351
|
Li G, Sham J, Yang J, Su C, Xue H, Chua D, Sun L, Zhang Q, Cui Z, Wu M, Qian Q. Potent antitumor efficacy of an E1B 55kDa-deficient adenovirus carrying murine endostatin in hepatocellular carcinoma. Int J Cancer 2005; 113:640-8. [PMID: 15389517 DOI: 10.1002/ijc.20581] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Data from clinical trails have shown that the antitumoral effect of ONYX-015, an E1B 55kDa-deficient adenovirus, as monotherapy is insufficient. To enhance its efficiency, CNHK200-mE, another E1B 55kDa-deficient adenovirus armed with a mouse endostatin gene was constructed and its antitumoral activities against hepatocellular carcinoma (HCC) in vitro and in vivo were investigated. The selective replication and cytotoxicity of CNHK200-mE in Hep3B and HepGII cells independent of p53 status were confirmed via TCID50 and 3-(4,5dimetylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assays. Potent tumor growth suppression on SMMC-7721 xenografts in nude mice was observed and a synergistic effect of the carrier virus and the therapeutic gene was suggested. Moreover, in comparison with the nonreplicative adenovirus carrying the same therapeutic gene, amplified transgene expression of mouse endostatin in vitro and in vivo were confirmed by Western blotting and ELISA assay. The effective angiogenesis inhibition and replication of CNHK200-mE in nude mice xenografts were demonstrated by immunohistochemistry. In conclusion, the recombinant adenovirus CNHK200-mE is a replication-competent oncolytic virus mediating high expression of therapeutic gene. Because CNHK200-mE is capable of replicating in and lysing HCC cells selectively with effective tumor growth suppression and antiangiogenic activity on HCC xenografts in nude mice, it holds good potential for the treatment of HCC.
Collapse
Affiliation(s)
- Gencong Li
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Abstract
Gene therapy aims to correct the disease process by restoring, modifying or enhancing cellular functions through the introduction of a functional gene into a target cell. Whilst the concept of gene therapy is simple, the practical reality of translating this new technology to the clinic has proven to be more difficult than first imagined. Recent progress in gene transfer technology has shown impressive clinical success in infants with immunodeficiency. However, two of these children have subsequently developed leukaemia as a result of insertional mutagenesis, thus, raising important questions about the safety of genetic therapeutics. This article reviews the current status of gene therapy and outlines the challenges faced by this emerging technology that holds so much promise for many suffering from catastrophic disorders.
Collapse
Affiliation(s)
- Amit C Nathwani
- Department of Haematology, University College London, London, UK.
| | | | | |
Collapse
|
353
|
Mazzolini G, Ruiz J, Prieto J. Posibilidades de la terapia génica en el sistema musculoesquelético. Rev Esp Cir Ortop Traumatol (Engl Ed) 2005. [DOI: 10.1016/s1888-4415(05)76304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
354
|
Fairchild PJ, Nolan KF, Cartland S, Waldmann H. Embryonic stem cells: a novel source of dendritic cells for clinical applications. Int Immunopharmacol 2005; 5:13-21. [PMID: 15589455 DOI: 10.1016/j.intimp.2004.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As arbitrators of the immune response, dendritic cells (DC) are uniquely placed to negotiate the balance between the opposing forces of tolerance and immunity, making them attractive candidates for clinical applications. Accordingly, DC have been used successfully in the treatment of cancer, enhancing immune responses to tumour-associated antigens (TAA) in experimental animal models and phase I clinical trials. A novel source of DC that has recently been described is the embryonic stem (ES) cell whose differentiation in vitro may be directed along multiple lineage pathways. Such pluripotency offers unparalleled opportunities for the treatment of chronic and degenerative disease states by the replacement of affected tissues, a vision which has inspired the emerging field of regenerative medicine. By sharing the genotype of therapeutic cell types, such as cardiomyocytes and dopaminergic neurons derived from the same ES cell line, so-called esDC may offer prospects for reprogramming the immune system to tolerate the grafted tissues. Here, we describe how the unique properties of esDC and the ES cells from which they derive, make them eminently suited to clinical applications, overcoming many of the issues that currently limit the effectiveness of DC-based immune intervention.
Collapse
Affiliation(s)
- Paul J Fairchild
- The University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK.
| | | | | | | |
Collapse
|
355
|
Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H, Aoki M, Ogihara T, Kaneda Y, Morishita R. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther 2004; 11:1532-9. [PMID: 15269716 DOI: 10.1038/sj.gt.3302323] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although gene therapy might become a promising approach for central nervous system diseases, the safety issue is a serious consideration in human gene therapy. To overcome this problem, we developed an efficient gene transfer method into the adult rat brain based on plasmid DNA using a microbubble-enhanced ultrasound method, since microbubble-enhanced ultrasound has shown promise for transfecting genes into other tissues such as blood vessels. Using the microbubble-enhanced ultrasound method, luciferase expression was increased approximately 10-fold as compared to injection of naked plasmid DNA alone. Interestingly, the site of gene expression was limited to the site of insonation with intracisternal injection, in contrast to previous studies using viruses. Expression of the reporter gene, Venus, was readily detected in the central nervous system. The transfected cells were mainly detected in meningeal cells with intracisternal injection, and in glial cells with intrastriatal injection. There was no obvious evidence of tissue damage by microbubble-enhanced ultrasound. Overall, the present study demonstrated the feasibility of efficient plasmid DNA transfer into the central nervous system, providing a new option for treating various diseases such as tumors.
Collapse
Affiliation(s)
- M Shimamura
- Division of Clinical Gene Therapy, Osaka University, Yamada-oka, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Montier T, Delépine P, Marianowski R, Le Ny K, Le Bris M, Gillet D, Potard G, Mondine P, Frachon I, Yaouanc JJ, Clément JC, Des Abbayes H, Férec C. CFTR transgene expression in primary DeltaF508 epithelial cell cultures from human nasal polyps following gene transfer with cationic phosphonolipids. Mol Biotechnol 2004; 26:193-206. [PMID: 15004288 DOI: 10.1385/mb:26:3:193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystic fibrosis (CF) is the most common autosomal lethal recessive disorder in the Caucasian population. The major cause of mortality is lung disease, owing to the failure of a functional protein from the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Today, even though the knowledge about the CFTR genomic is extensive, no efficient treatment has been developed yet. In this context, gene therapy represents a potential important advance on condition that it could develop efficient and safe transfection agents. Even though viral vectors have been used in most clinical trials owing to their high transfection efficiency, random integration and immunogenicity are still critical side effects. Consequently, all of these drawbacks brought forth the development of nonviral transfection systems. Although they engender few toxicity and immunogenicity problems, their low transfection efficiency is a hurdle that must be overcome. Over the past decade, we have developed an original family of monocationic lipids, cationic phosphonolipids, whose efficiency has been previously demonstrated both in vitro and in vivo. In this report, we observe that a new cationic phosphonolipid (KLN 30) can lead to the restoration of the CFTR protein following the ex vivo transfection of epithelial cells issuing from a F508 homozygous patient. The transgene expression and the cytotoxicity correlate with the charge ratio of the lipoplex. A kinetic study was performed, and a luminescent signal was detected until 35 d after transfection.
Collapse
Affiliation(s)
- Tristan Montier
- Université de Bretagne Occidentale, Institute de Synergie des Sciences et de la Santé and 2UNR CNRS 6521, Faculté des Sciences, Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Abstract
Transgenic animals are relevant for many fields of modern biomedicine and agriculture. However, the inefficiencies of the presently available techniques--DNA microinjection and retroviral gene transfer--have led to an explosion of costs for transgenics especially in farm animals. The recent success in transferring genes to early embryos of different species (mouse, rat, pig, cattle) by viral vectors derived from lentiviruses, has established lentiviral transgenesis as an exciting alternative to the classical method of DNA microinjection. In addition, lentiviral vectors can be used to transfer genes into embryonic stem cells. Due to its high efficacy and versatility, lentiviral transgenesis should have a big impact on transgenic research.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Department of Pharmacy, Institute for Pharmacology, Center for Drug Research, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
358
|
Schoen C, Stritzker J, Goebel W, Pilgrim S. Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 2004; 294:319-35. [PMID: 15532991 DOI: 10.1016/j.ijmm.2004.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetic immunization with plasmid DNA vaccines has proven to be a promising tool in conferring protective immunity in various experimental animal models of infectious diseases or tumors. Recent research focuses on the use of bacteria, in particular enteroinvasive species, as effective carriers for DNA vaccines. Attenuated strains of Shigella flexneri, Salmonella spp., Yersinia enterocolitica or Listeria monocytogenes have shown to be attractive candidates to target DNA vaccines to immunological inductive sites at mucosal surfaces. This review summarizes recent progress in bacteria-mediated delivery of plasmid DNA vaccines in the field of infectious diseases and cancer.
Collapse
Affiliation(s)
- Christoph Schoen
- Department of Microbiology, Biocenter of the University, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
359
|
Zhang Q, Nie M, Sham J, Su C, Xue H, Chua D, Wang W, Cui Z, Liu Y, Liu C, Jiang M, Fang G, Liu X, Wu M, Qian Q. Effective gene-viral therapy for telomerase-positive cancers by selective replicative-competent adenovirus combining with endostatin gene. Cancer Res 2004; 64:5390-7. [PMID: 15289347 DOI: 10.1158/0008-5472.can-04-1229] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gene-viral therapy, which uses replication-selective transgene-expressing viruses to manage tumors, can exploit the virtues of gene therapy and virotherapy and overcome the limitations of conventional gene therapy. Using a human telomerase reverse transcriptase-targeted replicative adenovirus as an antiangiogenic gene transfer vector to target new angiogenesis and making use of its unrestrained proliferation are completely new concepts in tumor management. CNHK300-mE is a selective replication transgene-expressing adenovirus constructed to carry mouse endostatin gene therapeutically. Infection with CNHK300-mE was associated with selective replication of the adenovirus and production of mouse endostatin in telomerase-positive cancer cells. Endostatin secreted from a human gastric cell line, SGC-7901, infected with CNHK300-mE was significantly higher than that infected with nonreplicative adenovirus Ad-mE in vitro (800 +/- 94.7 ng/ml versus 132.9 +/- 9.9 ng/ml) and in vivo (610 +/- 42 ng/ml versus 126 +/- 13 ng/ml). Embryonic chorioallantoic membrane assay showed that the mouse endostatin secreted by CNHK300-mE inhibited angiogenesis efficiently and also induced distortion of pre-existing vasculature. CNHK300-mE exhibited a superior suppression of xenografts in nude mice compared with CNHK300 and Ad-mE. In summary, we provided a more efficient gene-viral therapy strategy by combining oncolysis with antiangiogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
360
|
Jevremovic D, Gulati R, Hennig I, Diaz RM, Cole C, Kleppe L, Cosset FL, Simari RD, Vile RG. Use of blood outgrowth endothelial cells as virus-producing vectors for gene delivery to tumors. Am J Physiol Heart Circ Physiol 2004; 287:H494-500. [PMID: 15277193 DOI: 10.1152/ajpheart.00064.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cell-based delivery of therapeutic viruses has potential advantages over systemic viral administration, including attenuated neutralization and improved viral targeting. One of the exciting new areas of investigation is the potential ability of endothelial-lineage cells to deliver genes to the areas of neovascularization. In the present study, we compared two types of endothelial-lineage cells [outgrowth endothelial cells (OECs) and culture-modified mononuclear cells (CMMCs), also known as "endothelial progenitor cells"] for their ability to be infected with adenovirus and to home to the areas of neovascularization. Both cell types were isolated from peripheral blood of healthy human donors and expanded in culture. We demonstrate that OECs are more infectable and home better to tumors expressing VEGF on systemic administration. Furthermore, we used an adenoviral/retroviral chimeric system to convert OECs to retrovirus-producing cells. When injected systemically into tumor-bearing mice, OECs retain their ability to produce retrovirus and infect surrounding tumor cells. Our data demonstrate that OECs could be efficient carriers for viral delivery to areas of tumor neovascularization.
Collapse
Affiliation(s)
- Dragan Jevremovic
- Division of Pathology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Huemer GM, Shafighi M, Meirer R, Debagge P, Piza-Katzer H, Gurunluoglu R. Adenovirus-mediated transforming growth factor-β ameliorates ischemic necrosis of epigastric skin flaps in a rat model1, 2. J Surg Res 2004; 121:101-7. [PMID: 15313382 DOI: 10.1016/j.jss.2004.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gene therapy has been recently introduced as a novel approach to treat ischemic tissues by using the angiogenic potential of certain growth factors. We investigated the effect of adenovirus-mediated gene therapy with transforming growth factor-beta (TGF-beta) delivered into the subdermal space to treat ischemically challenged epigastric skin flaps in a rat model. MATERIAL AND METHODS A pilot study was conducted in a group of 5 animals pretreated with Ad-GFP and expression of green fluorescent protein in the skin flap sections was demonstrated under fluorescence microscopy at 2, 4, and 7 days after the treatment, indicating a successful transfection of the skin flaps following subdermal gene therapy. Next, 30 male Sprague Dawley rats were divided into 3 groups of 10 rats each. An epigastric skin flap model, based solely on the right inferior epigastric vessels, was used as the model in this study. Rats received subdermal injections of adenovirus encoding TGF-beta (Ad-TGF-beta) or green fluorescent protein (Ad-GFP) as treatment control. The third group (n = 10) received saline and served as a control group. A flap measuring 8 x 8 cm was outlined on the abdominal skin extending from the xiphoid process proximally and the pubic region distally, to the anterior axillary lines bilaterally. Just prior to flap elevation, the injections were given subdermally in the left upper corner of the flap. The flap was then sutured back to its bed. Flap viability was evaluated seven days after the initial operation. Digital images of the epigastric flaps were taken and areas of necrotic zones relative to total flap surface area were measured and expressed as percentages by using a software program. RESULTS There was a significant increase in mean percent surviving area between the Ad-TGF-beta group and the two other control groups (P < 0.05). (Ad-TGF-beta: 90.3 +/- 4.0% versus Ad-GFP: 82.2 +/- 8.7% and saline group: 82.6 +/- 4.3%.) CONCLUSIONS In this study, the authors were able to demonstrate that adenovirus-mediated gene therapy using TGF-beta ameliorated ischemic necrosis in an epigastric skin flap model, as confirmed by significant reduction in the necrotic zones of the flap. The results of this study raise the possibility of using adenovirus-mediated TGF-beta gene therapy to promote perfusion in random portion of skin flaps, especially in high-risk patients.
Collapse
Affiliation(s)
- Georg M Huemer
- Department of Plastic and Reconstructive Surgery, Ludwig-Boltzmann Institute for Quality Control in Plastic Surgery, Leopold-Franzens University, Anichstrasse 35, A-1060 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
362
|
Agrawal RS, Muangman S, Layne MD, Melo L, Perrella MA, Lee RT, Zhang L, Lopez-Ilasaca M, Dzau VJ. Pre-emptive gene therapy using recombinant adeno-associated virus delivery of extracellular superoxide dismutase protects heart against ischemic reperfusion injury, improves ventricular function and prolongs survival. Gene Ther 2004; 11:962-9. [PMID: 15029230 DOI: 10.1038/sj.gt.3302250] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In high-risk patients, the ideal cardiovascular gene therapy requires a strategy that provides long-term protection of myocardium against episodes of ischemic/reperfusion injury. We report the development of an efficient, long-lasting pre-emptive gene therapy strategy in a rat model of ischemic-reperfusion (I/R) injury of heart. At 6 weeks prior to myocardial injury, the human extracellular superoxide dismutase (Ec-SOD) gene was delivered by direct intramyocardial injections, using a recombinant adeno-associated virus vector. Significant myocardial protection was documented by the decrease in infarct size at 24 h post I/R, improved left ventricular function at 7 weeks postinjury, and enhanced long-term survival in the SOD treated group. This concept of preinjury delivery and 'pre-emptive' gene therapy via the expression of a secreted protein that renders paracrine therapeutic action can be an effective strategy for organ protection against future injury.
Collapse
Affiliation(s)
- R S Agrawal
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Werner M, Kraunus J, Baum C, Brocker T. B-cell-specific transgene expression using a self-inactivating retroviral vector with human CD19 promoter and viral post-transcriptional regulatory element. Gene Ther 2004; 11:992-1000. [PMID: 15029232 DOI: 10.1038/sj.gt.3302255] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Retroviral gene transfer resulting in transgene expression selectively restricted to specific cell lineages would be desirable for many gene therapeutic applications. Such transcriptional targeting of retroviruses can be accomplished by employing eukaryotic control elements in self-inactivating (SIN) retroviral vectors, but use of these vectors is complicated by an accompanying reduction in viral titers. To overcome this restriction and address the influence of the post-transcriptional regulatory element of the Woodchuck hepatitis virus (WPRE) on viral titers and transgene expression, we developed SIN-vectors with and without WPRE. Using the enhancer-promoter of the Spleen Focus Forming virus (SFFV) to direct eGFP expression to multiple hematopoietic lineages, we show that WPRE significantly (>10 x) increased viral titers (>10(6) per ml of unconcentrated supernatant) and transgene expression in NIH3T3 cells in vitro. Gene expression in vivo was significantly lowered in lymphoid cells, but not in myeloid cells when WPRE was present. Furthermore, the use of WPRE in combination with the B-cell lineage-specific CD19 promoter significantly increased viral titers and allowed targeting of transgene expression by SIN-vectors specifically to B cells throughout their development in primary and secondary lymphoid organs.
Collapse
Affiliation(s)
- M Werner
- Institute for Immunology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
364
|
Li JH, Shi W, Chia M, Sanchez-Sweatman O, Siatskas C, Huang D, Busson P, Klamut H, Yeh WC, Richardson C, O'Sullivan B, Gullane P, Neligan P, Medin J, Liu FF. Efficacy of targeted FasL in nasopharyngeal carcinoma. Mol Ther 2004; 8:964-73. [PMID: 14664799 DOI: 10.1016/j.ymthe.2003.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We have successfully achieved selective gene expression in human nasopharyngeal carcinoma (NPC) by exploiting the presence of the Epstein-Barr virus (EBV), utilizing a transcriptional targeting strategy (J. H. Li et al., 2002, Cancer Res. 62: 171). Building on this platform, we have generated a novel DeltaE1 adenoviral vector mediating the expression of a mutant noncleavable form of the FasL gene (HUGO-approved symbol TNFSF6) (ad5oriP.ncFasL). We observe that this therapy induces significant cytotoxicity in the EBV-positive NPC cell line C666-1, mediated by the induction of caspase-dependent apoptosis. The addition of ionizing radiation therapy (RT) causes additional cytotoxicity. Ex vivo infection of C666-1 cells with adv.oriP.ncFasL completely prevents tumor formation in SCID mice followed for up to 100 days. The combination of intratumoral adv.oriP.ncFasL with RT causes regression of established nasopharyngeal xenograft tumors for 2 weeks' duration. Systemic delivery of this targeted strategy achieves 50-fold higher gene expression in nasopharyngeal tumors than in normal organs. Intravenously injected adv.oriP.ncFasL results in mild perturbation of liver function that returns to normal 2 weeks after initial therapy. These results demonstrate the efficacy of our EBV-specific targeting strategy, which allows the potentially safe and effective utilization of a highly potent membrane-based apoptotic gene.
Collapse
Affiliation(s)
- Jian-Hua Li
- Ontario Cancer Institute, University of Toronto, Toronto, Ontario MS 1A1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Corbi N, Libri V, Onori A, Passananti C. Synthetic zinc finger peptides: old and novel applications. Biochem Cell Biol 2004; 82:428-36. [PMID: 15284895 DOI: 10.1139/o04-047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last decade, the efforts in clarifying the interaction between zinc finger proteins and DNA targets strongly stimulated the creativity of scientists in the field of protein engineering. In particular, the versatility and the modularity of zinc finger (ZF) motives make these domains optimal building blocks for generating artificial zinc finger peptides (ZFPs). ZFPs can act as transcription modulators potentially able to control the expression of any desired gene, when fused to an appropriate effector domain. Artificial ZFPs open the possibility to re-program the expression of specific genes at will and can represent a powerful tool in basic science, biotechnology and gene therapy. In this review we will focus on old, novel and possible future applications of artificial ZFPs.Key words: synthetic zinc finger, recognition code, artificial transcription factor, chromatin modification, gene therapy.
Collapse
|
366
|
Abstract
Gene therapy is a new and exciting therapeutic concept that offers the promise of cure for an array of inherited, malignant and infectious disorders. After years of failure, substantial progress in the efficiency of gene-transfer technology has recently resulted in impressive clinical success in infants with immunodeficiency. Two of these children have, however, subsequently developed leukaemia as a result of insertional mutagenesis, raising concerns about the safety of genetic therapeutics. The purpose of this article is to review the current status of gene therapy in light of recent successes and tragedies, and to consider the challenges faced by this relatively new field.
Collapse
Affiliation(s)
- A C Nathwani
- Department of Haematology, University College London, London, UK.
| | | | | | | |
Collapse
|
367
|
Abstract
That gene therapy offers the promise of a cure for haemophilia was apparent more than a decade ago. After years of failure, substantial progress in the efficiency of gene transfer technology has recently resulted in impressive success in animal models with haemophilia. However, fears of the risks intrinsic to such therapy have been raised by the fate of two children cured of immune deficiency by gene transfer who have, however, subsequently developed leukaemia as a result of insertional mutagenesis. The purpose of this review is to outline the current status of gene therapy in light of recent successes and tragedies and to consider the prospects for curing haemophilia in the short-to-medium term.
Collapse
Affiliation(s)
- A C Nathwani
- Department of Haematology, University College London, 98 Chenies Mews, London, WC1E 6HX, UK.
| | | | | |
Collapse
|
368
|
Lu Y. Recombinant adeno-associated virus as delivery vector for gene therapy--a review. Stem Cells Dev 2004; 13:133-45. [PMID: 15068701 DOI: 10.1089/154732804773099335] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) is one of the most promising delivery vectors for gene therapy, due to its nonpathogenic property, nonimmunogenecity to host, and broad cell and tissue tropisms. This article summarizes the biological characteristics of AAV; the procedures to prepare, purify, and characterize the rAAV for gene therapy applications; and some of the clinical trials utilizing rAAV as delivery vehicles. Also discussed are the current efforts to modify rAAV to change its tropism, the application of different promoters to accommodate specific transgene expression, and the strategy to expand its capacity.
Collapse
Affiliation(s)
- Yang Lu
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
369
|
Ikawa M, Tanaka N, Kao WWY, Verma IM. Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 2004; 8:666-73. [PMID: 14529840 DOI: 10.1016/s1525-0016(03)00240-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors have become attractive delivery vehicles for gene therapy investigators. Specifically, the ability of lentiviral vectors to integrate into nondividing cells and provide stable and long-term gene expression in vivo is a desirable attribute of gene therapy approaches. We report here a simple method for generating transgenic mice using lentiviral vectors, which could be useful models for gene therapy. After removal of the zona pellucida, fertilized eggs were co-incubated with oncoretroviral or lentiviral vectors. The resulting blastocysts were transferred into uteri of pseudo-pregnant females. In both cases, around 60-70% of founder pups were transgenic as determined by PCR analysis. Southern blot analysis revealed that the transgenes were integrated at different genetic loci and transmitted through the germ line. Most of the transgenes delivered by lentiviral vectors were expressed in transgenic mice, although those delivered by oncoretroviral vectors were completely silenced. When the upstream sequences of the rhodopsin gene and the red pigment gene were used as tissue-specific promoters, consistent enhanced green fluorescent protein (EGFP) expression was observed in rod and cone photoreceptor cells, respectively, in retina. However, mice generated with the corneal epithelium-specific keratin-12 promoter displayed EGFP expression not only in cornea but also in other tissues of the mouse. We conclude that the generation of transgenic mice using lentiviral vectors is a simple and robust method to evaluate the promoter specificity in lentiviral vectors in vivo prior to undertaking a gene therapy strategy.
Collapse
Affiliation(s)
- Masahito Ikawa
- Laboratory of Genetics, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
370
|
Yamada K, Ramezani A, Hawley RG, Ebell W, Arwert F, Arnold LW, Walsh CE. Phenotype correction of Fanconi anemia group A hematopoietic stem cells using lentiviral vector. Mol Ther 2004; 8:600-10. [PMID: 14529833 DOI: 10.1016/s1525-0016(03)00223-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disease characterized by progressive bone marrow failure due to defective stem cell function. FA patients' cells are hypersensitive to DNA cross-linking agents such as mitomycin C (MMC), exposure to which results in cytogenetic aberrations and cell death. To date Moloney murine leukemia virus vectors have been used in clinical gene therapy. Recently, third-generation lentiviral vectors based on the HIV-1 genome have been developed for efficient gene transfer to hematopoietic stem cells. We generated a self-inactivating lentiviral vector expressing the FA group A cDNA driven by the murine stem cell virus U3 LTR promoter and used the vector to transduce side-population (SP) cells isolated from bone marrow of Fanconi anemia group A (Fanca) knockout mice. One thousand transduced SP cells reconstituted the bone marrow of sublethally irradiated Fanca recipient mice. Phenotype correction was demonstrated by stable hematopoiesis following MMC challenge. Using real-time PCR, one proviral vector DNA copy per cell was detected in all lineage-committed cells in the peripheral blood of both primary and secondary recipients. Our results suggest that the lentiviral vector transduces stem cells capable of self-renewal and long-term hematopoiesis in vivo and is potentially useful for clinical gene therapy of FA hematopoietic cells.
Collapse
Affiliation(s)
- Kaoru Yamada
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
371
|
Bastone P, Löchelt M. Kinetics and characteristics of replication-competent revertants derived from self-inactivating foamy virus vectors. Gene Ther 2004; 11:465-73. [PMID: 14973540 DOI: 10.1038/sj.gt.3302185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, self-inactivating (SIN) retroviral vectors based on feline foamy virus (FFV) were constructed and analysed. The FFV SIN vectors were devoid of the core FFV long terminal repeat promoter plus upstream sequences but contained all structural and regulatory genes. This design allowed sensitive detection of replication-competent revertants (RCRs). The FFV SIN vectors efficiently transduced the green fluorescence protein into recipient cells. However, RCRs appeared after serial passages of transduced cells. In all RCR clones analysed, parts of the heterologous cytomegalovirus immediate early promoter, originally driving expression of the FFV vector genome, were taken up to restore the deleted SIN promoter function required for replication competence. The RCRs were strongly reduced in replication capacity compared with the parental replication-competent vectors containing the FFV promoter. In all RCR genomes analysed, the uptake of the heterologous promoter was accompanied by deletion of almost the complete marker gene. Although the RCRs described in this study may not have the capacity to spread in humans and animals, they may pose a theoretical risk, for instance during transduction of haematopoietic stem cells. Thus, FV-based SIN vectors require additional genetic modifications in order to avoid RCRs.
Collapse
Affiliation(s)
- P Bastone
- Abt. Genomveränderung und Carcinogenese, Forschungsschwerpunkt Infektion und Krebs, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | |
Collapse
|
372
|
Omidi Y, Hollins AJ, Benboubetra M, Drayton R, Benter IF, Akhtar S. Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target 2004; 11:311-23. [PMID: 14668052 DOI: 10.1080/10611860310001636908] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Of the non-viral vectors, cationic lipid (CL) formulations are the most widely studied for the delivery of genes, antisense oligonucleotides and gene silencing nucleic acids such as small interfering RNAs. However, little is known about the impact of these delivery systems on global gene expression in target cells. In an attempt to study the geno-compatibility of CL formulations in target cells, we have used microarrays to examine the effect of Lipofectin and Oligofectamine on the gene expression profiles of human A431 epithelial cells. Using the manufacturer's recommended CL concentrations routinely used for gene delivery, cDNA microarray expression profiling revealed marked changes in the expression of several genes for both Lipofectin- and Oligofectamine-treated cells. Data from the 200 spot arrays housing 160 different genes indicated that Lipofectin or Oligofectamine treatment of A431 cells resulted in more than 2-fold altered expression of 10 and 27 genes, respectively. The downstream functional consequences of CL-induced gene expression alterations led to an increased tendency of cells to enter early apoptosis as assessed by annexin V-FITC flow cytometry analyses. This effect was greater for Oligofectamine than Lipofectin. Observed gene expression changes were not sufficient to induce any significant DNA damage as assessed by single cell gel electrophoresis (COMET) assay. These data highlight the fact that inadvertent gene expression changes can be induced by the delivery formulation alone and that these may, ultimately, have important safety implications for the use of these non-viral vectors in gene-based therapies. Also, the induced non-target gene changes should be taken into consideration in gene therapy or gene silencing experiments using CL formulations where they may potentially mask or interfere with the desired genotype and/or phenotype end-points.
Collapse
Affiliation(s)
- Yadollah Omidi
- Centre for Genome-based Therapeutics, Cardiff University, The Welsh School of Pharmacy, Redwood Building, King Edward VII Avenue, CF10 3XF Cardiff, UK
| | | | | | | | | | | |
Collapse
|
373
|
Iwanaga Y, Hoshijima M, Gu Y, Iwatate M, Dieterle T, Ikeda Y, Date MO, Chrast J, Matsuzaki M, Peterson KL, Chien KR, Ross J. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 2004; 113:727-36. [PMID: 14991071 PMCID: PMC351313 DOI: 10.1172/jci18716] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 12/28/2003] [Indexed: 01/09/2023] Open
Abstract
Ablation or inhibition of phospholamban (PLN) has favorable effects in several genetic murine dilated cardiomyopathies, and we showed previously that a pseudophosphorylated form of PLN mutant (S16EPLN) successfully prevented progressive heart failure in cardiomyopathic hamsters. In this study, the effects of PLN inhibition were examined in rats with heart failure after myocardial infarction (MI), a model of acquired disease. S16EPLN was delivered into failing hearts 5 weeks after MI by transcoronary gene transfer using a recombinant adeno-associated virus (rAAV) vector. In treated (MI-S16EPLN, n = 16) and control (MI-saline, n = 18) groups, infarct sizes were closely matched and the left ventricle was similarly depressed and dilated before gene transfer. At 2 and 6 months after gene transfer, MI-S16EPLN rats showed an increase in left ventricular (LV) ejection fraction and a much smaller rise in LV end-diastolic volume, compared with progressive deterioration of LV size and function in MI-saline rats. Hemodynamic measurements at 6 months showed lower LV end-diastolic pressures, with enhanced LV function (contractility and relaxation), lowered LV mass and myocyte size, and less fibrosis in MI-S16EPLN rats. Thus, PLN inhibition by in vivo rAAV gene transfer is an effective strategy for the chronic treatment of an acquired form of established heart failure.
Collapse
Affiliation(s)
- Yoshitaka Iwanaga
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0613B, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Abstract
A relatively recent entrant into molecular biology--double-stranded RNA (dsRNA)--as a class exhibits a unique set of properties: relative stability, affinity for specific proteins and enzymes, ability to activate the interferon pathway and finally, RNA interference (RNAi). In RNAi, unique double-stranded short interfering RNA molecules (siRNA) destroy the corresponding target RNA with exquisite potency and selectivity, thus causing post-transcriptional gene silencing (PTGS). An understanding of the design of gene-specific dsRNA and development of techniques to deliver dsRNA in the cell and in live animals has heralded a new age of gene therapy without gene knockout. This review first summarizes the biological synthesis, metabolism and effect of the dsRNA with special emphasis on siRNA and RNAi. This is followed by the clinical, pharmacological and pharmaceutical prospects of the development of the dsRNA as a drug. It is clear that the dsRNA holds an enormous promise in the treatment of a large number of metabolic and infectious diseases including but not limited to cancer, macular degeneration, diabetic retinopathy, Alzheimer's and other neural disorders, autoimmune diseases, and all viral infections including AIDS (acquired immune deficiency syndrome), hepatitis and respiratory syncytial virus (RSV).
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biochemistry and Molecular Biology, University of Southern Alabama, College of Medicine, Mobile 36688-0002, USA.
| |
Collapse
|
375
|
Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 2004; 57:1-8. [PMID: 14729076 DOI: 10.1016/s0939-6411(03)00155-3] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Currently, the major drawback of gene therapy is the gene transfection rate. The two main types of vectors that are used in gene therapy are based on viral or non-viral gene delivery systems. The viral gene delivery system shows a high transfection yield but it has many disadvantages, such as oncogenic effects and immunogenicity. However, cationic polymers, like chitosan, have potential for DNA complexation and may be useful as non-viral vectors for gene therapy applications. Chitosan is a natural non-toxic polysaccharide, it is biodegradable and biocompatible, and protects DNA against DNase degradation and leads to its condensation. The objective of this paper was to summarize the state of the art in gene therapy and particularly the use of chitosan to improve the transfection efficiency in vivo and in vitro.
Collapse
Affiliation(s)
- Sania Mansouri
- Laboratoire de Recherche en Orthopédie, Hôpital du Sacré-Coeur, Montreal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
376
|
Tao W, Hangoc G, Cooper S, Broxmeyer HE. SDF-1α/CXCL12 enhances retroviral-mediated gene transfer into immature subsets of human and murine hematopoietic progenitor cells. Gene Ther 2003; 11:61-9. [PMID: 14681698 DOI: 10.1038/sj.gt.3302127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic modification of hematopoietic stem and progenitor cells has the potential to treat diseases affecting blood cells. Oncoretroviral vectors have been used for gene therapy; however, clinical success has been limited in part by low gene transfer efficiencies. We found that the presence of stromal-derived factor 1 (SDF-1alpha)/CXCL12 during retroviral transduction significantly enhanced, in a dose-dependent fashion, gene transfer into immature subsets of high proliferative human and murine hematopoietic progenitor cells. Murine mononuclear bone marrow cells and purified c-Kit(+)Lin(-) bone marrow cells were prestimulated and transduced with the bicistronic retroviral vector MIEG3 on Retronectin-coated surfaces in the presence and absence of SDF-1. SDF-1 enhanced gene transduction of murine bone marrow and c-Kit(+)Lin(-) cells by 35 and 29%, respectively. Moreover, SDF-1 enhanced transduction of progenitors in these populations by 121 and 107%, respectively. SDF-1 also enhanced transduction of human immature subsets of high proliferative progenitors present in either nonadherent mononuclear or CD34(+) umbilical cord blood cells. Transduction of hematopoietic progenitors was further increased by preloading Retronectin-coated plates with retrovirus using low-speed centrifugation followed by increasing cell-virus interactions through brief centrifugation during the transduction procedure. These results may be of clinical relevance.
Collapse
Affiliation(s)
- W Tao
- Department of Microbiology and Immunology, The Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| | | | | | | |
Collapse
|
377
|
Abstract
Gene therapy is defined as any therapeutic procedure in which genes are intentionally introduced into human somatic cells. Both preclinical and clinical gene therapy research have been progressing rapidly during the past 15 years; gene therapy is now a highly promising new modality for the treatment of numerous human disorders. Since the first clinical test of gene therapy in 1989, more than 600 gene therapy protocols have been approved, and more than 3000 patients have received gene therapy. However, at the time of writing this article, no gene therapy products have been approved for clinical use. This article explains the potential clinical scope of gene therapy and the underlying pharmacological principles, describes some of the major gene transfer systems (or vectors) that are used to deliver genes to their target sites, and discusses the various strategies for controlling expression of therapeutic transgenes. Safety issues regarding clinical use of gene therapy are explored, and the most important technical challenges facing this field of research are highlighted. This review should serve as an introduction to the subject of gene therapy for clinician investigators, physicians and medical scientists in training, practicing clinicians, and other students of medicine.
Collapse
|
378
|
Müller OJ, Kaul F, Weitzman MD, Pasqualini R, Arap W, Kleinschmidt JA, Trepel M. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003; 21:1040-6. [PMID: 12897791 DOI: 10.1038/nbt856] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 06/26/2003] [Indexed: 11/08/2022]
Abstract
Characterizing the molecular diversity of the cell surface is critical for targeting gene therapy. Cell type-specific binding ligands can be used to target gene therapy vectors. However, targeting systems in which optimum eukaryotic vectors can be selected on the cells of interest are not available. Here, we introduce and validate a random adeno-associated virus (AAV) peptide library in which each virus particle displays a random peptide at the capsid surface. This library was generated in a three-step system that ensures encoding of displayed peptides by the packaged DNA. As proof-of-concept, we screened AAV-libraries on human coronary artery endothelial cells. We observed selection of particular peptide motifs. The selected peptides enhanced transduction in coronary endothelial cells but not in control nonendothelial cells. This vector targeting strategy has advantages over other combinatorial approaches such as phage display because selection occurs within the context of the capsid and may have a broad range of applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Oliver J Müller
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
379
|
McCarter SD, Scott JR, Lee PJ, Zhang X, Choi AMK, McLean CA, Badhwar A, Dungey AA, Bihari A, Harris KA, Potter RF. Cotransfection of heme oxygenase-1 prevents the acute inflammation elicited by a second adenovirus. Gene Ther 2003; 10:1629-35. [PMID: 12923561 DOI: 10.1038/sj.gt.3302063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The acute inflammatory response elicited by adenovirus vectors results in loss of gene expression and tissue injury in the target organ. This acute inflammation is now believed to be the major limiting factor for the use of adenovirus vectors in gene therapy. While exploring the level of acute inflammation caused by the adenovirus encoding the gene for the anti-inflammatory enzyme heme oxygenase-1, we discovered that this adenovirus not only did not elicit acute inflammation, but could prevent the inflammation caused by a second adenovirus. Here we describe a new approach to gene therapy, which uses the encoding of the potent anti-inflammatory enzyme heme oxygenase-1 to prevent early host inflammatory responses normally associated with adenovirus vectors.
Collapse
Affiliation(s)
- S D McCarter
- Department of Medical Biophysics and Surgery, University of Western Ontario and the Lawson Health Research Institute, London, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Akinc A, Anderson DG, Lynn DM, Langer R. Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery. Bioconjug Chem 2003; 14:979-88. [PMID: 13129402 DOI: 10.1021/bc034067y] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several families of synthetic polymers, including degradable poly(beta-amino ester)s, have been previously shown to effectively mediate gene transfer. However, the combined impact of potentially significant factors-such as polymer molecular weight, polymer chain end-group, and polymer/DNA ratio-on different gene transfer properties has yet to be systematically investigated. The elucidation of these relationships may aid in the design of nonviral vectors with greatly enhanced transfection properties. To examine these factors, two distinct poly(beta-amino ester) structures, Poly-1 and Poly-2, were generated by adding 1,4-butanediol diacrylate and 1,6-hexanediol diacrylate, respectively, to 1-aminobutanol. Twelve unique versions of each structure were synthesized by varying amine/diacrylate stoichiometric ratios, resulting in polymers with either amine or acrylate end-groups and with molecular weights ranging from 3350 to 18000. Using high throughput methods, all polymers were tested in quadruplicate at nine different polymer/DNA ratios ranging from 10:1 w/w to 150:1 w/w. Through the optimization of molecular weight, polymer chain end-group, and polymer/DNA ratio, these polymers successfully mediated gene transfer at levels that surpassed both PEI and Lipofectamine 2000 in vitro.
Collapse
Affiliation(s)
- Akin Akinc
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
381
|
De Palma M, Venneri MA, Naldini L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14:1193-206. [PMID: 12908970 DOI: 10.1089/104303403322168028] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Tumor angiogenesis is a rate-limiting factor for tumor growth, and the endothelial cells of tumor vessels display specific features that can be exploited for the selective delivery of cancer therapeutics. To specifically target exogenous genes to angiogenic tumor vessels, we generated a panel of vesicular stomatitis virus-pseudotyped lentiviral vectors (LVs) engineered for endothelial cell (EC)-specific expression. We cloned a wide repertoire of transcription regulatory sequences from genes preferentially expressed in ECs (Tie1, Tie2, Flk-1, VE-Cad, and ICAM-2) into self-inactivating LVs to drive expression of the marker gene encoding green fluorescent protein (GFP) or of the conditionally toxic gene encoding nitroreductase, and compared them with the ubiquitously expressing phosphoglycerate kinase (PGK) and cytomegalovirus (CMV) promoters. We evaluated the efficiency and specificity of vector expression in vitro in a panel of human primary cultures, including ECs, fibroblasts, neurons, lymphocytes, and hematopoietic progenitors, and in tumor cell lines. We found that vectors containing promoter and enhancer sequences from the Tie2 gene achieved remarkable specificity of expression in ECs in vitro and in vivo. On intravenous delivery into tumor-bearing mice, the Tie2 vector targeted expression to the ECs of tumor vessels. In contrast, LVs carrying the PGK or CMV promoter gave widespread GFP marking in ECs and non-ECs of tumors and other organs. The previously reported upregulation of the Tie2 gene in ECs activated for angiogenesis may explain the remarkable selectivity of expression of the Tie2 vector in ECs of tumor vessels. The new vector provides the means for selective delivery of gene therapy to tumor sites in vivo.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endothelium/metabolism
- Genetic Vectors/administration & dosage
- Humans
- Injections, Intravenous
- Lentivirus/genetics
- Mice
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Neoplasm Proteins/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/therapy
- Proto-Oncogene Proteins
- Receptor, TIE-2
- Regulatory Sequences, Nucleic Acid
- Swine
- Transcription, Genetic
- Transduction, Genetic
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vesicular stomatitis Indiana virus/genetics
Collapse
Affiliation(s)
- Michele De Palma
- Laboratory for Gene Transfer and Therapy, IRCC, Institute for Cancer Research and Treatment, University of Turin Medical School, 10060 Candiolo (Turin), Italy
| | | | | |
Collapse
|
382
|
Zhang Y, Garzon-Rodriguez W, Manning MC, Anchordoquy TJ. The use of fluorescence resonance energy transfer to monitor dynamic changes of lipid-DNA interactions during lipoplex formation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:182-92. [PMID: 12896811 DOI: 10.1016/s0005-2736(03)00177-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA-) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, C238, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
383
|
Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, Tavor E, Honigman A, Lewis A, Galun E. Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 2003; 8:342-50. [PMID: 12907157 DOI: 10.1016/s1525-0016(03)00184-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The major advantages of "naked DNA gene therapy" are its simplicity and a low or negligible immune response. Gene delivery by DNA electroporation (EP) involves injection of DNA and the application of a brief electric pulse to enhance cellular permeability. Although EP is an efficient gene transduction technique in rodents, it requires much higher voltages (>500 V) in larger animals, and hence, in practice it would be hazardous for human patients, as it would cause serious tissue damage. To overcome the obstacles associated with EP-mediated gene delivery in vivo, we developed a new method of gene transduction that uses laser energy. The femtosecond infrared titanium sapphire laser beam was developed specifically for enhancing in vivo gene delivery without risks of tissue damage. System optimization revealed that injection of 10 micro g naked DNA into the tibial muscle of mice followed by application of the laser beam for 5 s, focused to 2 mm depth upon an area of 95 x 95 micro m(2), resulted in the highest intensity and duration of gene expression with no histological or biochemical evidence of muscle damage. We assessed the potential clinical application of LBGT technology by using it to transfer the murine erythropoietin (mEpo) gene into mice. LBGT-mediated mEpo gene delivery resulted in elevated (>22%) hematocrit levels that were sustained for 8 weeks. Gene expression following LBGT was detected for >100 days. Hence, LBGT is a simple, safe, effective, and reproducible method for therapeutic gene delivery with significant clinical potential.
Collapse
Affiliation(s)
- Evelyne Zeira
- Goldyne Savad Institute of Gene Therapy, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
384
|
Dunant P, Larochelle N, Thirion C, Stucka R, Ursu D, Petrof BJ, Wolf E, Lochmüller H. Expression of dystrophin driven by the 1.35-kb MCK promoter ameliorates muscular dystrophy in fast, but not in slow muscles of transgenic mdx mice. Mol Ther 2003; 8:80-9. [PMID: 12842431 DOI: 10.1016/s1525-0016(03)00129-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Successful gene therapy of Duchenne muscular dystrophy may require the lifelong expression of a therapeutic gene in all affected muscles. The most promising gene delivery vehicles, viral vectors, suffer from several limitations, including immunogenicity, loss of therapeutic gene expression, and a limited packaging capacity. Therefore, various efforts were previously undertaken to use small therapeutic genes and to place them under the control of a strong and muscle-specific promoter. Here we report the effects of a minidystrophin (6.3 kb) under the control of a short muscle-specific promoter (MCK 1.35 kb) over most of the lifetime (4-20 months) of a transgenic mouse model. Dystrophin expression remained stable and muscle-specific at all ages. The dystrophic phenotype was greatly ameliorated and, most importantly, muscle function in limb muscles was significantly improved not only in young adult but also in aged mice compared to nontransgenic littermates. Dystrophin expression was strong in fast-twitch skeletal muscles such as tibialis anterior and extensor digitorum longus, but weak or absent in heart, diaphragm, and slow-twitch muscles. Additionally, expression was strong in glycolytic but weak in oxidative fibers of fast-twitch muscles. This study may have important implications for the design of future gene therapy trials for muscular dystrophy.
Collapse
Affiliation(s)
- Patrick Dunant
- Gene Center, Friedrich-Baur-Institute, and Department of Neurology, Ludwig-Maximilians University, 81377, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
385
|
Abstract
Gene therapy holds great promise. Somatic gene therapy has the potential to treat a wide range of disorders, including inherited conditions, cancers, and infectious diseases. Early progress has already been made in the treatment of a range of disorders. Ethical issues surrounding somatic gene therapy are primarily those concerned with safety. Germline gene therapy is theoretically possible but raises serious ethical concerns concerning future generations.
Collapse
Affiliation(s)
- Kevin R Smith
- School of Contemporary Sciences, University of Abertay Dundee, Dundee, Scotland, UK.
| |
Collapse
|
386
|
Borst EM, Messerle M. Construction of a cytomegalovirus-based amplicon: a vector with a unique transfer capacity. Hum Gene Ther 2003; 14:959-70. [PMID: 12869214 DOI: 10.1089/104303403766682223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytomegalovirus (CMV) has a number of interesting properties that qualifies it as a vector for gene transfer. Especially appealing is the ability of the CMV genome to persist in hematopoietic progenitor cells and the packaging capacity of the viral capsid that accommodates a DNA genome of 230 kbp. In order to exploit the packaging capacity of the CMV capsid we investigated whether the principles of an amplicon vector can be applied to CMV. Amplicons are herpesviral vectors, which contain only the cis-active sequences required for replication and packaging of the vector genome. For construction of a CMV amplicon the sequences comprising the lytic origin of replication (orilyt) and the cleavage packaging recognition sites (pac) of human CMV were cloned onto a plasmid. A gene encoding the green fluorescent protein was used as a model transgene. The amplicon plasmid replicated in the presence of a CMV helper virus and was packaged into CMV particles, with replication and packaging being dependent on the presence of the orilyt and pac sequences. The packaged amplicon could be transferred to recipient cells and reisolated from the transduced cells. Analysis of the DNA isolated from CMV capsids revealed that the CMV amplicon was packaged as a concatemer with a size of approximately 210 kbp. The CMV amplicon vector has the potential to transfer therapeutic genes with a size of more than 200 kbp and thus provides a unique transfer capacity among viral vectors.
Collapse
Affiliation(s)
- Eva Maria Borst
- Virus Cell Interaction Group, Medical Faculty, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | |
Collapse
|
387
|
Xu ZL, Mizuguchi H, Mayumi T, Hayakawa T. Woodchuck hepatitis virus post-transcriptional regulation element enhances transgene expression from adenovirus vectors. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1621:266-71. [PMID: 12787924 DOI: 10.1016/s0304-4165(03)00078-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In studies of both gene therapy and gene function, transgene expression can be modulated at both the transcriptional and post-transcriptional levels. In a previous study, we optimized the transcriptional regulatory elements for adenovirus (Ad) vectors to mediate efficient transgene expression, including promoter, enhancer, intron, and poly(A) sequence. In the present study, we systematically investigated the ability of the Woodchuck hepatitis virus post-transcriptional regulation element (WPRE) to enhance the expression of the luciferase gene, as a model gene, in the context of Ad vectors. We found that the WPRE in the sense orientation cloned between the luciferase gene and the poly(A) sequence stimulated 2- to 7-fold more luciferase expression in vitro and 2- to 50-fold more in the liver, kidney and lung of mouse than occurred without the use of the WPRE. The most efficient Ad vector in this study, which contained the improved CMV promoter (the conventional CMV promoter with the intron A) and the WPRE, showed more than 700-fold luciferase expression in mouse liver than did the Ad vector containing the conventional CMV promoter but no WPRE. These results indicate that inclusion of the WPRE, combined with the optimization of transcriptional regulatory elements in Ad vectors, will permit a given therapeutic goal to be achieved with substantially fewer viral particles. This information would be helpful for the construction of adenovirus vectors for studies regarding both gene therapy and gene function.
Collapse
Affiliation(s)
- Zhi-Li Xu
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | | | | | |
Collapse
|
388
|
Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther 2003; 10:955-63. [PMID: 12756416 DOI: 10.1038/sj.gt.3302037] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral vectors have provided effective methods for in vivo gene delivery for therapeutic purposes. The ability of viruses to infect a wide variety of cell types in vivo has been exploited for several applications, such as liver, lung, muscle, brain, eye and many others. Immune responses directed towards the viral capsids and the transgene products have severely affected the ability of these vectors to induce long-term gene expression. This paper reviews the influence of viral vectors on antigen-presenting cells (APC), which are central to the induction of innate as well as adaptive immune responses. In this respect, we have focused on adenovirus and adeno-associated viruses because of the polar responses these vector systems induce in vivo. While adenovirus vector can induce significant inflammatory responses, adeno-associated viral vectors are characterized by their inability to consistantly induce immune responses to the transgene product. Understanding the mechanism of infection, transduction and activation of APC by viral vectors will provide strategies to develop safe vectors and prevent immune responses in gene therapies.
Collapse
Affiliation(s)
- K Jooss
- Cell Genesys, South San Francisco, CA 94404, USA
| | | |
Collapse
|
389
|
Albayrak T, Grimm S. A high-throughput screen for single gene activities: isolation of apoptosis inducers. Biochem Biophys Res Commun 2003; 304:772-6. [PMID: 12727223 DOI: 10.1016/s0006-291x(03)00653-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We describe a novel genetic screen that is performed by transfecting every individual clone of an expression library into a separate population of cells in a high-throughput mode. The screen allows one to achieve a hitherto unattained sensitivity in expression cloning which was exploited in a first read-out to clone apoptosis-inducing genes. This led to the isolation of several genes whose proteins induce distinct phenotypes of apoptosis in 293T cells. One of the isolated genes is the tumor suppressor cytochrome b(L) (cybL), a component of the respiratory chain complex II, that diminishes the activity of this complex for apoptosis induction. This gene is more efficient and specific for causing cell death than a drug with the same activity. These results suggest further applications, both of the isolated genes and the screen.
Collapse
Affiliation(s)
- Timur Albayrak
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
390
|
Kim HH, Lee WS, Yang JM, Shin S. Basic peptide system for efficient delivery of foreign genes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:129-36. [PMID: 12729922 DOI: 10.1016/s0167-4889(03)00028-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Certain peptides containing high percentage of cationic amino acids are known to efficiently translocate through the cell membrane. This principle was previously exploited for delivery of variety proteins. We had observed that various basic peptides of earlier studies, though not specifically use for gene delivery, contain DNA or RNA binding domains. In the present study, we reported on arginine peptides, which form DNA complexes that efficiently transfect various cell lines. The transfection abilities of the peptides were observed by green fluorescent protein (GFP) and beta-galactosidase gene expression in 293T, HeLa, Jurkat, and COS-7 cells. We found superior transfection activity of arginine peptides compared with commercially available efficient transfection agents. The expression of marker genes induced by arginine peptides was partially inhibited in the presence of heparan sulfate, chondroitin sulfate B and C, or both heparinase III and chondroitinase ABC. The transfection proficiency of these peptides was affected by endosomotropic reagent as well as low temperature (4 degrees C). Finally, we have investigated the potential of arginine peptides as a delivery agent for gene therapy, by attempting to deliver herpes simplex virus thymidine kinase (HSV-TK) gene into tumor cells. HSV-TK transfected tumor cells exhibited sensitivity to the antiviral drug ganciclovir (GCV), leading to cell death. Taken together, these data demonstrate that arginine peptide is proficient for transfection, indicating its potentially benefit to studies in gene therapy and gene delivery in a range of model organisms.
Collapse
Affiliation(s)
- Hyun Hee Kim
- CoreBiotech, 906 KITI B/D, Suwon University, Hwasung, Kyunggido 445-743, South Korea
| | | | | | | |
Collapse
|
391
|
Tsulaia TV, Prokopishyn NL, Yao A, Carsrud NDV, Carou MC, Brown DB, Davis BR, Yannariello-Brown J. Glass needle-mediated microinjection of macromolecules and transgenes into primary human mesenchymal stem cells. J Biomed Sci 2003; 10:328-36. [PMID: 12711860 DOI: 10.1007/bf02256452] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 01/07/2003] [Indexed: 01/14/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that can differentiate into various tissue types, including bone, cartilage, tendon, adipocytes, and marrow stroma, making them potentially useful for human cell and gene therapies. Our objective was to demonstrate the utility of glass needle-mediated microinjection as a method to deliver macromolecules (e.g. dextrans, DNA) to hMSCs for cell and molecular biological studies. hMSCs were isolated and cultured using a specific fetal bovine serum, prescreened for its ability to promote cell adherence, proliferation, and osteogenic differentiation. Successful delivery of Oregon Green-dextran via intranuclear microinjection was achieved, yielding a postinjection viability of 76 +/- 13%. Excellent short-term gene expression (63 +/- 11%) was achieved following microinjection of GFP-containing vectors into hMSCs. Higher efficiencies of short-term gene expression ( approximately 5-fold) were observed when injecting supercoiled DNA, pYA721, as compared with the same DNA construct in a linearized form, YA721. Approximately 0.05% of hMSCs injected with pYA721 containing both the GFP and neomycin resistance genes formed GFP-positive, drug-resistant colonies that survived >120 days. Injection of linearized YA721 resulted in 3.6% of injected hMSC forming drug-resistant colonies, none of which expressed GFP that survived 60-120 days. These studies demonstrate that glass needle-mediated microinjection can be used as a method of delivering macromolecules to hMSCs and may prove to be a useful technique for molecular and cell biological mechanistic studies and future genetic modification of hMSCs.
Collapse
Affiliation(s)
- Tamara V Tsulaia
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | | | | | | | | | | | |
Collapse
|
392
|
Londei M, Quaratino S, Maiuri L. Celiac disease: a model autoimmune disease with gene therapy applications. Gene Ther 2003; 10:835-43. [PMID: 12732869 DOI: 10.1038/sj.gt.3302041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gene therapy (GT) is still at the 'experimental' stage and some recent setbacks have cooled the potential use of this therapeutic tool even in life-threatening conditions. However, this therapeutic approach has a potential, which is not limited to disease for which we have not other option. There are increasing evidence that GT will be soon used in diseases that are not life threatening. One group of diseases that can benefit from GT is the autoimmune one. Several experimental animal models have indicated the efficacy (proof of principle) of GT. In the present review, we have addressed the possibility that even extremely benign autoimmune-like diseases such as Celiac Disease (CD) might one day profit from this type of therapy. We further point that in conditions such as CD, where the trigger is well known and the pathogenic cascade is relatively well defined, a situation not common in autoimmunity, we can even have a better situation where to explore and use GT to control disease initiation and progression. Once the risks that are still intrinsic to GT will have been reduced the therapeutic options we outline in the present review might not appear too far from reality.
Collapse
Affiliation(s)
- M Londei
- Institute of Child Health, University College London, London, UK.
| | | | | |
Collapse
|
393
|
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4:346-58. [PMID: 12728277 DOI: 10.1038/nrg1066] [Citation(s) in RCA: 1789] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene therapy has a history of controversy. Encouraging results are starting to emerge from the clinic, but questions are still being asked about the safety of this new molecular medicine. With the development of a leukaemia-like syndrome in two of the small number of patients that have been cured of a disease by gene therapy, it is timely to contemplate how far this technology has come, and how far it still has to go.
Collapse
Affiliation(s)
- Clare E Thomas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
394
|
Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003; 14:591-7. [PMID: 12718768 DOI: 10.1089/104303403764539369] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are morphogens implicated in embryonic and regenerative odontogenic differentiation. Gene therapy has the potential to induce reparative dentin formation for potential pulp capping. We have optimized the gene transfer of Growth/differentiation factor 11 (Gdf11)/Bmp11 plasmid DNA into dental pulp stem cells by sonoporation in vivo. Dental pulp tissue treated with plasmid pEGFP or CMV-LacZ in 5-10% Optison (Molecular Biosystems Inc., San Diego, CA) and stimulated by ultrasound (1 MHz, 0.5 W/cm(2), 30 sec) showed significant efficiency of gene transfer and high level of protein production selectively in the local region, within 500 microm of the amputated site of the pulp tissue. The Gdf11 cDNA plasmid transferred into dental pulp tissue by sonoporation in vitro, induced the expression of dentin sialoprotein (Dsp), a differentiation marker for odontoblasts. The transfection of Gdf11 by sonoporation stimulated a large amount of reparative dentin formation on the amputated dental pulp in canine teeth in vivo. These results suggest the possible use of BMPs using ultrasound-mediated gene therapy for endodontic dental treatment.
Collapse
Affiliation(s)
- Misako Nakashima
- Department of Clinical Oral Molecular Biology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
395
|
Hellum M, Høgset A, Engesaeter BO, Prasmickaite L, Stokke T, Wheeler C, Berg K. Photochemically enhanced gene delivery with cationic lipid formulations. Photochem Photobiol Sci 2003; 2:407-11. [PMID: 12760539 DOI: 10.1039/b211880g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Entrapment and degradation of transfecting DNA in endocytic vesicles often hampers the use of lipidic vectors for gene delivery purposes. Photochemical internalisation (PCI) is a technology for achieving light-induced release of DNA trapped inside these vesicles, and therefore represents a way of overcoming the endocytic membrane barrier and improving gene transfer. The technology is based on utilising photosensitizers which localise in the membranes of endocytic vesicles, causing photochemical damages that rupture the vesicles upon illumination. The purpose of this work was to study the effect of PCI on transfection mediated by the cationic lipid N-(2-aminoethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide (betaAE-DMRIE), with or without the helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). It was shown that PCI has no effect on betaAE-DMRIE mediated transfection, whereas it significantly enhances transfection mediated by the combination of betaAE-DMRIE and DOPE. The effect of PCI was highly dependent on the timing of illumination relative to the time of DNA delivery, both regarding the sequence of, and the time between, these two treatments.
Collapse
Affiliation(s)
- Marit Hellum
- Dept. of Biophysics, Institute for Cancer Research, The Norwegian Radiumhospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
396
|
Abstract
The idea of using viruses as gene vehicles to combat disease is tantalizing for the simplicity of its principle, and for the unlimited perspectives that it raises. Yet the initial enthusiasm gave way to deep skepticism, when the complex challenges became apparent. Issues that hampered clinical successes include the specificity and efficiency of gene delivery; the immune response to viral vectors and targeted cells; standardized and affordable production of vectors; and safety for patients and environment. More recently, some obstacles could be mastered through a better understanding of vector-cell-interactions, vector-induced pathogenesis and principles of vector engineering technologies. First clinical successes became apparent, giving raise to a second waive of effort to exploit viruses in gene therapy. Future challenges include the targeting of stem cells, through receptor tropism and the regulation of gene expression; controlled evasion of host defense; combining the beneficial features of several virus vectors; realistic animal models; and clinical protocols for standardized evaluation of safety and efficacy. Monogenetic disorders were initially regarded as principal targets for gene therapy. However, most clinical trials are now addressing cancer or HIV infection. Cancer gene therapy is aiming at the destruction of malignant cells, whereas 'conventional' gene therapy frequently establishes or restores a long-term function in target cells. Therefore, the requirements for viruses to be used against cancer are fundamentally different from conventional vectors. Host cell death, immune response, and spread of replicating viruses can all contribute to oncolytic efficacy. However, limiting these deleterious effects to tumor cells is mandatory for clinical safety. A number of approaches have been taken to improve the specificity and/or efficacy of cancer virotherapy. Recent studies concerning oncolytic adenoviruses exemplify these strategies.
Collapse
Affiliation(s)
- Matthias Dobbelstein
- Institut für Virologie, Universität Marburg, Robert Koch Str. 17, 35037 Marburg, Germany.
| |
Collapse
|
397
|
Abstract
1. Neural stem cells can be cultured from the CNS of different mammalian species at many stages of development. They have an extensive capacity for self-renewal and will proliferate ex vivo in response to mitogenic growth factors or following genetic modification with immortalising oncogenes. Neural stem cells are multipotent since their differentiating progeny will give rise to the principal cellular phenotypes comprising the mature CNS: neurons, astrocytes and oligodendrocytes. 2. Neural stem cells can also be derived from more primitive embryonic stem (ES) cells cultured from the blastocyst. ES cells are considered to be pluripotent since they can give rise to the full cellular spectrum and will, therefore, contribute to all three of the embryonic germ layers: endoderm, mesoderm and ectoderm. However, pluripotent cells have also been derived from germ cells and teratocarcinomas (embryonal carcinomas) and their progeny may also give rise to the multiple cellular phenotypes contributing to the CNS. In a recent development, ES cells have also been isolated and grown from human blastocysts, thus raising the possibility of growing autologous stem cells when combined with nuclear transfer technology. 3. There is now an emerging recognition that the adult mammalian brain, including that of primates and humans, harbours stem cell populations suggesting the existence of a previously unrecognised neural plasticity to the mature CNS, and thereby raising the possibility of promoting endogenous neural reconstruction. 4. Such reports have fuelled expectations for the clinical exploitation of neural stem cells in cell replacement or recruitment strategies for the treatment of a variety of human neurological conditions including Parkinson's disease (PD), Huntington's disease, multiple sclerosis and ischaemic brain injury. Owing to their migratory capacity within the CNS, neural stem cells may also find potential clinical application as cellular vectors for widespread gene delivery and the expression of therapeutic proteins. In this regard, they may be eminently suitable for the correction of genetically-determined CNS disorders and in the management of certain tumors responsive to cytokines. Since large numbers of stem cells can be generated efficiently in culture, they may obviate some of the technical and ethical limitations associated with the use of fresh (primary) embryonic neural tissue in current transplantation strategies. 5. While considerable recent progress has been made in terms of developing new techniques allowing for the long-term culture of human stem cells, the successful clinical application of these cells is presently limited by our understanding of both (i) the intrinsic and extrinsic regulators of stem cell proliferation and (ii) those factors controlling cell lineage determination and differentiation. Although such cells may also provide accessible model systems for studying neural development, progress in the field has been further limited by the lack of suitable markers needed for the identification and selection of cells within proliferating heterogeneous populations of precursor cells. There is a further need to distinguish between the committed fate (defined during normal development) and the potential specification (implying flexibility of fate through manipulation of its environment) of stem cells undergoing differentiation. 6. With these challenges lying ahead, it is the opinion of the authors that stem-cell therapy is likely to remain within the experimental arena for the foreseeable future. In this regard, few (if any) of the in vivo studies employing neural stem cell grafts have shown convincingly that behavioural recovery can be achieved in the various model paradigms. Moreover, issues relating to the quality control of cultured cells and their safety following transplantation have only begun to be addressed. 7. While on the one hand cell biotechnologists have been quick to realise the potential commercial value, human stem cell research and its clinical applications has been the subject of intense ethical and legislative considerations. The present chapter aims to review some recent aspects of stem cell research applicable to developmental neurobiology and the potential applications in clinical neuroscience.
Collapse
Affiliation(s)
- T Ostenfeld
- MRC Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
398
|
Kanzawa T, Ito H, Kondo Y, Kondo S. Current and Future Gene Therapy for Malignant Gliomas. J Biomed Biotechnol 2003; 2003:25-34. [PMID: 12686720 PMCID: PMC179758 DOI: 10.1155/s1110724303209013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Malignant gliomas are the most common neoplasm in the central nervous system. When treated with conventional treatments including surgery, irradiation, and chemotherapy, the average life expectancy of the most malignant type, glioblastoma multiforme is usually less than 1 year. Therefore, gene therapy is expected to be an effective and possibly curative treatment. Many gene therapeutic approaches have demonstrated efficacy in experimental animal models. However, the current clinical trials are disappointing. This review focuses on current therapeutic genes/vectors/delivery systems/targeting strategies in order to introduce updated trends and hopefully indicate prospective gene therapy for malignant gliomas.
Collapse
Affiliation(s)
- Takao Kanzawa
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hideaki Ito
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasuko Kondo
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Seiji Kondo
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
399
|
Monnerjahn C, Konrad M. Modulated nucleoside kinases as tools to improve the activation of therapeutic nucleoside analogues. Chembiochem 2003; 4:143-6. [PMID: 12616626 DOI: 10.1002/cbic.200390024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of nucleoside analogues in anticancer and antiviral treatments is often impaired by the slow intracellular activation of these drugs. This problem can be addressed by the modulation of rate-limiting enzymes in the activation pathways of the nucleoside analogues. Therapeutic strategies based on the combination of optimized activating enzymes and established nucleoside drugs promise significant improvements to traditional chemotherapy.
Collapse
Affiliation(s)
- Christian Monnerjahn
- Max-Planck-Institute for Biophysical Chemistry, Department of Molecular Genetics, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
400
|
Haneline LS, Li X, Ciccone SLM, Hong P, Yang Y, Broxmeyer HE, Lee SH, Orazi A, Srour EF, Clapp DW. Retroviral-mediated expression of recombinant Fancc enhances the repopulating ability of Fancc-/- hematopoietic stem cells and decreases the risk of clonal evolution. Blood 2003; 101:1299-307. [PMID: 12393504 DOI: 10.1182/blood-2002-08-2404] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder characterized by a progressive bone marrow (BM) failure and an increased incidence of myeloid leukemias. Children with FA are currently being enrolled in clinical trials to evaluate the safety of retroviral-mediated gene transfer. Previously, we used Fancc(-/-) mice to show that Fancc(-/-) hematopoietic stem cells (HSCs) have a profound defect in repopulating ability. Here, we examined whether retroviral-mediated gene transfer of recombinant Fancc (rFancc) would restore the repopulating ability of Fancc(-/-) HSC to wild-type levels. Fancc(-/-) HSCs transduced with a retrovirus encoding rFancc exhibited a repopulating ability that approached wild-type levels. Interestingly, approximately 30% of primary recipients (7 of 22) transplanted with uncorrected Fancc(-/-) cells developed a range of hematopoietic abnormalities including pancytopenia and BM hypoplasia similar to individuals with FA. Hematopoietic abnormalities were detected in only 1 of 22 mice transplanted with Fancc(-/-) cells transduced with a retrovirus encoding rFancc. Moreover, several mice with hematopoietic defects had progenitors that displayed a marked resistance to IFN-gamma, TNF-alpha, and MIP-1alpha compared to both Fancc(-/-) progenitors, which are uniquely hypersensitive to these cytokines, and wild-type progenitors. These data are analogous to studies using progenitors from patients with myelodysplasia and provide functional support for clonal evolution in these mice. Collectively, these data show that gene transfer can enhance HSC repopulating ability and suppresses the tendency for clonal evolution. These studies also reveal potential detrimental effects of ex vivo manipulation for untransduced Fancc(-/-) HSCs.
Collapse
Affiliation(s)
- Laura S Haneline
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|