351
|
Møller AT, Jensen TS. Neurological manifestations in Fabry's disease. ACTA ACUST UNITED AC 2007; 3:95-106. [PMID: 17279083 DOI: 10.1038/ncpneuro0407] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 12/07/2006] [Indexed: 11/09/2022]
Abstract
Fabry's disease is an X-linked lysosomal storage disorder caused by a defect in the gene that encodes the lysosomal enzyme alpha-galactosidase A. Symptoms arise because of accumulation of globotriaosylceramide in multiple organs, resulting in severely reduced quality of life and premature death. Neurological symptoms, such as burning sensations (occasionally accompanied by acroparesthesia) and stroke, are among the first to appear, and occur in both male and female patients. A delay in establishing the diagnosis of Fabry's disease can cause unnecessary problems, especially now that enzyme replacement treatment is available to prevent irreversible organ damage. Females with Fabry's disease who present with pain have often been ignored and misdiagnosed because of the disorder's X-linked inheritance. This Review will stress the importance of recognizing neurological symptoms for the diagnosis of Fabry's disease. The possible pathophysiological background will also be discussed.
Collapse
Affiliation(s)
- Anette T Møller
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
352
|
|
353
|
Yu Z, Sawkar AR, Whalen LJ, Wong CH, Kelly JW. Isofagomine- and 2,5-anhydro-2,5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J Med Chem 2007; 50:94-100. [PMID: 17201413 PMCID: PMC2543937 DOI: 10.1021/jm060677i] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gaucher disease, resulting from deficient lysosomal glucocerebrosidase (GC) activity, is the most common lysosomal storage disorder. Clinically important GC mutant enzymes typically have reduced specific activity and reduced lysosomal concentration, the latter due to compromised folding and trafficking. We and others have demonstrated that pharmacological chaperones assist variant GC folding by binding to the active site, stabilizing the native conformation of GC in the neutral pH environment of the endoplasmic reticulum (ER), enabling its trafficking from the ER to the Golgi and on to the lysosome. The mutated GC fold is generally stable in the lysosome after pharmacological chaperone dissociation, owing to the low pH environment for which the fold was evolutionarily optimized and the high substrate concentration, enabling GC to hydrolyze glucosylceramide to glucose and ceramide. The hypothesis of this study was that we could combine GC pharmacological chaperone structure-activity relationships from distinct chemical series to afford potent novel chaperones comprising a carbohydrate-like substructure that binds in the active site with a hydrophobic substructure that binds in a nearby pocket. We combined isofagomine and 2,5-anhydro-2,5-imino-D-glucitol active site binding substructures with hydrophobic alkyl adamantyl amides to afford novel small molecules with enhanced ability to increase GC activity in patient-derived fibroblasts. The cellular activity of N370S and G202R GC in fibroblasts is increased by 2.5- and 7.2-fold with isofagmine-based pharmacological chaperones N-adamantanyl-4-((3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)piperidin-1-yl)-butanamide (3) and N-adamantanyl-4-((3R,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)piperidin-1-yl)pentanamide (4), respectively, the best enhancements observed to date.
Collapse
Affiliation(s)
- Zhanqian Yu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Anu R. Sawkar
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Lisa J. Whalen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Chi-Huey Wong
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Jeffery W. Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
354
|
Hansen PA, Waheed A, Corbett JA. Chemically chaperoning the actions of insulin. Trends Endocrinol Metab 2007; 18:1-3. [PMID: 17116401 DOI: 10.1016/j.tem.2006.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 10/24/2006] [Accepted: 11/09/2006] [Indexed: 11/19/2022]
Abstract
The role of inflammation as a mediator of insulin resistance in type 2 diabetes and obesity has been a major focus of studies over the past ten years. In mouse models of obesity and type 2 diabetes, the development of insulin resistance correlates with elevated levels of endoplasmic reticulum stress and induction of the unfolded protein response. Activation of N-terminal C-Jun kinase is known to be associated with unfolded protein response activation, and has been shown to participate in the inhibition of insulin action by stimulating serine phosphorylation of the insulin receptor substrate 1, an event that attenuates insulin signaling. 'Chemical chaperones' are small molecules that have been shown to attenuate unfolded protein response activation. The exciting new findings of Ozcan et al. indicate that chemical chaperones improve glucose tolerance and insulin action in a mouse model of type 2 diabetes. These findings offer a potential new target for therapeutic strategies designed to improve insulin action and glucose tolerance in diabetic individuals.
Collapse
Affiliation(s)
- Polly A Hansen
- E.A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, St Louis, MO 63104, USA
| | | | | |
Collapse
|
355
|
Werner L, Kniežo L, Dvořáková H. Synthesis of analogues of naturally occurring 3-O-(β-d-glucopyranosyl)-fagomine. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2006.11.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
356
|
Abstract
Two isomeric bicyclo[4.1.0]heptane analogues of the glycosidase inhibitor galacto-validamine, (1R*,2S,3S,4S,5S,6S*)-5-amino-1-(hydroxymethyl)bicyclo[4.1.0]heptane-2,3,4-triol, have been synthesized in 13 steps from 2,3,4,6-tetra-O-benzyl-D-galactose. The inhibitory activities of the two conformationally restricted amines, and their corresponding acetamides, were measured against commercial alpha-galactosidase enzymes from coffee bean and E. coli. The activity of the glycosyl hydrolase family GH27 enzyme (coffee bean) was competitively inhibited by the 1R,6S-amine (7), a binding interaction that was characterized by a K(i) value of 0.541 microM. The GH36 E. coli alpha-galactosidase exhibited a much weaker binding interaction with the 1R,6S-amine (IC(50)= 80 microM). The diastereomeric 1S,6R-amine (9) bound weakly to both galactosidases, (coffee bean, IC(50)= 286 microM) and (E. coli, IC(50)= 2.46 mM).
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, British Columbia, Canada.
| | | |
Collapse
|
357
|
Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT, Reuser AJJ. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab 2007; 90:49-57. [PMID: 17095274 DOI: 10.1016/j.ymgme.2006.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/20/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
Glycogen storage disease type II (GSDII; Pompe disease or acid maltase deficiency) is an autosomal recessive disorder caused by lysosomal acid alpha-glucosidase (AalphaGlu) deficiency and manifests predominantly as skeletal muscle weakness. Defects in post-translational modification and transport of mutant AalphaGlu species are frequently encountered and may potentially be corrected with chaperone-mediated therapy. In the present study, we have tested this hypothesis by using deoxynojirimycin and derivatives as chemical chaperones to correct the AalphaGlu deficiency in cultured fibroblasts from patients with GSDII. Four mutant phenotypes were chosen: Y455F/Y455F, P545L/P545L, 525del/R600C and D645E/R854X. In case of Y455F/Y455F and P545L/P545L, N-(n-butyl)deoxynojirimycin (NB-DNJ) restored the transport, maturation and activity of AalphaGlu in a dose dependent manner, while it had no effect on the reference enzyme beta-hexosaminidase. NB-DNJ promoted export from the endoplasmic reticulum (ER) to the lysosomes and stabilized the activity of mutant AalphaGlu species, Y455F and P545L, inside the lysosomes. In long-term culture, the AalphaGlu activity in the fibroblasts from the patients with mutant phenotypes, Y455F/Y455F and P545L/P545L, increased up to 14.0- and 7.9-fold, respectively, in the presence of 10mumol/L NB-DNJ. However, the effect of NB-DNJ on Y455F/Y455F subsided quickly after removal of the compound. We conclude that NB-DNJ acts in low concentration as chemical chaperone for certain mutant forms of AalphaGlu that are trapped in the ER, poorly transported or labile in the lysosomal environment. Chemical chaperone therapy could create new perspectives for therapeutic intervention in GSDII.
Collapse
Affiliation(s)
- Toshika Okumiya
- Department of Clinical Genetics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
358
|
Satoh H, Yamato O, Asano T, Yonemura M, Yamauchi T, Hasegawa D, Orima H, Arai T, Yamasaki M, Maede Y. Cerebrospinal fluid biomarkers showing neurodegeneration in dogs with GM1 gangliosidosis: possible use for assessment of a therapeutic regimen. Brain Res 2006; 1133:200-8. [PMID: 17196562 DOI: 10.1016/j.brainres.2006.11.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 11/17/2022]
Abstract
The present study investigated cerebrospinal fluid (CSF) biomarkers for estimating degeneration of the central nervous system (CNS) in experimental dogs with GM1 gangliosidosis and preliminarily evaluated the efficacy of long-term glucocorticoid therapy for GM1 gangliosidosis using the biomarkers identified here. GM1 gangliosidosis, a lysosomal storage disease that affects the brain and multiple systemic organs, is due to an autosomal recessively inherited deficiency of acid beta-galactosidase activity. Pathogenesis of GM1 gangliosidosis may include neuronal apoptosis and abnormal axoplasmic transport and inflammatory response, which are perhaps consequent to massive neuronal storage of GM1 ganglioside. In the present study, we assessed some possible CSF biomarkers, such as GM1 ganglioside, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), neuron-specific enolase (NSE) and myelin basic protein (MBP). Periodic studies demonstrated that GM1 ganglioside concentration, activities of AST and LDH, and concentrations of NSE and MBP in CSF were significantly higher in dogs with GM1 gangliosidosis than those in control dogs, and their changes were well related with the months of age and clinical course. In conclusion, GM1 ganglioside, AST, LDH, NSE and MBP could be utilized as CSF biomarkers showing CNS degeneration in dogs with GM1 gangliosidosis to evaluate the efficacy of novel therapies proposed for this disease. In addition, we preliminarily treated an affected dog with long-term oral administration of prednisolone and evaluated the efficacy of this therapeutic trial using CSF biomarkers determined in the present study. However, this treatment did not change either the clinical course or the CSF biomarkers of the affected dog, suggesting that glucocorticoid therapy would not be effective for treating GM1 gangliosidosis.
Collapse
Affiliation(s)
- Hiroyuki Satoh
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Kolter T, Sandhoff K. Sphingolipid metabolism diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2057-79. [PMID: 16854371 DOI: 10.1016/j.bbamem.2006.05.027] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/26/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated "cross correction", gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT.
Collapse
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | | |
Collapse
|
360
|
Sukegawa-Hayasaka K, Kato Z, Nakamura H, Tomatsu S, Fukao T, Kuwata K, Orii T, Kondo N. Effect of Hunter disease (mucopolysaccharidosis type II) mutations on molecular phenotypes of iduronate-2-sulfatase: enzymatic activity, protein processing and structural analysis. J Inherit Metab Dis 2006; 29:755-61. [PMID: 17091340 DOI: 10.1007/s10545-006-0440-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
Mucopolysaccharidosis II (Hunter disease), a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS), has variable clinical phenotypes. Nearly 300 different mutations have been identified in the IDS gene from patients with Hunter disease, but the correlation between the genotype and phenotype has remained unclear. We studied the characteristics of 11 missense mutations, which were detected in the patients or artificially introduced, using stable expression experiments and structural analysis. The mutants found in the attenuated phenotype showed considerable residual activity (0.2-2.4% of the wild-type IDS activity) and those in the severe phenotype had no activity. In immunoblot analysis, both the 73-75 kDa precursor and processed forms were detected in the expression of 'attenuated' mutants (R48P, A85T and W337R) and the artificial active site mutants (C84S, C84T). The 73-75 kDa initial precursor was detected in the 'severe' mutants (P86L, S333L, S349I, R468Q, R468L). The truncated 68 kDa precursor form was synthesized in the Q531X mutant. The results of immunoblotting indicated rapid degradation and/or insufficiency in processing as a result of structural alteration of the IDS protein. A combination of analyses of genotype and molecular phenotypes, including enzyme activity, protein processing and structural analysis with an engineered reference protein, could provide an avenue to understanding the molecular mechanism of the disease and could give a useful tool for the evaluation of possible therapeutic chemical compounds.
Collapse
Affiliation(s)
- K Sukegawa-Hayasaka
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
361
|
Woltjer RL, McMahan W, Milatovic D, Kjerulf JD, Shie FS, Rung LG, Montine KS, Montine TJ. Effects of chemical chaperones on oxidative stress and detergent-insoluble species formation following conditional expression of amyloid precursor protein carboxy-terminal fragment. Neurobiol Dis 2006; 25:427-37. [PMID: 17141508 DOI: 10.1016/j.nbd.2006.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 09/29/2006] [Accepted: 10/11/2006] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress, protein misfolding, protein complex formation, and detergent insolubility are biochemical features of Alzheimer's disease (AD). We tested the cause-and-effect relationships among these using MC65 human neuroblastoma cells that exhibit toxicity upon conditional expression of carboxy-terminal fragments (CTFs) of the human amyloid precursor protein (APP). Treatments with three different antioxidants (alpha-tocopherol, N-acetyl cysteine, and alpha-lipoic acid) or three different compounds (glycerol, trimethylamine-N-oxide, and 4-phenylbutyric acid) that have been described to have a "chemical chaperone" function in promoting protein folding all had a protective effect on MC65 cells and decreased markers of oxidative damage and accumulation of high molecular weight amyloid (A) beta-immunoreactive (IR) species. However, chaperones partially reduced detergent insolubility of the remaining Abeta-IR species, while antioxidants did not. These results suggest that protein misfolding associated with overexpression of APP CTFs promotes oxidative stress and cytotoxicity and contributes to formation of detergent-insoluble species that appear unrelated to cytotoxicity.
Collapse
Affiliation(s)
- Randall L Woltjer
- Department of Pathology, University of Washington, Box 359645, Harborview Medical Center, 300 Ninth Avenue, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Compain P, Martin OR, Boucheron C, Godin G, Yu L, Ikeda K, Asano N. Design and synthesis of highly potent and selective pharmacological chaperones for the treatment of Gaucher's disease. Chembiochem 2006; 7:1356-9. [PMID: 16871601 DOI: 10.1002/cbic.200600217] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Philippe Compain
- ICOA, UMR 6005 CNRS/Université d'Orléans rue de Chartres, Orléans, France.
| | | | | | | | | | | | | |
Collapse
|
363
|
Chang HH, Asano N, Ishii S, Ichikawa Y, Fan JQ. Hydrophilic iminosugar active-site-specific chaperones increase residual glucocerebrosidase activity in fibroblasts from Gaucher patients. FEBS J 2006; 273:4082-92. [PMID: 16934036 DOI: 10.1111/j.1742-4658.2006.05410.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gaucher disease is an autosomal recessive lysosomal storage disorder caused by the deficient activity of glucocerebrosidase. Accumulation of glucosylceramide, primarily in the lysosomes of cells of the reticuloendothelial system, leads to hepatosplenomegaly, anemia and skeletal lesions in type I disease, and neurologic manifestations in types II and III disease. We report herein the identification of hydrophilic active-site-specific chaperones that are capable of increasing glucocerebrosidase activity in the cultured fibroblasts of Gaucher patients. Screening of a variety of natural and synthetic alkaloid compounds showed isofagomine, N-dodecyl deoxynojirimycin, calystegines A3, B1, B2 and C1, and 1,5-dideoxy-1,5-iminoxylitol to be potent inhibitors of glucocerebrosidase. Among them, isofagomine was the most potent inhibitor of glucocerebrosidase in vitro, and the most effective active-site-specific chaperone capable of increasing residual glucocerebrosidase activity in fibroblasts established from Gaucher patients with the most prevalent Gaucher disease-causing mutation (N370S). Intracellular enzyme activity increased approximately two-fold after cells had been incubated with isofagomine, and the increase in glucocerebrosidase activity was both dose-dependent and time-dependent. Western blotting demonstrated that there was a substantial increase in glucocerebrosidase protein in cells after isofagomine treatment. Immunocytochemistry revealed an improvement in the glucocerebrosidase trafficking pattern, which overlaps that of lysosome-associated membrane protein 2 in Gaucher fibroblasts cultivated with isofagomine, suggesting that the transport of mutant glucocerebrosidase is at least partially improved in the presence of isofagomine. The hydrophilic active-site-specific chaperones are less toxic to cultured cells. These results indicate that these hydrophilic small molecules are suitable candidates for further drug development for the treatment of Gaucher disease.
Collapse
Affiliation(s)
- Hui-Hwa Chang
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
364
|
Arakawa T, Ejima D, Kita Y, Tsumoto K. Small molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1677-87. [PMID: 17046342 DOI: 10.1016/j.bbapap.2006.08.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/04/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
A great deal of attention has been paid to so-called amyloid diseases, in which the proteins responsible for the cell death and resultant diseases undergo conformational changes and aggregate in vivo, although whether aggregate formation is the cause or the result of the cell death is controversial. Recently, an increasing attention is given to protein folding diseases tightly associated with mutations. These mutations result in temperature-dependent misfolding and hence inactivation of the proteins, leading to loss of function, at physiological temperature; at low so-called permissive temperatures, the mutant proteins correctly fold and acquire functional structure. Alternatively, activation can be induced by use of osmolytes, which restores the folding of the mutant proteins and hence are called chemical chaperones. The osmolytes are compatible with macromolecular function and do stabilize the native protein structure. However, chemical chaperones require high concentrations for effective folding of mutant proteins and hence are too toxic in in-vivo applications. This limitation can be overcome by pharmacological chaperones, whose functions are similar to the chemical chaperones, but occur at much lower concentrations, i.e., physiologically acceptable concentrations. Although the research and clinical importance of pharmacological chaperones has been emphasized, the initial and central concept of osmolytes is largely ignored. Here we attempt to bridge the concept of osmolytes to applications of pharmacological chaperones.
Collapse
|
365
|
Iwasaki H, Watanabe H, Iida M, Ogawa S, Tabe M, Higaki K, Nanba E, Suzuki Y. Fibroblast screening for chaperone therapy in beta-galactosidosis. Brain Dev 2006; 28:482-6. [PMID: 16617000 DOI: 10.1016/j.braindev.2006.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/31/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
We performed screening of beta-galactosidase-deficient fibroblasts for possible chemical chaperone therapy using N-octyl-4-epi-beta-valienamine (NOEV) in patients with GM1-gangliosidosis and Morquio B disease (beta-galactosidosis). Fibroblasts were cultured with NOEV for 4 days and beta-galactosidase activity was measured. Mutation analysis was performed simultaneously. Two separate criteria were set for evaluation of the chaperone effect: a relative increase of enzyme activity (more than 3-fold), and an increase up to more than 10% normal enzyme activity. Among the 50 fibroblast strains tested, more than 3-fold increase was achieved in 17 cell strains (34%), and more than 10% normal activity in 10 (20%). Both criteria were satisfied in 6 (12%), and either of them in 21 (42%). Juvenile GM1-gangliosidosis was most responsive, and then infantile GM1-gangliosidosis. This enhancement was mutation-specific. We estimate that the NOEV chaperone therapy will be effective in 20-40% of the patients, mainly in juvenile and infantile GM1-gangliosidosis patients. A molecular design may produce mutation-specific chaperone compounds for the other disease phenotypes. This cellular screening will be useful for identification of human patients with beta-galactosidase deficiency for chaperone therapy to be started in the near future.
Collapse
Affiliation(s)
- Hiroyuki Iwasaki
- Clinical Research Center, International University of Health and Welfare, 2600-1 Kita-Kanemaru, Otawara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
366
|
Steet RA, Chung S, Wustman B, Powe A, Do H, Kornfeld SA. The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms. Proc Natl Acad Sci U S A 2006; 103:13813-8. [PMID: 16945909 PMCID: PMC1564243 DOI: 10.1073/pnas.0605928103] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gaucher disease is a lysosomal storage disorder caused by deficiency in lysosomal acid beta-glucosidase (GlcCerase), the enzyme responsible for the catabolism of glucosylceramide. One of the most prevalent disease-causing mutations, N370S, results in an enzyme with lower catalytic activity and impaired exit from the endoplasmic reticulum. Here, we report that the iminosugar isofagomine (IFG), an active-site inhibitor, increases GlcCerase activity 3.0 +/- 0.6-fold in N370S fibroblasts by several mechanisms. A major effect of IFG is to facilitate the folding and transport of newly synthesized GlcCerase in the endoplasmic reticulum, thereby increasing the lysosomal pool of the enzyme. In addition, N370S GlcCerase synthesized in the presence of IFG exhibits a shift in pH optimum from 6.4 to 5.2 and altered sensitivity to SDS. Although IFG fully inhibits GlcCerase in the lysosome in an in situ assay, washout of the drug leads to partial recovery of GlcCerase activity within 4 h and full recovery by 24 h. These findings provide support for the possible use of active-site inhibitors in the treatment of some forms of Gaucher disease.
Collapse
Affiliation(s)
- Richard A. Steet
- *Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Stephen Chung
- *Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Brandon Wustman
- Amicus Therapeutics, 6 Cedar Brook Drive, Cranbury, NJ 08512
| | - Allan Powe
- Amicus Therapeutics, 6 Cedar Brook Drive, Cranbury, NJ 08512
| | - Hung Do
- Amicus Therapeutics, 6 Cedar Brook Drive, Cranbury, NJ 08512
| | - Stuart A. Kornfeld
- *Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
367
|
Yu L, Ikeda K, Kato A, Adachi I, Godin G, Compain P, Martin O, Asano N. Alpha-1-C-octyl-1-deoxynojirimycin as a pharmacological chaperone for Gaucher disease. Bioorg Med Chem 2006; 14:7736-44. [PMID: 16919960 DOI: 10.1016/j.bmc.2006.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
The most common lysosomal storage disorder, Gaucher disease, is caused by inefficient folding and trafficking of certain variants of lysosomal beta-glucosidase (beta-Glu, also known as beta-glucocerebrosidase). Recently, Sawker et al. reported that the addition of subinhibitory concentrations (10 microM) of the pharmacological chaperone N-nonyl-1-deoxynojirimycin (NN-DNJ) (10) to Gaucher patient-derived cells leads to a 2-fold increase in activity of mutant (N370S) enzyme [Proc. Natl. Acad. Sci. U.S.A.2002, 99, 15428]. However, we found that the addition of NN-DNJ at 10 microM lowered the lysosomal alpha-glucosidase (alpha-Glu) activity by 50% throughout the assay period in spite of the excellent chaperoning activity in N370S fibroblasts. Hence, we prepared a series of DNJ derivatives with an alkyl chain at the C-1alpha position and evaluated their in vitro inhibitory activity and potential as pharmacological chaperones for Gaucher cell lines. Among them, alpha-1-C-octyl-DNJ (CO-DNJ) (15) showed 460-fold stronger in vitro inhibitory activity than DNJ toward beta-Glu, while NN-DNJ enhanced in vitro inhibitory activity by 360-fold. Treatment with CO-DNJ (20 microM) for 4 days maximally increased intracellular beta-Glu activity by 1.7-fold in Gaucher N370 cell line (GM0037) and by 2.0-fold in another N370 cell line (GM00852). The addition of 20 microM CO-DNJ to the N370S (GM00372) culture medium for 10 days led to 1.9-fold increase in the beta-Glu activity without affecting the intracellular alpha-Glu activity for 10 days. Only CO-DNJ showed a weak beta-Glu chaperoning activity in the L444P type 2 variant, with 1.2-fold increase at 5-20 microM, and furthermore maximally increased the alpha-Glu activity by 1.3-fold at 20 microM. These experimental results suggest that CO-DNJ is a significant pharmacological chaperone for N370S Gaucher variants, minimizing the potential for undesirable side effects such as alpha-Glu inhibition.
Collapse
Affiliation(s)
- Liang Yu
- Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | | | | | | | | | | | | | | |
Collapse
|
368
|
Grijalvo S, Bedia C, Triola G, Casas J, Llebaria A, Teixidó J, Rabal O, Levade T, Delgado A, Fabriàs G. Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chem Phys Lipids 2006; 144:69-84. [PMID: 16942762 DOI: 10.1016/j.chemphyslip.2006.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 07/12/2006] [Indexed: 11/17/2022]
Abstract
The synthesis of novel N-acylethanolamines and their use as inhibitors of the aCDase is reported here. The compounds are either 2-oxooctanamides or oleamides of sphingosine analogs featuring a 3-hydroxy-4,5-hexadecenyl tail replaced by ether or thioether moieties. It appears that, within the 2-oxooctanamide family, the C3-OH group of the sphingosine molecule is required for inhibition both in vitro and in cultured cells. Furthermore, although the (E)-4 double bond is not essential for inhibitory activity, the (E) configuration is required, since the analogue with a (Z)-4 unsaturation was not inhibitory. None of the oleamides inhibited the aCDase in vitro. Conversely, with the exception of N-oleoylethanolamine and its analogs with S-decyl and S-hexadecyl substituents, all the synthesized oleamides inhibited the aCDase in cultured cells, although with a relatively low potency. We conclude that novel aCDase inhibitors can evolve from N-acylation of sphingoid bases with electron deficient-acyl groups. In contrast, chemical modification of the N-oleoylsphingosine backbone does not seem to offer an appropriate strategy to obtain aCDase inhibitors.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Research Unit on Bioactive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona (IIQAB-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Shabbeer J, Yasuda M, Benson SD, Desnick RJ. Fabry disease: identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2006; 2:297-309. [PMID: 16595074 PMCID: PMC3500179 DOI: 10.1186/1479-7364-2-5-297] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fabry disease, an X-linked recessive inborn error of glycosphingolipid catabolism, results from the deficient activity of the lysosomal exoglycohydrolase, α-galactosidase A (EC 3.2.1.22; α-Gal A). The molecular lesions in the α-Gal A gene causing the classic phenotype of Fabry disease in 66 unrelated families were determined. In 49 families, 50 new mutations were identified, including: 29 missense mutations (N34K, T41I, D93V, R112S, L166G, G171D, M187T, S201Y, S201F, D234E, W236R, D264Y, M267R, V269M, G271S, G271V, S276G, Q283P, A285P, A285D, M290I, P293T, Q312H, Q321R, G328V, E338K, A348P, E358A, Q386P); nine nonsense mutations (C56X, E79X, K127X, Y151X, Y173X, L177X, W262X, Q306X, E338X); five splicing defects (IVS4-1G > A, IVS5-2A > G, IVS5 + 3A > G, IVS5 + 4A > G, IVS6-1G > C); four small deletions (18delA, 457delGAC, 567delG, 1096delACCAT); one small insertion (996insC); one 3.1 kilobase Alu-Alu deletion (which included exon 2); and one complex mutation (K374R, 1124delGAG). In 18 families, 17 previously reported mutations were identified, with R112C occurring in two families. In two classically affected families, affected males were identified with two mutations: one with two novel mutations, D264Y and V269M and the other with one novel (Q312H) and one previously reported (A143T) mutation. Transient expression of the individual mutations revealed that D264Y and Q312H were localised in the endoplasmic reticulum and had no detectable or markedly reduced activity, whereas V269M and A143T were localised in lysosomes and had approximately 10 per cent and approximately 35 per cent of expressed wild-type activity, respectively. Structural analyses based on the enzyme's three-dimensional structure predicted the effect of the 29 novel missense mutations on the mutant glycoprotein's structure. Of note, three novel mutations (approximately 10 per cent) were predicted not to significantly alter the glycoprotein's structure; however, they were disease causing. These studies further define the molecular heterogeneity of the α-Gal A mutations in classical Fabry disease, permit precise heterozygote detection and prenatal diagnosis, and provide insights into the structural alterations of the mutant enzymes that cause the classic phenotype.
Collapse
Affiliation(s)
- Junaid Shabbeer
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | - Makiko Yasuda
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | - Stacy D Benson
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert J Desnick
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| |
Collapse
|
370
|
Kakavanos R, Hopwood JJ, Lang D, Meikle PJ, Brooks DA. Stabilising normal and mis-sense variant alpha-glucosidase. FEBS Lett 2006; 580:4365-70. [PMID: 16846599 DOI: 10.1016/j.febslet.2006.06.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/07/2006] [Accepted: 06/29/2006] [Indexed: 11/26/2022]
Abstract
alpha-Glucosidase (EC 3.2.1.3) is a lysosomal enzyme that hydrolyses alpha-1,4- and alpha-1,6-linkages of glycogen to produce free glucose. A deficiency in alpha-glucosidase activity results in glycogen storage disorder type II (GSD II), also called Pompe disease. Here, d-glucose was shown to be a competitive inhibitor of alpha-glucosidase and when added to culture medium at 6.0 g/L increased the production of this protein by CHO-K1 expression cells and stabilised the enzyme activity. D-Glucose also prevented alpha-glucosidase aggregation/precipitation and increased protein yield in a modified purification scheme. In fibroblast cells, from adult-onset GSD II patients, D-glucose increased the residual level of alpha-glucosidase activity, suggesting that a structural analogue of d-glucose may be used for enzyme enhancement therapy.
Collapse
Affiliation(s)
- Revecca Kakavanos
- Department of Genetic Medicine, Lysosomal Diseases Research Unit, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | | | | | | | | |
Collapse
|
371
|
Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, Ponzone A, Desnick RJ. High incidence of later-onset fabry disease revealed by newborn screening. Am J Hum Genet 2006; 79:31-40. [PMID: 16773563 PMCID: PMC1474133 DOI: 10.1086/504601] [Citation(s) in RCA: 707] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/21/2006] [Indexed: 11/04/2022] Open
Abstract
The classic phenotype of Fabry disease, X-linked alpha -galactosidase A (alpha -Gal A) deficiency, has an estimated incidence of approximately 1 in 50,000 males. The recent recognition of later-onset variants suggested that this treatable lysosomal disease is more frequent. To determine the disease incidence, we undertook newborn screening by assaying the alpha-Gal A activity in blood spots from 37,104 consecutive Italian male neonates. Enzyme-deficient infants were retested, and "doubly screened-positive" infants and their relatives were diagnostically confirmed by enzyme and mutation analyses. Twelve (0.03%) neonates had deficient alpha-Gal A activities and specific mutations, including four novel missense mutations (M51I, E66G, A73V, and R118C), three missense mutations (F113L, A143T, and N215S) identified previously in later-onset patients, and one splicing defect (IVS5(+1G-->T)) reported in a patient with the classic phenotype. Molecular modeling and in vitro overexpression of the missense mutations demonstrated structures and residual activities, which were rescued/enhanced by an alpha-Gal A-specific pharmacologic chaperone, consistent with mutations that cause the later-onset phenotype. Family studies revealed undiagnosed Fabry disease in affected individuals. In this population, the incidence of alpha-Gal A deficiency was 1 in approximately 3,100, with an 11 : 1 ratio of patients with the later-onset : classic phenotypes. If only known disease-causing mutations were included, the incidence would be 1 in approximately 4,600, with a 7 : 1 ratio of patients with the later-onset : classic phenotypes. These results suggest that the later-onset phenotype of Fabry disease is underdiagnosed among males with cardiac, cerebrovascular, and/or renal disease. Recognition of these patients would permit family screening and earlier therapeutic intervention. However, the higher incidence of the later-onset phenotype in patients raises ethical issues related to when screening should be performed--in the neonatal period or at early maturity, perhaps in conjunction with screening for other treatable adult-onset disorders.
Collapse
Affiliation(s)
- Marco Spada
- Department of Pediatrics, University of Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
372
|
Shin IS, Nishikawa K, Maruyama H, Ishii S. Histidine-tagged shiga toxin B subunit binding assay: simple and specific determination of gb3 content in mammalian cells. Chem Pharm Bull (Tokyo) 2006; 54:522-7. [PMID: 16595957 DOI: 10.1248/cpb.54.522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A two-step binding assay for globotriaosylceramide (Gb3) content was developed by histidine-tagging strategy, which is a well-established method for the purification of recombinant proteins. The complete binding of the recombinant His-tagged Shiga toxin 1B subunit (1B-His) (1 microg/ml) to the standard Gb3 adsorbed on a multi-well H type plate was observed within 30 min at 37 degrees C; and its binding could be visualized by the following applications of HisProbe-HRP (8 microg/ml) and tetramethylbenzidine (TMB) peroxidase substrate. The 1B-His binding assay was linear over the range of 1 to 100 ng of Gb3 per well. The binding of 1B-His was specific to Gb3 separated from HeLa cells, and no major cross-reactivity of other glycolipids in Folch's lower fractions extracted from HeLa cells was detected. The glycolipids in Folch's lower fractions from HeLa cells, human fibroblasts and mouse heart were suitable for this assay, but the further purification was needed for glycolipids from human plasma, thus sample preparation is critical factor for the reliable determination of Gb3 content. The 1B-His binding to Gb3 was inhibited by the addition of galactose, but not mannose. This 1B-His binding assay will be useful not only for the determination of Gb3 content, but also for screening for the compounds which inhibit the toxin-binding to Gb3. The strategy of our present method may be applicable for other binding assay, such as Cholera toxin B-subunit for ganglioside GM1.
Collapse
Affiliation(s)
- In-Sun Shin
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | |
Collapse
|
373
|
Abstract
A large number of neurodegenerative diseases in humans result from protein misfolding and aggregation. Protein misfolding is believed to be the primary cause of Alzheimer's disease, Parkinson's disease, Huntington's disease, Creutzfeldt-Jakob disease, cystic fibrosis, Gaucher's disease and many other degenerative and neurodegenerative disorders. Cellular molecular chaperones, which are ubiquitous, stress-induced proteins, and newly found chemical and pharmacological chaperones have been found to be effective in preventing misfolding of different disease-causing proteins, essentially reducing the severity of several neurodegenerative disorders and many other protein-misfolding diseases. In this review, we discuss the probable mechanisms of several protein-misfolding diseases in humans, as well as therapeutic approaches for countering them. The role of molecular, chemical and pharmacological chaperones in suppressing the effect of protein misfolding-induced consequences in humans is explained in detail. Functional aspects of the different types of chaperones suggest their uses as potential therapeutic agents against different types of degenerative diseases, including neurodegenerative disorders.
Collapse
Affiliation(s)
- Tapan K Chaudhuri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | | |
Collapse
|
374
|
Yam GHF, Bosshard N, Zuber C, Steinmann B, Roth J. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 2006; 290:C1076-82. [PMID: 16531566 DOI: 10.1152/ajpcell.00426.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (alpha-Gal A) resulting in lysosomal accumulation of glycosphingolipid globotriosylceramide Gb3. Misfolded alpha-Gal A variants can have residual enzyme activity but are unstable. Their lysosomal trafficking is impaired because they are retained in the endoplasmic reticulum (ER) by quality control. Subinhibitory doses of the competitive inhibitor of alpha-Gal A, 1-deoxygalactonojirimycin (DGJ), stabilize mutant alpha-Gal A in vitro and correct the trafficking defect. We showed by immunolabeling that the chaperone-like action of DGJ significantly reduces the lysosomal Gb3 storage in human Fabry fibroblasts harboring the novel mutations T194I and V390fsX8. The specificity of the DGJ effect was proven by RNA interference. Electron microscopic morphometry demonstrated a reduction of large-size, disease-associated lysosomes and loss of characteristic multilamellar lysosomal inclusions on DGJ treatment. In addition, the pre-Golgi intermediates were decreased. However, the rough ER was not different between DGJ-treated and untreated cells. Pulse-chase experiments revealed that DGJ treatment resulted in maturation and stabilization of mutant alpha-Gal A. Genes involved in cell stress signaling, heat shock response, unfolded protein response, and ER-associated degradation show no apparent difference in expression between untreated and DGJ-treated fibroblasts. The DGJ treatment has no apparent cytotoxic effects. Thus our data show the usefulness of a pharmacological chaperone for correction of the lysosomal storage in Fabry fibroblasts harboring different mutations with residual enzyme activity. Pharmacological chaperones acting on misfolded, unstable mutant proteins that exhibit residual biological activity offer a convenient and cost-efficient therapeutic strategy.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
375
|
Brady RO. Emerging Strategies for the Treatment of Hereditary Metabolic Storage Disorders. Rejuvenation Res 2006; 9:237-44. [PMID: 16706651 DOI: 10.1089/rej.2006.9.237] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic storage disorders are caused by mutations in genes that result in insufficient activity of enzymes required for the catabolism of substances that arise from the turnover of senescent cells in the body. Among the most prevalent of these conditions are Gaucher disease and Fabry disease, which are caused by reduced activity of the housekeeping enzymes glucocerebrosidase and alpha-galactosidase A, respectively. Enzyme replacement therapy is extraordinarily effective for patients with Gaucher disease. It is under examination in patients with Fabry disease, and improvement of various clinical aspects in these patients has been documented. The blood-brain barrier prevents systemically administered enzymes from reaching the central nervous system. This limitation is a major impediment for the treatment of patients with enzyme deficiency disorders in whom the brain is involved. Alternatives to enzyme replacement therapy that have been initiated to treat systemic manifestations and brain involvement in patients with metabolic disorders include substrate reduction therapy, active site-specific chaperone therapy, and gene therapy. The present status and anticipated advances in the application of these therapeutic approaches are examined here.
Collapse
Affiliation(s)
- Roscoe O Brady
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1260, USA.
| |
Collapse
|
376
|
Gestwicki JE. Reclamation of proteins from the cellular scrap heap. ACS Chem Biol 2006; 1:201-3. [PMID: 17163671 DOI: 10.1021/cb6001784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A growing number of diseases have been associated with protein misfolding. Thus, strategies that use small molecules to adjust folding tendencies have therapeutic potential. However, progress in this area has been hampered by an insufficient description of the molecular underpinnings of protein instability within the cell. In a recent report, a chemical approach was taken to probe the mechanism by which Gaucher disease associated mutations in glucocerebrosidase destabilize that enzyme and lead to its destruction. These studies provide a blueprint for the design of "chemical chaperones" for the exploration of cellular protein homeostasis and the treatment of misfolding diseases.
Collapse
Affiliation(s)
- Jason E Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, USA.
| |
Collapse
|
377
|
Sawkar AR, Schmitz M, Zimmer KP, Reczek D, Edmunds T, Balch WE, Kelly JW. Chemical chaperones and permissive temperatures alter localization of Gaucher disease associated glucocerebrosidase variants. ACS Chem Biol 2006; 1:235-51. [PMID: 17163678 DOI: 10.1021/cb600187q] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Point mutations in the lysosomal hydrolase, glucocerebrosidase (GC), can cause Gaucher disease, a common lysosomal storage disease. Several clinically important GC mutations impede folding in the endoplasmic reticulum (ER) and target these enzymes for ER-associated degradation (ERAD). The removal of these misfolded proteins decreases the lysosomal concentration of GC, which results in glucosylceramide accumulation. The most common GC variant, N370S, and other clinically relevant variants, G202R and L444P, exhibit different cellular localization patterns in patient-derived fibroblasts. We show that these distributions can be altered by manipulation of the ER folding environment, either by chemical chaperones or by temperature shifts. N370S, L444P, and G202R GC are destabilized in the neutral pH environment of the ER, rendering them prone to ERAD. Fibroblasts harboring the G202R and L444P GC mutations grown at 30 degrees C localize the mutant proteins to the lysosome, and this increases total GC activity. Both of these temperature-sensitive mutants appear to be stable at 37 degrees C once they are trafficked to the low pH environment of the lysosome. Chemical chaperones correct the ER instability and significant ER retention of G202R GC. N370S is also destabilized under ER simulating conditions, a deficiency that is corrected by chemical chaperone binding. These data clearly show manipulating the ER environment with chemical chaperones increases the lysosomal concentration of partially active GC variants and suggest that small molecules could be used to treat Gaucher disease.
Collapse
Affiliation(s)
- Anu R Sawkar
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
378
|
Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci U S A 2006; 103:5644-51. [PMID: 16567625 PMCID: PMC1414631 DOI: 10.1073/pnas.0600549103] [Citation(s) in RCA: 671] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The premise of this review is that apolipoprotein (apo) E4 is much more than a contributing factor to neurodegeneration. ApoE has critical functions in redistributing lipids among CNS cells for normal lipid homeostasis, repairing injured neurons, maintaining synapto-dendritic connections, and scavenging toxins. In multiple pathways affecting neuropathology, including Alzheimer's disease, apoE acts directly or in concert with age, head injury, oxidative stress, ischemia, inflammation, and excess amyloid beta peptide production to cause neurological disorders, accelerating progression, altering prognosis, or lowering age of onset. We envision that unique structural features of apoE4 are responsible for apoE4-associated neuropathology. Although the structures of apoE2, apoE3, and apoE4 are in dynamic equilibrium, apoE4, which is detrimental in a variety of neurological disorders, is more likely to assume a pathological conformation. Importantly, apoE4 displays domain interaction (an interaction between the N- and C-terminal domains of the protein that results in a compact structure) and molten globule formation (the formation of stable, reactive intermediates with potentially pathological activities). In response to CNS stress or injury, neurons can synthesize apoE. ApoE4 uniquely undergoes neuron-specific proteolysis, resulting in bioactive toxic fragments that enter the cytosol, alter the cytoskeleton, disrupt mitochondrial energy balance, and cause cell death. Our findings suggest potential therapeutic strategies, including the use of "structure correctors" to convert apoE4 to an "apoE3-like" molecule, protease inhibitors to prevent the generation of toxic apoE4 fragments, and "mitochondrial protectors" to prevent cellular energy disruption.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
379
|
Suzuki Y. Beta-galactosidase deficiency: an approach to chaperone therapy. J Inherit Metab Dis 2006; 29:471-6. [PMID: 16763919 DOI: 10.1007/s10545-006-0287-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
We propose a new molecular therapeutic approach to lysosomal diseases with severe neurological manifestations. Some low-molecular-weight compounds, acting as competitive inhibitors of a lysosomal enzyme in vitro, were found to stabilize and restore catalytic activities of the enzyme molecule as a molecular chaperone. We started this trial first in Fabry disease (generalized vasculopathy) using galactose and 1-deoxygalactonojirimycin, and then in beta-galactosidase deficiency disorders (beta-galactosidosis) with generalized neurosomatic and/or systemic skeletal manifestations (GM(1)-gangliosidosis and Morquio B disease), using a newly developed chemical compound N-octyl-4-epi-beta-valienamine (NOEV). Administration of this chaperone compound resulted in elevation of intracellular enzyme activity in cultured fibroblasts from patients and genetically engineered model mice. In addition, substrate storage was improved after NOEV had been transported into the brain tissue via the blood-brain barrier. We hope this new approach (chemical chaperone therapy) will be useful for certain patients with beta-galactosidosis and potentially other lysosomal storage diseases with central nervous system involvement.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Clinical Research Center, International University of Health and Welfare, 2600-1 Kita-Kanemaru, Otawara, 324-8501, Japan.
| |
Collapse
|
380
|
Norez C, Noel S, Wilke M, Bijvelds M, Jorna H, Melin P, DeJonge H, Becq F. Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the alpha-glucosidase inhibitor miglustat. FEBS Lett 2006; 580:2081-6. [PMID: 16546175 DOI: 10.1016/j.febslet.2006.03.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/01/2006] [Accepted: 03/06/2006] [Indexed: 11/16/2022]
Abstract
In the disease cystic fibrosis (CF), the most common mutation delF508 results in endoplasmic reticulum retention of misfolded CF gene proteins (CFTR). We show that the alpha-1,2-glucosidase inhibitor miglustat (N-butyldeoxynojirimycin, NB-DNJ) prevents delF508-CFTR/calnexin interaction and restores cAMP-activated chloride current in epithelial CF cells. Moreover, miglustat rescues a mature and functional delF508-CFTR in the intestinal crypts of ileal mucosa from delF508 mice. Since miglustat is an orally active orphan drug (Zavesca) prescribed for the treatment of Gaucher disease, our findings provide the basis for future clinical evaluation of miglustat in CF patients.
Collapse
Affiliation(s)
- Caroline Norez
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers, 40 avenue du recteur Pineau, Poitiers 86022, France.
| | | | | | | | | | | | | | | |
Collapse
|
381
|
Alfonso P, Pampín S, Estrada J, Rodríguez-Rey JC, Giraldo P, Sancho J, Pocoví M. Miglustat (NB-DNJ) works as a chaperone for mutated acid beta-glucosidase in cells transfected with several Gaucher disease mutations. Blood Cells Mol Dis 2006; 35:268-76. [PMID: 16039881 DOI: 10.1016/j.bcmd.2005.05.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 05/17/2005] [Accepted: 05/17/2005] [Indexed: 11/29/2022]
Abstract
Gaucher disease (GD) is a disorder of glycosphinglipid metabolism caused by deficiency of lysosomal acid beta-glucosidase (GC), resulting in progressive deposition of glucosylceramide in macrophages. The glucose analogue, N-butyl-deoxynojirimycin (NB-DNJ, Miglustat), is an inhibitor of the ceramide-specific glucosyltransferase (CSG) which catalyzes the first step of glycosphingolipids biosynthesis and is currently approved for the oral treatment of type 1 GD. Using site-directed mutagenesis, we constructed plasmids containing wild-type and several mutations in glucocerebrosidase (GBA) gene. The plasmids were transfected into COS-7 cells and stable transfected cell lines were obtained by geneticin (G418) selection. Cells were cultured during 6 days with medium with or without 10 microM NB-DNJ. The addition of NB-DNJ to COS-7 cell medium leads to 1.3-, 2.1-, 2.3-, 3.6-, and 9.9-fold increase in the activity of S364R, wild-type, N370S, V15M, and M123T GC, respectively. However, no significant changes were observed in the activity of the L444P, L336P, and S465del mutated proteins, but a small decrease in the rare P266L variant was observed. These results suggest that NB-DNJ, in addition to the inhibitory effect on CSG, also works as a "chemical chaperone", increasing the activity of acid beta-glucosidase of wild-type and several GC mutated proteins, including the most frequent N370S mutation. The specific location of the Miglustat binding site in GC is unknown. Potential binding sites in the enzyme have been searched for using computational molecular docking. The searching strategy identified three potential GC binding sites for Miglustat, one being the substrate-binding site of the enzyme, which was the best-ranked site by AutoDock program. Therefore, it is possible that Miglustat exerts its chaperoning activity on acid beta-glucosidase by acting as an inhibitor bound at the active site. This increase on the activity of the acid beta-glucosidase would imply that Miglustat is not only a substrate reducer but also an inhibitor of the GC degradation, with very promising clinical implications for the treatment of GD patients.
Collapse
Affiliation(s)
- Pilar Alfonso
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
382
|
Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S. Cell biology of membrane trafficking in human disease. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:1-69. [PMID: 16984815 PMCID: PMC7112332 DOI: 10.1016/s0074-7696(06)52005-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the molecular and cellular mechanisms underlying membrane traffic pathways is crucial to the treatment and cure of human disease. Various human diseases caused by changes in cellular homeostasis arise through a single gene mutation(s) resulting in compromised membrane trafficking. Many pathogenic agents such as viruses, bacteria, or parasites have evolved mechanisms to subvert the host cell response to infection, or have hijacked cellular mechanisms to proliferate and ensure pathogen survival. Understanding the consequence of genetic mutations or pathogenic infection on membrane traffic has also enabled greater understanding of the interactions between organisms and the surrounding environment. This review focuses on human genetic defects and molecular mechanisms that underlie eukaryote exocytosis and endocytosis and current and future prospects for alleviation of a variety of human diseases.
Collapse
Affiliation(s)
- Gareth J Howell
- Endothelial Cell Biology Unit, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
383
|
Abstract
An increasing number of studies indicate that low-molecular-weight compounds can help correct conformational diseases by inhibiting the aggregation or enable the mutant proteins to escape the quality control systems, and thus their function can be rescued. The small molecules were named chemical chaperones and it is thought that they nonselectively stabilize the mutant proteins and facilitate their folding. Chemical chaperones are usually osmotically active, such as DMSO, glycerol, or deuterated water, but other compounds, such as 4-phenylbutiric acid, are also members of the chemical chaperone group. More recently, compounds such as receptor ligands or enzyme inhibitors, which selectively recognize the mutant proteins, were also found to rescue conformational mutants and were termed pharmacological chaperones. An increasing amount of evidence suggests that the action of pharmacological chaperones could be generalized to a large number of misfolded proteins, representing new therapeutic possibilities for the treatment of conformational diseases. A new and exciting strategy has recently been developed, leading to the new chemical group called folding agonist. These small molecules are designed to bind proteins and thus restore their native conformation.
Collapse
Affiliation(s)
- E Papp
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
384
|
Loo TW, Bartlett MC, Clarke DM. Rescue of Folding Defects in ABC Transporters Using Pharmacological Chaperones. J Bioenerg Biomembr 2005; 37:501-7. [PMID: 16691490 DOI: 10.1007/s10863-005-9499-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-binding cassette (ABC) family of membrane transport proteins is the largest class of transporters in humans (48 members). The majority of ABC transporters function at the cell surface. Therefore, defective folding and trafficking of the protein to the cell surface can lead to serious health problems. The classic example is cystic fibrosis (CF). In most CF patients, there is a deletion of Phe508 in the CFTR protein (DeltaF508 CFTR) that results in defective folding and intracellular retention of the protein (processing mutant). A potential treatment for most patients with CF would be to use a ligand(s) of CFTR that acts a pharmacological chaperone to correct the folding defect. The feasibility of such an approach was first demonstrated with the multidrug transporter P-glycoprotein (P-gp), an ABC transporter, and a sister protein of CFTR. It was found that P-gps with mutations at sites equivalent to those found in CFTR processing mutants were rescued when they were expressed in the presence of drug substrates or modulators of P-gp. These compounds acted as pharmacological chaperones and functioned by promoting interactions among the various domains in the protein during the folding process. Several groups have attempted to identify compounds that could rescue the folding defect in DeltaF508 CFTR. The best compound identified through high-throughout screening is a quinazoline derivative (CFcor-325). Expression of DeltaF508 CFTR as well as other CFTR processing mutants in the presence of 1 muM CFcor-325 promoted folding and trafficking of the mutant proteins to the cell surface in an active conformation. Therefore, CFcor-325 and other quinazoline derivates could be important therapeutic compounds for the treatment of CF.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Rm. 7342, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | |
Collapse
|
385
|
Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, Arthus MF, Laperrière A, Brouard R, Bouvier M, Bichet DG. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 2005; 17:232-43. [PMID: 16319185 DOI: 10.1681/asn.2005080854] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In many mendelian diseases, some mutations result in the synthesis of misfolded proteins that cannot reach a transport-competent conformation. In X-linked nephrogenic diabetes insipidus, most of the mutant vasopressin 2 (V2) receptors are trapped in the endoplasmic reticulum and degraded. They are unable to reach the plasma membrane and promote water reabsorption through the principal cells of the collecting ducts. Herein is reported two types of experiments: In vivo studies to assess clinically a short-term treatment with a nonpeptide V1a receptor antagonist (SR49059) and in vitro studies in cultured cell systems. In patients, SR49059 decreased 24- h urine volume (11.9 +/- 2.3 to 8.2 +/- 2.0 L; P = 0.005) and water intake (10.7 +/- 1.9 to 7.2 +/- 1.6 L; P < 0.05). Maximum increase in urine osmolality was observed on day 3 (98 +/- 22 to 170 +/- 52 mOsm/kg; P = 0.05). Sodium, potassium, and creatinine excretions and plasma sodium were constant throughout the study. In vitro studies indicate that the nonpeptide V1a receptor antagonist SR49059 and the V1a/V2 receptor antagonist YM087 (Conivaptan) rescued cell surface expression and function of mutant V2 receptors. Mutant V2 receptors with nonsense mutations were not affected by the treatment. Misfolded V2 receptor mutants were rescued in vitro and also in vivo by nonpeptide antagonists. This therapeutic approach could be applied to the treatment of several hereditary diseases that result from errors in protein folding and kinesis.
Collapse
Affiliation(s)
- Virginie Bernier
- Department of Biochemistry, Groupe de recherche universitaire sur le médicament, Hôpital du Sacré-Coeur de Montréal, 5400 boulevard Gouin Ouest, Montréal, Québec, H4J 1C5 Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
386
|
|
387
|
Zhu X, Sheth KA, Li S, Chang HH, Fan JQ. Rational Design and Synthesis of Highly Potent β-Glucocerebrosidase Inhibitors. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200502662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
388
|
Zhu X, Sheth KA, Li S, Chang HH, Fan JQ. Rational Design and Synthesis of Highly Potent β-Glucocerebrosidase Inhibitors. Angew Chem Int Ed Engl 2005; 44:7450-3. [PMID: 16231389 DOI: 10.1002/anie.200502662] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
389
|
Yam GHF, Zuber C, Roth J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J 2005; 19:12-8. [PMID: 15629890 DOI: 10.1096/fj.04-2375com] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in proteins that induce misfolding and proteasomal degradation are common causes of inherited diseases. Fabry disease is a lysosomal storage disorder caused by a deficiency of alpha-galactosidase A activity in lysosomes resulting in an accumulation of glycosphingolipid globotriosylceramide (Gb3). Some classical Fabry hemizygotes and all cardiac variants have residual alpha-galactosidase A activity, but the mutant enzymes are unstable. Such mutant enzymes appear to be misfolded, recognized by the ER protein quality control, and degraded before sorting into lysosomes. Hence, correction of the trafficking defect of mutant but catalytically active enzyme into lysosomes would be beneficial for treatment of the disease. Here we show that a nontoxic competitive inhibitor (1-deoxygalactonojirimycin) of alpha-galactosidase A functions as a chemical chaperone by releasing ER-retained mutant enzyme from BiP. The treatment with subinhibitory doses resulted in efficient, long-term lysosomal trafficking of the ER-retained mutant alpha-galactosidase A. Successful clearance of lysosomal Gb3 storage and a near-normal lysosomal phenotype was achieved in human Fabry fibroblasts harboring different types of mutations. Small molecule chemical chaperones will be therapeutically useful for various lysosomal storage disorders as well as for other genetic metabolic disorders caused by mutant but nonetheless catalytically active enzymes.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
390
|
Sawkar AR, Adamski-Werner SL, Cheng WC, Wong CH, Beutler E, Zimmer KP, Kelly JW. Gaucher Disease-Associated Glucocerebrosidases Show Mutation-Dependent Chemical Chaperoning Profiles. ACTA ACUST UNITED AC 2005; 12:1235-44. [PMID: 16298303 DOI: 10.1016/j.chembiol.2005.09.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/25/2022]
Abstract
Gaucher disease is a lysosomal storage disorder caused by deficient glucocerebrosidase activity. We have previously shown that the cellular activity of the most common Gaucher disease-associated glucocerebrosidase variant, N370S, is increased when patient-derived cells are cultured with the chemical chaperone N-nonyl-deoxynojirimycin. Chemical chaperones stabilize proteins against misfolding, enabling their trafficking from the endoplasmic reticulum. Herein, the generality of this therapeutic strategy is evaluated with other glucocerebrosidase variants and with additional candidate chemical chaperones. Improved chemical chaperones are identified for N370S glucocerebrosidase. Moreover, we demonstrate that G202R, a glucocerebrosidase variant that is known to be retained in the endoplasmic reticulum, is also amenable to chemical chaperoning. The L444P variant is not chaperoned by any of the active site-directed molecules tested, likely because this mutation destabilizes a domain distinct from the catalytic domain.
Collapse
Affiliation(s)
- Anu R Sawkar
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
391
|
Jeyakumar M, Dwek RA, Butters TD, Platt FM. Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 2005; 6:713-25. [PMID: 16049428 DOI: 10.1038/nrn1725] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many neurodegenerative diseases are characterized by the accumulation of undegradable molecules in cells or at extracellular sites in the brain. One such family of diseases is the lysosomal storage disorders, which result from defects in various aspects of lysosomal function. Until recently, there was little prospect of treating storage diseases involving the CNS. However, recent progress has been made in understanding these conditions and in translating the findings into experimental therapies. We review the developments in this field and discuss the similarities in pathological features between these diseases and some more common neurodegenerative disorders.
Collapse
|
392
|
Mendes HF, van der Spuy J, Chapple JP, Cheetham ME. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 2005; 11:177-85. [PMID: 15823756 DOI: 10.1016/j.molmed.2005.02.007] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinitis pigmentosa (RP) is a group of retinal degenerative diseases that are characterised primarily by the loss of rod photoreceptor cells. Mutations in rhodopsin are the most common cause of autosomal-dominant RP (ADRP). Here, we propose a new classification for rhodopsin mutations based on their biochemical and cellular properties. Several different potential gain-of-function mechanisms for rhodopsin ADRP are described and discussed. Possible dominant-negative mechanisms, which affect the processing, translocation or degradation of wild-type rhodopsin, are also considered. Understanding the molecular and cellular consequences of rod-opsin mutations and the underlying disease mechanisms in ADRP are essential to develop future therapies for this class of retinal dystrophies.
Collapse
Affiliation(s)
- Hugo F Mendes
- Division of Pathology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | | | | |
Collapse
|
393
|
Darroch PI, Dagan A, Granot T, He X, Gatt S, Schuchman EH. A lipid analogue that inhibits sphingomyelin hydrolysis and synthesis, increases ceramide, and leads to cell death. J Lipid Res 2005; 46:2315-24. [PMID: 16150832 DOI: 10.1194/jlr.m500136-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the synthesis and characterization of a novel thiourea derivative of sphingomyelin (AD2765). In vitro assays using pure enzyme and/or cell extracts revealed that this compound inhibited the hydrolysis of BODIPY-conjugated or 14C-labeled sphingomyelin by acid sphingomyelinase and Mg2+-dependent neutral sphingomyelinase. Studies in normal human skin fibroblasts further revealed that AD2765 was taken up by cells and inhibited the hydrolysis of BODIPY-conjugated sphingomyelin in situ. In situ and in vitro studies also showed that this compound inhibited the synthesis of sphingomyelin from BODIPY-conjugated ceramide. The specificity of AD2765 for enzymes involved in sphingomyelin metabolism was demonstrated by the fact that it had no effect on the hydrolysis of BODIPY-conjugated ceramide by acid ceramidase or on the synthesis of BODIPY-conjugated glucosylceramide from BODIPY-conjugated ceramide. The overall effect of AD2765 on sphingomyelin metabolism was concentration-dependent, and treatment of normal human skin fibroblasts or cancer cells with this compound at concentrations > 10 microM led to an increase in cellular ceramide and cell death. Thus, AD2765 might be used to manipulate sphingomyelin metabolism in various ways, potentially to reduce substrate accumulation in cells from types A and B Niemann-Pick disease patients, and/or to affect the growth of human cancer cells.
Collapse
Affiliation(s)
- Peter I Darroch
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
394
|
Goi G, Massaccesi L, Burlina AP, Baquero Herrera CJ, Lombardo A, Tettamanti G, Burlina AB. Lysosomal leukocyte β-d-glucuronidase during enzyme replacement therapy in Fabry disease. Biochim Biophys Acta Mol Basis Dis 2005; 1741:300-6. [PMID: 15967645 DOI: 10.1016/j.bbadis.2005.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Fabry disease results from a deficiency in the activity of alpha-d-galactosidase A and subsequent accumulation of neutral glycosphingolipids in lysosomes. This study investigated whether lysosomal enzymes can indicate biochemical changes in the lysosomal apparatus induced by enzyme replacement therapy (ERT). DESIGN AND METHODS Eight patients were monitored by clinical and biochemical tests and several lysosomal glycohydrolases were measured in plasma and leucocytes. RESULTS Before starting ERT, beta-d-glucuronidase in leukocytes was markedly increased. After 1 month of therapy, enzyme levels dropped in all patients. In the patients who regularly followed the therapy, the enzyme levels remained stable for the next 20 months. In one patient who interrupted therapy for 2 months, the enzyme levels rose again. CONCLUSIONS Lysosomal enzymes can be useful for monitoring biochemical changes in patients with Fabry disease receiving ERT. Though these findings refer to only a small number of patients, the correlation between beta-d-glucuronidase levels and ERT is interesting and might serve as a basis for further studies to define the potential of this enzyme in monitoring the effects of ERT in lysosomal storage disorders.
Collapse
Affiliation(s)
- Giancarlo Goi
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Via Saldini, 50, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
395
|
Dondoni A, Giovannini PP, Perrone D. Cross-Metathesis of C-Allyl Iminosugars with Alkenyl Oxazolidines as a Key Step in the Synthesis of C-Iminoglycosyl α-Amino Acids.1 A Route to Iminosugar Containing C-Glycopeptides. J Org Chem 2005; 70:5508-18. [PMID: 15989332 DOI: 10.1021/jo050494o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structures: see text] A general access to a novel class of sugar alpha-amino acids composed of iminofuranose and iminopyranose residues anomerically linked to the glycinyl group through an alkyl chain is described. A set of eight compounds was prepared by the same reaction sequence involving as an initial step the Grubbs Ru-carbene-catalyzed cross-metathesis (CM) of various N-Cbz-protected allyl C-iminoglycosides with N-Boc-vinyl- and N-Boc-allyloxazolidine. The isolated yields of the CM products (mixtures of E- and Z-alkenes) varied in the range 40-70%. Each mixture was elaborated by first reducing the carbon-carbon double bond using in situ generated diimide and then unveiling the N-Boc glycinyl group [CH(BocNH)CO2H] by oxidative cleavage of the oxazolidine ring by the Jones reagent. All amino acids were characterized as their methyl esters. The insertion of a model C-iminoglycosyl-2-aminopentanoic acid into a tripeptide via sequential carboxylic and amino group coupling with L-phenylalanine derivatives was carried out as a demonstration of the potential of these sugar amino acids in designed glycopeptide synthesis.
Collapse
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via L. Borsari 46, 44100-Ferrara, Italy.
| | | | | |
Collapse
|
396
|
Butters TD, Dwek RA, Platt FM. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 2005; 15:43R-52R. [PMID: 15901676 DOI: 10.1093/glycob/cwi076] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The inherited metabolic disorders of glycosphingolipid (GSL) metabolism are a relatively rare group of diseases that have diverse and often neurodegenerative phenotypes. Typically, a deficiency in catabolic enzyme activity leads to lysosomal storage of GSL substrates and in many diseases, several other glycoconjugates. A novel generic approach to treating these diseases has been termed substrate reduction therapy (SRT), and the discovery and development of N-alkylated imino sugars as effective and approved drugs is discussed. An understanding of the molecular mechanism for the inhibition of the key enzyme in GSL biosynthesis, ceramide glucosyltransferase (CGT) by N-alkylated imino sugars, has also lead to compound design for improvements to inhibitory potency, bioavailability, enzyme selectivity, and biological safety. Following a successful clinical evaluation of one compound, N-butyl-deoxynojirimycin [(NB-DNJ), miglustat, Zavesca], for treating type I Gaucher disease, issues regarding the significance of side effects and CNS access have been addressed as exposure of drug to patients has increased. An alternative experimental approach to treat specific glycosphingolipid (GSL) lysosomal storage diseases is to use imino sugars as molecular chaperons that assist protein folding and stability of mutant enzymes. The principles of chaperon-mediated therapy (CMT) are described, and the potential efficacy and preclinical status of imino sugars is compared with substrate reduction therapy (SRT). The increasing use of imino sugars for clinical evaluation of a group of storage diseases that are complex and often intractable disorders to treat has considerable benefit. This is particularly so given the ability of small molecules to be orally available, penetrate the central nervous system (CNS), and have well-characterized biological and pharmacological properties.
Collapse
Affiliation(s)
- Terry D Butters
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|
397
|
Poeppel P, Habetha M, Marcão A, Büssow H, Berna L, Gieselmann V. Missense mutations as a cause of metachromatic leukodystrophy. Degradation of arylsulfatase A in the endoplasmic reticulum. FEBS J 2005; 272:1179-88. [PMID: 15720392 DOI: 10.1111/j.1742-4658.2005.04553.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metachromatic leukodystrophy is a lysosomal storage disorder caused by a deficiency of arylsulfatase A (ASA). Biosynthesis studies of ASA with various structure-sensitive monoclonal antibodies reveal that some epitopes of the enzyme form within the first minutes of biosynthesis whereas other epitopes form later, between 10 and 25 min. When we investigated 12 various ASAs, with amino acid substitutions according to the missense mutations found in metachromatic leukodystrophy patients, immunoprecipitation with monoclonal antibodies revealed folding deficits in all 12 mutant ASA enzymes. Eleven of the 12 mutants show partial expression of the early epitopes, but only six of these show, in addition, incomplete expression of late epitopes. In none of the mutant enzymes were the late forming epitopes found in the absence of early epitopes. Thus, data from the wild-type and mutant enzymes indicate that the enzyme folds in a sequential manner and that the folding of early forming epitopes is a prerequisite for maturation of the late epitopes. All mutant enzymes in which the amino acid substitution prevents the expression of the late forming epitopes are retained in the endoplasmic reticulum (ER). In contrast, all mutants in which a single late epitope is at least partially expressed can leave the ER. Thus, irrespective of the missense mutation, the expression of epitopes forming late in biosynthesis correlates with the ability of the enzyme to leave the ER. The degradation of ER-retained enzymes can be reduced by inhibitors of the proteasome and ER alpha1,2-mannosidase I, indicating that all enzymes are degraded via the proteasome. Inhibition of degradation did not lead to an enhanced delivery from the ER for any of the mutant enzymes.
Collapse
Affiliation(s)
- Peter Poeppel
- Institut für Physiologische Chemie, Rheinische-Friedrich-Wilhelms Universität Bonn, Germany
| | | | | | | | | | | |
Collapse
|
398
|
Yasuda K, Chang HH, Wu HL, Ishii S, Fan JQ. Efficient and rapid purification of recombinant human alpha-galactosidase A by affinity column chromatography. Protein Expr Purif 2005; 37:499-506. [PMID: 15358377 DOI: 10.1016/j.pep.2004.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 07/04/2004] [Indexed: 10/26/2022]
Abstract
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Human Genetics, Mount Sinai School of Medicine, Box 1498, Fifth Avenue at 100th Street, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
399
|
Burke MD, Park JO, Srinivasarao M, Khan SA. A novel enzymatic technique for limiting drug mobility in a hydrogel matrix. J Control Release 2005; 104:141-53. [PMID: 15866341 DOI: 10.1016/j.jconrel.2005.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Revised: 01/24/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
An oral colon specific drug delivery platform has been developed to facilitate targetted release of therapeutic proteins as well as small molecule drugs. A simple enzymatic procedure is used to modify the molecular architecture of a lightly chemically crosslinked galactomannan hydrogel as well as a model drug-galactomannan oligomer conjugate, fluoroisocynate (FITC) tagged guar oligomer, to entrap the model drug. The enzyme-modified hydrogel retains the drug until it reaches the colonic environment where bacteria secrete enzymes (namely beta-mannanase) to degrade the gel and release the drug molecule. Laser scanning confocal microscopy combined with fluorescence recovery after photobleaching is used to quantify the diffusion of the drug conjugate. The diffusion coefficient of solutes in the lightly crosslinked galactomannan hydrogel is approximately equal to the diffusion coefficient in the guar solution for simple diffusional drug loading. After drug loading, alpha-galactosidase treatment generates additional physical crosslinks in the hydrogel matrix as well as between the drug-oligomer conjugate and the hydrogel, which reduces diffusion of the drug-oligomer conjugate significantly. Degradation of the hydrogel by beta-mannanase results in a slow and controlled rate of FITC-guar oligomer diffusion, which generates an extended release profile for the model drug.
Collapse
|
400
|
Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM. Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 2005; 5:821-37. [PMID: 15479448 DOI: 10.1111/j.1600-0854.2004.00232.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The process of quality control in the endoplasmic reticulum involves a variety of mechanisms which ensure that only correctly folded proteins enter the secretory pathway. Among these are conformation-screening mechanisms performed by molecular chaperones that assist in protein folding and prevent non-native (or misfolded) proteins from interacting with other misfolded proteins. Chaperones play a central role in the triage of newly formed proteins prior to their entry into the secretion, retention, and degradation pathways. Despite this stringent quality control mechanism, gain- or loss-of-function mutations that affect protein folding in the endoplasmic reticulum can manifest themselves as profound effects on the health of an organism. Understanding the molecular, cellular, and energetic mechanisms of protein routing could prevent or correct the structural abnormalities associated with disease-causing misfolded proteins. Rescue of misfolded, "trafficking-defective", but otherwise functional, proteins is achieved by a variety of physical, chemical, genetic, and pharmacological approaches. Pharmacologic chaperones (or "pharmacoperones") are template molecules that may potentially arrest or reverse diseases by inducing mutant proteins to adopt native-type-like conformations instead of improperly folded ones. Such restructuring leads to a normal pattern of cellular localization and function. This review focuses on protein misfolding and misrouting related to various disease states and describes promising approaches to overcoming such defects. Special attention is paid to the gonadotropin-releasing hormone receptor, since there is a great deal of information about this receptor, which has recently emerged as a particularly instructive model.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | |
Collapse
|