351
|
Takeuchi T, Nemoto-Sasaki Y, Sugiura KI, Arata Y, Kasai KI. Galectin LEC-1 plays a defensive role against damage due to oxidative stress in Caenorhabditis elegans. J Biochem 2013; 154:455-64. [DOI: 10.1093/jb/mvt074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
352
|
Abstract
The term 'antioxidant paradox' is often used to refer to the observation that oxygen radicals and other reactive oxygen species are involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies, demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully regulated. The body's 'total antioxidant capacity' seems unresponsive to high doses of dietary antioxidants, so that the amount of oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying weak pro-oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are important than is consumption of large doses of dietary antioxidants.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
353
|
Bowers J, Terrien J, Clerget-Froidevaux MS, Gothié JD, Rozing MP, Westendorp RGJ, van Heemst D, Demeneix BA. Thyroid hormone signaling and homeostasis during aging. Endocr Rev 2013; 34:556-89. [PMID: 23696256 DOI: 10.1210/er.2012-1056] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies in humans and in animal models show negative correlations between thyroid hormone (TH) levels and longevity. TH signaling is implicated in maintaining and integrating metabolic homeostasis at multiple levels, notably centrally in the hypothalamus but also in peripheral tissues. The question is thus raised of how TH signaling is modulated during aging in different tissues. Classically, TH actions on mitochondria and heat production are obvious candidates to link negative effects of TH to aging. Mitochondrial effects of excess TH include reactive oxygen species and DNA damage, 2 factors often considered as aging accelerators. Inversely, caloric restriction, which can retard aging from nematodes to primates, causes a rapid reduction of circulating TH, reducing metabolism in birds and mammals. However, many other factors could link TH to aging, and it is these potentially subtler and less explored areas that are highlighted here. For example, effects of TH on membrane composition, inflammatory responses, stem cell renewal and synchronization of physiological responses to light could each contribute to TH regulation of maintenance of homeostasis during aging. We propose the hypothesis that constraints on TH signaling at certain life stages, notably during maturity, are advantageous for optimal aging.
Collapse
Affiliation(s)
- J Bowers
- Muséum national d'Histoire Naturelle, Laboratoire de Physiologie Générale et Comparée, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7221, 75231 Paris cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
354
|
Brooks PJ. Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease. DNA Repair (Amst) 2013; 12:656-71. [PMID: 23683874 PMCID: PMC4240003 DOI: 10.1016/j.dnarep.2013.04.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cockayne syndrome (CS) is a devastating neurodevelopmental disorder, with growth abnormalities, progeriod features, and sun sensitivity. CS is typically considered to be a DNA repair disorder, since cells from CS patients have a defect in transcription-coupled nucleotide excision repair (TC-NER). However, cells from UV-sensitive syndrome patients also lack TC-NER, but these patients do not suffer from the neurologic and other abnormalities that CS patients do. Also, the neurologic abnormalities that affect CS patients (CS neurologic disease) are qualitatively different from those seen in NER-deficient XP patients. Therefore, the TC-NER defect explains the sun sensitive phenotype common to both CS and UVsS, but cannot explain CS neurologic disease. However, as CS neurologic disease is of much greater clinical significance than the sun sensitivity, there is a pressing need to understand its molecular basis. While there is evidence for defective repair of oxidative DNA damage and mitochondrial abnormalities in CS cells, here I propose that the defects in transcription by both RNA polymerases I and II that have been documented in CS cells provide a better explanation for many of the severe growth and neurodevelopmental defects in CS patients than defective DNA repair. The implications of these ideas for interpreting results from mouse models of CS, and for the development of treatments and therapies for CS patients are discussed.
Collapse
Affiliation(s)
- P J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, 3S-32, Bethesda, MD 20892, USA.
| |
Collapse
|
355
|
The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Res Ther 2013; 4:90. [PMID: 23899671 PMCID: PMC3854699 DOI: 10.1186/scrt276] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stem cells are an important resource for tissue repair and regeneration. While a great deal of attention has focused on derivation and molecular regulation of stem cells, relatively little research has focused on how the subcellular structure and composition of the cell membrane influences stem cell activities such as proliferation, differentiation and homing. Caveolae are specialized membrane lipid rafts coated with caveolin scaffolding proteins, which can regulate cholesterol transport and the activity of cell signaling receptors and their downstream effectors. Caveolin-1 is involved in the regulation of many cellular processes, including growth, control of mitochondrial antioxidant levels, migration and senescence. These activities are of relevance to stem cell biology, and in this review evidence for caveolin-1 involvement in stem cell biology is summarized. Altered stem and progenitor cell populations in caveolin-1 null mice suggest that caveolin-1 can regulate stem cell proliferation, and in vitro studies with isolated stem cells suggest that caveolin-1 regulates stem cell differentiation. The available evidence leads us to hypothesize that caveolin-1 expression may stabilize the differentiated and undifferentiated stem cell phenotype, and transient downregulation of caveolin-1 expression may be required for transition between the two. Such regulation would probably be critical in regenerative applications of adult stem cells and during tissue regeneration. We also review here the temporal changes in caveolin-1 expression reported during tissue repair. Delayed muscle regeneration in transgenic mice overexpressing caveolin-1 as well as compromised cardiac, brain and liver tissue repair and delayed wound healing in caveolin-1 null mice suggest that caveolin-1 plays an important role in tissue repair, but that this role may be negative or positive depending on the tissue type and the nature of the repair process. Finally, we also discuss how caveolin-1 quiescence-inducing activities and effects on mitochondrial antioxidant levels may influence stem cell aging.
Collapse
|
356
|
Chen X, Wu G, Huang Z. Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris. Int J Biol Macromol 2013; 58:18-22. [DOI: 10.1016/j.ijbiomac.2013.03.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/16/2013] [Indexed: 11/26/2022]
|
357
|
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 2013; 4:1568. [PMID: 23463011 PMCID: PMC3615374 DOI: 10.1038/ncomms2532] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, deubiquitinases (DUBs) remove ubiquitin conjugates from diverse substrates, altering their stabilities, localizations or activities. Here we show that many DUBs of the USP and UCH subfamilies can be reversibly inactivated upon oxidation by reactive oxygen species in vitro and in cells. Oxidation occurs preferentially on the catalytic cysteine, abrogating the isopeptide-cleaving activity without affecting these enzymes’ affinity to ubiquitin. Sensitivity to oxidative inhibition is associated with DUB activation wherein the active site cysteine is converted to a deprotonated state prone to oxidation. We demonstrate that this redox regulation is essential for mono-ubiquitination of proliferating-cell nuclear antigen in response to oxidative DNA damage, which initiates a DNA damage-tolerance programme. These findings establish a novel mechanism of DUB regulation that may be integrated with other redox-dependent signalling circuits to govern cellular adaptation to oxidative stress, a process intimately linked to aging and cancer. Deubiquitinases regulate protein stability, localization and activity, and yet the mechanisms controlling their activity remain poorly understood. Lee et al. show that these enzymes are reversibly inhibited by reactive oxygen species through oxidation of catalytic cysteine residues.
Collapse
|
358
|
Haas R, Marelli-Berg F, Mauro C. In the eye of the storm: T cell behavior in the inflammatory microenvironment. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2013; 2:146-155. [PMID: 23885332 PMCID: PMC3714175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Coordinated unfolding of innate and adaptive immunity is key to the development of protective immune responses. This functional integration occurs within the inflamed tissue, a microenvironment enriched with factors released by innate and subsequently adaptive immune cells and the injured tissue itself. T lymphocytes are key players in the ensuing adaptive immunity and their proper function is instrumental to a successful outcome of immune protection. The site of inflammation is a "harsh" environment in which T cells are exposed to numerous factors that might influence their behavior. Low pH and oxygen concentration, high lactate and organic acid content as well as free fatty acids and reactive oxygen species are found in the inflammatory microenvironment. All these components affect T cells as well as other immune cells during the immune response and impact on the development of chronic inflammation. We here overview the effects of a number of factors present in the inflammatory microenvironment on T cell function and migration and discuss the potential relevance of these components as targets for therapeutic intervention in autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Robert Haas
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London Charterhouse Square, London EC1M 6BQ, UK
| | | | | |
Collapse
|
359
|
Nordgren M, Wang B, Apanasets O, Fransen M. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front Physiol 2013; 4:145. [PMID: 23785334 PMCID: PMC3682127 DOI: 10.3389/fphys.2013.00145] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are remarkably dynamic organelles that participate in a diverse array of cellular processes, including the metabolism of lipids and reactive oxygen species. In order to regulate peroxisome function in response to changing nutritional and environmental stimuli, new organelles need to be formed and superfluous and dysfunctional organelles have to be selectively removed. Disturbances in any of these processes have been associated with the etiology and progression of various congenital neurodegenerative and age-related human disorders. The aim of this review is to critically explore our current knowledge of how peroxisomes are degraded in mammalian cells and how defects in this process may contribute to human disease. Some of the key issues highlighted include the current concepts of peroxisome removal, the peroxisome quality control mechanisms, the initial triggers for peroxisome degradation, the factors for dysfunctional peroxisome recognition, and the regulation of peroxisome homeostasis. We also dissect the functional and mechanistic relationship between different forms of selective organelle degradation and consider how lysosomal dysfunction may lead to defects in peroxisome turnover. In addition, we draw lessons from studies on other organisms and extrapolate this knowledge to mammals. Finally, we discuss the potential pathological implications of dysfunctional peroxisome degradation for human health.
Collapse
Affiliation(s)
- Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Vlaams-Brabant, Belgium
| | | | | | | |
Collapse
|
360
|
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
361
|
Abstract
Considerable efforts have been made to understand the role of oxidative stress in age-related diseases and ageing. The mitochondrial free radical theory of ageing, which proposes that damage to mitochondrial DNA (mtDNA) and other macromolecules caused by the production of reactive oxygen species (ROS) during cellular respiration drives ageing, has for a long time been the central hypothesis in the field. However, in contrast with this theory, evidence from an increasing number of experimental studies has suggested that mtDNA mutations may be generated by replication errors rather than by accumulated oxidative damage. Furthermore, interventions to modulate ROS levels in humans and animal models have not produced consistent results in terms of delaying disease progression and extending lifespan. A number of recent experimental findings strongly question the mitochondrial free radical theory of ageing, leading to the emergence of new theories of how age-associated mitochondrial dysfunction may lead to ageing. These new hypotheses are mainly based on the underlying notion that, despite their deleterious role, ROS are essential signalling molecules that mediate stress responses in general and the stress response to age-dependent damage in particular. This novel view of ROS roles has a clear impact on the interpretation of studies in which antioxidants have been used to treat human age-related diseases commonly linked to oxidative stress.
Collapse
Affiliation(s)
- M Lagouge
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | |
Collapse
|
362
|
Saeidnia S, Abdollahi M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol 2013; 271:49-63. [PMID: 23680455 DOI: 10.1016/j.taap.2013.05.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022]
Abstract
There are a number of intrinsic (e.g. oncogenes) and extrinsic (e.g. radiation and inflammation) factors, which may arise in reactive oxygen species (ROS), resulting in DNA instability and then cancer. In this situation, initial cancerous cells would balance the harmful effects of ROS by switching on the protective effects in a longstanding manner. In normal conditions, ROS have an important role in signal transduction and gene transcription, nevertheless, ROS may act as a trigger for carcinogenesis via persistent DNA injuries as well as mutations in p53 such as conditions observed in skin, hepatocellular, and colon cancers. Some compounds like paclitaxel are able to attack cancer cells through generation of ROS or interfering with ROS metabolism, while there are a few anti-angiogenesis compounds without toxicity such as endostatin, which act as anti-neoplastic only together with another chemotherapeutic drug. Furthermore, some anti-cancer agents like piperlongumine bind to the active sites of several key cellular antioxidants including glutathione S transferase and carbonyl reductase 1 only in the cancer cells. Although the natural antioxidants can alone or in combination with the diet provide some benefits for chemoprevention, their position in cancer therapy, especially initial stages of carcinogenesis is breaking down. On the other hand antioxidants can promote the survival of detached cells from extra cellular medium playing dual activities with respect to tumorigenesis through inhibition of tumorigenesis by preventing oxidative injuries to DNA and otherwise maintenance of tumor by promoting cell survival via metabolic rescue. Hopefully, more details of antioxidant and anti-neoplastic mechanisms become clear day by day, which have made researchers renew the strategy for designing cancer prevention or treatment.
Collapse
Affiliation(s)
- Soodabeh Saeidnia
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | | |
Collapse
|
363
|
Szeto YT, Tse RSC, Benzie IF, Kalle W, Pak SC. Anin vitrostudy of Sanchi (Panax pseudoginseng) for its DNA protective effect. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2013.794202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
364
|
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2013; 48:158-67. [PMID: 23102266 DOI: 10.1016/j.molcel.2012.09.025] [Citation(s) in RCA: 1859] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/28/2012] [Accepted: 09/21/2012] [Indexed: 12/11/2022]
Abstract
Historically, mitochondrial reactive oxygen species (mROS) were thought to exclusively cause cellular damage and lack a physiological function. Accumulation of ROS and oxidative damage have been linked to multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. Thus, mROS were originally envisioned as a necessary evil of oxidative metabolism, a product of an imperfect system. Yet few biological systems possess such flagrant imperfections, thanks to the persistent optimization of evolution, and it appears that oxidative metabolism is no different. More and more evidence suggests that mROS are critical for healthy cell function. In this Review, we discuss this evidence following some background on the generation and regulation of mROS.
Collapse
Affiliation(s)
- Laura A Sena
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
365
|
Collins Y, Chouchani ET, James AM, Menger KE, Cochemé HM, Murphy MP. Mitochondrial redox signalling at a glance. J Cell Sci 2013; 125:801-6. [PMID: 22448036 DOI: 10.1242/jcs.098475] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yvonne Collins
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | |
Collapse
|
366
|
Reid MA, Wang WI, Rosales KR, Welliver MX, Pan M, Kong M. The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol Cell 2013; 50:200-11. [PMID: 23499005 DOI: 10.1016/j.molcel.2013.02.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 01/16/2013] [Accepted: 02/06/2013] [Indexed: 12/22/2022]
Abstract
Glutamine is an essential nutrient for cancer cell survival and proliferation, yet the signaling pathways that sense glutamine levels remain uncharacterized. Here, we report that the protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. This study delineates a previously unidentified signaling pathway that senses glutamine levels as well as provides important evidence that protein phosphatase complexes are actively involved in signal transduction.
Collapse
Affiliation(s)
- Michael A Reid
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
367
|
Abstract
Over the last decade, accumulating evidence has suggested a causative link between mitochondrial dysfunction and major phenotypes associated with aging. Somatic mitochondrial DNA (mtDNA) mutations and respiratory chain dysfunction accompany normal aging, but the first direct experimental evidence that increased mtDNA mutation levels contribute to progeroid phenotypes came from the mtDNA mutator mouse. Recent evidence suggests that increases in aging-associated mtDNA mutations are not caused by damage accumulation, but rather are due to clonal expansion of mtDNA replication errors that occur during development. Here we discuss the caveats of the traditional mitochondrial free radical theory of aging and highlight other possible mechanisms, including insulin/IGF-1 signaling (IIS) and the target of rapamycin pathways, that underlie the central role of mitochondria in the aging process.
Collapse
Affiliation(s)
- Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | |
Collapse
|
368
|
Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process. Int J Mol Sci 2013; 14:3834-59. [PMID: 23434668 PMCID: PMC3588074 DOI: 10.3390/ijms14023834] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 12/16/2022] Open
Abstract
Increased oxidative stress has been associated with the aging process. However, recent studies have revealed that a low-level oxidative stress can even extend the lifespan of organisms. Reactive oxygen species (ROS) are important signaling molecules, e.g., being required for autophagic degradation. SIRT1, a class III protein deacetylase, is a crucial cellular survival protein, which is also involved in combatting oxidative stress. For instance, SIRT1 can stimulate the expression of antioxidants via the FoxO pathways. Moreover, in contrast to ROS, SIRT1 inhibits NF-κB signaling which is a major inducer of inflammatory responses, e.g., with inflammasome pathway. Recent studies have demonstrated that an increased level of ROS can both directly and indirectly control the activity of SIRT1 enzyme. For instance, ROS can inhibit SIRT1 activity by evoking oxidative modifications on its cysteine residues. Decreased activity of SIRT1 enhances the NF-κB signaling, which supports inflammatory responses. This crosstalk between the SIRT1 and ROS signaling provokes in a context-dependent manner a decline in autophagy and a low-grade inflammatory phenotype, both being common hallmarks of ageing. We will review the major mechanisms controlling the signaling balance between the ROS production and SIRT1 activity emphasizing that this crosstalk has a crucial role in the regulation of the aging process.
Collapse
|
369
|
Prevention, Rehabilitation, and Mitigation Strategies of Cognitive Deficits in Aging with HIV: Implications for Practice and Research. ISRN NURSING 2013; 2013:297173. [PMID: 23431469 PMCID: PMC3574749 DOI: 10.1155/2013/297173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022]
Abstract
Highly active antiretroviral therapy has given the chance to those living with HIV to keep on living, allowing them the opportunity to age and perhaps age successfully. Yet, there are severe challenges to successful aging with HIV, one of which is cognitive deficits. Nearly half of those with HIV experience cognitive deficits that can interfere with everyday functioning, medical decision making, and quality of life. Given that cognitive deficits develop with more frequency and intensity with increasing age, concerns mount that as people age with HIV, they may experience more severe cognitive deficits. These concerns become especially germane given that by 2015, 50% of those with HIV will be 50 and older, and this older cohort of adults is expected to grow. As such, this paper focuses on the etiologies of such cognitive deficits within the context of cognitive reserve and neuroplasticity. From this, evidence-based and hypothetical prevention (i.e., cognitive prescriptions), rehabilitation (i.e., speed of processing training), and mitigation (i.e., spaced retrieval method) strategies are reviewed. Implications for nursing practice and research are posited.
Collapse
|
370
|
Menendez JA, Joven J, Aragonès G, Barrajón-Catalán E, Beltrán-Debón R, Borrás-Linares I, Camps J, Corominas-Faja B, Cufí S, Fernández-Arroyo S, Garcia-Heredia A, Hernández-Aguilera A, Herranz-López M, Jiménez-Sánchez C, López-Bonet E, Lozano-Sánchez J, Luciano-Mateo F, Martin-Castillo B, Martin-Paredero V, Pérez-Sánchez A, Oliveras-Ferraros C, Riera-Borrull M, Rodríguez-Gallego E, Quirantes-Piné R, Rull A, Tomás-Menor L, Vazquez-Martin A, Alonso-Villaverde C, Micol V, Segura-Carretero A. Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle 2013; 12:555-78. [PMID: 23370395 DOI: 10.4161/cc.23756] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Tóthová L, Ostatníková D, Šebeková K, Celec P, Hodosy J. Sex differences of oxidative stress markers in young healthy subjects are marker-specific in plasma but not in saliva. Ann Hum Biol 2013; 40:175-80. [DOI: 10.3109/03014460.2012.754495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
372
|
Ageing and the small, non-coding RNA world. Ageing Res Rev 2013; 12:429-35. [PMID: 22504407 DOI: 10.1016/j.arr.2012.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 01/09/2023]
Abstract
MicroRNAs, a class of small, non-coding RNAs, are now widely known for their importance in many aspects of biology. These small regulatory RNAs have critical functions in diverse biological events, including development and disease. Recent findings show that microRNAs are essential for lifespan determination in the model organisms, Caenorhabditis elegans and Drosophila, suggesting that microRNAs are also involved in the complex process of ageing. Further, short RNA fragments derived from longer parental RNAs, such as transfer RNA cleavage fragments, have now emerged as a novel class of regulatory RNAs that inhibit translation in response to stress. In addition, the RNA editing pathway is likely to act in the double-stranded RNA-mediated silencing machinery to suppress unfavorable RNA interference activity in the ageing process. These multiple, redundant layers in gene regulatory networks may make it possible to both stably and flexibly regulate genetic pathways in ensuring robustness of developmental and ageing processes.
Collapse
|
373
|
Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of Melatonin on Nervous System Aging: Neurogenesis and Neurodegeneration. J Pharmacol Sci 2013; 123:9-24. [DOI: 10.1254/jphs.13r01sr] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
374
|
Fransen M, Nordgren M, Wang B, Apanasets O, Van Veldhoven PP. Aging, age-related diseases and peroxisomes. Subcell Biochem 2013; 69:45-65. [PMID: 23821142 DOI: 10.1007/978-94-007-6889-5_3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human aging is considered as one of the biggest risk factors for the development of multiple diseases such as cancer, type-2 diabetes, and neurodegeneration. In addition, it is widely accepted that these age-related diseases result from a combination of various genetic, lifestyle, and environmental factors. As biological aging is a complex and multifactorial phenomenon, the molecular mechanisms underlying disease initiation and progression are not yet fully understood. However, a significant amount of evidence supports the theory that oxidative stress may act as a primary etiologic factor. Indeed, many signaling components like kinases, phosphatases, and transcription factors are exquisitely sensitive to the cellular redox status, and a chronic or severe disturbance in redox homeostasis can promote cell proliferation or trigger cell death. Now, almost 50 years after their discovery, there is a wealth of evidence that peroxisomes can function as a subcellular source, sink, or target of reactive oxygen and nitrogen molecules. Yet, the possibility that these organelles may act as a signaling platform for a variety of age-related processes has so far been underestimated and largely neglected. In this review, we will critically discuss the possible role of peroxisomes in the human aging process in light of the available data.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 601, B-3000, Leuven, Belgium,
| | | | | | | | | |
Collapse
|
375
|
Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev 2012; 134:1-9. [PMID: 23287740 DOI: 10.1016/j.mad.2012.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/26/2022]
Abstract
Aging is a biological process associated with impairment of mitochondrial bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses and increased risk in contracting age-associated diseases. When mitochondria are subjected to oxidative stress, accompanied by calcium overload and ATP depletion, they undergo "a permeability transition", characterized by sudden induced change of the inner mitochondrial membrane permeability for water as well as for low-molecular weight solutes (≤1.5kDa), resulting in membrane depolarization and uncoupling of oxidative phosphorylation. Research interest in the entity responsible for this phenomenon, the "mitochondrial permeability transition pore" (MPTP) has dramatically increased after demonstration that it plays a key role in the life and death decision in cells. The molecular structure and identity of MPTP is not yet known, although the pore is thought to exist as multiprotein complex. Some evidence indicate that the sensitivity of mitochondria to Ca(2+)-induced MPTP opening increases with aging; however the basis of this difference is unknown. Changes in MPTP structure and/or function may have important implications in the aging process and aged-associated diseases. This article examines data relevant to this issue. The important role of a principal lipidic counter-partner of the MPTP, cardiolipin, will also be discussed.
Collapse
|
376
|
Grompone G, Martorell P, Llopis S, González N, Genovés S, Mulet AP, Fernández-Calero T, Tiscornia I, Bollati-Fogolín M, Chambaud I, Foligné B, Montserrat A, Ramón D. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 2012; 7:e52493. [PMID: 23300685 PMCID: PMC3530454 DOI: 10.1371/journal.pone.0052493] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/19/2012] [Indexed: 01/15/2023] Open
Abstract
Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.
Collapse
|
377
|
Kim JC, Kalantar-Zadeh K, Kopple JD. Frailty and protein-energy wasting in elderly patients with end stage kidney disease. J Am Soc Nephrol 2012; 24:337-51. [PMID: 23264684 DOI: 10.1681/asn.2012010047] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Older people constitute an increasingly greater proportion of patients with advanced CKD, including those patients undergoing maintenance dialysis treatment. Frailty is a biologic syndrome of decreased reserve and resistance to stressors that results from cumulative declines across multiple physiologic systems and causes vulnerability to adverse outcomes. Frailty is common in elderly CKD patients, and it may be associated with protein-energy wasting (PEW), sarcopenia, dynapenia, and other complications of CKD. Causes of frailty with or without PEW in the elderly with CKD can be classified into three categories: causes primarily caused by aging per se, advanced CKD per se, or a combination of both conditions. Frailty and PEW in elderly CKD patients are associated with impaired physical performance, disability, poorer quality of life, and reduced survival. Prevention and treatment of these conditions in the elderly CKD patients often require a multifaceted approach. Here, we examine the causes and consequences of these conditions and examine the interplay between frailty and PEW in elderly CKD patients.
Collapse
Affiliation(s)
- Jun Chul Kim
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | |
Collapse
|
378
|
Palikaras K, Tavernarakis N. Mitophagy in neurodegeneration and aging. Front Genet 2012; 3:297. [PMID: 23267366 PMCID: PMC3525948 DOI: 10.3389/fgene.2012.00297] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/30/2012] [Indexed: 12/02/2022] Open
Abstract
Macroautophagy is a cellular catabolic process that involves the sequestration of cytoplasmic constituents into double-membrane vesicles known as autophagosomes, which subsequently fuse with lysosomes, where they deliver their cargo for degradation. The main physiological role of autophagy is to recycle intracellular components, under conditions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or protein aggregates that would otherwise compromise cell viability. Mitophagy is a selective type of autophagy, whereby damaged or superfluous mitochondria are eliminated to maintain proper mitochondrial numbers and quality control. While mitophagy shares key regulatory factors with the general macroautophagy pathway, it also involves distinct steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the phosphatase and tensin homolog-induced putative kinase protein 1 (PINK1), which have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease, also regulate mitophagy and function to maintain mitochondrial homeostasis. Here, we survey the molecular mechanisms that govern the process of mitophagy and discuss its involvement in the onset and progression of neurodegenerative diseases during aging.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion Crete, Greece
| | | |
Collapse
|
379
|
Troulinaki K, Bano D. Mitochondrial deficiency: a double-edged sword for aging and neurodegeneration. Front Genet 2012; 3:244. [PMID: 23248639 PMCID: PMC3521412 DOI: 10.3389/fgene.2012.00244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
For decades, aging was considered the inevitable result of the accumulation of damaged macromolecules due to environmental factors and intrinsic processes. Our current knowledge clearly supports that aging is a complex biological process influenced by multiple evolutionary conserved molecular pathways. With the advanced age, loss of cellular homeostasis severely affects the structure and function of various tissues, especially those highly sensitive to stressful conditions like the central nervous system. In this regard, the age-related regression of neural circuits and the consequent poor neuronal plasticity have been associated with metabolic dysfunctions, in which the decline of mitochondrial activity significantly contributes. Interestingly, while mitochondrial lesions promote the onset of degenerative disorders, mild mitochondrial manipulations delay some of the age-related phenotypes and, more importantly, increase the lifespan of organisms ranging from invertebrates to mammals. Here, we survey the insulin/IGF-1 and the TOR signaling pathways and review how these two important longevity determinants regulate mitochondrial activity. Furthermore, we discuss the contribution of slight mitochondrial dysfunction in the engagement of pro-longevity processes and the opposite role of strong mitochondrial dysfunction in neurodegeneration.
Collapse
Affiliation(s)
| | - Daniele Bano
- German Center for Neurodegenerative DiseasesBonn, Germany
| |
Collapse
|
380
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
381
|
Wang D, Wang Y, Argyriou C, Carrière A, Malo D, Hekimi S. An enhanced immune response of Mclk1⁺/⁻ mutant mice is associated with partial protection from fibrosis, cancer and the development of biomarkers of aging. PLoS One 2012; 7:e49606. [PMID: 23166727 PMCID: PMC3498213 DOI: 10.1371/journal.pone.0049606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/11/2012] [Indexed: 01/01/2023] Open
Abstract
The immune response is essential for survival by destroying microorganisms and pre-cancerous cells. However, inflammation, one aspect of this response, can result in short- and long-term deleterious side-effects. Mclk1+/− mutant mice can be long-lived despite displaying a hair-trigger inflammatory response and chronically activated macrophages as a result of high mitochondrial ROS generation. Here we ask whether this phenotype is beneficial or simply tolerated. We used models of infection by Salmonella serovars and found that Mclk1+/− mutants mount a stronger immune response, control bacterial proliferation better, and are resistant to cell and tissue damage resulting from the response, including fibrosis and types of oxidative damage that are considered to be biomarkers of aging. Moreover, these same types of tissue damage were found to be low in untreated 23 months-old mutants. We also examined the initiation of tumour growth after transplantation of mouse LLC1 carcinoma cells into Mclk1+/− mutants, as well as during spontaneous tumorigenesis in Mclk1+/−Trp53+/− double mutants. Tumour latency was increased by the Mclk1+/− genotype in both models. Furthermore, we used the transplantation model to show that splenic CD8+ T lymphocytes from Mclk1+/− graft recipients show enhanced cytotoxicity against LLC1 cells in vitro. Mclk1+/− mutants thus display an association of an enhanced immune response with partial protection from age-dependent processes and from pathologies similar to those that are found with increased frequency during the aging process. This suggests that the immune phenotype of these mutants might contribute to their longevity. We discuss how these findings suggest a broader view of how the immune response might impact the aging process.
Collapse
Affiliation(s)
- Dantong Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | | | | - Danielle Malo
- Department of Medicine and Human Genetics, McGill University, Montreal, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
382
|
Rubolini D, Colombo G, Ambrosini R, Caprioli M, Clerici M, Colombo R, Dalle-Donne I, Milzani A, Romano A, Romano M, Saino N. Sex-related effects of reproduction on biomarkers of oxidative damage in free-living barn swallows (Hirundo rustica). PLoS One 2012; 7:e48955. [PMID: 23145037 PMCID: PMC3493597 DOI: 10.1371/journal.pone.0048955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/03/2012] [Indexed: 01/11/2023] Open
Abstract
According to life-history theory, the allocation of limiting resources to one trait has negative consequences for other traits requiring the same resource, resulting in trade-offs among life-history traits, such as reproduction and survival. In vertebrates, oxidative stress is increasingly being considered among the physiological mechanisms forming the currency of life-history trade-offs. In this study of the barn swallow (Hirundo rustica), we focus on the oxidative costs of reproduction, especially egg laying, by investigating the effects of breeding stage (pre- vs. post-laying) and progression of the season on three biomarkers of oxidative damage (OD) to plasma proteins, namely the concentration of malondialdehyde (MDA)-protein adducts and of protein thiol groups (PSH), and the protein carbonyl (PCO) content. Moreover, we investigated whether males and females differed in plasma OD levels, because the inherent sex differences in reproductive roles and physiology may originate sex-specific patterns of OD during breeding. We found that MDA-protein adduct levels were higher in the pre-laying than in the post-laying phase, that males had lower levels of MDA-modified proteins than females, and that the decline of MDA-protein adduct concentration between the pre- and the post-laying phase was more marked for females than males. In addition, MDA-protein adduct levels declined with sampling date, but only during the pre-laying phase. On the other hand, plasma PCO levels increased from the pre- to the post-laying phase in both sexes, and females had higher levels of PCO than males. PSH concentration was unaffected by breeding stage, sex or sampling date. On the whole, our findings indicate that biomarkers of protein oxidation closely track the short-term variation in breeding stage of both male and female barn swallows. Moreover, the higher protein OD levels observed among females compared to males suggest that egg laying entails oxidative costs, which might negatively affect female residual reproductive value.
Collapse
Affiliation(s)
- Diego Rubolini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D'Angelo S, Perri P, De Palma P, De Nadai K, Sebastiani A. Mechanism of inflammation in age-related macular degeneration. Mediators Inflamm 2012; 2012:546786. [PMID: 23209345 PMCID: PMC3504473 DOI: 10.1155/2012/546786] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/02/2012] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.
Collapse
|
384
|
Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012; 3:222. [PMID: 23112806 PMCID: PMC3481051 DOI: 10.3389/fgene.2012.00222] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 12/15/2022] Open
Abstract
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.
Collapse
Affiliation(s)
- Konstantinos Kagias
- Biotech Research and Innovation Centre, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
385
|
Xie M, Roy R. Increased levels of hydrogen peroxide induce a HIF-1-dependent modification of lipid metabolism in AMPK compromised C. elegans dauer larvae. Cell Metab 2012; 16:322-35. [PMID: 22921415 DOI: 10.1016/j.cmet.2012.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/05/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Cells have evolved numerous mechanisms to circumvent stresses caused by the environment, and many of them are regulated by the AMP-activated kinase (AMPK). Unlike most organisms, C. elegans AMPK-null mutants are viable, but they die prematurely in the "long-lived" dauer stage due to exhaustion of triglyceride stores. Using a genome-wide RNAi approach, we demonstrate that the disruption of genes that increase hydrogen peroxide levels enhance the survival of AMPK mutant dauers by altering both the abundance and the nature of the fatty-acid content in the animal by increasing the HIF-1-dependent expression of several key enzymes involved in fatty-acid biosynthesis. Our data provide a mechanistic foundation to explain how an optimal level of an often vilified ROS-generating compound such as hydrogen peroxide can provide cellular benefit, a phenomenon described as hormesis, by instructing cells to readjust their lipid biosynthetic capacity through downstream HIF-1 activation to correct cellular energy deficiencies.
Collapse
Affiliation(s)
- Meng Xie
- Developmental Biology Research Initiative, Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
| | | |
Collapse
|
386
|
Abstract
Cellular stress response is a reaction to changes or fluctuations of extracellular conditions that damage the structure and function of macromolecules. Different stressors trigger different cellular responses, namely induce cell repair mechanisms, induce cell responses that result in temporary adaptation to some stressors, induce autophagy or trigger cell death. Inability to repair the damage or exposure to prolonged stress may contribute to aging. Persistent cell stress often enhances susceptibility to cancer and aging associated diseases. Cells and tissues are increasingly being used for transplantations and other novel therapeutic methods in which the quality and well being of cells is of paramount importance for the treatment to succeed. Therefore, discovering the mechanisms of cellular stress responses and the ability to detect and ameliorate them is important in prevention of development of disorders developed by persistent stress and for the success of transplantation and other cell related methods of regenerative medicine.
Collapse
Affiliation(s)
- Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
387
|
Chen LY, Zhang Y, Zhang Q, Li H, Luo Z, Fang H, Kim SH, Qin L, Yotnda P, Xu J, Tu BP, Bai Y, Songyang Z. Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Mol Cell 2012; 47:839-50. [PMID: 22885005 DOI: 10.1016/j.molcel.2012.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/24/2012] [Accepted: 07/05/2012] [Indexed: 12/25/2022]
Abstract
Both mitochondria, which are metabolic powerhouses, and telomeres, which help maintain genomic stability, have been implicated in cancer and aging. However, the signaling events that connect these two cellular structures remain poorly understood. Here, we report that the canonical telomeric protein TIN2 is also a regulator of metabolism. TIN2 is recruited to telomeres and associates with multiple telomere regulators including TPP1. TPP1 interacts with TIN2 N terminus, which contains overlapping mitochondrial and telomeric targeting sequences, and controls TIN2 localization. We have found that TIN2 is posttranslationally processed in mitochondria and regulates mitochondrial oxidative phosphorylation. Reducing TIN2 expression by RNAi knockdown inhibited glycolysis and reactive oxygen species (ROS) production and enhanced ATP levels and oxygen consumption in cancer cells. These results suggest a link between telomeric proteins and metabolic control, providing an additional mechanism by which telomeric proteins regulate cancer and aging.
Collapse
Affiliation(s)
- Liuh-Yow Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Context-Dependent Regulation of Autophagy by IKK-NF-κB Signaling: Impact on the Aging Process. Int J Cell Biol 2012; 2012:849541. [PMID: 22899934 PMCID: PMC3412117 DOI: 10.1155/2012/849541] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
The NF-κB signaling system and the autophagic degradation pathway are crucial cellular survival mechanisms, both being well conserved during evolution. Emerging studies have indicated that the IKK/NF-κB signaling axis regulates autophagy in a context-dependent manner. IKK complex and NF-κB can enhance the expression of Beclin 1 and other autophagy-related proteins and stimulate autophagy whereas as a feedback response, autophagy can degrade IKK components. Moreover, NF-κB signaling activates the expression of autophagy inhibitors (e.g., A20 and Bcl-2/xL) and represses the activators of autophagy (BNIP3, JNK1, and ROS). Several studies have indicated that NF-κB signaling is enhanced both during aging and cellular senescence, inducing a proinflammatory phenotype. The aging process is also associated with a decline in autophagic degradation. It seems that the activity of Beclin 1 initiation complex could be impaired with aging, since the expression of Beclin 1 decreases as does the activity of type III PI3K. On the other hand, the expression of inhibitory Bcl-2/xL proteins increases with aging. We will review the recent literature on the control mechanisms of autophagy through IKK/NF-κB signaling and emphasize that NF-κB signaling could be a potent repressor of autophagy with ageing.
Collapse
|
389
|
Kyryakov P, Beach A, Richard VR, Burstein MT, Leonov A, Levy S, Titorenko VI. Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration. Front Physiol 2012; 3:256. [PMID: 22783207 PMCID: PMC3390693 DOI: 10.3389/fphys.2012.00256] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/19/2012] [Indexed: 11/28/2022] Open
Abstract
The non-reducing disaccharide trehalose has been long considered only as a reserve carbohydrate. However, recent studies in yeast suggested that this osmolyte can protect cells and cellular proteins from oxidative damage elicited by exogenously added reactive oxygen species (ROS). Trehalose has been also shown to affect stability, folding, and aggregation of bacterial and firefly proteins heterologously expressed in heat-shocked yeast cells. Our recent investigation of how a lifespan-extending caloric restriction (CR) diet alters the metabolic history of chronologically aging yeast suggested that their longevity is programmed by the level of metabolic capacity - including trehalose biosynthesis and degradation - that yeast cells developed prior to entry into quiescence. To investigate whether trehalose homeostasis in chronologically aging yeast may play a role in longevity extension by CR, in this study we examined how single-gene-deletion mutations affecting trehalose biosynthesis and degradation impact (1) the age-related dynamics of changes in trehalose concentration; (2) yeast chronological lifespan under CR conditions; (3) the chronology of oxidative protein damage, intracellular ROS level and protein aggregation; and (4) the timeline of thermal inactivation of a protein in heat-shocked yeast cells and its subsequent reactivation in yeast returned to low temperature. Our data imply that CR extends yeast chronological lifespan in part by altering a pattern of age-related changes in trehalose concentration. We outline a model for molecular mechanisms underlying the essential role of trehalose in defining yeast longevity by modulating protein folding, misfolding, unfolding, refolding, oxidative damage, solubility, and aggregation throughout lifespan.
Collapse
Affiliation(s)
- Pavlo Kyryakov
- Department of Biology, Concordia UniversityMontreal, PQ, Canada
| | - Adam Beach
- Department of Biology, Concordia UniversityMontreal, PQ, Canada
| | | | | | - Anna Leonov
- Department of Biology, Concordia UniversityMontreal, PQ, Canada
| | - Sean Levy
- Department of Biology, Concordia UniversityMontreal, PQ, Canada
| | | |
Collapse
|
390
|
Gregersen N, Hansen J, Palmfeldt J. Mitochondrial proteomics--a tool for the study of metabolic disorders. J Inherit Metab Dis 2012; 35:715-26. [PMID: 22526845 DOI: 10.1007/s10545-012-9480-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/14/2022]
Abstract
Mitochondria are important for a number of life and death processes, such as energy production, creation of reactive oxygen species, and elicitation of stress responses. These responses range from induction of protein quality control and antioxidant systems to mitochondria elimination and cell death. Mitochondrial dysfunctions are involved in pathologies associated with many diseases, for example metabolic disorders, diabetes, cancers, cardiovascular and neurodegenerative diseases as well as obesity and aging. Mitochondrial proteomics can be a powerful tool in the study of these diseases, especially since it can cover mitochondrial proteins from several metabolic pathways, such as the citric acid cycle, fatty acid oxidation, and respiratory chain, as well as protein networks involved in stress responses. The mitochondrial proteome can consist of more than 1,000 different proteins. However, it is difficult to define the precise number, since mitochondria are dynamic and difficult to purify, and because an unknown number of proteins possess dual or multiple localization, depending on cell type and physiological conditions. This review describes several quantitative studies of proteins from mitochondria isolated by centrifugation, separated by various methods (e.g., electrophoresis and nanoLC), and analyzed by advanced mass spectrometry. We illustrate the methods by showing that multiple pathways and networks are affected in cells from patients carrying gene variations affecting a mitochondrial protein. The study of cultured skin fibroblasts from patients with ethylmalonic aciduria associated with variations in the genes coding for short-chain acyl-CoA dehydrogenase (SCAD) or ETHE1 are two of the examples. The possibility of obtaining mitochondrial proteomics data from whole cell proteomics studies is also exemplified by the involvement of liver mitochondria in metabolic syndrome.
Collapse
Affiliation(s)
- Niels Gregersen
- Research Unit for Molecular Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
391
|
Baker BM, Nargund AM, Sun T, Haynes CM. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet 2012; 8:e1002760. [PMID: 22719267 PMCID: PMC3375257 DOI: 10.1371/journal.pgen.1002760] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Cells respond to defects in mitochondrial function by activating signaling pathways that restore homeostasis. The mitochondrial peptide exporter HAF-1 and the bZip transcription factor ATFS-1 represent one stress response pathway that regulates the transcription of mitochondrial chaperone genes during mitochondrial dysfunction. Here, we report that GCN-2, an eIF2α kinase that modulates cytosolic protein synthesis, functions in a complementary pathway to that of HAF-1 and ATFS-1. During mitochondrial dysfunction, GCN-2–dependent eIF2α phosphorylation is required for development as well as the lifespan extension observed in Caenorhabditis elegans. Reactive oxygen species (ROS) generated from dysfunctional mitochondria are required for GCN-2–dependent eIF2α phosphorylation but not ATFS-1 activation. Simultaneous deletion of ATFS-1 and GCN-2 compounds the developmental defects associated with mitochondrial stress, while stressed animals lacking GCN-2 display a greater dependence on ATFS-1 and stronger induction of mitochondrial chaperone genes. These findings are consistent with translational control and stress-dependent chaperone induction acting in complementary arms of the UPRmt. Defects in mitochondrial function are associated with numerous age-related diseases including cancer and Parkinson's. Mitochondrial function relies upon maintenance of the mitochondrial proteome, which is comprised of nuclear and mitochondrial-encoded proteins. Nuclear-encoded polypeptides are translated in the cytosol and must be transported into the mitochondrial matrix, where resident chaperones facilitate folding into their functional conformation. In order to protect against dysfunction arising from an accumulation of misfolded or unfolded mitochondrial proteins, cells employ mechanisms to maintain the folding environment. One such signaling pathway is mediated by the bZip transcription factor ATFS-1, which upregulates mitochondrial chaperones to accommodate an overwhelming misfolded protein load. Here, we describe a complementary pathway that couples the mitochondrial functional status with the rate of cytosolic protein synthesis to protect the organelle from incoming unfolded protein substrates during mitochondrial stress. This pathway is regulated by the cytosolic kinase GCN-2, which phosphorylates the translation initiation factor 2α (eIF2α) subunit to slow general translation. GCN-2 responds to ROS emitted from dysfunctional mitochondria to promote growth and extend lifespan during mitochondrial stress.
Collapse
Affiliation(s)
- Brooke M Baker
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | | | | |
Collapse
|
392
|
Hou NS, Taubert S. Function and Regulation of Lipid Biology in Caenorhabditis elegans Aging. Front Physiol 2012; 3:143. [PMID: 22629250 PMCID: PMC3355469 DOI: 10.3389/fphys.2012.00143] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/27/2012] [Indexed: 02/02/2023] Open
Abstract
Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefiting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular, and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.
Collapse
Affiliation(s)
- Nicole Shangming Hou
- Graduate Program in Cell and Developmental Biology, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
393
|
Abstract
Progressive DNA damage and mitochondrial decline are both considered to be prime instigators of natural ageing. Traditionally, these two pathways have been viewed largely in isolation. However, recent studies have revealed a molecular circuit that directly links DNA damage to compromised mitochondrial biogenesis and function via p53. This axis of ageing may account for both organ decline and disease development associated with advanced age and could illuminate a path for the development of relevant therapeutics.
Collapse
|
394
|
Duncan AJ, Knight JA, Costello H, Conway GS, Rahman S. POLG mutations and age at menopause. Hum Reprod 2012; 27:2243-4. [PMID: 22552686 DOI: 10.1093/humrep/des130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
395
|
Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1225-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
396
|
|
397
|
Kowaltowski AJ. Caloric restriction and redox state: does this diet increase or decrease oxidant production? Redox Rep 2012; 16:237-41. [PMID: 22195991 DOI: 10.1179/1351000211y.0000000014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Calorie restriction (CR) is well established to enhance the lifespan of a wide variety of organisms, although the mechanisms are still being uncovered. Recently, some authors have suggested that CR acts through hormesis, enhancing the production of reactive oxygen species (ROS), activating stress response pathways, and increasing lifespan. Here, we review the literature on the effects of CR and redox state. We find that there is no evidence in rodent models of CR that an increase in ROS production occurs. Furthermore, results in Caenorhabditis elegans and Saccharomyces cerevisiae suggesting that CR increases intracellular ROS are questionable, and probably cannot be resolved until adequate, artifact free, tools for real-time, quantitative, and selective measurements of intracellular ROS are developed. Overall, the largest body of work indicates that CR improves redox state, although it seems improbable that a global improvement in redox state is the mechanism through which CR enhances lifespan.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
398
|
Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 2012; 83:995-1004. [PMID: 22120678 PMCID: PMC3299878 DOI: 10.1016/j.bcp.2011.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or synergistically with many other drugs in the treatment of both solid tumors and leukemias in murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B, as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the drug. A phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this combination therapy has anticancer activity in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this might have in understanding the effects of genetic variation in treating cancer in humans.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Li Xiao
- University of Alabama at Birmingham, Department of Immunology and Rheumatology, Birmingham, AL 35294
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
399
|
Abstract
Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. "Hormesis A" inhibits the TOR pathway. "Hormesis B" increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
400
|
Abstract
Reactive oxygen species (ROS) are toxic oxygen-containing molecules that can damage multiple components of the cell and have been proposed to be the primary cause of aging. The antioxidant enzyme superoxide dismutase (SOD) is the only eukaryotic enzyme capable of detoxifying superoxide, one type of ROS. The fact that SOD is present in all aerobic organisms raises the question as to whether SOD is absolutely required for animal life and whether the loss of SOD activity will result in decreased lifespan. Here we use the genetic model organism Caenorhabditis elegans to generate an animal that completely lacks SOD activity (sod-12345 worms). We show that sod-12345 worms are viable and exhibit a normal lifespan, despite markedly increased sensitivity to multiple stresses. This is in stark contrast to what is observed in other genetic model organisms where the loss of a single sod gene can result in severely decreased survival. Investigating the mechanism underlying the normal lifespan of sod-12345 worms reveals that their longevity results from a balance between the prosurvival signaling and the toxicity of superoxide. Overall, our results demonstrate that SOD activity is dispensable for normal animal lifespan but is required to survive acute stresses. Moreover, our findings indicate that maintaining normal stress resistance is not crucial to the rate of aging.
Collapse
|