351
|
Rustom A, Bajohrs M, Kaether C, Keller P, Toomre D, Corbeil D, Gerdes HH. Selective delivery of secretory cargo in Golgi-derived carriers of nonepithelial cells. Traffic 2002; 3:279-88. [PMID: 11929609 DOI: 10.1034/j.1600-0854.2002.030405.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In epithelial cells, soluble cargo proteins destined for basolateral or apical secretion are packaged into distinct trans-Golgi network-derived transport carriers. Similar carriers, termed basolateral- and apical-like, have been observed in nonepithelial cells using ectopically expressed membrane marker proteins. Whether these cells are capable of selectively packaging secretory proteins into distinct carriers is still an open question. Here, we have addressed this issue by analyzing the packaging and transport of secretory human chromogranin B fusion proteins using a green fluorescent protein-based high-resolution, dual-color imaging technique. We were able to show that these secretory markers were selectively packaged at the Golgi into tubular/vesicular-like transport carriers containing basolateral membrane markers, resulting in extensive cotransport. In contrast, deletion mutants of the human chromogranin B fusion proteins lacking an N-terminal loop structure were efficiently transported in both basolateral- and apical-like carriers, the latter displaying a spherical morphology. Similarly, in polarized epithelial cells, the human chromogranin B fusion protein was secreted basolaterally and the loop-deleted analogue into both the basolateral and apical medium. These findings suggest that nonepithelial cells, like their epithelial counterparts, possess a sorting machinery capable of selective packaging of secretory cargo into distinct types of carriers.
Collapse
Affiliation(s)
- Amin Rustom
- Department of Neurobiology, Interdisciplinary Center of Neuroscience, University of Heidelberg, INF 364, Germany
| | | | | | | | | | | | | |
Collapse
|
352
|
Abstract
Adaptor protein (AP) complexes are heterotetrameric assemblies of subunits named adaptins. Four AP complexes, termed AP-1, AP-2, AP-3, and AP-4, have been described in various eukaryotic organisms. Biochemical and morphological evidence indicates that AP complexes play roles in the formation of vesicular transport intermediates and the selection of cargo molecules for inclusion into these intermediates. This understanding is being expanded by the application of genetic interference procedures. Here, we review recent progress in the genetic analysis of the function of AP complexes, focusing on studies that make use of targeted interference or naturally-occurring mutations in various model organisms.
Collapse
Affiliation(s)
- Markus Boehm
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
353
|
Simmen T, Höning S, Icking A, Tikkanen R, Hunziker W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 2002; 4:154-9. [PMID: 11802162 DOI: 10.1038/ncb745] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptors are heterotetrameric complexes that mediate the incorporation of cargo into transport vesicles by interacting with sorting signals present in the cytosolic domain of transmembrane proteins. Four adaptors, AP-1 (beta 1, gamma, mu 1A or mu 1B, sigma 1), AP-2 (beta 2, alpha, mu 2, sigma 2), AP-3 (beta 3 , delta, mu 3, sigma 3) or AP-4 (beta 4, epsilon, mu 4, sigma 4), have been characterized. AP-1 and AP-3 mediate sorting events at the level of the TGN and/or endosomes, whereas AP-2 functions in endocytic clathrin coated vesicle formation; no function is known so far for AP-4. Here, we show that AP-4 can bind different types of cytosolic signals known to mediate basolateral transport in epithelial cells. Furthermore, in MDCK cells with depleted mu 4 protein levels, several basolateral proteins are mis-sorted to the apical surface, showing that AP-4 participates in basolateral sorting in epithelial cells.
Collapse
Affiliation(s)
- Thomas Simmen
- Institute of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
354
|
Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2002; 17:517-68. [PMID: 11687498 DOI: 10.1146/annurev.cellbio.17.1.517] [Citation(s) in RCA: 485] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has recently been considerable progress in understanding the regulation of clathrin-coated vesicle (CCV) formation and function. These advances are due to the determination of the structure of a number of CCV coat components at molecular resolution and the identification of novel regulatory proteins that control CCV formation in the cell. In addition, pathways of (a) phosphorylation, (b) receptor signaling, and (c) lipid modification that influence CCV formation, as well as the interaction between the cytoskeleton and CCV transport pathways are becoming better defined. It is evident that although clathrin coat assembly drives CCV formation, this fundamental reaction is modified by different regulatory proteins, depending on where CCVs are forming in the cell. This regulatory difference likely reflects the distinct biological roles of CCVs at the plasma membrane and trans-Golgi network, as well as the distinct properties of these membranes themselves. Tissue-specific functions of CCVs require even more-specialized regulation and defects in these pathways can now be correlated with human diseases.
Collapse
Affiliation(s)
- F M Brodsky
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
355
|
van Dam EM, Stoorvogel W. Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol Biol Cell 2002; 13:169-82. [PMID: 11809831 PMCID: PMC65080 DOI: 10.1091/mbc.01-07-0380] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temperature-sensitive mutant of dynamin-1 (dynamin-1(G273D)) or, as a control, dynamin-1 wild type. In dynamin-1(G273D)-expressing cells, 29-36% of endocytosed transferrin failed to recycle at the nonpermissive temperature and remained associated with tubular recycling endosomes. Sorting of endocytosed transferrin from fluid-phase endocytosed markers in early endosome antigen 1-labeled sorting endosomes was not inhibited. Dynamin-1(G273D) associated with accumulated clathrin-coated buds on extended tubular recycling endosomes. Brefeldin A interfered with the assembly of clathrin coats on endosomes and reduced the extent of transferrin recycling in control cells but did not further affect recycling by dynamin-1(G273D)-expressing cells. Together, these data indicate that the pathway from recycling endosomes to the plasma membrane is mediated, at least in part, by endosome-derived clathrin-coated vesicles in a dynamin-dependent manner.
Collapse
Affiliation(s)
- Ellen M van Dam
- Department of Cell Biology, University Medical Center and Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
356
|
Abstract
Eukaryotic cells organize their cytoplasm by moving different organelles and macromolecular complexes along microtubules and actin filaments. These movements are powered by numerous motor proteins that must recognize their respective cargoes in order to function. Recently, several proteins that interact with motors have been identified by yeast two-hybrid and biochemical analyses, and their roles in transport are now being elucidated. In several cases, analysis of the binding partners helped to identify new transport pathways, new types of cargo, and transport regulated at the level of motor-cargo binding. We discuss here how different motors of the kinesin, dynein and myosin families recognize their cargo and how motor-cargo interactions are regulated.
Collapse
Affiliation(s)
- Ryan L Karcher
- Dept of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | |
Collapse
|
357
|
Affiliation(s)
- Marta Miaczynska
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
| | | |
Collapse
|
358
|
Affiliation(s)
- David C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
359
|
Olsen O, Liu H, Wade JB, Merot J, Welling PA. Basolateral membrane expression of the Kir 2.3 channel is coordinated by PDZ interaction with Lin-7/CASK complex. Am J Physiol Cell Physiol 2002; 282:C183-95. [PMID: 11742811 DOI: 10.1152/ajpcell.00249.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The basolateral membrane sorting determinant of an inwardly rectifying potassium channel, Kir 2.3, is comprised of a unique arrangement of trafficking motifs containing tandem, conceivably overlapping, biosynthetic targeting and PDZ-based signals. In the present study, we elucidate a mechanism by which a PDZ interaction coordinates one step in a basolateral membrane sorting program. In contrast to apical missorting of channels lacking the entire sorting domain, deletion of the PDZ binding motif caused channels to accumulate into an endosomal compartment. Here, we identify a new human ortholog of a Caenorhabditis elegans PDZ protein, hLin-7b, that interacts with the COOH-terminal tail of Kir 2.3 in renal epithelia. hLin-7b associates with the channel as a part of a multimeric complex on the basolateral membrane similar to a basolateral membrane complex in C. elegans vulva progenitor cells. Coexpression of hLin-7b with Kir 2.3 dramatically increases channel activity by stabilizing plasma membrane expression. The discovery identifies one component of the sorting machinery and provides evidence for a retention mechanism in a hierarchical basolateral trafficking program.
Collapse
Affiliation(s)
- Olav Olsen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
360
|
Madrid R, LeMaout S, Barrault MB, Janvier K, Benichou S, Mérot J. Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin-adaptor complexes. EMBO J 2001; 20:7008-21. [PMID: 11742978 PMCID: PMC125333 DOI: 10.1093/emboj/20.24.7008] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aquaporin 4 (AQP4) is the predominant water channel in the brain. It is targeted to specific membrane domains of astrocytes and plays a crucial role in cerebral water balance in response to brain edema formation. AQP4 is also specifically expressed in the basolateral membranes of epithelial cells. However, the molecular mechanisms involved in its polarized targeting and membrane trafficking remain largely unknown. Here, we show that two independent C-terminal signals determine AQP4 basolateral membrane targeting in epithelial MDCK cells. One signal involves a tyrosine-based motif; the other is encoded by a di-leucine-like motif. We found that the tyrosine-based basolateral sorting signal also determines AQP4 clathrin-dependent endocytosis through direct interaction with the mu subunit of AP2 adaptor complex. Once endocytosed, a regulated switch in mu subunit interaction changes AP2 adaptor association to AP3. We found that the stress-induced kinase casein kinase (CK)II phosphorylates the Ser276 immediately preceding the tyrosine motif, increasing AQP4-mu 3A interaction and enhancing AQP4-lysosomal targeting and degradation. AQP4 phosphorylation by CKII may thus provide a mechanism that regulates AQP4 cell surface expression.
Collapse
Affiliation(s)
| | | | | | - Katy Janvier
- Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, Cedex,
Institut Cochin de Génétique Moléculaire, INSERM U529, F-75014 Paris and INSERM U533, Faculté de Médecine, F-44093 Nantes, France Corresponding author e-mail: R.Madrid and S.Le Maout contributed equally to this work
| | - Serge Benichou
- Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, Cedex,
Institut Cochin de Génétique Moléculaire, INSERM U529, F-75014 Paris and INSERM U533, Faculté de Médecine, F-44093 Nantes, France Corresponding author e-mail: R.Madrid and S.Le Maout contributed equally to this work
| | - Jean Mérot
- Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, Cedex,
Institut Cochin de Génétique Moléculaire, INSERM U529, F-75014 Paris and INSERM U533, Faculté de Médecine, F-44093 Nantes, France Corresponding author e-mail: R.Madrid and S.Le Maout contributed equally to this work
| |
Collapse
|
361
|
Abstract
Heterotetrameric adaptor complexes vesiculate donor membranes. One of the adaptor protein complexes, AP-3, is present in two forms; one form is expressed in all tissues of the body, whereas the other is restricted to brain. Mice lacking both the ubiquitous and neuronal forms of AP-3 exhibit neurological disorders that are not observed in mice that are mutant only in the ubiquitous form. To begin to understand the role of neuronal AP-3 in neurological disease, we investigated its function in in vitro assays as well as its localization in neural tissue. In the presence of GTPgammaS both ubiquitous and neuronal forms of AP-3 can bind to purified synaptic vesicles. However, only the neuronal form of AP-3 can produce synaptic vesicles from endosomes in vitro. We also identified that the expression of neuronal AP-3 is limited to varicosities of neuronal-like processes and is expressed in most axons of the brain. Although the AP-2/clathrin pathway is the major route of vesicle production and the relatively minor neuronal AP-3 pathway is not necessary for viability, the absence of the latter could lead to the neurological abnormalities seen in mice lacking the expression of AP-3 in brain. In this study we have identified the first brain-specific function for a neuronal adaptor complex.
Collapse
|
362
|
White J, Keller P, Stelzer EHK. Spatial partitioning of secretory cargo from Golgi resident proteins in live cells. BMC Cell Biol 2001; 2:19. [PMID: 11707151 PMCID: PMC59882 DOI: 10.1186/1471-2121-2-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2001] [Accepted: 10/10/2001] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To maintain organelle integrity, resident proteins must segregate from itinerant cargo during secretory transport. However, Golgi resident enzymes must have intimate access to secretory cargo in order to carry out glycosylation reactions. The amount of cargo and associated membrane may be significant compared to the amount of Golgi membrane and resident protein, but upon Golgi exit, cargo and resident are efficiently sorted. How this occurs in live cells is not known. RESULTS We observed partitioning of the fluorescent Golgi resident T2-CFP and fluorescent cargo proteins VSVG3-YFP or VSVG3-SP-YFP upon Golgi exit after a synchronous pulse of cargo was released from the ER. Golgi elements remained stable in overall size, shape and relative position as cargo emptied. Cargo segregated from resident rapidly by blebbing into micron-sized domains that contained little or no detectable resident protein and that appeared to be continuous with the parent Golgi element. Post-Golgi transport carriers (TCs) exited repeatedly from these domains. Alternatively, entire cargo domains exited Golgi elements, forming large TCs that fused directly with the plasma membrane. However, domain formation did not appear to be an absolute prerequisite for TC exit, since TCs also exited directly from Golgi elements in the absence of large domains. Quantitative cargo-specific photobleaching experiments revealed transfer of cargo between Golgi regions, but no discrete intra-Golgi TCs were observed. CONCLUSIONS Our results establish domain formation via rapid lateral partitioning as a general cellular strategy for segregating different transmembrane proteins along the secretory pathway and provide a framework for consideration of molecular mechanisms of secretory transport.
Collapse
Affiliation(s)
- Jamie White
- Light Microscopy Group,European Molecular Biology Laboratory(EMBL),Meyerhofstrabe Heidelberg, Germany
- Cell Biology and Biophysics Programme European Molecular Biology Laboratory (EMBL) Meyerhofstraβe, Heidelberg, Germany
- Massachusetts General Hospital Cancer Research Center, Charlestown, Massachusetts, USA
| | - Patrick Keller
- Cell Biology and Biophysics Programme European Molecular Biology Laboratory (EMBL) Meyerhofstraβe, Heidelberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, Dresden, Germany
| | - Ernst HK Stelzer
- Light Microscopy Group,European Molecular Biology Laboratory(EMBL),Meyerhofstrabe Heidelberg, Germany
- Cell Biology and Biophysics Programme European Molecular Biology Laboratory (EMBL) Meyerhofstraβe, Heidelberg, Germany
| |
Collapse
|
363
|
Ohka S, Ohno H, Tohyama K, Nomoto A. Basolateral sorting of human poliovirus receptor alpha involves an interaction with the mu1B subunit of the clathrin adaptor complex in polarized epithelial cells. Biochem Biophys Res Commun 2001; 287:941-8. [PMID: 11573956 DOI: 10.1006/bbrc.2001.5660] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poliovirus receptor (hPVR/CD155) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily but its natural function remains unknown. Two membrane-bound isoforms, hPVRalpha and hPVRdelta, are known to date, and they differ only in the amino acid sequence of their cytoplasmic domains. To gain an insight into the possible function of the cytoplasmic domains, we examined the localization of introduced hPVRalpha and hPVRdelta in polarized epithelial cells deficient of native hPVRs. Basolateral sorting of hPVRalpha was observed in Madine-Darby canine kidney cells expressing mu1B, but not in LLC-PK1 porcine kidney cells deficient in mu1B. Distribution of hPVRdelta, however, occurred both on the apical and basolateral plasma membranes of these two cell lines. Basolateral sorting of hPVRalpha was also seen in LLC-PK1 cells that expressed an intact exogenous mu1B, but not in the cells that expressed a mutant mu1B lacking binding ability to tyrosine-containing signals. These results indicate that mu1B is involved in the distribution of hPVRalpha to the basolateral membrane. Comparative distribution analysis of hPVRalpha using a series of mutants with truncations and substitutions in the cytoplasmic tail demonstrated that determinant for the basolateral sorting resided in the tyrosine-containing motif of the cytoplasmic tail. Furthermore, yeast two hybrid analysis strongly suggested that the tyrosine motif directly interacted with mu1B protein. Thus, basolateral sorting of hPVRalpha appears to involve the interaction with mu1B through a tyrosine motif existing in the cytoplasmic domain.
Collapse
Affiliation(s)
- S Ohka
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
364
|
Abstract
The development of a mouse model for poliomyelitis that is transgenic for the human poliovirus receptor (hPVR) has made it much easier to investigate the efficiency of the viral dissemination process in a whole organism. These studies have given an insight into the mechanisms of blood-brain barrier permeation and neural transport. Strain-specific neurovirulence levels, however, appear to depend mainly on the replicating capacity of the virus in the central nervous system rather than the dissemination efficiency. Studies of the poliovirus-induced cytopathic effects on neural cells and specific subcellular localization of hPVR isoforms might determine a new course of investigation of poliovirus pathogenesis.
Collapse
Affiliation(s)
- S Ohka
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
365
|
Bello V, Goding JW, Greengrass V, Sali A, Dubljevic V, Lenoir C, Trugnan G, Maurice M. Characterization of a di-leucine-based signal in the cytoplasmic tail of the nucleotide-pyrophosphatase NPP1 that mediates basolateral targeting but not endocytosis. Mol Biol Cell 2001; 12:3004-15. [PMID: 11598187 PMCID: PMC60151 DOI: 10.1091/mbc.12.10.3004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enzymes of the nucleotide pyrophosphatase/phosphodiesterase (NPPase) family are expressed at opposite surfaces in polarized epithelial cells. We investigated the targeting signal of NPP1, which is exclusively expressed at the basolateral surface. Full-length NPP1 and different constructs and mutants were transfected into the polarized MDCK cell line. Expression of the proteins was analyzed by confocal microscopy and surface biotinylation. The basolateral signal of NPP1 was identified as a di-leucine motif located in the cytoplasmic tail. Mutation of either or both leucines largely redirected NPP1 to the apical surface. Furthermore, addition of the conserved sequence AAASLLAP redirected the apical nucleotide pyrophosphatase/phosphodiesterase NPP3 to the basolateral surface. Full-length NPP1 was not significantly internalized. However, when the cytoplasmic tail was deleted upstream the di-leucine motif or when the six upstream flanking amino acids were deleted, the protein was mainly found intracellularly. Endocytosis experiments indicated that these mutants were endocytosed from the basolateral surface. These results identify the basolateral signal of NPP1 as a short sequence including a di-leucine motif that is dominant over apical determinants and point to the importance of surrounding amino acids in determining whether the signal will function as a basolateral signal only or as an endocytotic signal as well.
Collapse
Affiliation(s)
- V Bello
- U538 INSERM, CHU St-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | |
Collapse
|
366
|
Abstract
Adaptins are subunits of adaptor protein (AP) complexes involved in the formation of intracellular transport vesicles and in the selection of cargo for incorporation into the vesicles. In this article, we report the results of a survey for adaptins from sequenced genomes including those of man, mouse, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, the plant Arabidopsis thaliana, and the yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that humans, mice, and Arabidopsis thaliana have four AP complexes (AP-1, AP-2, AP-3, and AP-4), whereas D. melanogaster, C. elegans, S. cerevisiae, and S. pombe have only three (AP-1, AP-2, and AP-3). Additional diversification of AP complexes arises from the existence of adaptin isoforms encoded by distinct genes or resulting from alternative splicing of mRNAs. We complete the assignment of adaptins to AP complexes and provide information on the chromosomal localization, exon-intron structure, and pseudogenes for the different adaptins. In addition, we discuss the structural and evolutionary relationships of the adaptins and the genetic analyses of their function. Finally, we extend our survey to adaptin-related proteins such as the GGAs and stonins, which contain domains homologous to the adaptins.
Collapse
Affiliation(s)
- M Boehm
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
367
|
Holthuis JC, Pomorski T, Raggers RJ, Sprong H, Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 2001; 81:1689-723. [PMID: 11581500 DOI: 10.1152/physrev.2001.81.4.1689] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotes are characterized by endomembranes that are connected by vesicular transport along secretory and endocytic pathways. The compositional differences between the various cellular membranes are maintained by sorting events, and it has long been believed that sorting is based solely on protein-protein interactions. However, the central sorting station along the secretory pathway is the Golgi apparatus, and this is the site of synthesis of the sphingolipids. Sphingolipids are essential for eukaryotic life, and this review ascribes the sorting power of the Golgi to its capability to act as a distillation apparatus for sphingolipids and cholesterol. As Golgi cisternae mature, ongoing sphingolipid synthesis attracts endoplasmic reticulum-derived cholesterol and drives a fluid-fluid lipid phase separation that segregates sphingolipids and sterols from unsaturated glycerolipids into lateral domains. While sphingolipid domains move forward, unsaturated glycerolipids are retrieved by recycling vesicles budding from the sphingolipid-poor environment. We hypothesize that by this mechanism, the composition of the sphingolipid domains, and the surrounding membrane changes along the cis-trans axis. At the same time the membrane thickens. These features are recognized by a number of membrane proteins that as a consequence of partitioning between domain and environment follow the domains but can enter recycling vesicles at any stage of the pathway. The interplay between protein- and lipid-mediated sorting is discussed.
Collapse
Affiliation(s)
- J C Holthuis
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
368
|
Wang E, Pennington JG, Goldenring JR, Hunziker W, Dunn KW. Brefeldin A rapidly disrupts plasma membrane polarity by blocking polar sorting in common endosomes of MDCK cells. J Cell Sci 2001; 114:3309-21. [PMID: 11591819 DOI: 10.1242/jcs.114.18.3309] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies showing thorough intermixing of apical and basolateral endosomes have demonstrated that endocytic sorting is critical to maintaining the plasma membrane polarity of epithelial cells. Our studies of living, polarized cells show that disrupting endocytosis with brefeldin-A rapidly destroys the polarity of transferrin receptors in MDCK cells while having no effect on tight junctions. Brefeldin-A treatment induces tubulation of endosomes, but the sequential compartments and transport steps of the transcytotic pathway remain intact. Transferrin is sorted from LDL, but is then missorted from common endosomes to the apical recycling endosome, as identified by its nearly neutral pH, and association with GFP chimeras of Rabs 11a and 25. From the apical recycling endosome, transferrin is then directed to the apical plasma membrane. These data are consistent with a model in which polarized sorting of basolateral membrane proteins occurs via a brefeldin-A-sensitive process of segregation into basolateral recycling vesicles. Although disruption of polar sorting correlates with dissociation of γ-adaptin from endosomes, γ-adaptin does not appear to be specifically involved in sorting into recycling vesicles, as we find it associated with the transcytotic pathway, and particularly to the post-sorting transcytotic apical recycling endosome.
Movies available on-line
Collapse
Affiliation(s)
- E Wang
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
369
|
Le Maout S, Welling PA, Brejon M, Olsen O, Merot J. Basolateral membrane expression of a K+ channel, Kir 2.3, is directed by a cytoplasmic COOH-terminal domain. Proc Natl Acad Sci U S A 2001; 98:10475-80. [PMID: 11504929 PMCID: PMC56985 DOI: 10.1073/pnas.181481098] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The inwardly rectifying potassium channel Kir 2.3 is specifically targeted and expressed on the basolateral membrane of certain renal epithelial cells. In the present study, the structural basis for polarized targeting was elucidated. Deletion of a unique COOH-terminal domain produced channels that were mistargeted to the apical membrane, consistent with the removal of a basolateral membrane-sorting signal. By characterizing a series of progressively smaller truncation mutants, an essential targeting signal was defined (residues 431-442) within a domain that juxtaposes or overlaps with a type I PDZ binding motif (442). Fusion of the COOH-terminal structure onto CD4 was sufficient to change a random membrane-trafficking and expression pattern into a basolateral membrane one. Using metabolic labeling and pulse-chase and surface immunoprecipitation, we found that CD4-Kir2.3 COOH-terminal chimeras were rapidly and directly targeted to the basolateral membrane, consistent with a sorting signal that is processed in the biosynthetic pathway. Collectively, the data indicate that the basolateral sorting determinant in Kir 2.3 is composed of a unique arrangement of trafficking motifs, containing tandem, conceivably overlapping, biosynthetic targeting and PDZ-based signals. The previously unrecognized domain corresponds to a highly degenerate structure within the Kir channel family, raising the possibility that the extreme COOH terminus of Kir channels may differentially coordinate membrane targeting of different channel isoforms.
Collapse
Affiliation(s)
- S Le Maout
- Department de Biologie Cellulaire et Moléculaire, Commissariat Energie Atomique, Saclay, Gif-Yvette 91191, France
| | | | | | | | | |
Collapse
|
370
|
Orzech E, Livshits L, Leyt J, Okhrimenko H, Reich V, Cohen S, Weiss A, Melamed-Book N, Lebendiker M, Altschuler Y, Aroeti B. Interactions between adaptor protein-1 of the clathrin coat and microtubules via type 1a microtubule-associated proteins. J Biol Chem 2001; 276:31340-8. [PMID: 11418592 DOI: 10.1074/jbc.m101054200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The classical view suggests that adaptor proteins of the clathrin coat mediate the sorting of cargo protein passengers into clathrin-coated pits and the recruitment of clathrin into budding areas in the donor membrane. In the present study, we provide biochemical and morphological evidence that the adaptor protein 1 (AP-1) adaptor of the trans-Golgi network clathrin interacts with microtubules. AP-1 in cytosolic extracts interacted with in vitro assembled microtubules, and these interactions were inhibited by ATP depletion of the extracts or in the presence of 5'-adenylylimidodiphosphate. An overexpressed gamma-subunit of the AP-1 complex associated with microtubules, suggesting that this subunit may mediate the interaction of AP-1 with the cytoskeleton. Purified AP-1 did not interact with purified microtubules, but interaction occurred when an isolated microtubule-associated protein fraction was added to the reaction mix. The gamma-adaptin subunit of AP-1 specifically co-immunoprecipitated with a microtubule-associated protein of type 1a from rat brain cytosol. This suggests that type 1a microtubule-associated protein may mediate the association of AP-1 with microtubules in the cytoplasm. The microtubule binding activity of AP-1 was markedly inhibited in cytosol of mitotic cells. By means of its interaction with microtubule-associated proteins, we propose novel roles for AP-1 adaptors in modulating the dynamics of the cytoskeleton, the stability and shape of coated organelles, and the loading of nascent AP-1-coated vesicles onto appropriate microtubular tracks.
Collapse
Affiliation(s)
- E Orzech
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Wellner RB, Baum BJ. Polarized sorting of aquaporins 5 and 8 in stable MDCK-II transfectants. Biochem Biophys Res Commun 2001; 285:1253-8. [PMID: 11478792 DOI: 10.1006/bbrc.2001.5287] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localization of aquaporin (AQP) water channels to either apical or basolateral membranes is important for various epithelial functions. We have established MDCK-II cell transfectants stably expressing AQP5 (RW5 cells) or AQP8 (RW8 cells). The expression of both AQPs was confirmed by the results of immunofluorescence microscopy and immunoblot analysis. When grown on polycarbonate filters, osmotically-obliged transepithelial water flow across RW5 and RW8 monolayers was approximately 3-fold greater than that occurring across a monolayer of the parental cell line. Importantly, results of confocal immunofluorescence microscopy studies showed that AQP5 sorted to the apical membranes of RW5 cells. In contrast, AQP8 sorted to the basolateral membranes of RW8 cells. This is the first report of (i) stable epithelial cell cultures exhibiting a functional, polarized distribution of AQPs 5 and 8, and (ii) a basolateral localization of AQP8 in a polarized epithelial cell.
Collapse
Affiliation(s)
- R B Wellner
- Gene Therapy and Therapeutics Branch, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
372
|
Brown CL, Coffey RJ, Dempsey PJ. The proamphiregulin cytoplasmic domain is required for basolateral sorting, but is not essential for constitutive or stimulus-induced processing in polarized Madin-Darby canine kidney cells. J Biol Chem 2001; 276:29538-49. [PMID: 11382759 DOI: 10.1074/jbc.m102114200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the role of the amphiregulin precursor (pro-AR) cytoplasmic domain in the basolateral sorting and cell-surface processing of pro-AR in polarized epithelial cells has been investigated using Madin-Darby canine kidney cells stably expressing various human pro-AR forms. Our results demonstrate that newly synthesized wild-type pro-AR (50 kDa) is delivered directly to the basolateral membrane domain with >95% efficiency, where it is sequentially cleaved within the ectodomain to release several soluble amphiregulin (AR) forms. Analyses of a pro-AR cytoplasmic domain truncation mutant (ARTL27) and two pro-AR secretory mutants (ARsec184 and ARsec190) indicated that the pro-AR cytoplasmic domain is not required for efficient delivery to the plasma membrane, but does contain essential basolateral sorting information. We show that the pro-AR cytoplasmic domain truncation mutant (ARTL27) is not sorted in polarized Madin-Darby canine kidney cells, with approximately 65% of the newly synthesized protein delivered to the apical cell surface. Under base-line conditions, ARTL27 was preferentially cleaved from the basolateral surface with 4-fold greater efficiency compared with cleavage from the apical membrane domain. However, ARTL27 ectodomain cleavage could be stimulated equivalently from either membrane domain by a variety of different stimuli. The metalloprotease inhibitor BB-94 could inhibit both base-line and stimulus-induced ectodomain cleavage of wild-type pro-AR and ARTL27. These results indicate that the pro-AR cytoplasmic domain is required for basolateral sorting, but is not essential for ectodomain processing. Preferential constitutive cleavage of ARTL27 from the basolateral cell surface also suggests that the metalloprotease activity involved in base-line and stimulus-induced ARTL27 ectodomain cleavage may be regulated differently in the apical and basolateral membrane domains of polarized epithelial cells.
Collapse
Affiliation(s)
- C L Brown
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
373
|
Dwyer ND, Adler CE, Crump JG, L'Etoile ND, Bargmann CI. Polarized dendritic transport and the AP-1 mu1 clathrin adaptor UNC-101 localize odorant receptors to olfactory cilia. Neuron 2001; 31:277-87. [PMID: 11502258 DOI: 10.1016/s0896-6273(01)00361-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Odorant receptors and signaling proteins are localized to sensory cilia on olfactory dendrites. Using a GFP-tagged odorant receptor protein, Caenorhabditis elegans ODR-10, we characterized protein sorting and transport in olfactory neurons in vivo. ODR-10 is transported in rapidly moving dendritic vesicles that shuttle between the cell body and the cilia. Anterograde and retrograde vesicles move at different speeds, suggesting that dendrites have polarized transport mechanisms. Residues immediately after the seventh membrane-spanning domain of ODR-10 are required for localization; these residues are conserved in many G protein-coupled receptors. UNC-101 encodes a mu1 subunit of the AP-1 clathrin adaptor complex. In unc-101 mutants, dendritic vesicles are absent, ODR-10 receptor is evenly distributed over the plasma membrane, and other cilia membrane proteins are also mislocalized, implicating AP-1 in protein sorting to olfactory cilia.
Collapse
Affiliation(s)
- N D Dwyer
- Howard Hughes Medical Institute, Programs in Developmental Biology, Neuroscience, and Genetics, Department of Anatomy, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
374
|
Abstract
Two new adaptor-related protein complexes, AP-3 and AP-4, have recently been identified, and both have been implicated in protein sorting at the trans-Golgi network (TGN) and/or endosomes. In addition, two families of monomeric proteins with adaptor-related domains, the GGAs and the stoned B family, have also been identified and shown to act at the TGN and plasma membrane, respectively. Together with the two conventional adaptors, AP-1 and AP-2, these proteins may act to direct different types of cargo proteins to different post-Golgi membrane compartments.
Collapse
Affiliation(s)
- M S Robinson
- University of Cambridge, Department of Clinical Biochemistry and Wellcome Trust Centre for the Study of Molecular Mechanisms in Disease, CB2 2XY, Cambridge, UK.
| | | |
Collapse
|
375
|
Mitsutake S, Tani M, Okino N, Mori K, Ichinose S, Omori A, Iida H, Nakamura T, Ito M. Purification, characterization, molecular cloning, and subcellular distribution of neutral ceramidase of rat kidney. J Biol Chem 2001; 276:26249-59. [PMID: 11328816 DOI: 10.1074/jbc.m102233200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported two types of neutral ceramidase in mice, one solubilized by freeze-thawing and one not. The former was purified as a 94-kDa protein from mouse liver, and cloned (Tani, M., Okino, N., Mori, K., Tanigawa, T., Izu, H., and Ito, M. (2000) J. Biol. Chem. 275, 11229--11234). In this paper, we describe the purification, molecular cloning, and subcellular distribution of a 112-kDa membrane-bound neutral ceramidase of rat kidney, which was completely insoluble by freeze-thawing. The open reading frame of the enzyme encoded a polypeptide of 761 amino acids having nine putative N-glycosylation sites and one possible transmembrane domain. In the ceramidase overexpressing HEK293 cells, 133-kDa (Golgi-form) and 113-kDa (endoplasmic reticulum-form) Myc-tagged ceramidases were detected, whereas these two proteins were converted to a 87-kDa protein concomitantly with loss of activity when expressed in the presence of tunicamycin, indicating that the N-glycosylation process is indispensable for the expression of the enzyme activity. Immunohistochemical analysis clearly showed that the ceramidase was mainly localized at the apical membrane of proximal tubules, distal tubules, and collecting ducts in rat kidney, while in liver the enzyme was distributed with endosome-like organelles in hepatocytes. Interestingly, the kidney ceramidase was found to be enriched in the raft microdomains with cholesterol and GM1 ganglioside.
Collapse
Affiliation(s)
- S Mitsutake
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Gokay KE, Young RS, Wilson JM. Cytoplasmic signals mediate apical early endosomal targeting of endotubin in MDCK cells. Traffic 2001; 2:487-500. [PMID: 11422942 DOI: 10.1034/j.1600-0854.2001.20706.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endotubin is an integral membrane protein that targets into apical endosomes in polarized epithelial cells. Although the role of cytoplasmic targeting signals as mediators of basolateral targeting and endocytosis is well established, it has been suggested that apical targeting requires either N-glycosylation of the ectoplasmic domains or partitioning of macromolecules into glycolipid-rich rafts. However, we have previously shown that the cytoplasmic portion of endotubin possesses signals that are necessary for its proper sorting into the apical early endosomes. To further define the targeting signals involved in this apically directed event, as well as to determine if the cytoplasmic domain was sufficient to mediate apical endosomal targeting, we generated a panel of endotubin and Tac-antigen chimeras and expressed them in Madin-Darby canine kidney cells. We show that both the apically targeting wild-type endotubin and a basolaterally targeted cytoplasmic domain mutant do not associate with rafts and are TX-100 soluble. The cytoplasmic tail of endotubin is sufficient for apical endosomal targeting, as chimeras with the endotubin cytoplasmic domain and Tac transmembrane and extracellular domains are efficiently targeted to the apical endosomal compartment. Furthermore, we show that overexpression of these chimeras results in their missorting to the basolateral membrane, indicating that the apical sorting process is a saturable event. These results show that cells contain machinery in both the biosynthetic and endosomal compartments that recognize cytoplasmic apical sorting signals.
Collapse
Affiliation(s)
- K E Gokay
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
377
|
Abstract
The trans-Golgi network (TGN) is a major secretory pathway sorting station that directs newly synthesized proteins to different subcellular destinations. The TGN also receives extracellular materials and recycled molecules from endocytic compartments. In this review, we summarize recent progress on understanding TGN structure and the dynamics of trafficking to and from this compartment. Protein sorting into different transport vesicles requires specific interactions between sorting motifs on the cargo molecules and vesicle coat components that recognize these motifs. Current understanding of the various targeting signals and vesicle coat components that are involved in TGN sorting are discussed, as well as the molecules that participate in retrieval to this compartment in both yeast and mammalian cells. Besides proteins, lipids and lipid-modifying enzymes also participate actively in the formation of secretory vesicles. The possible mechanisms of action of these lipid hydrolases and lipid kinases are discussed. Finally, we summarize the fundamentally different apical and basolateral cell surface delivery mechanisms and the current facts and hypotheses on protein sorting from the TGN into the regulated secretory pathway in neuroendocrine cells.
Collapse
Affiliation(s)
- F. Gu
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - C.M. Crump
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - G. Thomas
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| |
Collapse
|
378
|
Tai AW, Chuang JZ, Sung CH. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol 2001; 153:1499-509. [PMID: 11425878 PMCID: PMC2150720 DOI: 10.1083/jcb.153.7.1499] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite the existence of multiple subunit isoforms for the microtubule motor cytoplasmic dynein, it has not yet been directly shown that dynein complexes with different compositions exhibit different properties. The 14-kD dynein light chain Tctex-1, but not its homologue RP3, binds directly to rhodopsin's cytoplasmic COOH-terminal tail, which encodes an apical targeting determinant in polarized epithelial Madin-Darby canine kidney (MDCK) cells. We demonstrate that Tctex-1 and RP3 compete for binding to dynein intermediate chain and that overexpressed RP3 displaces endogenous Tctex-1 from dynein complexes in MDCK cells. Furthermore, replacement of Tctex-1 by RP3 selectively disrupts the translocation of rhodopsin to the MDCK apical surface. These results directly show that cytoplasmic dynein function can be regulated by its subunit composition and that cytoplasmic dynein is essential for at least one mode of apical transport in polarized epithelia.
Collapse
Affiliation(s)
- Andrew W. Tai
- Department of Cell Biology and Anatomy, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Jen-Zen Chuang
- Department of Ophthalmology, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Ching-Hwa Sung
- Department of Cell Biology and Anatomy, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
- Department of Ophthalmology, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
379
|
Miranda KC, Khromykh T, Christy P, Le TL, Gottardi CJ, Yap AS, Stow JL, Teasdale RD. A dileucine motif targets E-cadherin to the basolateral cell surface in Madin-Darby canine kidney and LLC-PK1 epithelial cells. J Biol Chem 2001; 276:22565-72. [PMID: 11312273 DOI: 10.1074/jbc.m101907200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface. We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodomain of the interleukin-2alpha (IL-2alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK(1) epithelial cells. Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin. Truncation mutants unable to bind beta-catenin were correctly targeted, showing, contrary to current understanding, that beta-catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine-mediated targeting is maintained in LLC-PK(1) cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line. These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.
Collapse
Affiliation(s)
- K C Miranda
- Institute for Molecular Bioscience, the Department of Biochemistry, and the Department of Physiology & Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Koivisto UM, Hubbard AL, Mellman I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 2001; 105:575-85. [PMID: 11389828 DOI: 10.1016/s0092-8674(01)00371-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Basolateral targeting of membrane proteins in polarized epithelial cells typically requires cytoplasmic domain sorting signals. In the familial hypercholesterolemia (FH)-Turku LDL receptor allele, a mutation of glycine 823 residue affects the signal required for basolateral targeting in MDCK cells. We show that the mutant receptor is mistargeted to the apical surface in both MDCK and hepatic epithelial cells, resulting in reduced endocytosis of LDL from the basolateral/sinusoidal surface. Consequently, virally encoded mutant receptor fails to mediate cholesterol clearance in LDL receptor-deficient mice, suggesting that a defect in polarized LDL receptor expression in hepatocytes underlies the hypercholesterolemia in patients harboring this allele. This evidence directly links the pathogenesis of a human disease to defects in basolateral targeting signals, providing a genetic confirmation of these signals in maintaining epithelial cell polarity.
Collapse
Affiliation(s)
- U M Koivisto
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, PO Box 208002, New Haven, CT 06520, USA
| | | | | |
Collapse
|
381
|
Crump CM, Xiang Y, Thomas L, Gu F, Austin C, Tooze SA, Thomas G. PACS-1 binding to adaptors is required for acidic cluster motif-mediated protein traffic. EMBO J 2001; 20:2191-201. [PMID: 11331585 PMCID: PMC125242 DOI: 10.1093/emboj/20.9.2191] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PACS-1 is a cytosolic protein involved in controlling the correct subcellular localization of integral membrane proteins that contain acidic cluster sorting motifs, such as furin and human immunodeficiency virus type 1 (HIV-1) NEF: We have now investigated the interaction of PACS-1 with heterotetrameric adaptor complexes. PACS-1 associates with both AP-1 and AP-3, but not AP-2, and forms a ternary complex between furin and AP-1. A short sequence within PACS-1 that is essential for binding to AP-1 has been identified. Mutation of this motif yielded a dominant-negative PACS-1 molecule that can still bind to acidic cluster motifs on cargo proteins but not to adaptor complexes. Expression of dominant-negative PACS-1 causes a mislocalization of both furin and mannose 6-phosphate receptor from the trans-Golgi network, but has no effect on the localization of proteins that do not contain acidic cluster sorting motifs. Furthermore, expression of dominant-negative PACS-1 inhibits the ability of HIV-1 Nef to downregulate MHC-I. These studies demonstrate the requirement for PACS-1 interactions with adaptor proteins in multiple processes, including secretory granule biogenesis and HIV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Yang Xiang
- Vollum Institute, L-474, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098,
HHMI, Beckman Center B161, Stanford University, Palo Alto, CA 94304, USA and Imperial Cancer Research Fund, PO Box 123, Lincoln Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: C.M.Crump and Y.Xiang contributed equally to this work
| | | | | | - Carol Austin
- Vollum Institute, L-474, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098,
HHMI, Beckman Center B161, Stanford University, Palo Alto, CA 94304, USA and Imperial Cancer Research Fund, PO Box 123, Lincoln Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: C.M.Crump and Y.Xiang contributed equally to this work
| | - Sharon A. Tooze
- Vollum Institute, L-474, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098,
HHMI, Beckman Center B161, Stanford University, Palo Alto, CA 94304, USA and Imperial Cancer Research Fund, PO Box 123, Lincoln Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: C.M.Crump and Y.Xiang contributed equally to this work
| | - Gary Thomas
- Vollum Institute, L-474, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098,
HHMI, Beckman Center B161, Stanford University, Palo Alto, CA 94304, USA and Imperial Cancer Research Fund, PO Box 123, Lincoln Inn Fields, London WC2A 3PX, UK Corresponding author e-mail: C.M.Crump and Y.Xiang contributed equally to this work
| |
Collapse
|
382
|
Abstract
It has been known for many years that the epithelia of the urogenital system derive from mesenchyme. Essential regulators of this conversion have recently been discovered, and cellular changes have been described. However, we do not have a coherent view of how these dramatic changes are integrated, nor do we know the source or identity of extracellular signals that must regulate epithelialization of mesenchymal precursors. The metanephric kidney, Wolffian duct, and the Drosophila midgut are the leading model systems to describe how epithelia derive from mesenchyme.
Collapse
Affiliation(s)
- J Barasch
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| |
Collapse
|
383
|
Straight SW, Chen L, Karnak D, Margolis B. Interaction with mLin-7 alters the targeting of endocytosed transmembrane proteins in mammalian epithelial cells. Mol Biol Cell 2001; 12:1329-40. [PMID: 11359925 PMCID: PMC34587 DOI: 10.1091/mbc.12.5.1329] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Revised: 01/23/2000] [Accepted: 03/01/2001] [Indexed: 12/21/2022] Open
Abstract
To investigate the targeting mechanism for proteins bound to the mammalian Lin-7 (mLin-7) PDZ domain, we created receptor protein chimeras composed of the carboxyl-terminal amino acids of LET-23 fused to truncated nerve growth factor receptor/P75. mLin-7 bound to the chimera with a wild-type LET-23 carboxyl-terminal tail (P75t-Let23WT), but not a mutant tail (P75t-Let23MUT). In Madin-Darby canine kidney (MDCK) cells, P75t-Let23WT localized to the basolateral plasma membrane domain, whereas P75t-Let23MUT remained apical. Furthermore, mutant mLin-7 constructs acted as dominant interfering proteins and inhibited the basolateral localization of P75t-Let23WT. The mechanisms for this differential localization were examined further, and, initially, we found that P75t-Let23WT and P75t-Let23MUT were delivered equally to the apical and basolateral plasma membrane domains. Although basolateral retention of P75t-Let23WT, but not P75t-Let23MUT, was observed, the greatest difference in receptor localization was seen in the rapid trafficking of P75t-Let23WT to the basolateral plasma membrane domain after endocytosis, whereas P75t-Let23MUT was degraded in lysosomes, indicating that mLin-7 binding can alter the fate of endocytosed proteins. Altogether, these data support a model for basolateral protein targeting in mammalian epithelial cells dependent on protein-protein interactions with mLin-7, and also suggest a dynamic role for mLin-7 in endosomal sorting.
Collapse
Affiliation(s)
- S W Straight
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
384
|
Wehrle-Haller B, Imhof BA. Stem cell factor presentation to c-Kit. Identification of a basolateral targeting domain. J Biol Chem 2001; 276:12667-74. [PMID: 11152680 DOI: 10.1074/jbc.m008357200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stem cell factor (also known as mast cell growth factor and kit-ligand) is a transmembrane growth factor with a highly conserved cytoplasmic domain. Basolateral membrane expression in epithelia and persistent cell surface exposure of stem cell factor are required for complete biological activity in pigmentation, fertility, learning, and hematopoiesis. Here we show by site-directed mutagenesis that the cytoplasmic domain of stem cell factor contains a monomeric leucine-dependent basolateral targeting signal. N-terminal to this motif, a cluster of acidic amino acids serves to increase the efficiency of basolateral sorting mediated by the leucine residue. Hence, basolateral targeting of stem cell factor requires a mono-leucine determinant assisted by a cluster of acidic amino acids. This mono-leucine determinant is functionally conserved in colony-stimulating factor-1, a transmembrane growth factor related to stem cell factor. Furthermore, this leucine motif is not capable of inducing endocytosis, allowing for persistent cell surface expression of stem cell factor. In contrast, the mutated cytoplasmic tail found in the stem cell factor mutant Mgf(Sl17H) induces constitutive endocytosis by a motif that is related to signals for endocytosis and lysosomal targeting. Our findings therefore present mono-leucines as a novel type of protein sorting motif for transmembrane growth factors.
Collapse
Affiliation(s)
- B Wehrle-Haller
- Department of Pathology, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
385
|
Wyss S, Berlioz-Torrent C, Boge M, Blot G, Höning S, Benarous R, Thali M. The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor [correction of adapter]. J Virol 2001; 75:2982-92. [PMID: 11222723 PMCID: PMC115924 DOI: 10.1128/jvi.75.6.2982-2992.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Short amino acid sequences in the cytosolic domains of transmembrane proteins are recognized by specialized adaptor [corrected] proteins which are part of coated vesicles utilized to transport membrane proteins between the trans-Golgi network (TGN) and the plasma membrane (forward and backward). Previously, we and others reported that the membrane-proximal tyrosine residues Y712 (human immunodeficiency virus [HIV]) and Y721 (simian immunodeficiency virus [SIV]) in the envelope glycoprotein (Env) of the primate lentiviruses are crucial for the association of Env with clathrin-associated adaptor [corrected] complex AP-2. The same tyrosine-based endocytosis motifs in the cytosolic domains (EnvCD) of transmembrane gp41 of HIV type 1 (HIV-1) and SIV, respectively, were also shown to modulate the interaction with TGN- and endosome-based clathrin-associated complex AP-1. Our findings suggested that EnvCD binding to AP-1, unlike the association of EnvCD with AP-2, is dependent largely on residues other than Y712 and Y721. Here, we tested if motifs downstream of Y712 affect HIV-1 EnvCD-AP-1 binding and Env trafficking. Mutational analysis revealed that the C-terminal leucine-based motif in Env was crucial for the recruitment of AP-1 in vitro and in Env-expressing cells. In addition to affecting Env-AP-1 association, mutations at the C terminus of Env also altered the subcellular localization of Env, suggesting that proper post-Golgi routing of Env depends on its recruitment of AP-1. Finally, the C-terminal dileucine was shown to assist the membrane-proximal Y712 motif in restricting the cell surface expression of Env.
Collapse
Affiliation(s)
- S Wyss
- Institute of Microbiology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
386
|
Fölsch H, Pypaert M, Schu P, Mellman I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol 2001; 152:595-606. [PMID: 11157985 PMCID: PMC2195989 DOI: 10.1083/jcb.152.3.595] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2000] [Accepted: 12/22/2000] [Indexed: 12/30/2022] Open
Abstract
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Marc Pypaert
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Peter Schu
- Center for Biochemistry and Molecular Cell Biology, Biochemistry Department II, University of Göttingen, D-37073 Göttingen, Germany
| | - Ira Mellman
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
387
|
McMillan TN, Johnson DC. Cytoplasmic domain of herpes simplex virus gE causes accumulation in the trans-Golgi network, a site of virus envelopment and sorting of virions to cell junctions. J Virol 2001; 75:1928-40. [PMID: 11160692 PMCID: PMC115139 DOI: 10.1128/jvi.75.4.1928-1940.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaherpesviruses express a heterodimeric glycoprotein, gE/gI, that facilitates cell-to-cell spread between epithelial cells and neurons. Herpes simplex virus (HSV) gE/gI accumulates at junctions formed between polarized epithelial cells at late times of infection. However, at earlier times after HSV infection, or when gE/gI is expressed using virus vectors, the glycoprotein localizes to the trans-Golgi network (TGN). The cytoplasmic (CT) domains of gE and gI contain numerous TGN and endosomal sorting motifs and are essential for epithelial cell-to-cell spread. Here, we swapped the CT domains of HSV gE and gI onto another HSV glycoprotein, gD. When the gD-gI(CT) chimeric protein was expressed using a replication-defective adenovirus (Ad) vector, the protein was found on both the apical and basolateral surfaces of epithelial cells, as was gD. By contrast, the gD-gE(CT) chimeric protein, gE/gI, and gE, when expressed by using Ad vectors, localized exclusively to the TGN. However, gD-gE(CT), gE/gI, and TGN46, a cellular TGN protein, became redistributed largely to lateral surfaces and cell junctions during intermediate to late stages of HSV infection. Strikingly, gE and TGN46 remained sequestered in the TGN when cells were infected with a gI(-)HSV mutant. The redistribution of gE/gI to lateral cell surfaces did not involve widespread HSV inhibition of endocytosis because the transferrin receptor and gE were both internalized from the cell surface. Thus, gE/gI accumulates in the TGN in early phases of HSV infection then moves to lateral surfaces, to cell junctions, at late stages of infection, coincident with the redistribution of a TGN marker. These results are related to recent observations that gE/gI participates in the envelopment of nucleocapsids into cytoplasmic vesicles (A. R. Brack, B. G. Klupp, H. Granzow, R. Tirabassi, L. W. Enquist, and T. C. Mettenleiter, J. Virol. 74:4004-4016, 2000) and that gE/gI can sort nascent virions from cytoplasmic vesicles specifically to the lateral surfaces of epithelial cells (D. C. Johnson, M. Webb, T. W. Wisner, and C. Brunetti, J. Virol. 75:821-833, 2000). Therefore, gE/gI localizes to the TGN, through interactions between the CT domain of gE and cellular sorting machinery, and then participates in envelopment of cytosolic nucleocapsids there. Nascent virions are then sorted from the TGN to cell junctions.
Collapse
Affiliation(s)
- T N McMillan
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
388
|
Keller P, Toomre D, Díaz E, White J, Simons K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol 2001; 3:140-9. [PMID: 11175746 DOI: 10.1038/35055042] [Citation(s) in RCA: 345] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biogenesis and maintenance of asymmetry is crucial to many cellular functions including absorption and secretion, signalling, development and morphogenesis. Here we have directly visualized the segregation and trafficking of apical (glycosyl phosphatidyl inositol-anchored) and basolateral (vesicular stomatitis virus glycoprotein) cargo in living cells using multicolour imaging of green fluorescent protein variants. Apical and basolateral cargo segregate progressively into large domains in Golgi/trans-Golgi network structures, exclude resident proteins, and exit in separate transport containers. These remain distinct and do not merge with endocytic structures suggesting that lateral segregation in the trans-Golgi network is the primary sorting event. Fusion with the plasma membrane was detected by total internal reflection microscopy and reveals differences between apical and basolateral carriers as well as new 'hot spots' for exocytosis.
Collapse
Affiliation(s)
- P Keller
- Cell Biology/Biophysics Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
389
|
de Chassey B, Dubois A, Lefkir Y, Letourneur F. Identification of clathrin-adaptor medium chains in Dictyostelium discoideum: differential expression during development. Gene 2001; 262:115-22. [PMID: 11179674 DOI: 10.1016/s0378-1119(00)00545-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clathrin-adaptor complexes (APs) are vesicle coat components that participate in cargo selectivity and transport vesicle formation. Here we cloned and characterized apm1, apm3 and apm4 cDNAs encoding AP medium chains (mu) in D. discoideum. Amino acid comparison suggested that predicted proteins were homologous to known mu1, mu3 and mu4 subunits of mammalian APs as they shared 69, 51, and 26% identity with mouse mu1A, human mu3A and human mu4, respectively. In all chains, amino acid residues predicted to interact with tyrosine based sorting signals were conserved. Southern blot analysis indicated only one copy of each gene in D. discoideum genome. Expression of apm1 and apm3 mRNAs stayed relatively constant during vegetative growth and throughout development. In contrast, apm4 was poorly expressed in amoebae but became well detectable by RT-PCR upon cell differentiation. This regulated expression of coat proteins enlightens the importance of intracellular membrane transport vesicles during development in D. discoideum and strengthens this attractive model organism for studying the function of coat complexes in vivo.
Collapse
Affiliation(s)
- B de Chassey
- Institut de Biologie et Chimie des Protéines, UMR5086, CNRS / Université Lyon I, 7, Passage du Vercors 69367, cedex 07, Lyon, France
| | | | | | | |
Collapse
|
390
|
Johnson DC, Webb M, Wisner TW, Brunetti C. Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread. J Virol 2001; 75:821-33. [PMID: 11134295 PMCID: PMC113978 DOI: 10.1128/jvi.75.2.821-833.2001] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaherpesviruses spread rapidly through dermal tissues and within synaptically connected neuronal circuitry. Spread of virus particles in epithelial tissues involves movement across cell junctions. Herpes simplex virus (HSV), varicella-zoster virus (VZV), and pseudorabies virus (PRV) all utilize a complex of two glycoproteins, gE and gI, to move from cell to cell. HSV gE/gI appears to function primarily, if not exclusively, in polarized cells such as epithelial cells and neurons and not in nonpolarized cells or cells that form less extensive cell junctions. Here, we show that HSV particles are specifically sorted to cell junctions and few virions reach the apical surfaces of polarized epithelial cells. gE/gI participates in this sorting. Mutant HSV virions lacking gE or just the cytoplasmic domain of gE were rarely found at cell junctions; instead, they were found on apical surfaces and in cell culture fluids and accumulated in the cytoplasm. A component of the AP-1 clathrin adapter complexes, mu1B, that is involved in sorting of proteins to basolateral surfaces was involved in targeting of PRV particles to lateral surfaces. These results are related to recent observations that (i) HSV gE/gI localizes specifically to the trans-Golgi network (TGN) during early phases of infection but moves out to cell junctions at intermediate to late times (T. McMillan and D. C. Johnson, J. Virol., in press) and (ii) PRV gE/gI participates in envelopment of nucleocapsids into cytoplasmic membrane vesicles (A. R. Brack, B. G. Klupp, H. Granzow, R. Tirabassi, L. W. Enquist, and T. C. Mettenleiter, J. Virol. 74:4004-4016, 2000). Therefore, interactions between the cytoplasmic domains of gE/gI and the AP-1 cellular sorting machinery cause glycoprotein accumulation and envelopment into specific TGN compartments that are sorted to lateral cell surfaces. Delivery of virus particles to cell junctions would be expected to enhance virus spread and enable viruses to avoid host immune defenses.
Collapse
Affiliation(s)
- D C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | | | |
Collapse
|
391
|
Zahraoui A, Louvard D, Galli T. Tight junction, a platform for trafficking and signaling protein complexes. J Cell Biol 2000; 151:F31-6. [PMID: 11086016 PMCID: PMC2174352 DOI: 10.1083/jcb.151.5.f31] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- A Zahraoui
- Laboratory of Morphogenesis and Cell Signaling, Centre National de la Recherche Scientifique UMR 144, Institut Curie, 75248 Paris CEDEX 05, France.
| | | | | |
Collapse
|
392
|
Randazzo PA, Nie Z, Miura K, Hsu VW. Molecular Aspects of the Cellular Activities of ADP-Ribosylation Factors. Sci Signal 2000. [DOI: 10.1126/scisignal.592000re1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
393
|
Bravo-Zehnder M, Orio P, Norambuena A, Wallner M, Meera P, Toro L, Latorre R, González A. Apical sorting of a voltage- and Ca2+-activated K+ channel alpha -subunit in Madin-Darby canine kidney cells is independent of N-glycosylation. Proc Natl Acad Sci U S A 2000; 97:13114-9. [PMID: 11069304 PMCID: PMC27187 DOI: 10.1073/pnas.240455697] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The voltage- and Ca(2+)-activated K(+) (K(V,Ca)) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel K(V,Ca) alpha-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., K(V,Ca) beta-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells.
Collapse
Affiliation(s)
- M Bravo-Zehnder
- Departamento de Inmunologia Clinica y Reumatologia, Facultad de Medicina, Departamento de Biologia Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago
| | | | | | | | | | | | | | | |
Collapse
|
394
|
Randazzo PA, Nie Z, Miura K, Hsu VW. Molecular aspects of the cellular activities of ADP-ribosylation factors. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:re1. [PMID: 11752622 DOI: 10.1126/stke.2000.59.re1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adenosine diphosphate-ribosylation factor (Arf) proteins are members of the Arf arm of the Ras superfamily of guanosine triphosphate (GTP)-binding proteins. Arfs are named for their activity as cofactors for cholera toxin-catalyzed adenosine diphosphate-ribosylation of the heterotrimeric G protein Gs. Physiologically, Arfs regulate membrane traffic and the actin cytoskeleton. Arfs function both constitutively within the secretory pathway and as targets of signal transduction in the cell periphery. In each case, the controlled binding and hydrolysis of GTP is critical to Arf function. The activities of some guanine nucleotide exchange factors (GEFs) and guanosine triphosphatase (GTPase)-activating proteins (GAPs) are stimulated by phosphoinositides, including phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA), likely providing both a means to respond to regulatory signals and a mechanism to coordinate GTP binding and hydrolysis. Arfs affect membrane traffic in part by recruiting coat proteins, including COPI and clathrin adaptor complexes, to membranes. However, Arf function likely involves many additional biochemical activities. Arf activates phospholipase D and phosphatidylinositol 4-phosphate 5-kinase with the consequent production of PA and PIP2, respectively. In addition to mediating Arf's effects on membrane traffic and the actin cytoskeleton, PA and PIP2 are involved in the regulation of Arf. Arf also works with Rho family proteins to affect the actin cytoskeleton. Several Arf-binding proteins suspected to be effectors have been identified in two-hybrid screens. Arf-dependent biochemical activities, actin cytoskeleton changes, and membrane trafficking may be integrally related. Understanding Arf's role in complex cellular functions such as protein secretion or cell movement will involve a description of the temporal and spatial coordination of these multiple Arf-dependent events.
Collapse
Affiliation(s)
- P A Randazzo
- Laboratory of Cellular Oncology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
395
|
Nakagawa T, Setou M, Seog D, Ogasawara K, Dohmae N, Takio K, Hirokawa N. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 2000; 103:569-81. [PMID: 11106728 DOI: 10.1016/s0092-8674(00)00161-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular transport mediated by kinesin superfamily proteins (KIFs) is a highly regulated process. The molecular mechanism of KIFs binding to their respective cargoes remains unclear. We report that KIF13A is a novel plus end-directed microtubule-dependent motor protein and associates with beta 1-adaptin, a subunit of the AP-1 adaptor complex. The cargo vesicles of KIF13A contained AP-1 and mannnose-6-phosphate receptor (M6PR). Overexpression of KIF13A resulted in mislocalization of the AP-1 and the M6PR. Functional blockade of KIF13A reduced cell surface expression of the M6PR. Thus, KIF13A transports M6PR-containing vesicles and targets the M6PR from TGN to the plasma membrane via direct interaction with the AP-1 adaptor complex.
Collapse
Affiliation(s)
- T Nakagawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
396
|
Erdtmann L, Janvier K, Raposo G, Craig HM, Benaroch P, Berlioz-Torrent C, Guatelli JC, Benarous R, Benichou S. Two independent regions of HIV-1 Nef are required for connection with the endocytic pathway through binding to the mu 1 chain of AP1 complex. Traffic 2000; 1:871-83. [PMID: 11208076 DOI: 10.1034/j.1600-0854.2000.011106.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Nef protein from the human immunodeficiency virus (HIV) induces down-regulation of the CD4 and major histocompatibility complex class I molecules from the cell surface by interfering with the endocytic machinery. This work focuses on the interaction of HIV-1 Nef with the mu 1 chain of adaptor protein type 1 (AP1) complex and its contribution to the Nef-induced alterations of membrane trafficking. Two independent regions surrounding a disordered loop located in the C-terminal part of Nef are involved in mu 1 binding. Each region can separately interact with mu 1, and simultaneous point mutations within both regions are needed to abolish binding. We used CD8 chimeras in which the cytoplasmic tail was replaced by Nef mutants to show that these mu 1-binding sites contain determinants required to induce CD4 down-regulation and to target the chimera to the endocytic pathway by promoting AP1 complex recruitment. Ultrastructural analysis revealed that the CD8-Nef chimera provokes morphological alterations of the endosomal compartments and co-localizes with AP1 complexes. These data indicate that the recruitment by Nef of AP1 via binding to mu 1 participates in the connection of Nef with the endocytic pathway.
Collapse
Affiliation(s)
- L Erdtmann
- INSERM U529, Institut Cochin de Génétique Moléculaire, Université Paris V, 24 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Laird V, Spiess M. A novel assay to demonstrate an intersection of the exocytic and endocytic pathways at early endosomes. Exp Cell Res 2000; 260:340-5. [PMID: 11035929 DOI: 10.1006/excr.2000.5006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mechanism of transport of membrane proteins from the trans-Golgi to the cell surface is still poorly understood. Previous studies suggested that basolateral membrane proteins, such as the transferrin receptor and the asialoglycoprotein receptor H1, take an indirect route to the plasma membrane via an intracellular, most likely endosomal intermediate. To define this compartment we developed a biochemical assay based on the very definition of endosomes. The assay is based on internalizing anti-H1 antibodies via the endocytic cycle of the receptor itself. Internalized antibody formed immune complexes with newly synthesized H1, which had been pulse-labeled with [(35)S]sulfate and chased out of the trans-Golgi for a period of time that was insufficient for H1 to reach the surface. Hence, antibody capture occurred intracellularly. Double-immunofluorescence labeling demonstrated that antibody-containing compartments also contained transferrin and thus corresponded to early and recycling endosomes. The results therefore demonstrate an intracellular intersection of the exocytic and endocytic pathways with implications for basolateral sorting.
Collapse
Affiliation(s)
- V Laird
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | |
Collapse
|
398
|
Martens AS, Bode JG, Heinrich PC, Graeve L. The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells. J Cell Sci 2000; 113 ( Pt 20):3593-602. [PMID: 11017875 DOI: 10.1242/jcs.113.20.3593] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The IL-6 receptor complex is expressed in different polarized epithelial cells such as liver hepatocytes and intestinal cells. It consists of two subunits: gp80, which binds the ligand, and gp130, which is responsible for signal transduction. In stably transfected Madin-Darby canine kidney (MDCK) cells we have studied the localization of the human IL-6 receptor subunits and found that gp80 and gp130 are predominantly expressed at the basolateral membrane. Analysis of MDCK cells expressing truncated forms of gp80 or gp130 showed that loss of the cytoplasmic domains results in apical delivery. Expression of deletion mutants of gp80 in MDCK cells led to the identification of two discontinous motifs responsible for basolateral sorting: a membrane-proximal tyrosine-based motif (YSLG) and a more membrane-distal dileucine-type motif (LI). Activation of signal transducer and activator of transcription-3 (STAT-3) only occurred via basolaterally located gp80, suggesting that endogenous gp130 is also constrained to the basolateral plasma membrane. Our identification of a basolateral sorting signal within the cytoplasmic region of gp80 for the first time attributes a function to this domain.
Collapse
Affiliation(s)
- A S Martens
- Institute of Biochemistry, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule, Pauwelsstrasse 30, Germany.
| | | | | | | |
Collapse
|
399
|
Zhang X, Arvan P. Cell type-dependent differences in thyroid peroxidase cell surface expression. J Biol Chem 2000; 275:31946-53. [PMID: 10924504 DOI: 10.1074/jbc.m003559200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, it has been suggested that only approximately 2% of human thyroid peroxidase (hTPO(933)) reaches the surface of stably transfected (Chinese hamster ovary) cells, most being degraded intracellularly, and this might be representative of thyroid peroxidase (TPO) behavior in thyrocytes (Fayadat, L., Siffroi-Fernandez, S., Lanet, J., and Franc, J.-L. (2000) J. Biol. Chem. 275, 15948-15954). In agreement, in stably transfected Madin-Darby canine kidney clones, nonpermeabilized cells exhibit wild-type hTPO(933) immunofluorescence (apically) on <10% of that found in permeabilized cells, where an endoplasmic reticulum pattern is observed. Further, a C-terminally truncated, membrane-anchorless hTPO(848) is also retained in the endoplasmic reticulum of stably transfected Madin-Darby canine kidney cells. However, by contrast, in Chinese hamster ovary cells after transient transfection, hTPO(933) immunofluorescence is detected equally well in nonpermeabilized and permeabilized cells, indicating that a large portion of hTPO(933) is present at the cell surface; furthermore, hTPO(848) is efficiently secreted. Further, using an antiserum not cross-reacting with rat TPO, we find by immunofluorescence that in stable clones of PC Cl3 (rat) thyrocytes, considerably more ( approximately 50%) of the cells exhibit hTPO(933) at the cell surface. However, cell surface biotinylation and endoglycosidase H digestion assays appear to under-represent the extent of hTPO(933) transport, presumably because protein folding limits both Golgi carbohydrate modification and accessibility of lysines in the extracellular domain. We conclude that cell type-specific factors may facilitate stable expression of TPO at the cell surface of thyrocytes.
Collapse
Affiliation(s)
- X Zhang
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
400
|
Michaux G, Gansmuller A, Hindelang C, Labouesse M. CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells. Curr Biol 2000; 10:1098-107. [PMID: 10996790 DOI: 10.1016/s0960-9822(00)00695-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Polarised trafficking of proteins is critical for normal expression of the epithelial phenotype, but its genetic control is not understood. The regulatory gene lin-26 is essential for normal epithelial differentiation in the nematode Caenorhabditis elegans. To identify potential effectors of lin-26, we characterised mutations that result in lin-26-like phenotypes. Here, we report the phenotypic and molecular analysis of one such mutant line, che-14. RESULTS Mutations in che-14 resulted in several partially penetrant phenotypes affecting the function of most epithelial or epithelial-like cells of the ectoderm, including the hypodermis, excretory canal, vulva, rectum and several support cells. The defects were generally linked to the accumulation of vesicles or amorphous material near the apical surface, suggesting that secretion was defective. The CHE-14 protein showed similarity to proteins containing sterol-sensing domains, including Dispatched, Patched and NPC1. A fusion protein between full-length CHE-14 and the green fluorescent protein became localised to the apical surface of epithelial cells that require che-14 function. Deletions that removed the predicted transmembrane domains or extracellular loops of CHE-14 abolished apical localisation and function of the protein. CONCLUSIONS We propose that CHE-14 is involved in a novel secretory pathway dedicated to the exocytosis of lipid-modified proteins at the apical surface of certain epithelial cells. Our data raise the possibility that the primordial function of proteins containing a sterol-sensing domain is to control vesicle trafficking: CHE-14 and Dispatched in exocytosis, Patched and NPC1 in endocytosis.
Collapse
Affiliation(s)
- G Michaux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP163, 1 rue Laurent Fries, 67404, Illkirch, France
| | | | | | | |
Collapse
|