351
|
Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 2016; 113:E6117-E6125. [PMID: 27671647 DOI: 10.1073/pnas.1606724113] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.
Collapse
|
352
|
Radhakrishnan A, Chen YH, Martin S, Alhusaini N, Green R, Coller J. The DEAD-Box Protein Dhh1p Couples mRNA Decay and Translation by Monitoring Codon Optimality. Cell 2016; 167:122-132.e9. [PMID: 27641505 DOI: 10.1016/j.cell.2016.08.053] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/25/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
Abstract
A major determinant of mRNA half-life is the codon-dependent rate of translational elongation. How the processes of translational elongation and mRNA decay communicate is unclear. Here, we establish that the DEAD-box protein Dhh1p is a sensor of codon optimality that targets an mRNA for decay. First, we find mRNAs whose translation elongation rate is slowed by inclusion of non-optimal codons are specifically degraded in a Dhh1p-dependent manner. Biochemical experiments show Dhh1p is preferentially associated with mRNAs with suboptimal codon choice. We find these effects on mRNA decay are sensitive to the number of slow-moving ribosomes on an mRNA. Moreover, we find Dhh1p overexpression leads to the accumulation of ribosomes specifically on mRNAs (and even codons) of low codon optimality. Lastly, Dhh1p physically interacts with ribosomes in vivo. Together, these data argue that Dhh1p is a sensor for ribosome speed, targeting an mRNA for repression and subsequent decay.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ying-Hsin Chen
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sophie Martin
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Najwa Alhusaini
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Jeff Coller
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
353
|
Kwon KC, Chan HT, León IR, Williams-Carrier R, Barkan A, Daniell H. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation. PLANT PHYSIOLOGY 2016; 172:62-77. [PMID: 27465114 PMCID: PMC5074611 DOI: 10.1104/pp.16.00981] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/25/2016] [Indexed: 05/20/2023]
Abstract
Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Ileana R León
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Rosalind Williams-Carrier
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Alice Barkan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030 (K.-C.K., H.-T.C., H.D.);Global Research, Novo Nordisk, Malov DK-2760, Denmark (I.R.L.); andInstitute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229 (R.W.-C., A.B.)
| |
Collapse
|
354
|
Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Proc Natl Acad Sci U S A 2016; 113:9605-10. [PMID: 27506798 DOI: 10.1073/pnas.1525268113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The circadian clock has a profound effect on gene regulation, controlling rhythmic transcript accumulation for up to half of expressed genes in eukaryotes. Evidence also exists for clock control of mRNA translation, but the extent and mechanisms for this regulation are not known. In Neurospora crassa, the circadian clock generates daily rhythms in the activation of conserved mitogen-activated protein kinase (MAPK) pathways when cells are grown in constant conditions, including rhythmic activation of the well-characterized p38 osmosensing (OS) MAPK pathway. Rhythmic phosphorylation of the MAPK OS-2 (P-OS-2) leads to temporal control of downstream targets of OS-2. We show that osmotic stress in N. crassa induced the phosphorylation of a eukaryotic elongation factor-2 (eEF-2) kinase, radiation sensitivity complementing kinase-2 (RCK-2), and that RCK-2 is necessary for high-level phosphorylation of eEF-2, a key regulator of translation elongation. The levels of phosphorylated RCK-2 and phosphorylated eEF-2 cycle in abundance in wild-type cells but not in cells deleted for OS-2 or the core clock component FREQUENCY (FRQ). Translation extracts from cells grown in constant conditions show decreased translational activity in the late subjective morning, coincident with the peak in eEF-2 phosphorylation, and rhythmic translation of glutathione S-transferase (GST-3) from constitutive mRNA levels in vivo is dependent on circadian regulation of eEF-2 activity. In contrast, rhythms in phosphorylated eEF-2 levels are not necessary for rhythms in accumulation of the clock protein FRQ, indicating that clock control of eEF-2 activity promotes rhythmic translation of specific mRNAs.
Collapse
|
355
|
Nakajima R, Jung A, Yoon BJ, Baker BJ. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators. Front Synaptic Neurosci 2016; 8:22. [PMID: 27547183 PMCID: PMC4974255 DOI: 10.3389/fnsyn.2016.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Center for Functional Connectomics, Korea Institute of Science and Technology Seongbuk-gu, Seoul, South Korea
| | - Arong Jung
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; College of Life Sciences and Biotechnology, Korea UniversitySeongbuk-gu, Seoul, South Korea
| | - Bong-June Yoon
- College of Life Sciences and Biotechnology, Korea University Seongbuk-gu, Seoul, South Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; Department of Neuroscience, Korea University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
356
|
Hurley JM, Loros JJ, Dunlap JC. Circadian Oscillators: Around the Transcription-Translation Feedback Loop and on to Output. Trends Biochem Sci 2016; 41:834-846. [PMID: 27498225 DOI: 10.1016/j.tibs.2016.07.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
From cyanobacteria to mammals, organisms have evolved timing mechanisms to adapt to environmental changes in order to optimize survival and improve fitness. To anticipate these regular daily cycles, many organisms manifest ∼24h cell-autonomous oscillations that are sustained by transcription-translation-based or post-transcriptional negative-feedback loops that control a wide range of biological processes. With an eye to identifying emerging common themes among cyanobacterial, fungal, and animal clocks, some major recent developments in the understanding of the mechanisms that regulate these oscillators and their output are discussed. These include roles for antisense transcription, intrinsically disordered proteins, codon bias in clock genes, and a more focused discussion of post-transcriptional and translational regulation as a part of both the oscillator and output.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jennifer J Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
357
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
358
|
Mishima Y, Tomari Y. Codon Usage and 3' UTR Length Determine Maternal mRNA Stability in Zebrafish. Mol Cell 2016; 61:874-85. [PMID: 26990990 DOI: 10.1016/j.molcel.2016.02.027] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
The control of mRNA stability plays a central role in regulating gene expression. In metazoans, the earliest stages of development are driven by maternally supplied mRNAs. The degradation of these maternal mRNAs is critical for promoting the maternal-to-zygotic transition of developmental programs, although the underlying mechanisms are poorly understood in vertebrates. Here, we characterized maternal mRNA degradation pathways in zebrafish using a transcriptome analysis and systematic reporter assays. Our data demonstrate that ORFs enriched with uncommon codons promote deadenylation by the CCR4-NOT complex in a translation-dependent manner. This codon-mediated mRNA decay is conditional on the context of the 3' UTR, with long 3' UTRs conferring resistance to deadenylation. These results indicate that the combined effect of codon usage and 3' UTR length determines the stability of maternal mRNAs in zebrafish embryos. Our study thus highlights the codon-mediated mRNA decay as a conserved regulatory mechanism in eukaryotes.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
359
|
Sagi D, Rak R, Gingold H, Adir I, Maayan G, Dahan O, Broday L, Pilpel Y, Rechavi O. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLoS Genet 2016; 12:e1006264. [PMID: 27560950 PMCID: PMC4999229 DOI: 10.1371/journal.pgen.1006264] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal's lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene's promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species.
Collapse
Affiliation(s)
- Dror Sagi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Rak
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Idan Adir
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gadi Maayan
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orna Dahan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
360
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
361
|
Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE, Qin Y, Yao J, Khokha MK, Giraldez AJ. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J 2016; 35:2087-2103. [PMID: 27436874 DOI: 10.15252/embj.201694699] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during development and homeostasis. We show that the codon triplet contains translation-dependent regulatory information that influences transcript decay. Codon composition shapes maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, Xenopus, mouse, and Drosophila, and gene expression during homeostasis across human tissues. Some synonymous codons show consistent stabilizing or destabilizing effects, suggesting that amino acid composition influences mRNA stability. Codon composition affects both polyadenylation status and translation efficiency. Thus, the ribosome interprets two codes within the mRNA: the genetic code which specifies the amino acid sequence and a conserved "codon optimality code" that shapes mRNA stability and translation efficiency across vertebrates.
Collapse
Affiliation(s)
- Ariel A Bazzini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Florencia Del Viso
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
362
|
Satapathy SS, Powdel BR, Buragohain AK, Ray SK. Discrepancy among the synonymous codons with respect to their selection as optimal codon in bacteria. DNA Res 2016; 23:441-449. [PMID: 27426467 PMCID: PMC5066170 DOI: 10.1093/dnares/dsw027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023] Open
Abstract
The different triplets encoding the same amino acid, termed as synonymous codons, are not equally abundant in a genome. Factors such as G + C% and tRNA are known to influence their abundance in a genome. However, the order of the nucleotide in each codon per se might also be another factor impacting on its abundance values. Of the synonymous codons for specific amino acids, some are preferentially used in the high expression genes that are referred to as the 'optimal codons' (OCs). In this study, we compared OCs of the 18 amino acids in 221 species of bacteria. It is observed that there is amino acid specific influence for the selection of OCs. There is also influence of phylogeny in the choice of OCs for some amino acids such as Glu, Gln, Lys and Leu. The phenomenon of codon bias is also supported by the comparative studies of the abundance values of the synonymous codons with same G + C. It is likely that the order of the nucleotides in the triplet codon is also perhaps involved in the phenomenon of codon usage bias in organisms.
Collapse
Affiliation(s)
| | - Bhesh Raj Powdel
- Department of Statistics, Darrang College, Tezpur 784001, Assam, India
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.,Office of the Vice-Chancellor, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
363
|
Gorgoni B, Ciandrini L, McFarland MR, Romano MC, Stansfield I. Identification of the mRNA targets of tRNA-specific regulation using genome-wide simulation of translation. Nucleic Acids Res 2016; 44:9231-9244. [PMID: 27407108 PMCID: PMC5100601 DOI: 10.1093/nar/gkw630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/02/2016] [Indexed: 01/11/2023] Open
Abstract
tRNA gene copy number is a primary determinant of tRNA abundance and therefore the rate at which each tRNA delivers amino acids to the ribosome during translation. Low-abundance tRNAs decode rare codons slowly, but it is unclear which genes might be subject to tRNA-mediated regulation of expression. Here, those mRNA targets were identified via global simulation of translation. In-silico mRNA translation rates were compared for each mRNA in both wild-type and a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document}sup70-65 mutant, which exhibits a pseudohyphal growth phenotype and a 75% slower CAG codon translation rate. Of 4900 CAG-containing mRNAs, 300 showed significantly reduced in silico translation rates in a simulated tRNA mutant. Quantitative immunoassay confirmed that the reduced translation rates of sensitive mRNAs were \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document} concentration-dependent. Translation simulations showed that reduced \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\rm{tRNA}}_{{\rm{CUG}}}^{{\rm{Gln}}}$\end{document} concentrations triggered ribosome queues, which dissipated at reduced translation initiation rates. To validate this prediction experimentally, constitutive gcn2 kinase mutants were used to reduce in vivo translation initiation rates. This repaired the relative translational rate defect of target mRNAs in the sup70-65 background, and ameliorated sup70-65 pseudohyphal growth phenotypes. We thus validate global simulation of translation as a new tool to identify mRNA targets of tRNA-specific gene regulation.
Collapse
Affiliation(s)
- Barbara Gorgoni
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Luca Ciandrini
- DIMNP - UMR 5235 & CNRS, Université de Montpellier, 34095 Montpellier, France.,Laboratoire Charles Coulomb UMR5221 & CNRS, Université de Montpellier, 34095 Montpellier, France
| | - Matthew R McFarland
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - M Carmen Romano
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.,University of Aberdeen, Institute for Complex Systems and Mathematical Biology, King's College, Aberdeen AB24 3UE, UK
| | - Ian Stansfield
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
364
|
Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol Cell 2016; 61:341-351. [PMID: 26849192 DOI: 10.1016/j.molcel.2016.01.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/24/2015] [Indexed: 11/26/2022]
Abstract
In all genomes, most amino acids are encoded by more than one codon. Synonymous codons can modulate protein production and folding, but the mechanism connecting codon usage to protein homeostasis is not known. Here we show that synonymous codon variants in the gene encoding gamma-B crystallin, a mammalian eye-lens protein, modulate the rates of translation and cotranslational folding of protein domains monitored in real time by Förster resonance energy transfer and fluorescence-intensity changes. Gamma-B crystallins produced from mRNAs with changed codon bias have the same amino acid sequence but attain different conformations, as indicated by altered in vivo stability and in vitro protease resistance. 2D NMR spectroscopic data suggest that structural differences are associated with different cysteine oxidation states of the purified proteins, providing a link between translation, folding, and the structures of isolated proteins. Thus, synonymous codons provide a secondary code for protein folding in the cell.
Collapse
Affiliation(s)
- Florian Buhr
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Sujata Jha
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Joerg Mittelstaet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Felicitas Kutz
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA.,Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
365
|
Komar AA. The Yin and Yang of codon usage. Hum Mol Genet 2016; 25:R77-R85. [PMID: 27354349 DOI: 10.1093/hmg/ddw207] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
The genetic code is degenerate. With the exception of two amino acids (Met and Trp), all other amino acid residues are each encoded by multiple, so-called synonymous codons. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in genes/genomes suggested that codon choice might have functional implications beyond amino acid coding. The pattern of non-uniform codon use (known as codon usage bias) varies between organisms and represents a unique feature of an organism. Organism-specific codon choice is related to organism-specific differences in populations of cognate tRNAs. This implies that, in a given organism, frequently used codons will be translated more rapidly than infrequently used ones and vice versa A theory of codon-tRNA co-evolution (necessary to balance accurate and efficient protein production) was put forward to explain the existence of codon usage bias. This model suggests that selection favours preferred (frequent) over un-preferred (rare) codons in order to sustain efficient protein production in cells and that a given un-preferred codon will have the same effect on an organism's fitness regardless of its position within an mRNA's open reading frame. However, many recent studies refute this prediction. Un-preferred codons have been found to have important functional roles and their effects appeared to be position-dependent. Synonymous codon usage affects the efficiency/stringency of mRNA decoding, mRNA biogenesis/stability, and protein secretion and folding. This review summarizes recent developments in the field that have identified novel functions of synonymous codons and their usage.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, OH, USA Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio, USA Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| |
Collapse
|
366
|
Rodnina MV. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 2016; 25:1390-406. [PMID: 27198711 DOI: 10.1002/pro.2950] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| |
Collapse
|
367
|
Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach. PLoS One 2016; 11:e0156905. [PMID: 27272176 PMCID: PMC4896621 DOI: 10.1371/journal.pone.0156905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/20/2016] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function.
Collapse
|
368
|
Xing S, Wallmeroth N, Berendzen KW, Grefen C. Techniques for the Analysis of Protein-Protein Interactions in Vivo. PLANT PHYSIOLOGY 2016; 171:727-58. [PMID: 27208310 PMCID: PMC4902627 DOI: 10.1104/pp.16.00470] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 05/20/2023]
Abstract
Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique.
Collapse
Affiliation(s)
- Shuping Xing
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Niklas Wallmeroth
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Kenneth W Berendzen
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| | - Christopher Grefen
- University of Tübingen, ZMBP Developmental Genetics (S.X., N.W., C.G.) and ZMBP Central Facilities (K.W.B.), D-72076 Tuebingen, Germany
| |
Collapse
|
369
|
Jacobson GN, Clark PL. Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons. Curr Opin Struct Biol 2016; 38:102-10. [PMID: 27318814 PMCID: PMC5010456 DOI: 10.1016/j.sbi.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
Protein folding occurs on a time scale similar to peptide bond formation by the ribosome, which has long sparked speculation that altering translation rate could alter the folding mechanism or even the final folded structure of a protein in vivo. Recent results have provided strong support for this model: synonymous substitutions to codons with different usage frequency, which are often translated at different rates, have been shown to significantly alter the co-translational folding mechanism of some proteins, leading to altered cell function. Here we review recent progress towards understanding the connections between synonymous codon usage, translation rate and co-translational protein folding mechanisms.
Collapse
Affiliation(s)
- Giselle N Jacobson
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
370
|
Radhakrishnan A, Green R. Connections Underlying Translation and mRNA Stability. J Mol Biol 2016; 428:3558-64. [PMID: 27261255 DOI: 10.1016/j.jmb.2016.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
371
|
Diederichs S, Bartsch L, Berkmann JC, Fröse K, Heitmann J, Hoppe C, Iggena D, Jazmati D, Karschnia P, Linsenmeier M, Maulhardt T, Möhrmann L, Morstein J, Paffenholz SV, Röpenack P, Rückert T, Sandig L, Schell M, Steinmann A, Voss G, Wasmuth J, Weinberger ME, Wullenkord R. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 2016; 8:442-57. [PMID: 26992833 PMCID: PMC5126213 DOI: 10.15252/emmm.201506055] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disease of the genome caused by oncogene activation and tumor suppressor gene inhibition. Deep sequencing studies including large consortia such as TCGA and ICGC identified numerous tumor‐specific mutations not only in protein‐coding sequences but also in non‐coding sequences. Although 98% of the genome is not translated into proteins, most studies have neglected the information hidden in this “dark matter” of the genome. Malignancy‐driving mutations can occur in all genetic elements outside the coding region, namely in enhancer, silencer, insulator, and promoter as well as in 5′‐UTR and 3′‐UTR. Intron or splice site mutations can alter the splicing pattern. Moreover, cancer genomes contain mutations within non‐coding RNA, such as microRNA, lncRNA, and lincRNA. A synonymous mutation changes the coding region in the DNA and RNA but not the protein sequence. Importantly, oncogenes such as TERT or miR‐21 as well as tumor suppressor genes such as TP53/p53,APC,BRCA1, or RB1 can be affected by these alterations. In summary, coding‐independent mutations can affect gene regulation from transcription, splicing, mRNA stability to translation, and hence, this largely neglected area needs functional studies to elucidate the mechanisms underlying tumorigenesis. This review will focus on the important role and novel mechanisms of these non‐coding or allegedly silent mutations in tumorigenesis.
Collapse
Affiliation(s)
- Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany Division of RNA Biology & Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany German Cancer Consortium (DKTK), Freiburg, Germany
| | - Lorenz Bartsch
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Julia C Berkmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Karin Fröse
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jana Heitmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Caroline Hoppe
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Deetje Iggena
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Danny Jazmati
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Philipp Karschnia
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Miriam Linsenmeier
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Thomas Maulhardt
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Lino Möhrmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Johannes Morstein
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Stella V Paffenholz
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Paula Röpenack
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Timo Rückert
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Ludger Sandig
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Maximilian Schell
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anna Steinmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Gjendine Voss
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jacqueline Wasmuth
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Maria E Weinberger
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Ramona Wullenkord
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| |
Collapse
|
372
|
Protein Elongation, Co-translational Folding and Targeting. J Mol Biol 2016; 428:2165-85. [DOI: 10.1016/j.jmb.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
373
|
Brandis G, Hughes D. The Selective Advantage of Synonymous Codon Usage Bias in Salmonella. PLoS Genet 2016; 12:e1005926. [PMID: 26963725 PMCID: PMC4786093 DOI: 10.1371/journal.pgen.1005926] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2-4.2 x 10-4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
374
|
Ha SW, Ju D, Hao W, Xie Y. Rapidly Translated Polypeptides Are Preferred Substrates for Cotranslational Protein Degradation. J Biol Chem 2016; 291:9827-34. [PMID: 26961882 DOI: 10.1074/jbc.m116.716175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 11/06/2022] Open
Abstract
Nascent polypeptides are degraded by the proteasome concurrently with their synthesis on the ribosome. This process, called cotranslational protein degradation (CTPD), has been observed for years, but the underlying mechanisms remain poorly understood. Equally unclear are the identities of cellular proteins genuinely subjected to CTPD. Here we report the identification of CTPD substrates in the yeast Saccharomyces cerevisiae via a quantitative proteomic analysis. We compared the abundance of individual ribosome-bound nascent chains between a wild type strain and a mutant defective in CTPD. Of 1,422 proteins acquired from the proteomic analysis, 289 species are efficient CTPD substrates, with >30% of their nascent chains degraded cotranslationally. We found that proteins involved in translation, ribosome biogenesis, nuclear transport, and amino acid metabolism are more likely to be targeted for CTPD. There is a strong correlation between CTPD and the translation efficiency. CTPD occurs preferentially to rapidly translated polypeptides. CTPD is also influenced by the protein sequence length; longer polypeptides are more susceptible to CTPD. In addition, proteins with N-terminal disorder have a higher probability of being degraded cotranslationally. Interestingly, the CTPD efficiency is not related to the half-lives of mature proteins. These results for the first time indicate an inverse correlation between CTPD and cotranslational folding on a proteome scale. The implications of this study with respect to the physiological significance of CTPD are discussed.
Collapse
Affiliation(s)
- Seung-Wook Ha
- From the Karmanos Cancer Institute, Department of Oncology, School of Medicine and
| | - Donghong Ju
- From the Karmanos Cancer Institute, Department of Oncology, School of Medicine and
| | - Weilong Hao
- the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48201
| | - Youming Xie
- From the Karmanos Cancer Institute, Department of Oncology, School of Medicine and
| |
Collapse
|
375
|
Agashe D, Sane M, Phalnikar K, Diwan GD, Habibullah A, Martinez-Gomez NC, Sahasrabuddhe V, Polachek W, Wang J, Chubiz LM, Marx CJ. Large-Effect Beneficial Synonymous Mutations Mediate Rapid and Parallel Adaptation in a Bacterium. Mol Biol Evol 2016; 33:1542-53. [PMID: 26908584 PMCID: PMC4868122 DOI: 10.1093/molbev/msw035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Contrary to previous understanding, recent evidence indicates that synonymous codon changes may sometimes face strong selection. However, it remains difficult to generalize the nature, strength, and mechanism(s) of such selection. Previously, we showed that synonymous variants of a key enzyme-coding gene (fae) of Methylobacterium extorquens AM1 decreased enzyme production and reduced fitness dramatically. We now show that during laboratory evolution, these variants rapidly regained fitness via parallel yet variant-specific, highly beneficial point mutations in the N-terminal region of fae. These mutations (including four synonymous mutations) had weak but consistently positive impacts on transcript levels, enzyme production, or enzyme activity. However, none of the proposed mechanisms (including internal ribosome pause sites or mRNA structure) predicted the fitness impact of evolved or additional, engineered point mutations. This study shows that synonymous mutations can be fixed through strong positive selection, but the mechanism for their benefit varies depending on the local sequence context.
Collapse
Affiliation(s)
- Deepa Agashe
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bangalore, India Department of Organismic and Evolutionary Biology, Harvard University
| | - Mrudula Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bangalore, India
| | - Kruttika Phalnikar
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bangalore, India
| | - Gaurav D Diwan
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bangalore, India SASTRA University, Thanjavur, India
| | - Alefiyah Habibullah
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bangalore, India
| | | | - Vinaya Sahasrabuddhe
- National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bangalore, India
| | - William Polachek
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Jue Wang
- Department of Organismic and Evolutionary Biology, Harvard University Systems Biology Graduate Program, Harvard University
| | - Lon M Chubiz
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Harvard University Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies, University of Idaho
| |
Collapse
|
376
|
The Art of Gene Redesign and Recombinant Protein Production: Approaches and Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
377
|
Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients. Cell Rep 2015; 14:115-128. [PMID: 26725112 DOI: 10.1016/j.celrep.2015.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/17/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.
Collapse
|
378
|
Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response. J Virol 2015; 90:1298-310. [PMID: 26581977 DOI: 10.1128/jvi.02167-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Codon bias deoptimization has been previously used to successfully attenuate human pathogens, including poliovirus, respiratory syncytial virus, and influenza virus. We have applied a similar technology to deoptimize the capsid-coding region (P1) of foot-and-mouth disease virus (FMDV). Despite the introduction of 489 nucleotide changes (19%), synonymous deoptimization of the P1 region rendered a viable FMDV progeny. The resulting strain was stable and reached cell culture titers similar to those obtained for wild-type (WT) virus, but at reduced specific infectivity. Studies in mice showed that 100% of animals inoculated with the FMDV A12 P1 deoptimized mutant (A12-P1 deopt) survived, even when the animals were infected at doses 100 times higher than the dose required to cause death by WT virus. All mice inoculated with the A12-P1 deopt mutant developed a strong antibody response and were protected against subsequent lethal challenge with WT virus at 21 days postinoculation. Remarkably, the vaccine safety margin was at least 1,000-fold higher for A12-P1 deopt than for WT virus. Similar patterns of attenuation were observed in swine, in which animals inoculated with A12-P1 deopt virus did not develop clinical disease until doses reached 1,000 to 10,000 times the dose required to cause severe disease in 2 days with WT A12. Consistently, high levels of antibody titers were induced, even at the lowest dose tested. These results highlight the potential use of synonymous codon pair deoptimization as a strategy to safely attenuate FMDV and further develop live attenuated vaccine candidates to control such a feared livestock disease. IMPORTANCE Foot-and-mouth disease (FMD) is one of the most feared viral diseases that can affect livestock. Although this disease appeared to be contained in developed nations by the end of the last century, recent outbreaks in Europe, Japan, Taiwan, South Korea, etc., have demonstrated that infection can spread rapidly, causing devastating economic and social consequences. The Global Foot-and-Mouth Disease Research Alliance (GFRA), an international organization launched in 2003, has set as part of their five main goals the development of next-generation control measures and strategies, including improved vaccines and biotherapeutics. Our work demonstrates that newly developed codon pair bias deoptimization technologies can be applied to FMD virus to obtain attenuated strains with potential for further development as novel live attenuated vaccine candidates that may rapidly control disease without reverting to virulence.
Collapse
|
379
|
Koutmou KS, Radhakrishnan A, Green R. Synthesis at the Speed of Codons. Trends Biochem Sci 2015; 40:717-718. [PMID: 26526516 DOI: 10.1016/j.tibs.2015.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
The possibility that different mRNA sequences encoding identical peptides are translated dissimilarly has long been of great interest. Recent work by Yu and co-workers provides striking evidence that mRNA sequences influence the rate of protein synthesis, and lends support to the emerging idea that mRNA sequence informs protein folding.
Collapse
Affiliation(s)
- Kristin S Koutmou
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aditya Radhakrishnan
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
380
|
Zhou M, Wang T, Fu J, Xiao G, Liu Y. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Mol Microbiol 2015; 97:974-87. [PMID: 26032251 DOI: 10.1111/mmi.13079] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/21/2022]
Abstract
Synonymous codons are not used with equal frequencies in most genomes. Codon usage has been proposed to play a role in regulating translation kinetics and co-translational protein folding. The relationship between codon usage and protein structures and the in vivo role of codon usage in eukaryotic protein folding is not clear. Here, we show that there is a strong codon usage bias in the filamentous fungus Neurospora. Importantly, we found genome-wide correlations between codon choices and predicted protein secondary structures: Nonoptimal codons are preferentially used in intrinsically disordered regions, and more optimal codons are used in structured domains. The functional importance of such correlations in vivo was confirmed by structure-based codon manipulation of codons in the Neurospora circadian clock gene frequency (frq). The codon optimization of the predicted disordered, but not well-structured regions of FRQ impairs clock function and altered FRQ structures. Furthermore, the correlations between codon usage and protein disorder tendency are conserved in other eukaryotes. Together, these results suggest that codon choices and protein structures co-evolve to ensure proper protein folding in eukaryotic organisms.
Collapse
Affiliation(s)
- Mian Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Tao Wang
- Department of Clinical Science, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jingjing Fu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Guanghua Xiao
- Department of Clinical Science, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
381
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|