgh School of Medicine ; Pittsburgh , PA , USA
| | | | | | | | | | | |
Collapse
|
388
|
Yadav AK, Srikrishna S, Gupta SC. Cancer Drug Development Using Drosophila as an in vivo Tool: From Bedside to Bench and Back. Trends Pharmacol Sci 2016; 37:789-806. [PMID: 27298020 DOI: 10.1016/j.tips.2016.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila melanogaster has been used for modeling cancer and as an in vivo tool for the validation and/or development of cancer therapeutics. The impetus for the use of Drosophila in cancer research stems from the high conservation of its signaling pathways, lower genetic redundancy, short life cycle, genetic amenability, and ease of maintenance. Several cell signaling pathways in Drosophila have been used for cancer drug development. The efficacy of combination therapy and uptake/bioavailability of drugs have also been studied. Drosophila has been validated using several FDA-approved drugs, suggesting a potential application of this model in drug repurposing. The model is emerging as a powerful tool for high-throughput screening and should significantly reduce the cost and time associated with drug development. In this review we discuss the applications of Drosophila in cancer drug development. The advantages and limitations of the model are discussed.
Collapse
Affiliation(s)
- Amarish Kumar Yadav
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
389
|
Chen S, Zhao X, Sun P, Qian J, Shi Y, Wang R. Preventive effect of Gardenia jasminoides on HCl/ethanol induced gastric injury in mice. J Pharmacol Sci 2016; 133:1-8. [PMID: 27435384 DOI: 10.1016/j.jphs.2016.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
The therapeutic effect on HCl/ethanol induced gastric injury of Gardenia jasminoides (JXGJ-1 and JXGJ-2) were determined by a animal model. JXGJ-2 group reduced area of its gastric injury as compared to the control group, JXGJ-2 also helped in decreasing the gastric secretion volume results raised in pH value. The NO contents in serum, heart, liver, kidney and stomach of JXGJ-2 group were more than JXGJ-1 and control groups. JXGJ-2 reduce cytokine levels as compared to JXGJ-1 and control group. The serum and gastric tissue SOD, GSH-Px, GSH levels in JXGJ-2 treated mice were higher than JXGJ-1 treated and control mice, but the MDA, PC levels showed the crosscurrents, these levels were close to normal mice. Gardenia jasminoides could increase the occludin, EGF, EGFR, VEGF, IκB-α, nNOS, eNOS, Cu/Zn-SOD, Mn-SOD, CAT, GSH-Px (GSH1) mRNA and protein expressions and decrease the p38MAPK (p38), NF-κB, Bcl-2, COX-2, iNOS expressions in gastric tissues unlike to the control mice, JXGJ-2 had much better effect than JXGJ-1. JXGJ-1contained the higher genipin gentiobioside and gardenoside, they might be the key components of gastric injury inhibition. Gardenia jasminoides had a remarkable effect on gastric injury, and they were derived from two important components of genipin gentiobioside and gardenoside.
Collapse
Affiliation(s)
- Shaocheng Chen
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China; Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, China; Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Xin Zhao
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China; Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, China; Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Peng Sun
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China; Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, China; Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Jun Qian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Yanhong Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Chongqing Three Gorges Natural Medicine Research Institute, Chongqing 404000, China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| |
Collapse
|
390
|
Conway EM, Pikor LA, Kung SHY, Hamilton MJ, Lam S, Lam WL, Bennewith KL. Macrophages, Inflammation, and Lung Cancer. Am J Respir Crit Care Med 2016; 193:116-30. [PMID: 26583808 DOI: 10.1164/rccm.201508-1545ci] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, and at only 18%, it has one of the lowest 5-year survival rates of all malignancies. With its highly complex mutational landscape, treatment strategies against lung cancer have proved largely ineffective. However with the recent success of immunotherapy trials in lung cancer, there is renewed enthusiasm in targeting the immune component of tumors. Macrophages make up the majority of the immune infiltrate in tumors and are a key cell type linking inflammation and cancer. Although the mechanisms through which inflammation promotes cancer are not fully understood, two connected hypotheses have emerged: an intrinsic pathway, driven by genetic alterations that lead to neoplasia and inflammation, and an extrinsic pathway, driven by inflammatory conditions that increase cancer risk. Here, we discuss the contribution of macrophages to these pathways and subsequently their roles in established tumors. We highlight studies investigating the association of macrophages with lung cancer prognosis and discuss emerging therapeutic strategies for targeting macrophages in the tumor microenvironment.
Collapse
Affiliation(s)
- Emma M Conway
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Larissa A Pikor
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Sonia H Y Kung
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Melisa J Hamilton
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
391
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
392
|
Saud SM, Li W, Gray Z, Matter MS, Colburn NH, Young MR, Kim YS. Diallyl Disulfide (DADS), a Constituent of Garlic, Inactivates NF-κB and Prevents Colitis-Induced Colorectal Cancer by Inhibiting GSK-3β. Cancer Prev Res (Phila) 2016; 9:607-15. [PMID: 27138790 DOI: 10.1158/1940-6207.capr-16-0044] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023]
Abstract
There is a strong belief that garlic has medicinal properties and may even reduce the risk of developing certain cancers including those of the gastrointestinal tract. The chemopreventive effects of garlic may be attributed to the anti-inflammatory properties of the sulfur-containing constituents of garlic, which includes diallyl disulfide (DADS). Here, we demonstrate that DADS prevented colorectal tumorigenesis in a mouse model of colitis-induced colorectal cancer. Supplementation with 85 ppm of DADS (60 mg daily human equivalent dose) in the diet of FVB/N mice treated with chemical carcinogen azoxymethane (AOM) and colonic irritant dextran sodium sulfate (DSS) resulted in the reduction in tumor incidence, tumor number, and tumor burden by 21.54%, 47.3%, and 66.4%, respectively. Further analysis revealed that mice fed the DADS-supplemented diet resolved the initial DSS-induced inflammation faster than those on the control diet, preventing prolonged inflammation and cellular transformation. Subsequent mechanistic studies in vitro suggest that DADS chemopreventive effects are mediated through NF-κB signaling. When SW480 colorectal cancer cells were treated with DADS, NF-κB nuclear localization and activity were diminished. Interestingly, NF-κB suppression was found to be dependent on DADS inhibition of GSK-3β, a positive regulator of NF-κB. Inhibition of GSK-3β and loss of nuclear NF-κB activity were also observed in vivo in AOM/DSS-treated mice fed a diet supplemented with 85 ppm DADS. Our results indicate that DADS can prevent tumorigenesis by suppressing inflammation, a process largely involving GSK-3β inhibition and consequential reduction in NF-κB nuclear localization. Cancer Prev Res; 9(7); 607-15. ©2016 AACR.
Collapse
Affiliation(s)
- Shakir M Saud
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland. Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Weidong Li
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland. Department of Infectious Disease, Guang'anmen Hospital, Beijing, China
| | - Zane Gray
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Matthias S Matter
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Nancy H Colburn
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Matthew R Young
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland. Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Young S Kim
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland.
| |
Collapse
|
393
|
Ali AAA, Lee YR, Chen TC, Chen CL, Lee CC, Shiau CY, Chiang CH, Huang HS. Novel Anthra[1,2-c][1,2,5]Thiadiazole-6,11-Diones as Promising Anticancer Lead Compounds: Biological Evaluation, Characterization & Molecular Targets Determination. PLoS One 2016; 11:e0154278. [PMID: 27100886 PMCID: PMC4839570 DOI: 10.1371/journal.pone.0154278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
The novel compounds NSC745885 and NSC757963 developed at our laboratory were tested against a panel of 60 cancer cell lines at the National Cancer Institute, USA, and a panel of 39 cancer cell lines at the Japanese Foundation of Cancer Research. Both compounds demonstrated selective unique multi-log differential patterns of activity, with GI50 values in the sub-micro molar range against cancer cells rather than normal cardiac cells. NSC757963 showed high selectivity towards the leukemia subpanel. Activities of both compounds strongly correlated to expression of NFKB1 and CSNK2B genes, implying that they may inhibit the NF-κB pathway. Immunocytochemical microscopy of OVCAR-3 cells showed clear cytosolic accumulation of the NF-κB p65 subunit following treatment. Western blotting showed dose dependent inhibition of the nuclear expression of the NF-κB p65 subunit with subsequent accumulation in the cytosol following treatment. Docking experiments showed binding of both compounds to the NF-κB activator IKKβ subunit preventing its translocation to the nucleus. Collectively, these results confirm the ability of our compounds to inhibit the constitutively active NF-κB pathway of OVCAR-3 cells. Furthermore, COMPARE analysis indicated that the activity of NSC757963 is similar to the antituberculosis agent rifamycin SV, this was confirmed by testing the antimycobacterial activity of NSC757963 against Mycobacterium tuberculosis, results revealed potent activity suitable for use in clinical practice. Molecular properties and Lipinski’s parameters predicted acceptable bioavailability properties with no indication of mutagenicity, tumorigenicity, irritability and reproductive effects. Oral absorption experiments using the human Caco-2 model showed high intestinal absorption of NSC745885 by passive transport mechanism with no intestinal efflux or active transport mechanisms. The unique molecular characterization as well as the illustrated anticancer spectra of activity and bioavailability properties warrant further development of our compounds and present a foundation brick in the pre-clinical investigations to implement such compounds in clinical practice.
Collapse
Affiliation(s)
- Ahmed Atef Ahmed Ali
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ru Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Chih Chen
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Liang Chen
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yang Shiau
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chiao-Hsi Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
394
|
Franceschelli S, Pesce M, Ferrone A, Patruno A, Pasqualone L, Carlucci G, Ferrone V, Carlucci M, de Lutiis MA, Grilli A, Felaco M, Speranza L. A Novel Biological Role of α-Mangostin in Modulating Inflammatory Response Through the Activation of SIRT-1 Signaling Pathway. J Cell Physiol 2016; 231:2439-51. [DOI: 10.1002/jcp.25348] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Mirko Pesce
- Medicine and Health Science School University G. D'Annunzio; Chieti Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Livia Pasqualone
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | | | | | - Maura Carlucci
- Department of Pharmacy; University G. D'Annunzio; Chieti Italy
| | - Maria Anna de Lutiis
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Alfredo Grilli
- Medicine and Health Science School University G. D'Annunzio; Chieti Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| |
Collapse
|
395
|
|
396
|
Park MH, Hong JT. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016; 5:cells5020015. [PMID: 27043634 PMCID: PMC4931664 DOI: 10.3390/cells5020015] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in various biological processes, including immune response, inflammation, cell growth and survival, and development. NF-κB is critical for human health, and aberrant NF-κB activation contributes to development of various autoimmune, inflammatory and malignant disorders including rheumatoid arthritis, atherosclerosis, inflammatory bowel diseases, multiple sclerosis and malignant tumors. Thus, inhibiting NF-κB signaling has potential therapeutic applications in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| |
Collapse
|
397
|
Moarbess G, Guichou JF, Paniagua-Gayraud S, Chouchou A, Marcadet O, Leroy F, Ruédas R, Cuq P, Deleuze-Masquéfa C, Bonnet PA. New IKK inhibitors: Synthesis of new imidazo[1,2-a]quinoxaline derivatives using microwave assistance and biological evaluation as IKK inhibitors. Eur J Med Chem 2016; 115:268-74. [PMID: 27017554 DOI: 10.1016/j.ejmech.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022]
Abstract
The inhibition of the NF-κB-dependent pathways by IKK inhibitors plays an important role in immunity, inflammation, and cancer. New imidazoquinoxalines tricyclic derivatives are prepared using microwave assistance and their biological activities as IKK inhibitors are described. Compounds 6a present a potent inhibition activity and selectivity for IKK2. Docking studies in the IKK2 binding site allowed identification of residues most likely to interact with theses inhibitors and explain their potent IKK2 inhibition activity and selectivity.
Collapse
Affiliation(s)
- Georges Moarbess
- Lebanese University, Faculty of Sciences II, Department of Chemistry and Biochemistry, Campus Fanar, BP 90656 Jdeideh, Lebanon
| | - Jean-François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, F-34090 Montpellier, France; INSERM, U1054, F-34090 Montpellier, France
| | - Stéphanie Paniagua-Gayraud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Adrien Chouchou
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Olivier Marcadet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Fiona Leroy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Rémi Ruédas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France.
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| |
Collapse
|
398
|
Bai C, Yang X, Zou K, He H, Wang J, Qin H, Yu X, Liu C, Zheng J, Cheng F, Chen J. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:573-84. [DOI: 10.1007/s00210-016-1217-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/08/2016] [Indexed: 01/28/2023]
|
399
|
Liu DC, Gong GH, Wei CX, Jin XJ, Quan ZS. Synthesis and anti-inflammatory activity evaluation of a novel series of 6-phenoxy-[1,2,4]triazolo[3,4- a ]phthalazine-3-carboxamide derivatives. Bioorg Med Chem Lett 2016; 26:1576-1579. [DOI: 10.1016/j.bmcl.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/25/2022]
|
400
|
Jiao WH, Shi GH, Xu TT, Chen GD, Gu BB, Wang Z, Peng S, Wang SP, Li J, Han BN, Zhang W, Lin HW. Dysiherbols A-C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2016; 79:406-411. [PMID: 26863083 DOI: 10.1021/acs.jnatprod.5b01079] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four new tetracyclic meroterpnes, dysiherbols A-C (1-3) and dysideanone E (4), were isolated from a Dysidea sp. marine sponge collected from the South China Sea. Their complete structures and absolute configurations were unambiguously determined by a combination of NMR spectroscopic data, ECD calculations, and single-crystal X-ray diffraction analysis. Within the sesquiterpene quinol structures, dysiherbols A-C possess an intriguing 6/6/5/6-fused tetracyclic carbon skeleton. The NF-κB inhibitory and cytotoxic activity evaluation disclosed that dysiherbol A (1) showed potent activity with respective IC50 values of 0.49 and 0.58 μM, which were about 10-fold and 20-fold more potent than those of dysiherbols B (2) and C (3), which feature hydroxy and ketone carbonyl groups at the C-3 position.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Guo-Hua Shi
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Ting-Ting Xu
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University , Guangzhou 510632, People's Republic of China
| | - Bin-Bin Gu
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Zhuo Wang
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Shuang Peng
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
- Center for Marine Bioproducts Development, Flinders University , Adelaide 5001, Australia
| | - Shu-Ping Wang
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Jia Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai, 201203, People's Republic of China
| | - Bing-Nan Han
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Wei Zhang
- Center for Marine Bioproducts Development, Flinders University , Adelaide 5001, Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| |
Collapse
|