351
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
352
|
Perlmutter JD, Popot JL, Sachs JN. Molecular Dynamics Simulations of a Membrane Protein/Amphipol Complex. J Membr Biol 2014; 247:883-95. [DOI: 10.1007/s00232-014-9690-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
|
353
|
Su L, Quade B, Wang H, Sun L, Wang X, Rizo J. A plug release mechanism for membrane permeation by MLKL. Structure 2014; 22:1489-500. [PMID: 25220470 DOI: 10.1016/j.str.2014.07.014] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
Abstract
MLKL is crucial for necroptosis, permeabilizing membranes through its N-terminal region upon phosphorylation of its kinase-like domain by RIP3. However, the mechanism underlying membrane permeabilization is unknown. The solution structure of the MLKL N-terminal region determined by nuclear magnetic resonance spectroscopy reveals a four-helix bundle with an additional helix at the top that is likely key for MLKL function, and a sixth, C-terminal helix that interacts with the top helix and with a poorly packed interface within the four-helix bundle. Fluorescence spectroscopy measurements indicate that much of the four-helix bundle inserts into membranes, but not the C-terminal helix. Moreover, we find that the four-helix bundle is sufficient to induce liposome leakage and that the C-terminal helix inhibits this activity. These results suggest that the four-helix bundle mediates membrane breakdown during necroptosis and that the sixth helix acts as a plug that prevents opening of the bundle and is released upon RIP3 phosphorylation.
Collapse
Affiliation(s)
- Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Huayi Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Liming Sun
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
354
|
Heinrich F, Lösche M. Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:2341-9. [PMID: 24674984 PMCID: PMC4082750 DOI: 10.1016/j.bbamem.2014.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 11/23/2022]
Abstract
Neutron reflectometry (NR) is an emerging experimental technique for the structural characterization of proteins interacting with fluid bilayer membranes under conditions that mimic closely the cellular environment. Thus, cellular processes can be emulated in artificial systems and their molecular basis studied by adding cellular components one at a time in a well-controlled environment while the resulting structures, or structural changes in response to external cues, are monitored with neutron reflection. In recent years, sample environments, data collection strategies and data analysis were continuously refined. The combination of these improvements increases the information which can be obtained from NR to an extent that enables structural characterization of protein-membrane complexes at a length scale that exceeds the resolution of the measurement by far. Ultimately, the combination of NR with molecular dynamics (MD) simulations can be used to cross-validate the results of the two techniques and provide atomic-scale structural models. This review discusses these developments in detail and demonstrates how they provide new windows into relevant biomedical problems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Frank Heinrich
- Physics Department, Carnegie Mellon University, Pittsburgh, PA, U.S.A.; NIST Center for Neutron Research, Gaithersburg, MD, U.S.A
| | - Mathias Lösche
- Physics Department, Carnegie Mellon University, Pittsburgh, PA, U.S.A.; NIST Center for Neutron Research, Gaithersburg, MD, U.S.A..
| |
Collapse
|
355
|
Shalom-Elazari H, Zazrin-Greenspon H, Shaked H, Chill JH. Global fold and backbone dynamics of the hepatitis C virus E2 glycoprotein transmembrane domain determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2919-28. [PMID: 25109935 DOI: 10.1016/j.bbamem.2014.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/30/2014] [Accepted: 07/22/2014] [Indexed: 01/13/2023]
Abstract
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both extracellular and transmembrane (TM) glycoprotein domains contribute to this interaction, but study of TM-TM interactions has been limited because synthesis and structural characterization of these highly hydrophobic segments present significant challenges. In this NMR study, by successful expression and purification of the E2 transmembrane domain as a fusion construct we have determined the global fold and characterized backbone motions for this peptide incorporated in phospholipid micelles. Backbone resonance frequencies, relaxation rates and solvent exposure measurements concur in showing this domain to adopt a helical conformation, with two helical segments spanning residues 717-726 and 732-746 connected by an unstructured linker containing the charged residues D728 and R730 involved in E1 binding. Although this linker exhibits increased local motions on the ps timescale, the dominating contribution to its relaxation is the global tumbling motion with an estimated correlation time of 12.3ns. The positioning of the helix-linker-helix architecture within the mixed micelle was established by paramagnetic NMR spectroscopy and phospholipid-peptide cross relaxation measurements. These indicate that while the helices traverse the hydrophobic interior of the micelle, the linker lies closer to the micelle perimeter to accommodate its charged residues. These results lay the groundwork for structure determination of the E1/E2 complex and a molecular understanding of glycoprotein heterodimerization.
Collapse
Affiliation(s)
| | | | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
356
|
Kiani MJ, Harun FKC, Ahmadi MT, Rahmani M, Saeidmanesh M, Zare M. Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor. NANOSCALE RESEARCH LETTERS 2014; 9:371. [PMID: 25114659 PMCID: PMC4125348 DOI: 10.1186/1556-276x-9-371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 07/09/2014] [Indexed: 05/28/2023]
Abstract
Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.
Collapse
Affiliation(s)
- Mohammad Javad Kiani
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia
- Department of Electrical Engineering, Islamic Azad University, Yasooj branch, Yasooj 75916, Iran
| | - Fauzan Khairi Che Harun
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia
| | | | - Meisam Rahmani
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia
| | - Mahdi Saeidmanesh
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia
| | - Moslem Zare
- Department of Physics, Yasouj University, Yasouj 75914-353, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
357
|
Fox D, Larsson P, Lo RH, Kroncke BM, Kasson PM, Columbus L. Structure of the Neisserial outer membrane protein Opa₆₀: loop flexibility essential to receptor recognition and bacterial engulfment. J Am Chem Soc 2014; 136:9938-46. [PMID: 24813921 PMCID: PMC4105060 DOI: 10.1021/ja503093y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/27/2014] [Indexed: 12/27/2022]
Abstract
The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen-host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors.
Collapse
Affiliation(s)
- Daniel
A. Fox
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Per Larsson
- Center
for Membrane Biology and Department of Molecular Physiology and Biological
Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ryan H. Lo
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brett M. Kroncke
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Peter M. Kasson
- Center
for Membrane Biology and Department of Molecular Physiology and Biological
Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Linda Columbus
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Center
for Membrane Biology and Department of Molecular Physiology and Biological
Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
358
|
Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:342-9. [PMID: 25017802 DOI: 10.1016/j.bbamem.2014.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 12/16/2022]
Abstract
While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR approaches to obtain such information in a cellular setting. As long as the proteins inside the living cell tumble rapidly in the NMR timescale, recently developed in-cell solution NMR approaches can provide 3D structural information. However, there are numerous challenges to study membrane proteins inside a cell. Research in our laboratory is focused on developing a combination of solid-state NMR and biological approaches to overcome these challenges in order to obtain high-resolution structural insights into electron transfer processes mediated by membrane-bound proteins like mammalian cytochrome-b5, cytochrome-P450 and cytochrome-P450-reductase. In this study, we demonstrate the feasibility of using dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR spectroscopy for in-cell studies on a membrane-anchored protein. Our experimental results obtained from ¹³C-labeled membrane-anchored cytochrome-b5 in native Escherichia coli cells show a ~16-fold DNP signal enhancement. Further, results obtained from a 2D ¹³C/¹³C chemical shift correlation MAS experiment demonstrate the feasibility of suppressing the background signals from other cellular contents for high-resolution structural studies on membrane proteins. We believe that this study would pave new avenues for high-resolution structural studies on a variety of membrane-associated proteins and their complexes in the cellular context to fully understand their functional roles in physiological processes.
Collapse
|
359
|
Horst R, Stanczak P, Wüthrich K. NMR polypeptide backbone conformation of the E. coli outer membrane protein W. Structure 2014; 22:1204-1209. [PMID: 25017731 DOI: 10.1016/j.str.2014.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 12/01/2022]
Abstract
The outer membrane proteins (Omps) are key factors for bacterial survival and virulence. Among the Omps that have been structurally characterized either by X-ray crystallography or by NMR in solution, the crystal structure of OmpW stands out because three of its four extracellular loops are well defined, whereas long extracellular loops in other E. coli Omps are disordered in the crystals as well as in NMR structures. OmpW thus presented an opportunity for a detailed comparison of the extracellular loops in a β-barrel membrane protein structure in crystals and in noncrystalline milieus. Here, the polypeptide backbone conformation of OmpW in 30-Fos micelles was determined. Complete backbone NMR assignments were obtained and the loops were structurally characterized. In combination with the OmpW crystal structure, NMR line shape analyses, and (15)N{(1)H}-NOE data, these results showed that intact regular secondary structures in the loops undergo slow hinge motions at the detergent-solvent interface.
Collapse
Affiliation(s)
- Reto Horst
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pawel Stanczak
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
360
|
Stoilova-McPhie S, Grushin K, Dalm D, Miller J. Lipid nanotechnologies for structural studies of membrane-associated proteins. Proteins 2014; 82:2902-9. [PMID: 24957666 PMCID: PMC5292012 DOI: 10.1002/prot.24631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 11/09/2022]
Abstract
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment.
Collapse
Affiliation(s)
- Svetla Stoilova-McPhie
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555
| | | | | | | |
Collapse
|
361
|
Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:329-33. [PMID: 24853657 DOI: 10.1016/j.bbamem.2014.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 11/21/2022]
Abstract
Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment.
Collapse
|
362
|
Bibow S, Carneiro MG, Sabo TM, Schwiegk C, Becker S, Riek R, Lee D. Measuring membrane protein bond orientations in nanodiscs via residual dipolar couplings. Protein Sci 2014; 23:851-6. [PMID: 24752984 DOI: 10.1002/pro.2482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/11/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes. To understand membrane protein functionality, accurate structural information is required. Usually, structure determination and dynamics of membrane proteins are studied in micelles using either solution state NMR or X-ray crystallography. Even though invaluable information has been obtained by this approach, micelles are known to be far from ideal mimics of biological membranes often causing the loss or decrease of membrane protein activity. Recently, nanodiscs, which are composed of a lipid bilayer surrounded by apolipoproteins, have been introduced as a more physiological alternative than micelles for NMR investigations on membrane proteins. Here, we show that membrane protein bond orientations in nanodiscs can be obtained by measuring residual dipolar couplings (RDCs) with the outer membrane protein OmpX embedded in nanodiscs using Pf1 phage as an alignment medium. The presented collection of membrane protein RDCs in nanodiscs represents an important step toward more comprehensive structural and dynamical NMR-based investigations of membrane proteins in a natural bilayer environment.
Collapse
Affiliation(s)
- Stefan Bibow
- Laboratory for Physical Chemistry, ETH Zürich, CH-8093, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
363
|
Abstract
Structural analyses of protein-protein interactions are required to reveal their functional mechanisms, and accurate protein-protein complex models, based on experimental results, are the starting points for drug development. In addition, structural information about proteins under physiologically relevant conditions is crucially important for understanding biological events. However, for proteins such as those embedded in lipid bilayers and transiently complexed with their effectors under physiological conditions, structural analyses by conventional methods are generally difficult, due to their large molecular weights and inhomogeneity. We have developed the cross-saturation (CS) method, which is an nuclear magnetic resonance measurement technique for the precise identification of the interfaces of protein-protein complexes. In addition, we have developed an extended version of the CS method, termed transferred cross-saturation (TCS), which enables the identification of the residues of protein ligands in close proximity to huge (>150 kDa) and heterogeneous complexes under fast exchange conditions (>0.1 s(-1)). Here, we discuss the outline, basic theory, and practical considerations of the CS and TCS methods. In addition, we will review the recent progress in the construction of models of protein-protein complexes, based on CS and TCS experiments, and applications of TCS to in situ analyses of biologically and medically important proteins in physiologically relevant states.
Collapse
|
364
|
Shenkarev ZO, Lyukmanova EN, Paramonov AS, Panteleev PV, Balandin SV, Shulepko MA, Mineev KS, Ovchinnikova TV, Kirpichnikov MP, Arseniev AS. Lipid-protein nanodiscs offer new perspectives for structural and functional studies of water-soluble membrane-active peptides. Acta Naturae 2014; 6:84-94. [PMID: 25093115 PMCID: PMC4115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Lipid-protein nanodiscs (LPNs) are nanoscaled fragments of a lipid bilayer stabilized in solution by the apolipoprotein or a special membrane scaffold protein (MSP). In this work, the applicability of LPN-based membrane mimetics in the investigation of water-soluble membrane-active peptides was studied. It was shown that a pore-forming antimicrobial peptide arenicin-2 from marine lugworm (charge of +6) disintegrates LPNs containing both zwitterionic phosphatidylcholine (PC) and anionic phosphatidylglycerol (PG) lipids. In contrast, the spider toxin VSTx1 (charge of +3), a modifier of Kv channel gating, effectively binds to the LPNs containing anionic lipids (POPC/DOPG, 3 : 1) and does not cause their disruption. VSTx1 has a lower affinity to LPNs containing zwitterionic lipids (POPC), and it weakly interacts with the protein component of nanodiscs, MSP (charge of -6). The neurotoxin II (NTII, charge of +4) from cobra venom, an inhibitor of the nicotinic acetylcholine receptor, shows a comparatively low affinity to LPNs containing anionic lipids (POPC/DOPG, 3 : 1 or POPC/DOPS, 4 : 1), and it does not bind to LPNs/POPC. The obtained data show that NTII interacts with the LPN/POPC/DOPS surface in several orientations, and that the exchange process among complexes with different topologies proceeds fast on the NMR timescale. Only one of the possible NTII orientations allows for the previously proposed specific interaction between the toxin and the polar head group of phosphatidylserine from the receptor environment (Lesovoy et al., Biophys. J. 2009. V. 97. № 7. P. 2089-2097). These results indicate that LPNs can be used in structural and functional studies of water-soluble membrane-active peptides (probably except pore-forming ones) and in studies of the molecular mechanisms of peptide-membrane interaction.
Collapse
Affiliation(s)
- Z. O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - E. N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - A. S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - P. V. Panteleev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - S. V. Balandin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - M. A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1, Bldg. 12, 119991, Moscow, Russia
| | - K. S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - T. V. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Institutskii Pereulok, 9, 141700, Dolgoprudny, Moscow Region, Russia
| | - M. P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1, Bldg. 12, 119991, Moscow, Russia
| | - A. S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Institutskii Pereulok, 9, 141700, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
365
|
Sušac L, Horst R, Wüthrich K. Solution-NMR characterization of outer-membrane protein A from E. coli in lipid bilayer nanodiscs and detergent micelles. Chembiochem 2014; 15:995-1000. [PMID: 24692152 DOI: 10.1002/cbic.201300729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 01/08/2023]
Abstract
X-ray crystallography and solution NMR of detergent-reconstituted OmpA (outer membrane protein A from E. coli) had shown that this protein forms an eight-stranded transmembrane β-barrel, but only limited information was obtained for the extracellular loops. In NMR studies of OmpA in two different detergent micelles, "NMR-invisible" amino acid residues in-between the extracellular loops and the β-barrel prevented complete structural characterization. Here, we show that this NMR-invisible ring around the β-barrel of OmpA is also present in lipid bilayer nanodiscs and in mixed micelles with a third detergent, thus suggesting that the implicated rate processes have a functional role rather than representing an artifact of the protein reconstitution. In addition to sequence-specific NMR assignments for OmpA in the nanodiscs, the present results are based on a protocol of micro-coil TROSY- and CRINEPT-type NMR diffusion measurements for studying the hydrodynamic properties and the foldedness of [(2)H,(15)N]-labeled membrane proteins in nanodiscs. This protocol can be applied under conditions closely similar to those used for NMR structure determinations or crystallization trials.
Collapse
Affiliation(s)
- Lukas Sušac
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | | | | |
Collapse
|
366
|
Planchard N, Point É, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet É, Zoonens M, Popot JL, Catoire LJ. The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Membr Biol 2014; 247:827-42. [PMID: 24676477 DOI: 10.1007/s00232-014-9654-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023]
Abstract
Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.
Collapse
Affiliation(s)
- Noelya Planchard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique (FRC 550), UMR 7099, CNRS, Université Paris 7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot JL. Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol 2014; 247:909-24. [PMID: 24652511 DOI: 10.1007/s00232-014-9656-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022]
Abstract
Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, ~4 and ~5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be ~120% D2O. In (1)H-(1)H nuclear overhauser effect NMR spectra, its contribution is reduced to ~6% of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.
Collapse
Affiliation(s)
- Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique and Université Paris-7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Cheng X, Jo S, Marassi FM, Im W. NMR-based simulation studies of Pf1 coat protein in explicit membranes. Biophys J 2014; 105:691-8. [PMID: 23931317 DOI: 10.1016/j.bpj.2013.06.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6 ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Molecular Biosciences, The University of Kansas, Lawrence, USA
| | | | | | | |
Collapse
|
369
|
Hein C, Henrich E, Orbán E, Dötsch V, Bernhard F. Hydrophobic supplements in cell-free systems: Designing artificial environments for membrane proteins. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christopher Hein
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Erik Henrich
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Erika Orbán
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| |
Collapse
|
370
|
Nomura K, Harada E, Sugase K, Shimamoto K. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning. J Phys Chem B 2014; 118:2405-13. [PMID: 24517164 DOI: 10.1021/jp4124106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.
Collapse
Affiliation(s)
- Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences , 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| | | | | | | |
Collapse
|
371
|
Yamamoto K, Pearcy P, Ramamoorthy A. Bicelles exhibiting magnetic alignment for a broader range of temperatures: a solid-state NMR study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1622-1629. [PMID: 24460179 DOI: 10.1021/la404331t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bicelles are increasingly used as model membranes to suitably mimic the biological cell membrane for biophysical and biochemical studies by a variety of techniques including NMR and X-ray crystallography. Recent NMR studies have successfully utilized bicelles for atomic-resolution structural and dynamic studies of antimicrobial peptides, amyloid peptides, and membrane-bound proteins. Though bicelles composed with several different types of lipids and detergents have been reported, the NMR requirement of magnetic alignment of bicelles limits the temperature range in which they can be used and subsequently their composition. Because of this restriction, low-temperature experiments desirable for heat-sensitive membrane proteins have not been conducted because bicelles could not be aligned. In this study, we characterize the magnetic alignment of bicelles with various compositions for a broad range of temperatures using (31)P static NMR spectroscopy in search of temperature-resistant bicelles. Our systematic investigation identified a temperature range of magnetic alignment for bicelles composed of 4:1 DLPC:DHexPC, 4:1:0.2 DLPC:DHexPC:cholesterol, 4:1:0.13 DLPC:DHexPC:CTAB, 4:1:0.13:0.2 DLPC:DHexPC:CTAB:cholesterol, and 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate. The amount of cholesterol-3-sulfate used was based on mole percent and was varied in order to determine the optimal amount. Our results indicate that the presence of 75 wt % or more water is essential to achieve maximum magnetic alignment, while the presence of cholesterol and cholesterol-3-sulfate stabilizes the alignment at extreme temperatures and the positively charged CTAB avoids the mixing of bicelles. We believe that the use of magnetically aligned 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate bicelles at as low as -15 °C would pave avenues to study the structure, dynamics, and membrane orientation of heat-sensitive proteins such as cytochrome P450 and could also be useful to investigate protein-protein interactions in a membrane environment.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
372
|
Probing the transmembrane structure and topology of microsomal cytochrome-p450 by solid-state NMR on temperature-resistant bicelles. Sci Rep 2014; 3:2556. [PMID: 23989972 PMCID: PMC3757361 DOI: 10.1038/srep02556] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/15/2013] [Indexed: 01/03/2023] Open
Abstract
Though the importance of high-resolution structure and dynamics of membrane proteins has been well recognized, optimizing sample conditions to retain the native-like folding and function of membrane proteins for Nuclear Magnetic Resonance (NMR) or X-ray measurements has been a major challenge. While bicelles have been shown to stabilize the function of membrane proteins and are increasingly utilized as model membranes, the loss of their magnetic-alignment at low temperatures makes them unsuitable to study heat-sensitive membrane proteins like cytochrome-P450 and protein-protein complexes. In this study, we report temperature resistant bicelles that can magnetically-align for a broad range of temperatures and demonstrate their advantages in the structural studies of full-length microsomal cytochrome-P450 and cytochrome-b5 by solid-state NMR spectroscopy. Our results reveal that the N-terminal region of rabbit cytochromeP4502B4, that is usually cleaved off to obtain crystal structures, is helical and has a transmembrane orientation with ~17° tilt from the lipid bilayer normal.
Collapse
|
373
|
Cross TA, Ekanayake V, Paulino J, Wright A. Solid state NMR: The essential technology for helical membrane protein structural characterization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 239:100-9. [PMID: 24412099 PMCID: PMC3957465 DOI: 10.1016/j.jmr.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 05/21/2023]
Abstract
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.
Collapse
Affiliation(s)
- Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Vindana Ekanayake
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Joana Paulino
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Anna Wright
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
374
|
Kynde SAR, Skar-Gislinge N, Pedersen MC, Midtgaard SR, Simonsen JB, Schweins R, Mortensen K, Arleth L. Small-angle scattering gives direct structural information about a membrane protein inside a lipid environment. ACTA ACUST UNITED AC 2014; 70:371-83. [PMID: 24531471 DOI: 10.1107/s1399004713028344] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Monomeric bacteriorhodopsin (bR) reconstituted into POPC/POPG-containing nanodiscs was investigated by combined small-angle neutron and X-ray scattering. A novel hybrid approach to small-angle scattering data analysis was developed. In combination, these provided direct structural insight into membrane-protein localization in the nanodisc and into the protein-lipid interactions. It was found that bR is laterally decentred in the plane of the disc and is slightly tilted in the phospholipid bilayer. The thickness of the bilayer is reduced in response to the incorporation of bR. The observed tilt of bR is in good accordance with previously performed theoretical predictions and computer simulations based on the bR crystal structure. The result is a significant and essential step on the way to developing a general small-angle scattering-based method for determining the low-resolution structures of membrane proteins in physiologically relevant environments.
Collapse
Affiliation(s)
- Søren A R Kynde
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | - Nicholas Skar-Gislinge
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | - Martin Cramer Pedersen
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | - Søren Roi Midtgaard
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | - Jens Baek Simonsen
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | | | - Kell Mortensen
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
375
|
Maric S, Skar-Gislinge N, Midtgaard S, Thygesen MB, Schiller J, Frielinghaus H, Moulin M, Haertlein M, Forsyth VT, Pomorski TG, Arleth L. Stealth carriers for low-resolution structure determination of membrane proteins in solution. ACTA ACUST UNITED AC 2014; 70:317-28. [PMID: 24531466 DOI: 10.1107/s1399004713027466] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023]
Abstract
Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial nanoscale bilayer disc carriers that mimic the native bilayer environment allows the handling of membrane proteins in solution. This enables the use of small-angle scattering techniques for fast and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly nontrivial fashion, making subsequent data analysis challenging. Here, an elegant solution to circumvent the intrinsic complexity brought about by the presence of the carrier disc is presented. In combination with small-angle neutron scattering (SANS) and the D2O/H2O-based solvent contrast-variation method, it is demonstrated that it is possible to prepare specifically deuterated carriers that become invisible to neutrons in 100% D2O at the length scales relevant to SANS. These `stealth' carrier discs may be used as a general platform for low-resolution structural studies of membrane proteins using well established data-analysis tools originally developed for soluble proteins.
Collapse
Affiliation(s)
- Selma Maric
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nicholas Skar-Gislinge
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Søren Midtgaard
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Mikkel B Thygesen
- CARB Centre, Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jürgen Schiller
- Institut für Medizinische Physik und Biophysik, Medizinische Fakultät, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Henrich Frielinghaus
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Scattering, TUM FRM-2, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Martine Moulin
- Life Sciences Group, Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Thomas Günther Pomorski
- Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
376
|
Zazrin H, Shaked H, Chill JH. Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:784-92. [PMID: 24192053 DOI: 10.1016/j.bbamem.2013.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354-363 and 371-379 separated by a more flexible segment of residues 364-370. In LPPG micelles a helical conformation was observed for residues 354-377 with greater flexibility in the 366-367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.
Collapse
Affiliation(s)
- Hadas Zazrin
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
377
|
Maurya SR, Chaturvedi D, Mahalakshmi R. Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Sci Rep 2013; 3:1989. [PMID: 23771099 PMCID: PMC3683699 DOI: 10.1038/srep01989] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/08/2013] [Indexed: 11/09/2022] Open
Abstract
Lipid-protein interactions, critical for the folding, stability and function of membrane proteins, can be both of mechanical and chemical nature. Mechanical properties of lipid systems can be suitably influenced by physical factors so as to facilitate membrane protein folding. We demonstrate here that by modulating lipid dynamics transiently using heat, rapid folding of two 8-stranded transmembrane β-barrel proteins OmpX and OmpA1–171, in micelles and vesicles, can be achieved within seconds. Folding kinetics using this ‘heat shock’ method shows a dramatic ten to several hundred folds increase in refolding rate along with ~100% folding efficiency. We establish that OmpX thus folded is highly thermostable even in detergent micelles, and retains structural characteristics comparable to the protein in bilayers.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Department of Biological Sciences, Indian Institute of Science Education and Research, Govindpura, Bhopal, India
| | | | | |
Collapse
|
378
|
FhuA interactions in a detergent-free nanodisc environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:364-71. [PMID: 24140007 DOI: 10.1016/j.bbamem.2013.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 11/20/2022]
Abstract
TonB-dependent membrane receptors from bacteria have been analyzed in detergent-containing solution, an environment that may influence the role of ligand in inducing downstream interactions. We report reconstitution of FhuA into a membrane mimetic: nanodiscs. In contrast to previous results in detergent, we show that binding of TonB to FhuA in nanodiscs depends strongly on ferricrocin. The stoichiometry of interaction is 1:1 and the binding constant KD is ~200nM; an equilibrium affinity that is ten-fold lower than reported in detergent. FhuA in nanodiscs also forms a high-affinity binding site for colicin M (KD ~3.5nM), while ferricrocin renders FhuA refractory to colicin binding. Together, these results demonstrate the importance of the ligand in regulating receptor interactions and the advantages of nanodiscs to study β-barrel membrane proteins in a membrane-like environment.
Collapse
|
379
|
Cross TA, Murray DT, Watts A. Helical membrane protein conformations and their environment. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2013; 42:731-55. [PMID: 23996195 PMCID: PMC3818118 DOI: 10.1007/s00249-013-0925-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 02/02/2023]
Abstract
Evidence that membrane proteins respond conformationally and functionally to their environment is growing. Structural models, by necessity, have been characterized in preparations where the protein has been removed from its native environment. Different structural methods have used various membrane mimetics that have recently included lipid bilayers as a more native-like environment. Structural tools applied to lipid bilayer-embedded integral proteins are informing us about important generic characteristics of how membrane proteins respond to the lipid environment as compared with their response to other nonlipid environments. Here, we review the current status of the field, with specific reference to observations of some well-studied α-helical membrane proteins, as a starting point to aid the development of possible generic principles for model refinement.
Collapse
Affiliation(s)
- Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Dylan T. Murray
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Anthony Watts
- Biomembrane structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
380
|
Ding Y, Yao Y, Marassi FM. Membrane protein structure determination in membrana. Acc Chem Res 2013; 46:2182-90. [PMID: 24041243 DOI: 10.1021/ar400041a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three-dimensional structure and the orientation of the protein within the membrane. When combined with dihedral angle restraints derived from analysis of isotropic chemical shifts, molecular fragment replacement, and de novo structure prediction, orientation restraints can yield high-quality three-dimensional structures with few or no distance restraints. Using complementary solid-state NMR methods based on oriented sample (OS) and magic angle spinning (MAS) approaches, one can resolve and assign multiple peaks through the use of (15)N/(13)C labeled samples and measure precise restraints to determine structures.
Collapse
Affiliation(s)
- Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M. Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
381
|
Yeliseev AA. Methods for recombinant expression and functional characterization of human cannabinoid receptor CB2. Comput Struct Biotechnol J 2013; 6:e201303011. [PMID: 24688719 PMCID: PMC3962128 DOI: 10.5936/csbj.201303011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 12/22/2022] Open
Abstract
Cannabinoid receptor CB2 is a seven transmembrane-domain integral membrane protein that belongs to a large superfamily of G protein-coupled receptors (GPCR). CB2 is a part of the endocannabinoid system that plays vital role in regulation of immune response, inflammation, pain sensitivity, obesity and other physiological responses. Information about the structure and mechanisms of functioning of this receptor in cell membranes is essential for the rational development of specific pharmaceuticals. Here we review the methodology for recombinant expression, purification, stabilization and biochemical characterization of CB2 suitable for preparation of multi-milligram quantities of functionally active receptor. The biotechnological protocols include expression of the recombinant CB2 in E. coli cells as a fusion with the maltose binding protein, stabilization with a high affinity ligand and a derivative of cholesterol in detergent micelles, efficient purification by tandem affinity chromatography, and reconstitution of the receptor into lipid bilayers. The purified recombinant CB2 receptor is amenable to functional and structural studies including nuclear magnetic resonance spectroscopy and a wide range of biochemical and biophysical techniques.
Collapse
Affiliation(s)
- Alexei A Yeliseev
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, USA
| |
Collapse
|
382
|
Maurya SR, Mahalakshmi R. Modulation of human mitochondrial voltage-dependent anion channel 2 (hVDAC-2) structural stability by cysteine-assisted barrel-lipid interactions. J Biol Chem 2013; 288:25584-25592. [PMID: 23873934 DOI: 10.1074/jbc.m113.493692] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mitochondrial voltage-dependent anion channel 2 (hVDAC-2), the most predominant isoform seen in brain mitochondria, is not only crucial for cell survival but is also implicated in Alzheimer disease. The abundance of cysteines in this isoform is particularly fascinating, as hVDAC-1 cysteines have no associated functional role. We report a detailed biophysical examination of a Cys-less mutant of hVDAC-2, and its behavioral comparison with the wild type protein. Our findings suggest that cysteine mutation results in the formation of a better barrel at the expense of weakened protein-lipid interactions. The wild type protein displays stronger lipid association, despite being less structured. A reversal in behavior of both proteins is observed in the case of chemical denaturation, with the Cys-less mutant exhibiting lowered unfolding free energies. In bicellar systems comprising 14-C phosphocholines, we observe that protein-lipid interactions are weakened in both constructs, resulting in barrel structure destabilization. Our biochemical and biophysical studies together reveal key structural roles for the cysteine residues. We find that minor conformational variations in local residues are sufficient to define the membrane protein dynamics in hVDAC-2. Such subtle sequence variations contribute to differential stability of VDACs and may have implications in their in vivo regulation and recycling.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- From the Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- From the Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India.
| |
Collapse
|
383
|
Puthenveetil R, Vinogradova O. Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR. Proteins 2013; 81:1222-31. [PMID: 23436707 PMCID: PMC5051544 DOI: 10.1002/prot.24271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 12/15/2022]
Abstract
Despite arduous efforts and recent technological developments structural investigation of integral membrane proteins remains a challenge. The primary deterrents include difficulties with their expression, low inherent solubility, and problems associated with existing membrane mimicking systems. A relatively new class of membrane mimetics, nanodiscs, is emerging as a promising alternative. Although nanodiscs have been proven successful for several biophysical applications, they yet remain to become the system of preferred choice for structure determination. We have hereby made nanodiscs more suitable for solution NMR applications by reducing the diameter of the self-assembly complex to its potential limit. We achieved a noticeable improvement in the quality of NMR spectra obtained for the transmembrane and cytoplasmic domains of integrin αIIb incorporated into these smaller discs rendering them susceptible for a thorough structural investigation. In addition, we also present an on-column method for a rapid, efficient, single-step preparation of protein incorporated nanodiscs at high concentrations. These discs have been fully characterized by transmission electron microscopy, dynamic light scattering, and differential scanning calorimetry.
Collapse
Affiliation(s)
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT
| |
Collapse
|
384
|
Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules 2013; 18:7407-35. [PMID: 23799448 PMCID: PMC6269851 DOI: 10.3390/molecules18077407] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022] Open
Abstract
Many peptides and proteins are attached to or immersed in a biological membrane. In order to understand their function not only the structure but also their topology in the membrane is important. Solution NMR spectroscopy is one of the most often used approaches to determine the orientation and localization of membrane-bound peptides and proteins. Here we give an application-oriented overview on the use of paramagnetic probes for the investigation of membrane-bound peptides and proteins. The examples discussed range from the large pool of antimicrobial peptides, bacterial toxins, cell penetrating peptides to domains of larger proteins or the calcium regulating protein phospholamban. Topological information is obtained in all these examples by the use of either attached or freely mobile paramagnetic tags. For some examples information obtained from the paramagnetic probes was included in the structure determination.
Collapse
|
385
|
Maslennikov I, Choe S. Advances in NMR structures of integral membrane proteins. Curr Opin Struct Biol 2013; 23:555-62. [PMID: 23721747 DOI: 10.1016/j.sbi.2013.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 05/01/2013] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins (IMPs) play a central role in cell communication with the environment. Their structures are essential for our understanding of the molecular mechanisms of signaling and for drug design, yet they remain badly underrepresented in the protein structure databank. Solution NMR is, aside from X-ray crystallography, the major tool in structural biology. Here we review recently reported solution NMR structures of polytopic IMPs and discuss the new approaches, which were developed in the course of these studies to overcome barriers in the field. Advances in cell-free protein expression, combinatorial isotope labeling, resonance assignment, and collection of structural data greatly accelerated IMP structure determination by solution NMR. In addition, novel membrane-mimicking media made possible determination of solution NMR structures of IMPs in a native-like lipid environment.
Collapse
|
386
|
Ramamoorthy A, Xu J. 2D 1H/1H RFDR and NOESY NMR experiments on a membrane-bound antimicrobial peptide under magic angle spinning. J Phys Chem B 2013; 117:6693-700. [PMID: 23672643 DOI: 10.1021/jp4034003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There is significant interest in solving high-resolution dynamic structures of membrane-associated peptides using solid-state NMR spectroscopy. Previous solid-state NMR studies have provided valuable insights into the functional properties of an exciting class of biomacromolecules such as antimicrobial peptides and amyloid peptides. However, it has been a major challenge to apply solid-state NMR techniques to study peptides or proteins that are not labeled with specific isotopes such as (13)C, (15)N, and/or (2)H. This study utilizes 2D (1)H/(1)H radio frequency-driven recoupling (RFDR) and nuclear Overhauser effect spectroscopy (NOESY) pulse sequences under magic angle spinning to study a membrane-bound antimicrobial peptide MSI-78 (or also known as pexiganan). We demonstrate that proton resonances can be assigned and structural constraints, NOE and (1)H-(1)H dipolar couplings, can be measured without the need for any isotopic enrichment. The buildup curves, showing the dependence of the cross peak intensity against the mixing time, obtained from 2D (1)H/(1)H NOESY and RFDR experiments are compared. Our results reveal that the RFDR-recovered (1)H-(1)H dipolar couplings associated with alpha and side chain protons are larger than that with the amide-protons. This study provides a means to measure residual (1)H-(1)H dipolar couplings for the investigation of structure, dynamics, and aggregation of peptides using a suitable model membrane like micelles or bicelles.
Collapse
Affiliation(s)
- Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | | |
Collapse
|
387
|
Reckel S, Hiller S. Perspectives of solution NMR spectroscopy for structural and functional studies of integral membrane proteins. Mol Phys 2013. [DOI: 10.1080/00268976.2013.783639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
388
|
|