351
|
Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F, Reinberg D, Barlev NA. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 2007; 27:6756-69. [PMID: 17646389 PMCID: PMC2099237 DOI: 10.1128/mcb.00460-07] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
p53, an important tumor suppressor protein, exerts its function mostly as a sequence-specific transcription factor and is subjected to multiple posttranslational modifications in response to genotoxic stress. Recently, we discovered that lysine methylation of p53 at K372 by Set7/9 (also known as SET7 and Set9) is important for transcriptional activation and stabilization of p53. In this report we provide a molecular mechanism for the effect of p53 methylation on transcription. We demonstrate that Set7/9 activity toward p53, but not the nucleosomal histones, is modulated by DNA damage. Significantly, we show that lysine methylation of p53 is important for its subsequent acetylation, resulting in stabilization of the p53 protein. These p53 modification events can be observed on the promoter of p21 gene, a known transcriptional target of p53. Finally, we show that methylation-acetylation interplay in p53 augments acetylation of histone H4 in the promoter of p21 gene, resulting in its subsequent transcriptional activation and, hence, cell cycle arrest. Collectively, these results suggest that the cross talk between lysine methylation and acetylation is critical for p53 activation in response to DNA damage and that Set7/9 may play an important role in tumor suppression.
Collapse
Affiliation(s)
- Gleb S Ivanov
- Molecular Oncology Research Institute, NEMC-Tufts, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 2007; 14:1561-75. [PMID: 17627286 DOI: 10.1038/sj.cdd.4402196] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of elegant studies exploring the consequences of expression of various mutant forms of p53 in mice have been published over the last years. The results and conclusions drawn from these studies often contradict results previously obtained in biochemical assays and cell biology studies, questioning their relevance for p53 function in vivo. Owing to the multitude of post-translational modifications imposed on p53, however, the in vivo validation of their relevance for proper protein function and tumour suppression is constantly lagging behind new biochemical discoveries. Nevertheless, mouse genetics presents again its enormous power. Despite being relatively slow and tedious, it has become indispensable for researchers to sort out the wheat from the chaff in an endless sea of publications on p53.
Collapse
Affiliation(s)
- A Olsson
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
353
|
Lohrum M, Stunnenberg HG, Logie C. The new frontier in cancer research: Deciphering cancer epigenetics. Int J Biochem Cell Biol 2007; 39:1450-61. [PMID: 17442611 DOI: 10.1016/j.biocel.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 12/13/2022]
Abstract
Cancer has long been known to be a disease caused by alterations in the genetic blueprint of cells. In the past decade it has become apparent that epigenetic alterations also underlie the etiology of cancer. Since epigenetic changes may be more facile to reverse than genetic lesions, much research has been invested in their characterization. Success has indeed been booked in the clinic with drugs that erase DNA methylation imprints or that target histone post-translational modifications such as lysine acetylation. However, the actual consequences of current epigenetic pharmacological intervention protocols are still poorly characterized and may be rather pleiotropic in nature. The challenge we face is therefore to define the cellular enzymes responsible for epigenetic modifications at given genes under specific conditions, so as to develop pharmacological agents that target tumorigenic epigenetic lesions while eliciting minimal unwanted side effects. Application of genome-wide analytical tools has begun to provide spatio-temporally resolved data that will be crucial to achieve this goal. Finally, the molecular mode of action of epigenetic drugs may be more intricate than initially thought, involving more than DNA and histones, since it has been reported that transcription (co)factors are themselves also targeted by histone modifying enzymes.
Collapse
Affiliation(s)
- Marion Lohrum
- Molecular Biology Department, Nijmegen Centre for Molecular Life Sciences, Radboud University, The Netherlands
| | | | | |
Collapse
|
354
|
Emanuele S, Lauricella M, Carlisi D, Vassallo B, D'Anneo A, Di Fazio P, Vento R, Tesoriere G. SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 2007; 12:1327-1338. [PMID: 17351739 DOI: 10.1007/s10495-007-0063-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone deacetylase (HDAC) inhibitors represent a promising group of anticancer agents. This paper shows that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) stimulated at 5-10 microM apoptosis in human hepatoma HepG2 and Huh6 cells, but was ineffective in primary human hepatocytes (PHH). In HepG2 cells SAHA induced the extrinsic apoptotic pathway, increasing the expression of both FasL and FasL receptor and causing the activation of caspase-8. Moreover, SAHA enhanced the level of Bim proteins, stimulated alternative splicing of the Bcl-X transcript with the expression of the proapoptotic Bcl-Xs isoform, induced degradation of Bid into the apoptotic factor t-Bid and dephosphorylation and inactivation of the anti-apoptotic factor Akt. Consequently, SAHA caused loss of mitochondrial transmembrane potential, release of cytochrome c from mitochondria, activation of caspase-3 and degradation of PARP. Interestingly, a combination of suboptimal doses of SAHA (1 microM) and bortezomib (5-10 nM), a potent inhibitor of 26S proteasome, synergistically induced apoptosis in both HepG2 and Huh6 cells, but was ineffective in PHH. Combined treatment increased with synergistic effects the expression levels of c-Jun, phospho-c-Jun and FasL and the production of Bcl-Xs. These effects were accompanied by activation of Bid, caspase-8 and 3. In conclusion, SAHA stimulated apoptosis in hepatoma cells and exerted a synergistic apoptotic effect when combined with bortezomib. In contrast, these treatments were quite ineffective in inducing apoptosis in PHH. Thus, our results suggest the potential application of the SAHA/bortezomib combination in clinical trials for liver cancer.
Collapse
Affiliation(s)
- S Emanuele
- Dipartimento di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
355
|
Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 2007; 13:951-61. [PMID: 16575405 DOI: 10.1038/sj.cdd.4401916] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The p53 tumor suppressor protein is a DNA sequence-specific transcriptional regulator that, in response to various forms of cellular stress, controls the expression of numerous genes involved in cellular outcomes including among others, cell cycle arrest and cell death. Two key features of the p53 protein are required for its transcriptional activities: its ability to recognize and bind specific DNA sequences and to recruit both general and specialized transcriptional co-regulators. In fact, multiple interactions with co-activators and co-repressors as well as with the components of the general transcriptional machinery allow p53 to either promote or inhibit transcription of different target genes. This review focuses on some of the salient features of the interactions of p53 with DNA and with factors that regulate transcription. We discuss as well the complexities of the functional domains of p53 with respect to these interactions.
Collapse
Affiliation(s)
- O Laptenko
- Department of Biological Sciences, Columbia University, 530 120th Street, New York, NY 10027, USA
| | | |
Collapse
|
356
|
Abstract
A number of proteins are activated by stress stimuli but none so spectacularly or with the degree of complexity as the tumour suppressor p53 (human p53 gene or protein). Once stabilized, p53 is responsible for the transcriptional activation of a series of proteins involved in cell cycle control, apoptosis and senescence. This protein is present at low levels in resting cells but after exposure to DNA-damaging agents and other stress stimuli it is stabilized and activated by a series of post-translational modifications that free it from MDM2 (mouse double minute 2 but used interchangeably to denote human also), a ubiquination ligase that ubiquitinates it prior to proteasome degradation. The stability of p53 is also influenced by a series of other interacting proteins. In this review, we discuss the post-translational modifications to p53 in response to different stresses and the consequences of these changes.
Collapse
Affiliation(s)
- M F Lavin
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | |
Collapse
|
357
|
Sasaki T, Gan EC, Wakeham A, Kornbluth S, Mak TW, Okada H. HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Genes Dev 2007; 21:848-61. [PMID: 17403783 PMCID: PMC1838535 DOI: 10.1101/gad.1534107] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21. Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53-p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53.
Collapse
Affiliation(s)
- Toru Sasaki
- The Campbell Family Institute for Breast Cancer Research (CFIBCR), Ontario Cancer Institute (OCI), University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Eugene C. Gan
- Department of Pharmacology and Cancer Biology, C370 LSRC, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research (CFIBCR), Ontario Cancer Institute (OCI), University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, C370 LSRC, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research (CFIBCR), Ontario Cancer Institute (OCI), University Health Network, Toronto, Ontario M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Hitoshi Okada
- The Campbell Family Institute for Breast Cancer Research (CFIBCR), Ontario Cancer Institute (OCI), University Health Network, Toronto, Ontario M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
- Corresponding author.E-MAIL ; FAX (416) 204 2277
| |
Collapse
|
358
|
Resnick-Silverman L, Manfredi JJ. Gene-specific mechanisms of p53 transcriptional control and prospects for cancer therapy. J Cell Biochem 2007; 99:679-89. [PMID: 16676359 DOI: 10.1002/jcb.20925] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regulation of gene-specific activation is critical to the tumor suppressor function by p53. p53 is a well-characterized transcription factor that responds to DNA damage and other genotoxic stresses by the activation of downstream targets that are involved with repair, differentiation, senescence, growth arrest, and apoptosis. Sequence-specific binding to DNA, conformation, post-translational modifications, cofactor binding, stability, and subcellular localization all influence the performance of p53. The purpose of this review is to define features that play a key role in gene-specific activation and to show that these are often incapacitated in cancer cells. Using such knowledge to design selective strategies for the restoration of p53 wild-type function in cancer cells represents a promising cancer therapy.
Collapse
Affiliation(s)
- Lois Resnick-Silverman
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
359
|
Baião AMT, Wowk PF, Sandrin-Garcia P, Junta CM, Fachin AL, Mello SS, Sakamoto-Hojo ET, Donadi EA, Passos GAS. cDNA microarray analysis of cyclosporin A (CsA)-treated human peripheral blood mononuclear cells reveal modulation of genes associated with apoptosis, cell-cycle regulation and DNA repair. Mol Cell Biochem 2007; 304:235-41. [PMID: 17534698 DOI: 10.1007/s11010-007-9505-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/03/2007] [Indexed: 11/25/2022]
Abstract
Cyclosporin A (CsA) is a potent immunosuppressant that has been extensively used to attenuate patient immune response following organ transplantation. The molecular biological mechanism of CsA has been extensively investigated in human T cells, and it has been shown to involve modulation of the intracellular calcineurin pathway. However, it is plausible that this chemical immunosuppressant certainly up- or down-regulate many other biochemical pathways of immune cells. In the present study, we used the cDNA microarray method to characterize the gene expression profile of human peripheral blood mononuclear cells (PBMC) treated in vitro with CsA and controls. The CsA treated PBMC displayed statistically significant induction of genes involved in the control of cell-cycle regulation (TRRAP), apoptosis/DNA repair (PRKDC, MAEA, TIA1), DNA metabolism/response to DNA damage stimulus (PRKDC, FEN1), transcription (NR4A2, THRA) and cell proliferation (FEN1, BIN1), whose data have permitted identification of target genes involved in CsA immunosuppression.
Collapse
Affiliation(s)
- Ana Maria T Baião
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Sao Carlos, SP 13565-905, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Magrini R, Russo D, Fronza G, Inga A, Menichini P. The kinetics of p53-binding and histone acetylation at target promoters do not strictly correlate with gene expression after UV damage. J Cell Biochem 2007; 100:1276-87. [PMID: 17063487 DOI: 10.1002/jcb.21122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have addressed the correlation between sequence-specific DNA binding by the tumor suppressor p53 and transactivation of various target genes, in the context of UV irradiation responses. In A549 cells (p53WT), p53 occupancy at the p21, mdm2, and puma promoters increased significantly after UV irradiation. In contrast, p21 mRNA levels did not change, mdm2 mRNA decreased and both p21 and mdm2 proteins were downregulated shortly after UV. At later times, higher p53 occupancy correlated with enhanced expression of these two genes both at mRNA and protein levels. In the p53 mutant cell lines LX1 (R273H) and SKMes1 (R280K), no significant p53-binding was detected at the gene targets analyzed. Accordingly, p21 and mdm2 proteins were not upregulated after UV irradiation. The kinetics of histone acetylation did not strictly correlate with gene expression. In fact, high levels of acetylated H3 (AcH3) and, particularly, acetylated H4 (AcH4) histones were found shortly after UV irradiation on p21 and mdm2 promoters. At the later time point, when transactivation was detected, acetylation levels decreased significantly although remaining higher than basal levels. Our results indicate that p53 transcription-dependent and -independent responses are activated with different kinetics after UV, possibly relating to the repair of UV-induced DNA damage. Based on the histone acetylation pattern we hypothesize that the DNA repair function of p53, associated to global genome repair and foci of DNA damage, may be relevant for all p53-binding sites, including those where occupancy by p53 is also associated to transcriptional modulation.
Collapse
Affiliation(s)
- Roberta Magrini
- Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute (IST), Largo R. Benzi, 10, 16132 Genova, Italy
| | | | | | | | | |
Collapse
|
361
|
Stevens C, Lin Y, Sanchez M, Amin E, Copson E, White H, Durston V, Eccles DM, Hupp T. A Germ Line Mutation in the Death Domain of DAPK-1 Inactivates ERK-induced Apoptosis. J Biol Chem 2007; 282:13791-803. [PMID: 17244621 DOI: 10.1074/jbc.m605649200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is activated genetically by a set of kinases that are components of the calcium calmodulin kinase superfamily, including CHK2, AMP kinase, and DAPK-1. In dissecting the mechanism of DAPK-1 control, a novel mutation (N1347S) was identified in the death domain of DAPK-1. The N1347S mutation prevented the death domain module binding stably to ERK in vitro and in vivo. Gel filtration demonstrated that the N1347S mutation disrupted the higher order oligomeric nature of the purified recombinant death domain miniprotein. Accordingly, the N1347S death domain module is defective in vivo in the formation of high molecular weight oligomeric intermediates after cross-linking with ethylene glycol bis(succinimidylsuccinate). Full-length DAPK-1 protein harboring a N1347S mutation in the death domain was also defective in binding to ERK in cells and was defective in formation of an ethylene glycol bis(succinimidylsuccinate)-cross-linked intermediate in vivo. Full-length DAPK-1 encoding the N1347S mutation was attenuated in tumor necrosis factor receptor-induced apoptosis. However, the N1347S mutation strikingly prevented ERK:DAPK-1-dependent apoptosis as defined by poly(ADP-ribose) polymerase cleavage, Annexin V staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling imaging. Significant penetrance of the N1347S allele was identified in normal genomic DNA indicating the mutation is germ line, not tumor derived. The frequency observed in genomic DNA was from 37 to 45% for homozygous wild-type, 41 to 47% for heterozygotes, and 12 to 15% for homozygous mutant. These data highlight a naturally occurring DAPK-1 mutation that alters the oligomeric structure of the death domain, de-stabilizes DAPK-1 binding to ERK, and prevents ERK:DAPK-1-dependent apoptosis.
Collapse
Affiliation(s)
- Craig Stevens
- Cancer Research UK p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Pan C, Mezei M, Mujtaba S, Muller M, Zeng L, Li J, Wang Z, Zhou MM. Structure-guided optimization of small molecules inhibiting human immunodeficiency virus 1 Tat association with the human coactivator p300/CREB binding protein-associated factor. J Med Chem 2007; 50:2285-8. [PMID: 17444627 DOI: 10.1021/jm070014g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus 1 (HIV-1) trans-activator Tat recruits the human transcriptional coactivator PCAF (p300/CREB binding protein-associated factor) to facilitate transcription of the integrated HIV-1 provirus. We report here structure-based lead optimization of small-molecule inhibitors that block selectively Tat and PCAF association in cells. Our lead optimization was guided by grand-canonical ensemble simulation of the receptor/lead complex that leads to definition of chemical modifications with improved lead affinity through displacing weakly bound water molecules at the ligand-receptor interface.
Collapse
|
363
|
Cuadrado A, Lafarga V, Cheung PCF, Dolado I, Llanos S, Cohen P, Nebreda AR. A new p38 MAP kinase-regulated transcriptional coactivator that stimulates p53-dependent apoptosis. EMBO J 2007; 26:2115-26. [PMID: 17380123 PMCID: PMC1852783 DOI: 10.1038/sj.emboj.7601657] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 02/26/2007] [Indexed: 01/29/2023] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in stress-induced cell-fate decisions by orchestrating responses that go from cell-cycle arrest to apoptosis. We have identified a new p38 MAPK-regulated protein that we named p18(Hamlet), which becomes stabilized and accumulates in response to certain genotoxic stresses such as UV or cisplatin treatment. Overexpression of p18(Hamlet) is sufficient to induce apoptosis, whereas its downregulation reduces the apoptotic response to these DNA damage-inducing agents. We show that p18(Hamlet) interacts with p53 and stimulates the transcription of several proapoptotic p53 target genes such as PUMA and NOXA. This correlates with enhanced p18(Hamlet)-induced recruitment of p53 to the promoters. In proliferating cells, low steady-state levels of p18(Hamlet) are probably maintained by a p53-dependent negative feedback loop. Therefore, p18(Hamlet) is a new cell-fate regulator that links the p38 MAPK and p53 pathways and contributes to the establishment of p53-regulated stress responses.
Collapse
Affiliation(s)
- Ana Cuadrado
- CNIO (Spanish National Cancer Center), Madrid, Spain
| | | | - Peter C F Cheung
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, UK
| | | | - Susana Llanos
- CNIO (Spanish National Cancer Center), Madrid, Spain
| | - Philip Cohen
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, UK
| | | |
Collapse
|
364
|
Stiehl DP, Fath DM, Liang D, Jiang Y, Sang N. Histone deacetylase inhibitors synergize p300 autoacetylation that regulates its transactivation activity and complex formation. Cancer Res 2007; 67:2256-2264. [PMID: 17332356 PMCID: PMC4526273 DOI: 10.1158/0008-5472.can-06-3985] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p300/cyclic AMP-responsive element binding protein-binding protein (CBP) are general coactivators for multiple transcription factors involved in various cellular processes. Several highly conserved domains of p300/CBP serve as interacting sites for transcription factors and regulatory proteins. Particularly, the intrinsic histone acetyltransferase (HAT) activity and transactivation domains (TAD) play essential roles for their coactivating function. Autoacetylation of p300/CBP is commonly observed in cell-free HAT assays and has been implicated in the regulation of their HAT activity. Here, we show that six lysine-rich regions in several highly conserved functional domains of p300 are targeted by p300HAT for acetylation in cell-free systems. We show that p300 is susceptible to acetylation in cultured tumor cells and that its acetylation status is affected by histone deacetylase inhibitor trichostatin A. We further show that either treatment with deacetylase inhibitors or coexpression of Gal4-p300HAT, which alone has no transactivation activity, stimulates the activity of the COOH-terminal TAD of p300 (p300C-TAD). We have defined the minimal p300C-TAD and show that it is sufficient to respond to deacetylase inhibitors and is a substrate for p300HAT. Finally, we show that acetylated p300 possesses enhanced ability to interact with p53. Taken together, our data suggest that acetylation regulates p300C-TAD and that acetylation of p300/CBP may contribute to the dynamic regulation of their complex formation with various interacting partners.
Collapse
Affiliation(s)
- Daniel P. Stiehl
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Donna M. Fath
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dongming Liang
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- Cellular Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yubao Jiang
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- Cellular Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nianli Sang
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- Cellular Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
365
|
Nag A, Germaniuk-Kurowska A, Dimri M, Sassack MA, Gurumurthy CB, Gao Q, Dimri G, Band H, Band V. An essential role of human Ada3 in p53 acetylation. J Biol Chem 2007; 282:8812-20. [PMID: 17272277 DOI: 10.1074/jbc.m610443200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor protein functions as a critical component of genotoxic stress response by regulating the expression of effector gene products that control the fate of a cell following DNA damage. Unstressed cells maintain p53 at low levels through regulated degradation, and p53 levels and activity are rapidly elevated upon genotoxic stress. Biochemical mechanisms that control the levels and activity of p53 are therefore of great interest. We and others have recently identified hAda3 (human homologue of yeast alteration/deficiency in activation 3) as a p53-interacting protein and enhancer of p53 activity. Here, we show that endogenous levels of p53 and Ada3 interact with each other, and by using inducible overexpression and short hairpin RNA-mediated knockdown strategies we demonstrate that hAda3 stabilizes p53 protein by promoting its acetylation. Use of a p53 mutant with mutations of known p300/CREB-binding protein acetylation sites demonstrated that hAda3-dependent acetylation is required for increase in p53 stability and target gene induction. Importantly, we demonstrate that endogenous hAda3 is essential for DNA damage-induced acetylation and stabilization of p53 as well as p53 target gene induction. Overall, our results establish hAda3, a component of coactivator complexes that include histone acetyltransferase p300/CREB-binding protein, as a critical mediator of acetylation-dependent stabilization and activation of p53 upon genotoxic stress in mammalian cells.
Collapse
Affiliation(s)
- Alo Nag
- Division of Cancer Biology, Evanston Northwestern Healthcare Research Institute, IL 60201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
366
|
Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa JI, Imagawa M, Osada S, Nishihara T. Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J 2007; 402:559-66. [PMID: 17083329 PMCID: PMC1863558 DOI: 10.1042/bj20061194] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HATs (histone acetyltransferases) contribute to the regulation of gene expression, and loss or dysregulation of these activities may link to tumorigenesis. Here, we demonstrate that expression levels of HATs, p300 and CBP [CREB (cAMP-response-element-binding protein)-binding protein] were decreased during chemical hepatocarcinogenesis, whereas expression of MOZ (monocytic leukaemia zinc-finger protein; MYST3)--a member of the MYST [MOZ, Ybf2/Sas3, Sas2 and TIP60 (Tat-interacting protein, 60 kDa)] acetyltransferase family--was induced. Although the MOZ gene frequently is rearranged in leukaemia, we were unable to detect MOZ rearrangement in livers with hyperplastic nodules. We examined the effect of MOZ on hepatocarcinogenic-specific gene expression. GSTP (glutathione S-transferase placental form) is a Phase II detoxification enzyme and a well-known tumour marker that is specifically elevated during hepatocarcinogenesis. GSTP gene activation is regulated mainly by the GPE1 (GSTP enhancer 1) enhancer element, which is recognized by the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2)-MafK heterodimer. We found that MOZ enhances GSTP promoter activity through GPE1 and acts as a co-activator of the Nrf2-MafK heterodimer. Further, exogenous MOZ induced GSTP expression in rat hepatoma H4IIE cells. These results suggest that during early hepatocarcinogenesis, aberrantly expressed MOZ may induce GSTP expression through the Nrf2-mediated pathway.
Collapse
Affiliation(s)
- Kumiko Ohta
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Megumi Ohigashi
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Ayako Naganawa
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Hiromi Ikeda
- †Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Masaharu Sakai
- †Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Jun-ichi Nishikawa
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Masayoshi Imagawa
- ‡Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Shigehiro Osada
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
- ‡Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- To whom correspondence should be addressed (email )
| | - Tsutomu Nishihara
- *Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
367
|
Atkinson SP, Keith WN. Epigenetic control of cellular senescence in disease: opportunities for therapeutic intervention. Expert Rev Mol Med 2007; 9:1-26. [PMID: 17352843 DOI: 10.1017/s1462399407000269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding how senescence is established and maintained is an important area of study both for normal cell physiology and in tumourigenesis. Modifications to N-terminal tails of histone proteins, which can lead to chromatin remodelling, appear to be key to the regulation of the senescence phenotype. Epigenetic mechanisms such as modification of histone proteins have been shown to be sufficient to regulate gene expression levels and specific gene promoters can become epigenetically altered at senescence. This suggests that epigenetic mechanisms are important in senescence and further suggests epigenetic deregulation could play an important role in the bypass of senescence and the acquisition of a tumourigenic phenotype. Tumour suppressor proteins and cellular senescence are intimately linked and such proteins are now known to regulate gene expression through chromatin remodelling, again suggesting a link between chromatin modification and cellular senescence. Telomere dynamics and the expression of the telomerase genes are also both implicitly linked to senescence and tumourigenesis, and epigenetic deregulation of the telomerase gene promoters has been identified as a possible mechanism for the activation of telomere maintenance mechanisms in cancer. Recent studies have also suggested that epigenetic deregulation in stem cells could play an important role in carcinogenesis, and new models have been suggested for the attainment of tumourigenesis and bypass of senescence. Overall, proper regulation of the chromatin environment is suggested to have an important role in the senescence pathway, such that its deregulation could lead to tumourigenesis.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Bearsden, Glasgow, G61 1BD, UK
| | | |
Collapse
|
368
|
Higashitsuji H, Higashitsuji H, Masuda T, Liu Y, Itoh K, Fujita J. Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem 2007; 282:13716-25. [PMID: 17353187 DOI: 10.1074/jbc.m609751200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HSCO (hepatoma subtracted-cDNA library clone one, also called ETHE1) was originally identified by its frequent overexpression in hepatocellular carcinomas. HSCO inhibits function of NF-kappaB by binding to RelA and accelerating its export from the nucleus. We show here that HSCO exhibits anti-apoptotic activity in cells exposed to DNA-damaging agents by suppressing transcriptional activity of p53. Induction of pro-apoptotic genes, Noxa, Perp, PIG3, and Bax were suppressed in cells over-expressing HSCO. By increasing ubiquitylation and degradation of p53, HSCO reduces p53 protein levels. HSCO specifically associates with histone deacetylase 1 (HDAC1) independently of Mdm2 and facilitates deacetylation of p53 at Lys-373/382 by HDAC1. The metallo-beta-lactamase family consensus sequence in HSCO is important for its effect on p53 deacetylation. Co-immunoprecipitation and immunofluorescence studies suggested that HSCO, HDAC1, and p53 form a complex in the nucleus. Thus, HSCO is a cofactor that increases the deacetylase activity of HDAC1 toward p53, leading to suppression of apoptosis. Treatment of hepatocellular carcinomas that retain wild-type p53 and overexpress HSCO with anti-HSCO agents might re-establish the p53 response and revert chemoresistance.
Collapse
Affiliation(s)
- Hisako Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
369
|
Ocker M, Schneider-Stock R. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int J Biochem Cell Biol 2007; 39:1367-1374. [PMID: 17412634 DOI: 10.1016/j.biocel.2007.03.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 02/16/2007] [Accepted: 03/02/2007] [Indexed: 01/03/2023]
Abstract
Chromatin-modifying enzymes such as histone deacetylases (HDAC) facilitate a closed chromatin structure and hence transcriptional repression. HDAC are commonly affected in human cancer diseases. Thus, inhibition of HDAC represents a novel therapeutic approach. Several studies have shown that HDAC inhibitors strongly activate the expression of the cyclin-dependent kinase inhibitor p21(cip1/waf1) through (i) enhanced histone acetylation around the p21(cip1/waf1) promoter and (ii) the Sp1 sites on the p21(cip1/waf1) promoter releasing the repressor HDAC1 from its binding. p21(cip1/waf1) expression is regulated in a p53-dependent and p53-independent manner. The decision if p21(cip1/waf1) up-regulation results in cell cycle arrest or apoptosis, decides about the therapeutic efficacy of an anti-cancer treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Matthias Ocker
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany.
| | | |
Collapse
|
370
|
Craig AL, Chrystal JA, Fraser JA, Sphyris N, Lin Y, Harrison BJ, Scott MT, Dornreiter I, Hupp TR. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members. Mol Cell Biol 2007; 27:3542-55. [PMID: 17339337 PMCID: PMC1899961 DOI: 10.1128/mcb.01595-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical studies have shown that Ser(20) phosphorylation in the transactivation domain of p53 mediates p300-catalyzed DNA-dependent p53 acetylation and B-cell tumor suppression. However, the protein kinases that mediate this modification are not well defined. A cell-free Ser(20) phosphorylation site assay was used to identify a broad range of calcium calmodulin kinase superfamily members, including CHK2, CHK1, DAPK-1, DAPK-3, DRAK-1, and AMPK, as Ser(20) kinases. Phosphorylation of a p53 transactivation domain fragment at Ser(20) by these enzymes in vitro can be mediated in trans by a docking site peptide derived from the BOX-V domain of p53, which also harbors the ubiquitin signal for MDM2. Evaluation of these calcium calmodulin kinase superfamily members as candidate Ser(20) kinases in vivo has shown that only CHK1 or DAPK-1 can stimulate p53 transactivation and induce Ser(20) phosphorylation of p53. Using CHK1 as a prototypical in vivo Ser(20) kinase, we demonstrate that (i) CHK1 protein depletion using small interfering RNA can attenuate p53 phosphorylation at Ser(20), (ii) an enhanced green fluorescent protein (EGFP)-BOX-V fusion peptide can attenuate Ser(20) phosphorylation of p53 in vivo, (iii) the EGFP-BOX-V fusion peptide can selectively bind to CHK1 in vivo, and (iv) the Deltap53 spliced variant lacking the BOX-V motif is refractory to Ser(20) phosphorylation by CHK1. These data indicate that the BOX-V motif of p53 has evolved the capacity to bind to enzymes that mediate either p53 phosphorylation or ubiquitination, thus controlling the specific activity of p53 as a transcription factor.
Collapse
Affiliation(s)
- Ashley L Craig
- University of Edinburgh, Cancer Research Centre, Edinburgh EH4 2XR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Wang P, Yu J, Zhang L. The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci U S A 2007; 104:4054-9. [PMID: 17360476 PMCID: PMC1820707 DOI: 10.1073/pnas.0700020104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tumor suppressor p53 can induce apoptosis by activating gene expression in the nucleus, or by directly permeabilizing mitochondria in the cytoplasm. It has been shown that PUMA, a downstream target of p53 and a BH3-only Bcl-2 family member, plays an essential role in apoptosis induced by both nuclear and cytoplasmic p53. To understand how PUMA does so, we used homologous recombination to delete the binding sites of p53 in the promoter of PUMA in human colorectal cancer cells. As a result, the induction of PUMA and apoptosis in response to p53 and DNA-damaging agents were abrogated. Transcription coactivator recruitment and histone modifications in the PUMA promoter were suppressed. However, induction of PUMA and apoptosis in response to non-DNA-damaging stimuli were unaffected. These results indicate that the binding of nuclear p53 to the specific sites within the PUMA promoter is essential for its ability to induce apoptosis and is likely to be required for its tumor suppressive capacity.
Collapse
Affiliation(s)
- Peng Wang
- Departments of Pharmacology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Jian Yu
- Departments of Pharmacology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Lin Zhang
- Departments of Pharmacology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
372
|
Bu P, Evrard YA, Lozano G, Dent SYR. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol Cell Biol 2007; 27:3405-16. [PMID: 17325035 PMCID: PMC1899977 DOI: 10.1128/mcb.00066-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gcn5 was the first transcription-related histone acetyltransferase (HAT) to be identified. However, the functions of this enzyme in mammalian cells remain poorly defined. Deletion of Gcn5 in mice leads to early embryonic lethality with increased apoptosis in mesodermal lineages. Here we show that deletion of p53 allows Gcn5(-/-) embryos to survive longer, but Gcn5(-/-) p53(-/-) embryos still die in midgestation. Interestingly, embryos homozygous for point mutations in the Gcn5 catalytic domain survive significantly longer than Gcn5(-/-) or Gcn5(-/-) p53(-/-) mice. In contrast to Gcn5(-/-) embryos, Gcn5(hat/hat) embryos do not exhibit increased apoptosis but do exhibit severe cranial neural tube closure defects and exencephaly. Together, our results indicate that Gcn5 has important, HAT-independent functions in early development and that Gcn5 acetyltransferase activity is required for cranial neural tube closure in the mouse.
Collapse
Affiliation(s)
- Ping Bu
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
373
|
Blough MD, Zlatescu MC, Cairncross JG. O6-methylguanine-DNA methyltransferase regulation by p53 in astrocytic cells. Cancer Res 2007; 67:580-4. [PMID: 17234766 DOI: 10.1158/0008-5472.can-06-2782] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter (i.e., gene silencing) occurs in 40% to 50% of patients with glioblastoma and predicts benefit from temozolomide chemotherapy; when unmethylated, MGMT repairs DNA damage induced by temozolomide, contributing to chemoresistance. In this study, we tested the hypothesis that MGMT is regulated by p53 in astrocytic cells, the precursors of which may give rise to glioblastoma. p53 is of interest because, in addition to often being mutated in glioblastoma, inactivation sensitizes some astrocytoma cell lines to temozolomide. MGMT expression was examined in neonatal murine astrocytes and SF767 human astrocytic glioma cells following p53 inactivation by knockout (murine only) or RNAi methods. MGMT mRNA and protein were detected in murine wild-type p53 astrocytes. However, in knockout murine astrocytes and wild-type cells in which p53 was inhibited by RNAi, MGMT expression was reduced by >90%. This effect of p53 on MGMT expression was unrelated to MGMT promoter methylation-in both wild-type and p53-null astrocytes, the MGMT promoter was unmethylated. In wild-type astrocytes, the p53 protein localized to a regulatory region of the MGMT promoter. In SF767 human astrocytic glioma cells, transient knockdown of p53 led to the down-regulation of MGMT gene expression. In murine astrocytes and SF767 cells, p53 regulates MGMT expression without affecting promoter methylation; in astrocytes, this effect may be due to direct binding of p53 to the MGMT promoter. These results imply that the best use of temozolomide requires a thorough understanding of MGMT regulation.
Collapse
Affiliation(s)
- Michael D Blough
- Department of Clinical Neurosciences, University of Calgary and the Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | | | | |
Collapse
|
374
|
Wiper-Bergeron N, Salem HA, Tomlinson JJ, Wu D, Haché RJG. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc Natl Acad Sci U S A 2007; 104:2703-8. [PMID: 17301242 PMCID: PMC1815245 DOI: 10.1073/pnas.0607378104] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Preadipocyte differentiation in culture is driven by an insulin and cAMP dependant transcriptional cascade which induces the bzip transcription factors C/EBPbeta and C/EBPdelta. We have previously shown that glucocorticoid treatment, which strongly potentiates this differentiation pathway, stimulates the titration of the corepressor histone deacetylase 1 (HDAC1) from C/EBPbeta. This results in a dramatic enhancement of C/EBPbeta-dependent transcription from the C/EBPalpha promoter, concomitant with potentiation of preadipocyte differentiation. Here, we show that C/EBPbeta is acetylated by GCN5 and PCAF within a cluster of lysine residues between amino acids 98-102 and that this acetylation is strongly induced by glucocorticoid treatment. Arginine substitution of the lysine residues within the acetylation motif of C/EBPbeta prevented acetylation and blocked the ability of glucocorticoids to enhance C/EBPbeta-directed transcription and to potentiate C/EBPbeta-dependent preadipocyte differentiation. Moreover, acetylation of C/EBPbeta appeared to directly interfere with the interaction of HDAC1 with C/EBPbeta, suggesting that PCAF/GCN5-dependent acetylation of C/EBPbeta serves as an important molecular switch in determining the transcriptional regulatory potential of this transcription factor.
Collapse
Affiliation(s)
- Nadine Wiper-Bergeron
- Departments of *Biochemistry, Microbiology, and Immunology and
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5; and
| | | | | | - Dongmei Wu
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, ON, Canada K1Y 4E9
| | - Robert J. G. Haché
- Departments of *Biochemistry, Microbiology, and Immunology and
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, ON, Canada K1Y 4E9
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
375
|
Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O, Lacroix M, Le Cam L, Coux O, Benkirane M. Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 2007; 9:331-8. [PMID: 17293853 DOI: 10.1038/ncb1545] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/28/2006] [Indexed: 12/19/2022]
Abstract
The p300-CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) involved in the reversible acetylation of various transcriptional regulators, including the tumour suppressor p53. It is implicated in many cellular processes, such as transcription, differentiation, proliferation and apoptosis. We observed that knockdown of PCAF expression in HeLa or U2OS cell lines induces stabilization of the oncoprotein Hdm2, a RING finger E3 ligase primarily known for its role in controlling p53 stability. To investigate the molecular basis of this effect, we examined whether PCAF is involved in Hdm2 ubiquitination. Here, we show that PCAF, in addition to its acetyltransferase activity, possesses an intrinsic ubiquitination activity that is critical for controlling Hdm2 expression levels, and thus p53 functions. Our data highlight a regulatory crosstalk between PCAF and Hdm2 activities, which is likely to have a central role in the subtle control of p53 activity after DNA damage.
Collapse
Affiliation(s)
- Laëtitia K Linares
- Centre de Recherches de Biochimie Macromoléculaire, CNRS-UMII UMR5237, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Barton MC, Akli S, Keyomarsi K. Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 2007; 209:686-94. [PMID: 17001684 DOI: 10.1002/jcp.20818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this review, we focus on pathways intersecting through p53 and cyclin E, highlighting how oncogenic effects of cyclin E deregulation, especially overexpression of shortened or low molecular weight (LMW) forms of cyclin E protein, are amplified by loss of regulatory control through p53 to promote tumor development. Expression of cyclin E protein promotes progression into S-phase, an activity opposed by p53-regulated activation of checkpoint controls or apoptosis. Loss of p53 function is an escape hatch by which tumor cells, initiated by a number of means including cyclin E deregulation, can avoid cell cycle arrest or cell death and progress through further stages of unchecked deregulation and growth. To determine how this escape hatch is opened and, ultimately, how to close it, we must understand the networks of normal signaling and processing in a cell and where they intersect.
Collapse
Affiliation(s)
- Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
377
|
Abstract
In recent years the study of chemical modifications to chromatin and their effects on cellular processes has become increasingly important in the field of cancer research. Disruptions to the normal epigenetic pattern of the cell can serve as biomarkers and are important determinants of cancer progression. Accordingly, drugs that inhibit the enzymes responsible for modulating these epigenetic markers, in particular histone deacetylases, are the focus of intense research and development. In this chapter we provide an overview of class I and II histone deacetylases as well as a guide to the diverse types of histone deacetylase inhibitors and their activities in the context of APL. We also discuss the rationale for the use of histone deacetylase inhibitors in combination therapy for the treatment of cancer and the current status of clinical trials.
Collapse
Affiliation(s)
- K Petrie
- Section of Haemato-Oncology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
378
|
Mattia M, Gottifredi V, McKinney K, Prives C. p53-Dependent p21 mRNA elongation is impaired when DNA replication is stalled. Mol Cell Biol 2007; 27:1309-20. [PMID: 17158927 PMCID: PMC1800727 DOI: 10.1128/mcb.01520-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/05/2006] [Accepted: 11/30/2006] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that when DNA replication is blocked in some human cell lines, p53 is impaired in its ability to induce a subset of its key target genes, including p21(WAF1/CIP1). Here, we investigated the reason for this impairment by comparing the effects of two agents, hydroxyurea (HU), which arrests cells in early S phase and impairs induction of p21, and daunorubicin, which causes a G(2) block and leads to robust activation of p21 by p53. HU treatment was shown to inhibit p21 mRNA transcription rather than alter its mRNA stability. Nevertheless, chromatin immunoprecipitation assays revealed that HU impacts neither p53 binding nor acetylation of histones H3 and H4 within the p21 promoter. Furthermore, recruitment of the TFIID/TATA-binding protein complex and the large subunit of RNA polymerase II (RNA Pol II) are equivalent after HU and daunorubicin treatments. Relative to daunorubicin treatment, however, transcription elongation of the p21 gene is significantly impaired in cells treated with HU, as evidenced by reduced occupancy of RNA Pol II at regions downstream of the start site. Likewise, in the p21 downstream region after administration of HU, there is less of a specifically phosphorylated form of RNA Pol II (Pol II-C-terminal domain serine 2P) which occurs only when the polymerase is elongating RNA. We propose that while the DNA replication checkpoint is unlikely to regulate the assembly of a p21 promoter initiation complex, it signals to one or more factors involved in the process of transcriptional elongation.
Collapse
Affiliation(s)
- Melissa Mattia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
379
|
Popov VM, Wang C, Andrew Shirley L, Rosenberg A, Li S, Nevalainen M, Fu M, Pestell RG. The functional significance of nuclear receptor acetylation. Steroids 2007; 72:221-30. [PMID: 17291555 PMCID: PMC2694494 DOI: 10.1016/j.steroids.2006.12.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/04/2006] [Accepted: 12/04/2006] [Indexed: 01/02/2023]
Abstract
The endocrine signaling governing nuclear receptor (NR) function has been known for several decades to play a crucial role in the onset and progression of several tumor types. Notably among these are the estrogen receptor (ER) in breast cancer and androgen receptor (AR) in prostate cancer. Other nuclear receptors may be involved in cancer progression including the peroxisome-proliferator activating receptor gamma (PPARgamma), which has been implicated in breast, thyroid, and colon cancers. These NR are phylogenetically conserved modular transcriptional regulators, which like histones, undergo post-translational modification by acetylation, phosphorylation and ubiquitination. Importantly, the transcriptional activity of the receptors is governed by the coactivator p300, the activity of which is thought to be rate-limiting in the activity of these receptors. Histone acetyltransferases (HATs) and histone deacetylases (HDACs), modify histones by adding or removing an acetyl group from the epsilon amino group of lysines within an evolutionarily conserved lysine motif. Histone acetylation results in changes in chromatin structure in response to specific signals. These enzymes can also directly catalyze the NRs themselves, thus modifying signals at the receptor level. The post-translational modification of NR which is regulated by hormones, alters the NR function toward a growth promoting receptor. The deacetylation of NR is mediated by TSA-sensitive and NAD-dependent deacetylases. The regulation of NR by NAD-dependent enzymes provides a direct link between intracellular metabolism and hormone signaling.
Collapse
Affiliation(s)
- Vladimir M. Popov
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| | - Chenguang Wang
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| | - L. Andrew Shirley
- Department of Surgery, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| | - Anne Rosenberg
- Department of Surgery, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| | - Shengwen Li
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| | - Marja Nevalainen
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| | - Maofu Fu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| | - Richard G. Pestell
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107
| |
Collapse
|
380
|
Tang Y, Luo J, Zhang W, Gu W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2007; 24:827-39. [PMID: 17189186 DOI: 10.1016/j.molcel.2006.11.021] [Citation(s) in RCA: 566] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 09/11/2006] [Accepted: 11/21/2006] [Indexed: 01/17/2023]
Abstract
Upon DNA damage and other types of stress, p53 induces either cell-cycle arrest or apoptosis depending on the cellular context. However, the molecular mechanisms that govern the choice between cell-cycle arrest and apoptosis are not well understood. Here, we show that Tip60 is required for both cell growth arrest and apoptosis mediated by p53 and also induces its acetylation specifically at lysine 120 (K120) within the DNA-binding domain. Interestingly, this modification is crucial for p53-dependent apoptosis but is dispensable for its mediated growth arrest. K120 is a recurrent site for p53 mutation in human cancer, and the corresponding acetylation-defective tumor mutant (K120R) abrogates p53-mediated apoptosis, but not growth arrest. Thus, our study demonstrates that Tip60-dependent acetylation of p53 at K120 modulates the decision between cell-cycle arrest and apoptosis, and it reveals that the DNA-binding core domain is an important target for p53 regulation by posttranslational modifications.
Collapse
Affiliation(s)
- Yi Tang
- Institute for Cancer Genetics, Surgeons, Columbia University, 1150 St. Nicholas Ave, New York, New York 10032, USA
| | | | | | | |
Collapse
|
381
|
Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E, Triboulet R, Bossis G, Shmueli A, Rodriguez MS, Coux O, Sardet C. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 2006; 127:775-88. [PMID: 17110336 DOI: 10.1016/j.cell.2006.09.031] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 06/14/2006] [Accepted: 09/07/2006] [Indexed: 11/17/2022]
Abstract
p53 is regulated by multiple posttranslational modifications, including Hdm2-mediated ubiquitylation that drives its proteasomal degradation. Here, we identify the p53-associated factor E4F1, a ubiquitously expressed zinc-finger protein first identified as a cellular target of the viral oncoprotein E1A, as an atypical ubiquitin E3 ligase for p53 that modulates its effector functions without promoting proteolysis. E4F1 stimulates oligo-ubiquitylation in the hinge region of p53 on lysine residues distinct from those targeted by Hdm2 and previously described to be acetylated by the acetyltransferase PCAF. E4F1 and PCAF mediate mutually exclusive posttranslational modifications of p53. E4F1-dependent Ub-p53 conjugates are associated with chromatin, and their stimulation coincides with the induction of a p53-dependent transcriptional program specifically involved in cell cycle arrest, and not apoptosis. Collectively, our data reveal that E4F1 is a key posttranslational regulator of p53, which modulates its effector functions involved in alternative cell fates: growth arrest or apoptosis.
Collapse
Affiliation(s)
- Laurent Le Cam
- Institut de Génétique Moléculaire CNRS-UMII UMR5535, IFR122, Montpellier 34293, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
Kaneshiro K, Tsutsumi S, Tsuji S, Shirahige K, Aburatani H. An integrated map of p53-binding sites and histone modification in the human ENCODE regions. Genomics 2006; 89:178-88. [PMID: 17085012 DOI: 10.1016/j.ygeno.2006.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/30/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
TP53 (tumor protein p53; p53) regulates its target genes under various cellular stresses. By combining chromatin immunoprecipitation with oligonucleotide microarrays, we have mapped binding sites of p53 (p53-BS) in the genome of HCT116 human colon carcinoma cells, along with those of acetylated H3, acetylated H4, and methylated H3-K4. We analyzed a 30-Mb portion of the human genome selected as a representative model by the ENCODE Consortium. In the region, we found 37 p53-BS, of which the p53-binding motif was present in 32 (86%). Acetylated histone H3 and H4 were detected at 14 (38%) and 33 (89%) of the p53-BS, respectively. A significant portion (58%) of H4 acetylation in the p53-BS was not accompanied by H3 acetylation. Acetyl H3 were preferentially located at the 5' and 3' ends of genes, whereas acetyl H4 were distributed widely across the genome. These results provide novel insights into how p53 binding coordinates with histone modification in human.
Collapse
Affiliation(s)
- Kiyofumi Kaneshiro
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | |
Collapse
|
383
|
Cowger JJM, Torchia J. Direct Association between the CREB-Binding Protein (CBP) and Nuclear Receptor Corepressor (N-CoR)†. Biochemistry 2006; 45:13150-62. [PMID: 17073437 DOI: 10.1021/bi060562g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of ligand to nuclear hormone receptors induces a conformational change that results in corepressor release and the recruitment of coactivator proteins that contain or recruit histone acetyltransferase (HAT) activity. As such, the coactivator and corepressor complexes and their associated HAT and histone deacytlase (HDAC) activities are often believed to be segregated into distinct complexes. However, there have been several reports that suggest that coactivators and corepressors may not be strictly segregated and in some cases even interact directly. In the present study, we have utilized a biochemical approach to assess whether the nuclear receptor corepressor (N-CoR) is capable of associating with the HAT coactivator CREB-binding protein (CBP). We demonstrate, using both immunoaffinity purification and conventional chromatography, that a subset of the N-CoR-HDAC3 complex copurifies with CBP in HeLa cells. In addition, indirect immunofluorescence also indicates an association between N-CoR and CBP in intact MCF-7 cells. This association may be direct as in vitro pulldown assays using recombinant purified proteins indicated that the amino terminus of N-CoR interacts directly with CBP. Interestingly, we also demonstrate that increasing concentrations of N-CoR are capable of attenuating CBP HAT activity in vitro, suggesting that N-CoR may have a functional role in modulating HAT activity. This is the first report of a direct interaction between N-CoR and CBP, and suggests that the role of N-CoR in mediating transcriptional events may be more complex than previously anticipated.
Collapse
Affiliation(s)
- Jeffery John Michael Cowger
- Department of Oncology, London Regional Cancer Program, The University of Western Ontario, London, Ontario N6A 4L6, Canada
| | | |
Collapse
|
384
|
Feng Q, Yi P, Wong J, O'Malley BW. Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 2006; 26:7846-57. [PMID: 16923966 PMCID: PMC1636757 DOI: 10.1128/mcb.00568-06] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/17/2006] [Accepted: 08/14/2006] [Indexed: 01/22/2023] Open
Abstract
Recent studies indicate that steroid receptor-mediated transcriptional initiation is a cyclical process involving multiple rounds of coactivator assembly and disassembly. Steroid receptor coactivator 3 (SRC-3) coactivator phosphorylation has been shown to regulate coactivator complex assembly, but the mechanisms by which coactivator disassembly is triggered are not well understood. In this study, we provide in vitro and in vivo evidence that members of the SRC coactivator family serve as substrates for the enzymatic coactivator coactivator-associated arginine methyltransferase 1 (CARM1). Methylation of SRC-3 was localized to an arginine in its CARM1 binding region and correlated with decreased estrogen receptor alpha-mediated transcription, as seen with both cell-based and in vitro transcription assays. Consistent with this finding, we demonstrated that methylation promotes dissociation of the SRC-3/CARM1 coactivator complex. Methylation of SRC-3 is regulated by estrogen signaling in MCF7 cells and serves as a molecular switch for disassembly of the SRC-3 transcriptional coactivator complex. We propose that CARM1 is a dual-function coactivator, as it not only activates transcription by modifying core histone tails but also terminates hormone signaling by disassembly of the coactivator complex.
Collapse
Affiliation(s)
- Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
385
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53 – ein natürlicher Krebskiller: Einsichten in die Struktur und Therapiekonzepte. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
386
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angew Chem Int Ed Engl 2006; 45:6440-60. [PMID: 16983711 DOI: 10.1002/anie.200600611] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.
Collapse
Affiliation(s)
- Lin Römer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
387
|
Dai JM, Sun DC, Lin RX, Yang J, Lou S, Wang SQ. Microarray analysis of differentially expressed genes in mouse bone marrow tissues after ionizing radiation. Int J Radiat Biol 2006; 82:511-21. [PMID: 16882623 DOI: 10.1080/09553000600857389] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To identify differentially expressed genes in mouse bone marrow involved in radiation-induced injury. MATERIALS AND METHODS Microarray analysis was used to identify the differentially expressed genes and other techniques, e.g., polymerase chain reaction (PCR), western-blotting and antisense were also used to validate the results. RESULTS DNA microarray analysis demonstrated that the mRNA of 34 genes increased and 69 genes decreased in mouse bone marrow cells (BMC) from C57BL mice 6 h after a whole body dose of 6.5 Gy. These differentially expressed genes were involved in a number of processes including DNA replication/repair, proliferation/apoptosis, cell cycle control and RNA processing. In these experiments, a decline of the mammalian homolog Sir2a (an acronym for the silent mating type information regulation 2 homolog [SIRT1]) mRNA accompanied by an increase of P53 protein acetylation was observed in irradiated BMC. To determine whether the reduced SIRT1 is related to the higher acetylation status of P53 after irradiation, we designed and synthesized antisense oligonucleotides (AS) targeting human SIRT1 mRNA. Notably, AS transfection increased tumor protein 53 (P53) protein acetylation and bax-luciferase activity in human bone marrow stromal cell line (HS-5) after radiation. Furthermore, the AS transfer stimulated cell apoptosis in post-irradiation HS-5 cells. CONCLUSION Ionizing radiation (IR) affects the expression of a series of genes including genes involved in G1/S transition and the P53 pathway. Among those, reduction of SIRT1 was seen to be involved in transactivation of P53.
Collapse
Affiliation(s)
- Jin Ming Dai
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
388
|
Daino K, Ichimura S, Nenoi M. Both the basal transcriptional activity of the GADD45A gene and its enhancement after ionizing irradiation are mediated by AP-1 element. ACTA ACUST UNITED AC 2006; 1759:458-69. [PMID: 17084916 DOI: 10.1016/j.bbaexp.2006.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/29/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
The growth arrest and DNA damage-inducible gene 45A (GADD45A) is involved in the DNA repair, maintenance of genomic stability, cell cycle control and apoptosis, and thus plays an important role in cellular response to DNA damage. The GADD45A gene is responsive to a variety of DNA-damaging agents, including ionizing radiation (IR), methyl methanesulfonate (MMS), and ultraviolet (UV) radiation. It is generally thought that induction of the GADD45A gene after IR exposure is principally p53-dependent, requiring binding of the p53 protein to the p53-recognition sequence in the third intron. However, the involvement of factors other than p53 in transcriptional regulation of the GADD45A gene after IR exposure has not been elucidated. In the present study, we show that the 5'-flanking region containing two OCT sites and a CCAAT box, as well as p53 and AP-1 sites in the third intron, are required for the basal transcriptional activity of the reporter gene. In addition, AP-1 recognition element was shown to be involved in the transcriptional enhancement of the GADD45A gene after X-ray irradiation. Electrophoretic mobility shift analysis (EMSA) and Chromatin immunoprecipitation (ChIP) assay revealed that JunD binds to the third intron of the GADD45A gene. These observations suggest that AP-1 complexes containing JunD, in addition to p53, play an important role not only in transcriptional enhancement by IR but also in basal expression of the GADD45A gene via binding to the AP-1 site in the third intron.
Collapse
Affiliation(s)
- Kazuhiro Daino
- Radiation Hazards Research Group, National Institute of Radiological Sciences, 9-1, Anagawa-4-chome, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
389
|
Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T, Wang JYJ, Anderson CW, Appella E, Xu Y. Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 2006; 26:6859-69. [PMID: 16943427 PMCID: PMC1592865 DOI: 10.1128/mcb.00062-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Posttranslational modifications of p53, including phosphorylation and acetylation, play important roles in regulating p53 stability and activity. Mouse p53 is acetylated at lysine 317 by PCAF and at multiple lysine residues at the extreme carboxyl terminus by CBP/p300 in response to genotoxic and some nongenotoxic stresses. To determine the physiological roles of p53 acetylation at lysine 317, we introduced a Lys317-to-Arg (K317R) missense mutation into the endogenous p53 gene of mice. p53 protein accumulates to normal levels in p53(K317R) mouse embryonic fibroblasts (MEFs) and thymocytes after DNA damage. While p53-dependent gene expression is largely normal in p53(K317R) MEFs after various types of DNA damage, increased p53-dependent apoptosis was observed in p53(K317R) thymocytes, epithelial cells from the small intestine, and cells from the retina after ionizing radiation (IR) as well as in E1A/Ras-expressing MEFs after doxorubicin treatment. Consistent with these findings, p53-dependent expression of several proapoptotic genes was significantly increased in p53(K317R) thymocytes after IR. These findings demonstrate that acetylation at lysine 317 negatively regulates p53 apoptotic activities after DNA damage.
Collapse
Affiliation(s)
- Connie Chao
- Section of Molecular Biology, Division of Biological Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell 2006; 23:575-87. [PMID: 16916644 DOI: 10.1016/j.molcel.2006.06.028] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/23/2006] [Accepted: 06/27/2006] [Indexed: 01/03/2023]
Abstract
Earlier studies have shown that PTEN regulated p53 protein stability both in a phosphatase-dependent manner through antagonizing Akt-Mdm2 pathway and in a phosphatase-independent manner through interacting with p53. In this study, we report that PTEN forms a complex with p300 in the nucleus and plays a role in maintenance of high p53 acetylation in response to DNA damage. Furthermore, p300 is required for nuclear PTEN-regulated cell cycle arrest. Interestingly, however, p53 acetylation was found to promote PTEN-p53 interaction. To investigate the molecular mechanisms, we show that acetylation promotes p53 tetramerization, which, in turn, is required for the PTEN-p53 interaction and subsequent maintenance of high p53 acetylation. Taken together, our results suggest a physiological role for the PTEN tumor suppressor in the nucleus and provide a molecular explanation for our previous observation that PTEN controls p53 protein levels independent of its phosphatase activity.
Collapse
Affiliation(s)
- Andrew G Li
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
391
|
Affiliation(s)
- Xin Liu
- Wistar Institute and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
392
|
Masumi A, Fukazawa H, Shimazu T, Yoshida M, Ozato K, Komuro K, Yamaguchi K. Nucleolin is involved in interferon regulatory factor-2-dependent transcriptional activation. Oncogene 2006; 25:5113-24. [PMID: 16582966 DOI: 10.1038/sj.onc.1209522] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 11/08/2022]
Abstract
We have previously shown that interferon regulatory factor-2 (IRF-2) is acetylated in a cell growth-dependent manner, which enables it to contribute to the transcription of cell growth-regulated promoters. To clarify the function of acetylation of IRF-2, we investigated the proteins that associate with acetylated IRF-2. In 293T cells, the transfection of p300/CBP-associated factor (PCAF) enhanced the acetylation of IRF-2. In cells transfected with both IRF-2 and PCAF, IRF-2 associated with endogenous nucleolin, while in contrast, minimal association was observed when IRF-2 was transfected with a PCAF histone acetyl transferase (HAT) deletion mutant. In a pull-down experiment using stable transfectants, acetylation-defective mutant IRF-2 (IRF-2K75R) recruited nucleolin to a much lesser extent than wild-type IRF-2, suggesting that nucleolin preferentially associates with acetylated IRF-2. Nucleolin in the presence of PCAF enhanced IRF-2-dependent H4 promoter activity in NIH3T3 cells. Nucleolin knock-down using siRNA reduced the IRF-2/PCAF-mediated promoter activity. Chromatin immunoprecipitation analysis indicated that PCAF transfection increased nucleolin binding to IRF-2 bound to the H4 promoter. We conclude that nucleolin is recruited to acetylated IRF-2, thereby contributing to gene regulation crucial for the control of cell growth.
Collapse
Affiliation(s)
- A Masumi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
393
|
Takagi M, Takeda T, Asada Y, Sugimoto C, Onuma M, Ohashi K. The presence of a short form of p53 in chicken lymphoblastoid cell lines during apoptosis. J Vet Med Sci 2006; 68:561-6. [PMID: 16820712 DOI: 10.1292/jvms.68.561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the roles of a short form of p53 in the regulation of apoptosis in chicken lymphoblastoid tumor cell lines derived from Marek's disease (MD) and avian leukosis (AL), the expressions of the p53 proteins were analyzed in these cell lines in which apoptosis was chemically induced. In MSB1-O derived from MD, the expression of a 40 kDa protein of p53 was decreased and that of a 32 kDa protein, a short form of p53, was increased during apoptosis induced by actinomycin D. In 1104B1 derived from AL, the expressions of 42 and 32 kDa of p53 were increased during the apoptosis. The short form of p53 was undetectable in these cell lines when apoptosis was blocked by the pretreatment with endonuclease inhibitor, Zn2+, protease inhibitors, TPCK and TLCK, or caspase inhibitor, Z-VAD-FMK. In the transcriptional level, the expressions of bcl-2 and IAP were decreased in these cell lines during actinomycin D-induced apoptosis, but no change was detected in the expression level of p53. These results suggest that, in these chicken tumors, the short form of p53 could play a role in the initiation of apoptosis induced by the chemotherapeutic compound, and that the regulation of its expression may be important for the maintenance of transformation status.
Collapse
Affiliation(s)
- Michihiro Takagi
- Department of Microbiology and Immunology, Faculty of Agriculture, Kobe University, Japan
| | | | | | | | | | | |
Collapse
|
394
|
Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, Powell MJ, Yang T, Gu W, Avantaggiati ML, Pattabiraman N, Pestell TG, Wang F, Quong AA, Wang C, Pestell RG. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 2006; 26:8122-35. [PMID: 16923962 PMCID: PMC1636736 DOI: 10.1128/mcb.00289-06] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The NAD-dependent histone deacetylase Sir2 plays a key role in connecting cellular metabolism with gene silencing and aging. The androgen receptor (AR) is a ligand-regulated modular nuclear receptor governing prostate cancer cellular proliferation, differentiation, and apoptosis in response to androgens, including dihydrotestosterone (DHT). Here, SIRT1 antagonists induce endogenous AR expression and enhance DHT-mediated AR expression. SIRT1 binds and deacetylates the AR at a conserved lysine motif. Human SIRT1 (hSIRT1) repression of DHT-induced AR signaling requires the NAD-dependent catalytic function of hSIRT1 and the AR lysine residues deacetylated by SIRT1. SIRT1 inhibited coactivator-induced interactions between the AR amino and carboxyl termini. DHT-induced prostate cancer cellular contact-independent growth is also blocked by SIRT1, providing a direct functional link between the AR, which is a critical determinant of progression of human prostate cancer, and the sirtuins.
Collapse
Affiliation(s)
- Maofu Fu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell 2006; 22:395-405. [PMID: 16678111 DOI: 10.1016/j.molcel.2006.04.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/20/2005] [Accepted: 04/03/2006] [Indexed: 11/26/2022]
Abstract
von Hippel-Lindau (VHL) disease is a rare autosomal dominant cancer syndrome. Although hypoxia-inducible factor-alpha (HIFalpha) is a well-documented substrate of von Hippel-Lindau tumor suppressor protein (pVHL), it remains unclear whether the dysregulation of HIF is sufficient to account for de novo tumorigenesis in VHL-deleted cells. Here we found that pVHL directly associates with and stabilizes p53 by suppressing Mdm2-mediated ubiquitination and nuclear export of p53. Moreover, upon genotoxic stress, pVHL invoked an interaction between p53 and p300 and the acetylation of p53, which ultimately led to an increase in p53 transcriptional activity and p53-mediated cell cycle arrest and apoptosis. These results suggest that the tumor suppressor pVHL has an unexpected function to upregulate the tumor suppressor p53.
Collapse
Affiliation(s)
- Jae-Seok Roe
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Interdisciplinary Program in Genetic Engineering, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|
396
|
Borger DR, DeCaprio JA. Targeting of p300/CREB binding protein coactivators by simian virus 40 is mediated through p53. J Virol 2006; 80:4292-303. [PMID: 16611888 PMCID: PMC1472010 DOI: 10.1128/jvi.80.9.4292-4303.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The primary transforming functions of simian virus 40 large T antigen (SV40 LT) are conferred primarily through the binding and inactivation of p53 and the retinoblastoma family members. Normal p53 function requires an association with the CREB binding protein (CBP)/p300 coactivators, and a ternary complex containing SV40 LT, p53, and CBP/p300 has been identified previously. In this report, we have evaluated a secondary function of p53 bound to the SV40 LT complex in mediating the binding of human CBP/p300. We demonstrate that p53 associated with SV40 LT was posttranslationally modified in a manner consistent with the binding of CBP/p300. Furthermore, expression of SV40 LT induced the proportion of p53 phosphorylated on S15. An essential function for p53 in bridging the interaction between SV40 LT and CBP/p300 was identified through the reconstitution of the SV40 LT-CBP/p300 complex upon p53 reexpression in p53-null cells. In addition, the SV40 LT-CBP/p300 complex was disrupted through RNA interference-mediated depletion of endogenous p53. We also demonstrate that SV40 LT was acetylated in a p300- and p53-dependent manner, at least in part through the CH3 domain of p300. Therefore, the binding of p53 serves to modify SV40 LT by targeting CBP and p300 binding to direct the acetylation of SV40 LT.
Collapse
Affiliation(s)
- Darrell R Borger
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Mayer Building 457, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
397
|
Faour WH, He Q, Mancini A, Jovanovic D, Antoniou J, Di Battista JA. Prostaglandin E2 stimulates p53 transactivational activity through specific serine 15 phosphorylation in human synovial fibroblasts. Role in suppression of c/EBP/NF-kappaB-mediated MEKK1-induced MMP-1 expression. J Biol Chem 2006; 281:19849-60. [PMID: 16714289 DOI: 10.1074/jbc.m601293200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) overexpression has been linked to cell survival, transformation, and hyperproliferation. We examined the regulation of the tumor suppressor gene p53 and p53 target genes by prostaglandin E(2) (PGE(2)) in human synovial fibroblasts (HSF). PGE(2) induced a time-dependent increase in p53 Ser(15) phosphorylation, with no discernible change in overall p53 levels. PGE(2)-dependent Ser(15) phosphorylation was apparently mediated by activated p38 MAP kinase as SB202190, a p38 kinase inhibitor, blocked the response. Overexpression of a MKK3 construct, but not MKK1, stimulated SB202190-sensitive p53 Ser(15) phosphorylation. PGE(2)-stimulated [phospho-Ser(15)]p53 transactivated a p53 response element (GADD45)-luciferase reporter in transiently transfected HSF (SN7); the effect was compromised by overexpression of a dominant-negative mutant (dnm) of p53 or excess p53S15A expression plasmid but mimicked by a constitutively active p53S15E expression construct. PGE(2), wtp53 expression in the presence of PGE(2), and p53S15E suppressed steady-state levels of MEKK1-induced MMP-1 mRNA, effects nullified with co-transfection of p53 dnm or p53S15A. MEKK1-induced MMP-1 promoter-driven luciferase activity was largely dependent on a c/EBPbeta-NF-kappaB-like enhancer site at -2008 to -1972 bp, as judged by deletion and point mutation analyses. PGE(2), overexpression of p53wt with PGE(2), or p53S15E abolished the MEKK1-induced MMP-1 promoter luciferase activity. Gel-shift/super gel-shift analyses identified c/EBPbeta dimers and c/EBPbeta/NF-kappaB p65 heterodimers as binding species at the apparent site of MEKK1-dependent transactivation. PGE(2)-stimulated [phospho-Ser(15)]p53 abrogated the DNA binding of c/EBPbeta dimers and c/EBPbeta/NF-kappaB p65 heterodimers. Our data suggest that COX-2 prostaglandins may be implicated in p53 function and p53 target gene expression.
Collapse
Affiliation(s)
- Wissam H Faour
- Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
398
|
Kobayashi T, Wang T, Maezawa M, Kobayashi M, Ohnishi S, Hatanaka K, Hige S, Shimizu Y, Kato M, Asaka M, Tanaka J, Imamura M, Hasegawa K, Tanaka Y, Brachmann RK. Overexpression of the oncoprotein prothymosin alpha triggers a p53 response that involves p53 acetylation. Cancer Res 2006; 66:3137-44. [PMID: 16540664 DOI: 10.1158/0008-5472.can-05-2112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the tumor suppressor protein p53 is a critical cellular response to various stress stimuli and to inappropriate activity of growth-promoting proteins, such as Myc, Ras, E2F, and beta-catenin. Protein stability and transcriptional activity of p53 are modulated by protein-protein interactions and post-translational modifications, including acetylation. Here, we show that inappropriate activity of prothymosin alpha (PTMA), an oncoprotein overexpressed in human cancers, triggers a p53 response. Overexpression of PTMA enhanced p53 transcriptional activity in reporter gene assays for p53 target gene promoters hdm2, p21, and cyclin G. Overexpressed PTMA resulted in increased mRNA and protein levels for endogenous p53 target genes, hdm2 and p21, and in growth suppression. In contrast, reduction of endogenous PTMA through RNA interference decreased p53 transcriptional activity. Histone acetyltransferases (HATs) act as p53 coactivators and acetylate p53. PTMA, known to interact with HATs, led to increased levels of acetylated p53. PTMA did not increase the transcriptional activity of an acetylation-deficient p53 mutant, suggesting that p53 acetylation is an indispensable part of the p53 response to PTMA. Chromatin immunoprecipitation assays showed that excess PTMA associates with the p21 promoter and results in increased levels of acetylated p53 at the p21 promoter. Our findings indicate that overexpressed PTMA elicits a p53 response that involves p53 acetylation.
Collapse
Affiliation(s)
- Takahiko Kobayashi
- Hokkaido University Medical Hospital, Primary Care Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Resnick-Silverman L, Yan S, Mutjaba S, Liu WJ, Zeng L, Manfredi JJ, Zhou MM. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. ACTA ACUST UNITED AC 2006; 13:81-90. [PMID: 16426974 DOI: 10.1016/j.chembiol.2005.10.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 09/27/2005] [Accepted: 10/26/2005] [Indexed: 01/10/2023]
Abstract
Lysine acetylation of human tumor suppressor p53 in response to cellular stress signals is required for its function as a transcription factor that regulates cell cycle arrest, senescence, or apoptosis. Here, we report small molecules that block lysine 382-acetylated p53 association with the bromodomain of the coactivator CBP, an interaction essential for p53-induced transcription of the cell cycle inhibitor p21 in response to DNA damage. These chemicals were discovered in target structure-guided nuclear magnetic resonance spectroscopy screening of a focused chemical library constructed based on the structural knowledge of CBP bromodomain/p53-AcK382 binding. Structural characterization shows that these chemicals inhibit CBP/p53 association by binding to the acetyl-lysine binding site of the bromodomain. Cell-based functional assays demonstrate that the lead chemicals can modulate p53 stability and function in response to DNA damage.
Collapse
|
400
|
Berthiaume M, Boufaied N, Moisan A, Gaudreau L. High levels of oxidative stress globally inhibit gene transcription and histone acetylation. DNA Cell Biol 2006; 25:124-34. [PMID: 16460236 DOI: 10.1089/dna.2006.25.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress has been shown to induce ubiquitynation of RNA polymerase II, but direct bearing of that phenomenon on global transcription still remains elusive. In this report, we show that high levels of cellular oxidative stress globally inhibit gene transcription, and that this decrease in transcription is only partly attributable to reduced binding of RNA polymerase II to a model gene promoter. Importantly, we show that this decrease in transcription correlates with a significant decrease in histone H3 and H4 acetylation levels both throughout a model gene, and also globally in the nucleus of cells. Our results suggest that high levels of oxidative stress can inhibit transcription by a mechanism, at least in part, that impedes global histone acetylation levels.
Collapse
Affiliation(s)
- Maryse Berthiaume
- Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|