351
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
352
|
Mafra D, Ugochukwu SA, Borges NA, Cardozo LFMF, Stenvinkel P, Shiels PG. Food for healthier aging: power on your plate. Crit Rev Food Sci Nutr 2022; 64:603-616. [PMID: 35959705 DOI: 10.1080/10408398.2022.2107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inflammageing is a persistent low-level inflammatory burden that accompanies age-related dysregulation of the immune system during normative aging and within the diseasome of aging. A healthy diet containing a balanced amount of macronutrients, vitamins and minerals, adequate in calories and rich in poly(phenols), has an essential role in mitigating the effects of inflammageing and extending healthspan through modulation of the activity of a range of factors. These include transcription factors, such as nuclear factor erythroid-derived 2 related factor 2 (Nrf2) and nuclear factor-κB (NF-kB), the inflammasome and the activities of the gut microbiota. The aim of this narrative review is to discuss the potential of food to ameliorate the effects of the diseasome of aging.
Collapse
Affiliation(s)
- Denise Mafra
- Post-Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Natalia A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Post-Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Post-Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
- Post-Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ), Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
353
|
Komogortsev AN, Melekhina VG, Lichitsky BV. Multicomponent protocol for the synthesis of substituted methyl 3-(3-hydroxy-4-oxo-4 H-chromen-2-yl)propanoates from 3-hydroxy-4 H-chromen-4-one. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Andrey N. Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| | - Valeriya G. Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| | - Boris V. Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| |
Collapse
|
354
|
Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD, Zhu Y. Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest 2022; 132:e158450. [PMID: 35912854 PMCID: PMC9337830 DOI: 10.1172/jci158450] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a hallmark of aging defined by stable exit from the cell cycle in response to cellular damage and stress. Senescent cells (SnCs) can develop a characteristic pathogenic senescence-associated secretory phenotype (SASP) that drives secondary senescence and disrupts tissue homeostasis, resulting in loss of tissue repair and regeneration. The use of transgenic mouse models in which SnCs can be genetically ablated has established a key role for SnCs in driving aging and age-related disease. Importantly, senotherapeutics have been developed to pharmacologically eliminate SnCs, termed senolytics, or suppress the SASP and other markers of senescence, termed senomorphics. Based on extensive preclinical studies as well as small clinical trials demonstrating the benefits of senotherapeutics, multiple clinical trials are under way. This Review discusses the role of SnCs in aging and age-related diseases, strategies to target SnCs, approaches to discover and develop senotherapeutics, and preclinical and clinical advances of senolytics.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Louise E. Pitcher
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
355
|
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28:1556-1568. [PMID: 35953721 PMCID: PMC9599677 DOI: 10.1038/s41591-022-01923-y] [Citation(s) in RCA: 516] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023]
Abstract
Interlinked and fundamental aging processes appear to be a root-cause contributor to many disorders and diseases. One such process is cellular senescence, which entails a state of cell cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan and, if persistent, can have deleterious effects on tissue function due to the many proteins they secrete. In preclinical models, interventions targeting those senescent cells that are persistent and cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has led to promising strategies for preventing or treating multiple diseases and age-related conditions in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target for disorders across the lifespan and discuss the most promising strategies-including recent and ongoing clinical trials-for translating small-molecule senolytics and other senescence-targeting interventions into clinical use.
Collapse
Affiliation(s)
- Selim Chaib
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
356
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
357
|
Clayton ZS, Craighead DH, Darvish S, Coppock M, Ludwig KR, Brunt VE, Seals DR, Rossman MJ. Promoting healthy cardiovascular aging: emerging topics. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:43. [PMID: 36337728 PMCID: PMC9632540 DOI: 10.20517/jca.2022.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - McKinley Coppock
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
358
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
359
|
Lee JH, Park J, Shin DW. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022; 27:molecules27144351. [PMID: 35889225 PMCID: PMC9322955 DOI: 10.3390/molecules27144351] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.
Collapse
Affiliation(s)
- Joo Hwa Lee
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3693
| |
Collapse
|
360
|
Atayik MC, Çakatay U. Mitochondria-targeted senotherapeutic interventions. Biogerontology 2022; 23:401-423. [PMID: 35781579 DOI: 10.1007/s10522-022-09973-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Healthy aging is the art of balancing a delicate scale. On one side of the scale, there are the factors that make life difficult with aging, and on the other side are the products of human effort against these factors. The most important factors that make the life difficult with aging are age-related disorders. Developing senotherapeutic strategies may bring effective solutions for the sufferers of age-related disorders. Mitochondrial dysfunction comes first in elucidating the pathogenesis of age-related disorders and presenting appropriate treatment options. Although it has been widely accepted that mitochondrial dysfunction is a common characteristic of cellular senescence, it still remains unclear why dysfunctional mitochondria occupy a central position in the development senescence-associated secretory phenotype (SASP) related to age-related disorders. Mitochondrial dysfunction and SASP-related disease progression are closely interlinked to weaken immunity which is a common phenomenon in aging. A group of substances known as senotherapeutics targeted to senescent cells can be classified into two main groups: senolytics (kill senescent cells) and senomorphics/senostatics (suppress their SASP secretions) in order to extend health lifespan and potentially lifespan. As mitochondria are also closely related to the survival of senescent cells, using either mitochondria-targeted senolytic or redox modulator senomorphic strategies may help us to solve the complex problems with the detrimental consequences of cellular senescence. Killing of senescent cells and/or ameliorate their SASP-related negative effects are currently considered to be effective mitochondria-directed gerotherapeutic approaches for fighting against age-related disorders.
Collapse
Affiliation(s)
- Mehmet Can Atayik
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
361
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
362
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
363
|
Exploration of Potential Targets and Mechanisms of Fisetin in the Treatment of Non-Small-Cell Lung Carcinoma via Network Pharmacology and In Vitro Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2383527. [PMID: 35733630 PMCID: PMC9208940 DOI: 10.1155/2022/2383527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023]
Abstract
Purpose The morbidity and fatality rates of non-small-cell lung cancer (NSCLC) were high, although a combination of multiple treatments was used. Fisetin, a small flavonoid compound, had shown anticancer activities. Thus, we aimed at exploring the mechanisms of Fisetin in the treatment of NSCLC. Methods TCMSP and Swiss target tools were used to screen the targets of Fisetin, and GeneCards was used to collect the genes related to NSCLC. The genes common to Fisetin and NSCLC were obtained by Venn analysis, whose possible functions were further annotated. A “Compound-Target-Disease” network was then constructed and hub genes were filtered. Also, molecular docking was performed to predict the binding abilities between Fisetin and the hub genes. Then, the effects of Fisetin on the expression of hub genes in lung adenocarcinoma cells were preliminarily evaluated in vitro. Results A total of 131 genes common to Fisetin and NSCLC were filtered out, which might be enriched in several biological processes including antioxidation, cell proliferation, and various signaling pathways, such as PI3K-Akt and IL-17 signaling pathways. Among them, PIK3R1, CTNNB1, JUN, EGFR, and APP might be the hub genes. Molecular docking indicated the close bond between Fisetin and them. Experiments implied a possible effect of Fisetin on the expression of hub genes in A549 cells. Conclusion The present study found a series of novel targets and pathways for Fisetin treating NSCLC. Multiple angles, targets, and pathways were involved in the biological processes, which need to be verified in further experiments.
Collapse
|
364
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
365
|
Abdelgawad IY, Agostinucci K, Ismail SG, Grant MKO, Zordoky BN. EA.hy926 Cells and HUVECs Share Similar Senescence Phenotypes but Respond Differently to the Senolytic Drug ABT-263. Cells 2022; 11:1992. [PMID: 35805077 PMCID: PMC9266052 DOI: 10.3390/cells11131992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin (DOX) induces endothelial cell (EC) senescence, which contributes to endothelial dysfunction and cardiovascular complications. Senolytic drugs selectively eliminate senescent cells to ameliorate senescence-mediated pathologies. Previous studies have demonstrated differences between immortalized and primary EC models in some characteristics. However, the response of DOX-induced senescent ECs to senolytics has not been determined across these two models. In the present work, we first established a comparative characterization of DOX-induced senescence phenotypes in immortalized EA.hy926 endothelial-derived cells and primary human umbilical vein EC (HUVECs). Thereafter, we evaluated the senolytic activity of four senolytics across both ECs. Following the DOX treatment, both EA.hy926 and HUVECs shared similar senescence phenotypes characterized by upregulated senescence markers, increased SA-β-gal activity, cell cycle arrest, and elevated expression of the senescence-associated secretory phenotype (SASP). The potentially senolytic drugs dasatinib, quercetin, and fisetin demonstrated a lack of selectivity against DOX-induced senescent EA.hy926 cells and HUVECs. However, ABT-263 (Navitoclax) selectively induced the apoptosis of DOX-induced senescent HUVECs but not EA.hy926 cells. Mechanistically, DOX-treated EA.hy926 cells and HUVECs demonstrated differential expression levels of the BCL-2 family proteins. In conclusion, both EA.hy926 cells and HUVECs demonstrate similar DOX-induced senescence phenotypes but they respond differently to ABT-263, presumably due to the different expression levels of BCL-2 family proteins.
Collapse
Affiliation(s)
| | | | | | | | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.A.); (K.A.); (S.G.I.); (M.K.O.G.)
| |
Collapse
|
366
|
A Small Molecule That Promotes Cellular Senescence Prevents Fibrogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23126852. [PMID: 35743290 PMCID: PMC9224374 DOI: 10.3390/ijms23126852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
Uncontrolled proliferative diseases, such as fibrosis or cancer, can be fatal. We previously found that a compound containing the chromone scaffold (CS), ONG41008, had potent antifibrogenic effects associated with EMT or cell-cycle control resembling tumorigenesis. We investigated the effects of ONG41008 on tumor cells and compared these effects with those in pathogenic myofibroblasts. Stimulation of A549 (lung carcinoma epithelial cells) or PANC1 (pancreatic ductal carcinoma cells) with ONG41008 resulted in robust cellular senescence, indicating that dysregulated cell proliferation is common to fibrotic cells and tumor cells. The senescence was followed by multinucleation, a manifestation of mitotic slippage. There was significant upregulation of expression and rapid nuclear translocation of p-TP53 and p16 in the treated cancer cells, which thereafter died after 72 h confirmed by 6 day live imaging. ONG41008 exhibited a comparable senogenic potential to that of dasatinib. Interestingly, ONG41008 was only able to activate caspase-3, 7 in comparison with quercetin and fisetin, also containing CS in PANC1. ONG41008 did not seem to be essentially toxic to normal human lung fibroblasts or primary prostate epithelial cells, suggesting ONG41008 can distinguish the intracellular microenvironment between normal cells and aged or diseased cells. This effect might occur as a result of the increased NAD/NADH ratio, because ONG41008 restored this important metabolic ratio in cancer cells. Taken together, this is the first study to demonstrate that a small molecule can arrest uncontrolled proliferation during fibrogenesis or tumorigenesis via both senogenic and senolytic potential. ONG41008 could be a potential drug for a broad range of fibrotic or tumorigenic diseases.
Collapse
|
367
|
Wang C, Hao X, Zhang R. Targeting cellular senescence to combat cancer and aging. Mol Oncol 2022; 16:3319-3332. [PMID: 35674055 PMCID: PMC9490146 DOI: 10.1002/1878-0261.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Senescence is a complex cellular process that is implicated in various physiological and pathological processes. It is characterized by a stable state of cell growth arrest and by a secretome of diverse pro‐inflammatory factors, chemokines and growth factors. In this review, we summarize the context‐dependent role of cellular senescence in ageing and in age‐related diseases, such as cancer. We discuss current approaches to targeting senescence to develop therapeutic strategies to combat cancer and to promote healthy ageing, and we outline our vision for future research directions for senescence‐based interventions in these fields.
Collapse
Affiliation(s)
- Chen Wang
- Immunology, Microenvironment & Metastasis Program The Wistar Institute Philadelphia, PA 19104 USA
| | - Xue Hao
- Immunology, Microenvironment & Metastasis Program The Wistar Institute Philadelphia, PA 19104 USA
| | - Rugang Zhang
- Immunology, Microenvironment & Metastasis Program The Wistar Institute Philadelphia, PA 19104 USA
| |
Collapse
|
368
|
Lin Y, Xu Z, Zhou B, Ma K, Jiang M. Pentoxifylline Inhibits Pulmonary Fibrosis by Regulating Cellular Senescence in Mice. Front Pharmacol 2022; 13:848263. [PMID: 35662697 PMCID: PMC9160723 DOI: 10.3389/fphar.2022.848263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease, and its occurrence and development are mediated by cellular senescence. Drugs targeting senescent cells seem like a promising and efficacious strategy for IPF treatment. Previous studies have illustrated that pentoxifylline (PTX) may play a certain role in inhibiting pulmonary fibrosis and combating cellular senescence. In this study, we demonstrated that PTX administration inhibits pulmonary fibrosis development and cellular senescence in the bleomycin (BLM)-induced IPF mice model. Moreover, the expression levels of fibrosis-related genes and senescence-related genes in mice lung tissue and primary pulmonary fibroblasts illustrated lung fibroblasts' vital role in these two processes. And the curative effect of PTX was completed mainly by acting on lung fibroblasts. Besides, during the whole treatment, delayed initiation or advanced halt of PTX administration would influence its effectiveness in reducing fibrotic and senescent traits in various degrees, and the latter influenced more. We further determined that a long period of PTX administration could bring noticeable benefits to mice in recovering BLM-induced lung fibrosis and suppressing age-associated cellular senescence. Moreover, it was still effective when PTX administration was used to treat senescent human fibroblasts. Thus, our findings manifested that PTX therapy is an efficient remedy for pulmonary fibrosis by suppressing cellular senescence.
Collapse
Affiliation(s)
- Yifan Lin
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Beibei Zhou
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Keer Ma
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Mengyi Jiang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
369
|
Abstract
Senescence is a cellular response to a variety of stress signals that is characterized by a stable withdrawal from the cell cycle and major changes in cell morphology and physiology. While most research on senescence has been performed on non-cancer cells, it is evident that cancer cells can also mount a senescence response. In this Review, we discuss how senescence can be induced in cancer cells. We describe the distinctive features of senescent cancer cells and how these changes in cellular physiology might be exploited for the selective eradication of these cells (senolysis). We discuss activation of the host immune system as a particularly attractive way to clear senescent cancer cells. Finally, we consider the challenges and opportunities provided by a 'one-two punch' sequential treatment of cancer with pro-senescence therapy followed by senolytic therapy.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lina Lankhorst
- Cancer, Stem Cells & Developmental Biology programme, Utrecht University, Utrecht, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
370
|
Gresham RC, Kumar D, Copp J, Lee MA, Leach JK. Characterization of Induction and Targeting of Senescent Mesenchymal Stromal Cells. Tissue Eng Part C Methods 2022; 28:239-249. [PMID: 35438548 PMCID: PMC9247679 DOI: 10.1089/ten.tec.2022.0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) from older donors have limited potential for bone tissue formation compared with cells from younger donors, and cellular senescence has been postulated as an underlying cause. There is a critical need for methods to induce premature senescence to study this phenomenon efficiently and reproducibly. However, the field lacks consensus on the appropriate method to induce and characterize senescence. Moreover, we have a limited understanding of the effects of commonly used induction methods on senescent phenotype. To address this significant challenge, we assessed the effect of replicative, hydrogen peroxide, etoposide, and irradiation-induced senescence on human MSCs using a battery of senescent cell characteristics. All methods arrested proliferation and resulted in increased cell spreading compared with low passage controls. Etoposide and irradiation increased expression of senescence-related genes in MSCs at early time points, proinflammatory cytokine secretion, DNA damage, and production of senescence-associated β-galactosidase. We then evaluated the effect of fisetin, a flavonoid and candidate senolytic agent, to clear senescent cells and promote osteogenic differentiation of MSCs entrapped in gelatin methacryloyl (GelMA) hydrogels in vitro. When studying a mixture of nonsenescent and senescent MSCs, we did not observe decreases in senescent markers or increases in osteogenesis with fisetin treatment. However, the application of the same treatment toward a heterogeneous population of human bone marrow-derived cells entrapped in GelMA decreased senescent markers and increased osteogenesis after 14 days in culture. These results identify best practices for inducing prematurely senescent MSCs and motivate the need for further study of fisetin as a senolytic agent. Impact Statement The accumulation of senescent cells within the body has detrimental effects on tissue homeostasis. To study the role of senescent cells on tissue repair and regeneration, there is a need for effective means to induce premature cell senescence. Herein, we characterized the influence of common stressors to induce premature senescence in human mesenchymal stromal cells (MSCs). Irradiation of MSCs resulted in a phenotype most similar to quiescent, high-passage cells. These studies establish key biomarkers for evaluation when studying senescent cells in vitro.
Collapse
Affiliation(s)
- Robert C.H. Gresham
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA
| | - Devanshi Kumar
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | - Jonathan Copp
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA.,Department of Orthopedic Trauma Surgery, Forrest General Hospital, Hattiesburg, Mississippi, USA
| | - Mark A. Lee
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA
| | - J. Kent Leach
- Department of Orthopedic Surgery, School of Medicine, University of California Davis Health, Sacramento, California, USA.,Department of Biomedical Engineering, University of California, Davis, Davis, California, USA.,Address correspondence to: J. Kent Leach, PhD, Department of Orthopaedic Surgery, School of Medicine, University of California, Davis Health, 4800 Y Street, Suite 3600, Sacramento, CA 95817, USA
| |
Collapse
|
371
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
372
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
373
|
Lee KA, Flores RR, Jang IH, Saathoff A, Robbins PD. Immune Senescence, Immunosenescence and Aging. FRONTIERS IN AGING 2022; 3:900028. [PMID: 35821850 PMCID: PMC9261375 DOI: 10.3389/fragi.2022.900028] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/06/2022] [Indexed: 01/15/2023]
Abstract
With aging, there is increased dysfunction of both innate and adaptive immune responses, which contributes to impaired immune responses to pathogens and greater mortality and morbidity. This age-related immune dysfunction is defined in general as immunosenescence and includes an increase in the number of memory T cells, loss of ability to respond to antigen and a lingering level of low-grade inflammation. However, certain features of immunosenescence are similar to cellular senescence, which is defined as the irreversible loss of proliferation in response to damage and stress. Importantly, senescence cells can develop an inflammatory senescence-associated secretory phenotype (SASP), that also drives non-autonomous cellular senescence and immune dysfunction. Interestingly, viral infection can increase the extent of immune senescence both directly and indirectly, leading to increased immune dysfunction and inflammation, especially in the elderly. This review focuses on age-related immune dysfunction, cellular senescence and the impaired immune response to pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
374
|
Zhong R, Farag MA, Chen M, He C, Xiao J. Recent advances in the biosynthesis, structure–activity relationships, formulations, pharmacology, and clinical trials of fisetin. EFOOD 2022. [DOI: 10.1002/efd2.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ruting Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Chengwei He
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
375
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
376
|
Al Mamun A, Sufian MA, Uddin MS, Sumsuzzman DM, Jeandet P, Islam MS, Zhang HJ, Kong AN, Sarwar MS. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol 2022; 928:174991. [PMID: 35513016 DOI: 10.1016/j.ejphar.2022.174991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023]
Abstract
During the last few decades, cancer has remained one of the deadliest diseases that endanger human health, emphasizing urgent drug discovery. Cellular senescence has gained a great deal of attention in recent years because of its link to the development of cancer therapy. Senescent cells are incapable of proliferating due to irreversibly inhibited the initiation of the cell cycle pathways. However, senescent cells aggregate in tissues and produce a pro-inflammatory secretome called senescence-associated secretory phenotype (SASP) that can cause serious harmful effects if not managed properly. There is mounting evidence that senescent cells lead to various phases of tumorigenesis in various anatomical sites, owing mostly to the paracrine activities of the SASP. Therefore, a new treatment field called senotherapeutics has been established. Senotherapeutics are newly developed anticancer agents that have been demonstrated to inhibit cancer effectively. In light of recent findings, several promising natural products have been identified as senescence inducers and senotherapeutics, including, miliusanes, epigallocatechin gallate, phloretin, silybin, resveratrol, genistein, sulforaphane, quercetin, allicin, fisetin, piperlongumine, berberine, triptolide, tocotrienols and curcumin analogs. Several of them have already been validated through preclinical trials and exert an enormous potential for clinical trials. This review article focuses on and summarises the latest advances on cellular senescence and its potential as a target for cancer treatment and highlights the well-known natural products as senotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims, Cedex 2, France
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
377
|
Tan H, Xu J, Liu Y. Ageing, cellular senescence and chronic kidney disease: experimental evidence. Curr Opin Nephrol Hypertens 2022; 31:235-243. [PMID: 35142744 PMCID: PMC9035037 DOI: 10.1097/mnh.0000000000000782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is often viewed as an accelerated and premature ageing of the kidney, as they share common pathological features characterized by cellular senescence. In this review, we summarize the experimental evidence linking cellular senescence to the pathobiology of kidney ageing and CKD, and discuss the strategies for targeting senescent cells in developing therapeutics for ageing-related kidney disorders. RECENT FINDINGS Kidney ageing and CKD are featured with increased cellular senescence, an irreversible state of cell cycle arrest and the cessation of cell division. Senescent cells secrete a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP). Secondary senescence can be induced by primary senescent cells via a mechanism involving direct contact or the SASP. Various senolytic therapies aiming to selectively remove senescent cells in vivo have been developed. Senostatic approaches to suppress senescence or inhibit SASP, as well as nutrient signalling regulators are also validated in animal models of ageing. SUMMARY These recent studies provide experimental evidence supporting the notion that accumulation of senescent cells and their associated SASP is a main driver leading to structural and functional organ degeneration in CKD and other ageing-related disorder.
Collapse
Affiliation(s)
- Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
378
|
Cellular senescence in cancers: relationship between bone marrow cancer and cellular senescence. Mol Biol Rep 2022; 49:4003-4012. [PMID: 35449316 DOI: 10.1007/s11033-021-07101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/16/2021] [Indexed: 10/18/2022]
Abstract
INTRODUCTION There are many factors and conditions that lead to cellular senescence. Replicative senescence and Hayflick phenomenon are the most important causes of cellular senescence. Senescent cells also lead to wound healing conditions resulting from injury and toxic conditions. MATERIAL AND METHODS When a cell becomes senescent, it stops replication and begins to leak inflammatory signals before growth. It also alters the extracellular matrix and behavior of neighbor cells and even motivates them. This review was conducted to determine the association between senescence and bone marrow cancer. RESULTS The results showed that senescent cells have a short life span due to their self-destructive nature or natural removal from the body by the immune system. These signals are effective to a certain extent in regenerating the damaged cells when present in a transient state. Cellular senescence can decrease the risk of all cancers, including bone marrow cancer, ensuring that cells with significant DNA injury are prevented from replication. CONCLUSION However, senescent cells increase in number as they age, which is very harmful over time. These cells extend into an older tissue for longer periods of time and form longer clusters in older tissues. Therefore, cellular senescence significantly contributes to aging.
Collapse
|
379
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
380
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022; 23:ijms23084109. [PMID: 35456927 PMCID: PMC9028919 DOI: 10.3390/ijms23084109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis. Here, we provide a review of the effects of neuroendocrine regulators on these mechanisms. Our analysis allowed us to postulate a multilevel system of central regulators involving neurotransmitters, glucocorticoids, melatonin, and the thymic hormones. This system finely regulates the cell cycle and metabolic/catabolic processes depending on the level of systemic stress, stage of stress response, and energy capabilities of the body, shifting the balance between cell cycle progression, cell cycle stopping, senescence, and apoptosis. These processes and levels of regulation should be considered when studying the mechanisms of ageing and the proliferation on the level of the whole organism.
Collapse
|
381
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
382
|
Cellular senescence in the Aging Brain: A promising target for neurodegenerative diseases. Mech Ageing Dev 2022; 204:111675. [DOI: 10.1016/j.mad.2022.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 01/10/2023]
|
383
|
Bai Z, Yang P, Yu F, Li Z, Yao Z, Martinez J, Li M, Xu H. Combining adoptive NK cell infusion with a dopamine-releasing peptide reduces senescent cells in aged mice. Cell Death Dis 2022; 13:305. [PMID: 35383143 PMCID: PMC8983684 DOI: 10.1038/s41419-022-04562-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
Aging inducing the development of senescent cells (SNCs) in various tissues is considered as the main cause of the age-related diseases. Senotherapy has become a promising anti-aging therapy. However, the effectivity and side-effect of senolytic agents are still concern. Here, we observed the downregulation of senescence-related genes by adoptive infusion of natural killer (NK) cells in 26 cases in peripheral blood CD3+ T cells. NK cell treatment also significantly decreased levels of senescence markers and senescence-associated secretory phenotypes (SASPs) in three senescent adipose tissues when culturing them together. Interestingly, cytotoxic activity of mouse NK cells against SNCs was significantly enhanced by dopamine in vitro through D1-like receptors. Acein, dopamine-releasing peptide, promoted the adoptive infusion of NK cells in effectively eliminating SNCs in a variety of tissues and reduced local and systemic SASPs in aging mice but Acein alone did not have the senolytic effect. These data demonstrated that adoptive infusion of NK cells is an effective means in removing SNCs, and peptide Acein combined with NK cells further enhances this effect in aging mice.
Collapse
|
384
|
Xu W, Zhao T, Chen H, Huang N, Gong H, Zhang J, Yang Y, Li T, Zhang G, Gong C, Yang M, Xiao H. Pan-mTOR inhibitors sensitize the senolytic activity of Navitoclax via mTORC2 inhibition-mediated apoptotic signaling. Biochem Pharmacol 2022; 200:115045. [DOI: 10.1016/j.bcp.2022.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
385
|
Lv N, Zhao Y, Liu X, Ye L, Liang Z, Kang Y, Dong Y, Wang W, Kolliputi N, Shi L. Dysfunctional telomeres through mitostress-induced cGAS/STING activation to aggravate immune senescence and viral pneumonia. Aging Cell 2022; 21:e13594. [PMID: 35313074 PMCID: PMC9009109 DOI: 10.1111/acel.13594] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022] Open
Abstract
Disproportionately high incidence and mortality of respiratory infection such as influenza A virus (IAV) and SARS-CoV-2 have been evidenced in the elderly, but the role and the mechanism of age-associated immune deregulation in disease exacerbation are not well defined. Using a late generation of mice deficient in telomerase RNA (Terc-/- ), we herein demonstrated that aged mice were exquisitely susceptible to respiratory viral infection, with excessive inflammation and increased mortality. Furthermore, we identified the cGAS/STING pathway, which was essentially induced by the leaked mitochondrial DNA, as a biologically relevant mechanism contributing to exaggerated inflammation in Terc-/- mice following viral infection. Innate immune cells, mainly, macrophages with shortened telomeres, exhibited hallmarks of cellular senescence, mitochondrial distress, and aberrant activation of STING and NLRP3 inflammasome pathways, which predisposed mice to severe viral pneumonia during commonly mild infections. Application of STING inhibitor and, more importantly, senolytic agent, reduced the burden of stressed macrophages, improved mitochondrial integrity, and suppressed STING activation, thereby conferring the protection for Terc-/- mice against respiratory infection. Together, the findings expand our understanding of innate immune senescence and reveal the potential of the senolytics as a promising treatment to alleviate the symptom of viral pneumonia, particularly for the older population.
Collapse
Affiliation(s)
- Nianyin Lv
- Department of Immunology and Medical Microbiology Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Yufang Zhao
- Department of Basic Medicine Jiangxi Medical College Nanchang Jiangxi China
| | - Xiaoyi Liu
- Department of Immunology and Medical Microbiology Nanjing University of Chinese Medicine Nanjing Jiangsu China
- Department of Pharmacology and Physiology University of Rochester School of Medicine and Dentistry Rochester New York USA
| | - Lusha Ye
- Department of Immunology and Medical Microbiology Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Zihao Liang
- Department of Immunology and Medical Microbiology Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Yanhua Kang
- Department of Immunology and Medical Microbiology Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Yeping Dong
- Department of Immunology and Medical Microbiology Nanjing University of Chinese Medicine Nanjing Jiangsu China
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou Zhejiang China
| | - Wei Wang
- Department of Clinical Laboratory the Tongde Hospital Affiliated to Zhejiang TCM University Hangzhou Zhejiang China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology Department of Internal Medicine Morsani College of Medicine University of South Florida Tampa Florida USA
| | - Liyun Shi
- Department of Immunology and Medical Microbiology Nanjing University of Chinese Medicine Nanjing Jiangsu China
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou Zhejiang China
| |
Collapse
|
386
|
Abdelgawad IY, Agostinucci K, Zordoky BN. Cardiovascular ramifications of therapy-induced endothelial cell senescence in cancer survivors. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166352. [PMID: 35041996 PMCID: PMC8844223 DOI: 10.1016/j.bbadis.2022.166352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022]
Abstract
Cancer survivorship has remarkably improved over the past decades; nevertheless, cancer survivors are burdened with multiple health complications primarily caused by their cancer therapy. Therapy-induced senescence is recognized as a fundamental mechanism contributing to adverse health complications in cancer survivors. In this mini-review, we will discuss the recent literature describing the mechanisms of cancer therapy-induced senescence. We will focus on endothelial cell senescence since it has been shown to be a key player in numerous cardiovascular complications. We will also discuss novel senotherapeutic approaches that have the potential to combat therapy-induced endothelial cell senescence.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Kevin Agostinucci
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
387
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
388
|
Zhu Y, Prata LGL, Gerdes EOW, Netto JME, Pirtskhalava T, Giorgadze N, Tripathi U, Inman CL, Johnson KO, Xue A, Palmer AK, Chen T, Schaefer K, Justice JN, Nambiar AM, Musi N, Kritchevsky SB, Chen J, Khosla S, Jurk D, Schafer MJ, Tchkonia T, Kirkland JL. Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. EBioMedicine 2022; 77:103912. [PMID: 35292270 PMCID: PMC9034457 DOI: 10.1016/j.ebiom.2022.103912] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential. However, readily clinically-translatable, practical strategies for increasing α-Klotho are not at hand. Here, we report that orally-active, clinically-translatable senolytics can increase α-Klotho in mice and humans. METHODS We examined α-Klotho expression in three different human primary cell types co-cultured with conditioned medium (CM) from senescent or non-senescent cells with or without neutralizing antibodies. We assessed α-Klotho expression in aged, obese, and senescent cell-transplanted mice treated with vehicle or senolytics. We assayed urinary α-Klotho in patients with idiopathic pulmonary fibrosis (IPF) who were treated with the senolytic drug combination, Dasatinib plus Quercetin (D+Q). FINDINGS We found exposure to the senescent cell secretome reduces α-Klotho in multiple nonsenescent human cell types. This was partially prevented by neutralizing antibodies against the senescence-associated secretory phenotype (SASP) factors, activin A and Interleukin 1α (IL-1α). Consistent with senescent cells' being a cause of decreased α-Klotho, transplanting senescent cells into younger mice reduced brain and urine α-Klotho. Selectively removing senescent cells genetically or pharmacologically increased α-Klotho in urine, kidney, and brain of mice with increased senescent cell burden, including naturally-aged, diet-induced obese (DIO), or senescent cell-transplanted mice. D+Q increased α-Klotho in urine of patients with IPF, a disease linked to cellular senescence. INTERPRETATION Senescent cells cause reduced α-Klotho, partially due to their production of activin A and IL-1α. Targeting senescent cells boosts α-Klotho in mice and humans. Thus, clearing senescent cells restores α-Klotho, potentially opening a novel, translationally-feasible avenue for developing orally-active small molecule, α-Klotho-enhancing clinical interventions. Furthermore, urinary α-Klotho may prove to be a useful test for following treatments in senolytic clinical trials. FUNDING This work was supported by National Institute of Health grants AG013925 (J.L.K.), AG062413 (J.L.K., S.K.), AG044271 (N.M.), AG013319 (N.M.), and the Translational Geroscience Network (AG061456: J.L.K., T.T., N.M., S.B.K., S.K.), Robert and Arlene Kogod (J.L.K.), the Connor Group (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K.), and the Noaber Foundation (J.L.K.). The previous IPF clinical trial was supported by the Claude D. Pepper Older Americans Independence Centers at WFSM (AG021332: J.N.J., S.B.K.), UTHSCA (AG044271: A.M.N.), and the Translational Geroscience Network.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | | | - Erin O. Wissler Gerdes
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | | | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Christina L. Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Kurt O. Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Allyson K. Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kalli Schaefer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Jamie N. Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anoop M. Nambiar
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging, University of Texas Health Sciences Center at San Antonio and Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Stephen B. Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marissa J. Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
389
|
Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front Cell Dev Biol 2022; 10:822816. [PMID: 35252191 PMCID: PMC8890612 DOI: 10.3389/fcell.2022.822816] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.
Collapse
Affiliation(s)
- Li Hu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jing Liu
- Lab of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yunxia Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
390
|
Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:823945. [PMID: 35309994 PMCID: PMC8924288 DOI: 10.3389/fbioe.2022.823945] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar spondylosis. Over the past few years, the relevance between cellular senescence and IVDD has been widely studied, and the senescence-associated secretory phenotype (SASP) produced by senescent cells is found to remodel extracellular matrix (ECM) metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and suppression of SASP production by senomorphics/senostatics are effective strategies to alleviate degenerative diseases including IVDD. Here, we review the involvement of senescence in the process of IVDD; we also discuss the potential of senolytics on eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in the future.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| |
Collapse
|
391
|
Morsli S, Doherty GJ, Muñoz-Espín D. Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mech Ageing Dev 2022; 202:111618. [PMID: 34990647 DOI: 10.1016/j.mad.2021.111618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023]
Abstract
Pharmacologically active compounds that manipulate cellular senescence (senotherapies) have recently shown great promise in multiple pre-clinical disease models, and some of them are now being tested in clinical trials. Despite promising proof-of-principle evidence, there are known on- and off-target toxicities associated with these compounds, and therefore more refined and novel strategies to improve their efficacy and specificity for senescent cells are being developed. Preferential release of drugs and macromolecular formulations within senescent cells has been predominantly achieved by exploiting one of the most widely used biomarkers of senescence, the increase in lysosomal senescence-associated β-galactosidase (SA-β-gal) activity, a common feature of most reported senescent cell types. Galacto-conjugation is a versatile therapeutic and detection strategy to facilitate preferential targeting of senescent cells by using a variety of existing formulations, including modular systems, nanocarriers, activatable prodrugs, probes, and small molecules. We discuss the benefits and drawbacks of these specific senescence targeting tools and how the strategy of galacto-conjugation might be utilised to design more specific and sophisticated next-generation senotherapeutics, as well as theranostic agents. Finally, we discuss some innovative strategies and possible future directions for the field.
Collapse
Affiliation(s)
- Samir Morsli
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Gary J Doherty
- Department of Oncology, Box 193, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| |
Collapse
|
392
|
Shen J, Shan J, Zhong L, Liang B, Zhang D, Li M, Tang H. Dietary Phytochemicals that Can Extend Longevity by Regulation of Metabolism. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:12-19. [PMID: 35025006 PMCID: PMC8756168 DOI: 10.1007/s11130-021-00946-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Diet provides energy and nutrition for human survival, and also provides various joy of taste. Extensive studies have shown that the major components of diet, such as protein, carbohydrate and fat, play important roles in regulating aging and longevity. Whether other dietary ingredients can help prevent aging and extend longevity is a very interesting question. Here based on recent findings, we discussed dietary plant ingredients that can extend longevity by regulation of metabolism, targeting TRP channels, mitophagy, senescence pathways and circadian rhythms. Better understanding of the detailed effects and mechanisms of dietary ingredients on longevity regulation, would be helpful for developing new intervention tools for preventing aging and aging related diseases.
Collapse
Affiliation(s)
- Jie Shen
- Department of Biomedical Engineering, College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Jianying Shan
- Department of Biomedical Engineering, College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lichao Zhong
- Department of Biomedical Engineering, College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Boying Liang
- Department of Biomedical Engineering, College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dake Zhang
- Department of Biomedical Engineering, College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Motao Li
- Department of Optoelectronic Information Science and Engineering, College of Science, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hao Tang
- Department of Biomedical Engineering, College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
393
|
Abstract
PURPOSE OF REVIEW Cellular senescence (i.e. permanent withdrawal from the cell cycle) is increasingly recognized as a pathologic feature in a variety of inflammatory liver diseases, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC) and additional cholangiopathies. Herein, we provide an update on the interplay between cholangiocytes, cellular senescence and the cholangiopathies. RECENT FINDINGS The themes covered by this review include novel models for studying the role of senescent cholangiocytes and the cholangiopathies, identification and modulation of key pathways or molecules regulating cholangiocyte senescence, and discovery of druggable targets to advance therapeutic options for the cholangiopathies. Most recent studies focused on PSC; however, the concepts and findings may be applied to additional cholangiopathies. SUMMARY Cholangiopathies present unique and divergent clinicopathological features, causes and genetic backgrounds, but share several common disease processes. Cholangiocyte senescence in the cholestatic cholangiopathies, primarily PSC and PBC, is regarded as a key pathogenetic process. Importantly, senescent cholangiocytes exhibit phenotypic features including the senescence-associated secretory phenotype (SASP) and resistance to apoptosis that provide new directions for basic research and new prognostic and therapeutic approaches for clinical practice.
Collapse
|
394
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
395
|
Wei X, Li M, Zheng Z, Ma J, Gao Y, Chen L, Peng Y, Yu S, Yang L. Senescence in chronic wounds and potential targeted therapies. BURNS & TRAUMA 2022; 10:tkab045. [PMID: 35187179 PMCID: PMC8853744 DOI: 10.1093/burnst/tkab045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.) do not usually heal in a timely and orderly manner but rather last for years and may lead to irreversible adverse events, resulting in a substantial financial burden for patients and society. Recently, a large amount of evidence has proven that cellular senescence has a crucial influence on chronic nonhealing wounds. As a defensive mechanism, cell senescence is a manner of cell-cycle arrest with increased secretory phenotype to resist death, preventing cells from stress-induced damage in cancer and noncancer diseases. A growing amount of research has advanced the perception of cell senescence in various chronic wounds and focuses on pathological and physiological processes and therapies targeting senescent cells. However, previous reviews have failed to sum up novel understandings of senescence in chronic wounds and emerging strategies targeting senescence. Herein, we discuss the characteristics and mechanisms of cellular senescence and the link between senescence and chronic wounds as well as some novel antisenescence strategies targeting other diseases that may be applied for chronic wounds.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
396
|
Limbad C, Doi R, McGirr J, Ciotlos S, Perez K, Clayton ZS, Daya R, Seals DR, Campisi J, Melov S. Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. iScience 2022; 25:103848. [PMID: 35198901 PMCID: PMC8851282 DOI: 10.1016/j.isci.2022.103848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 01/25/2022] [Indexed: 01/18/2023] Open
Abstract
Cellular senescence is a driver of many age-related pathologies. There is an active search for pharmaceuticals termed senolytics that can mitigate or remove senescent cells in vivo by targeting genes that promote the survival of senescent cells. We utilized single-cell RNA sequencing to identify CRYAB as a robust senescence-induced gene and potential target for senolysis. Using chemical inhibitor screening for CRYAB disruption, we identified 25-hydroxycholesterol (25HC), an endogenous metabolite of cholesterol biosynthesis, as a potent senolytic. We then validated 25HC as a senolytic in mouse and human cells in culture and in vivo in mouse skeletal muscle. Thus, 25HC represents a potential class of senolytics, which may be useful in combating diseases or physiologies in which cellular senescence is a key driver.
Collapse
Affiliation(s)
| | - Ryosuke Doi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia McGirr
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Kevin Perez
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Radha Daya
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
397
|
Trussoni CE, O'Hara SP, LaRusso NF. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 2022; 44:527-544. [PMID: 35178659 DOI: 10.1007/s00281-022-00909-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.
Collapse
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA. .,Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
398
|
Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, Mao X, Yang M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci 2022; 23:ijms23042176. [PMID: 35216290 PMCID: PMC8879655 DOI: 10.3390/ijms23042176] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
399
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
400
|
Li Y, Liu Y, Chen J, Hu J. Protective effect of Fisetin on the lipopolysaccharide-induced preeclampsia-like rats. Hypertens Pregnancy 2022; 41:23-30. [PMID: 34933650 DOI: 10.1080/10641955.2021.2013874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This article is aimed to investigate the function and underlying action mechanism of Fisetin in LPS-induced PE rats. METHODS LPS-induced PE-like rat model was established to explore the effects of Fisetin on PE in vivo. RESULTS Fisetin reduced hypertension, proteinuria, TNF-α, IL-6, IL-1β, MDA, and sFlt-1/PlGF ratio, but elevated the placental, fetal weight, GSH and SOD in PE rats. Moreover, Fisetin suppressed TLR4/NF-κB pathway, as well as promoting Nrf2/HO-1 pathway in placental tissues of PE rats. CONCLUSIONS Fisetin exerted protective role and modulated the activation of TLR4/NF-κB and Nrf2/HO-1 pathways in PE-like rat models.
Collapse
Affiliation(s)
| | | | - Jinfeng Chen
- Department of Obstetrics and Gynecology, Shengli Oilfield Central Hospital, Dongying City, Shandong Province, China
| | - Jian Hu
- Department of Obstetrics and Gynecology, Shengli Oilfield Central Hospital, Dongying City, Shandong Province, China
| |
Collapse
|