351
|
Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39:547-556. [PMID: 28390761 DOI: 10.1016/j.braindev.2017.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Peng Wu
- Department of Social Science, Hebei University of Engineering, Handan 056038, PR China
| | - Zhi-Min Shi
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yan-Li Xu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Zhi-Jun Liu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| |
Collapse
|
352
|
Haworth KG, Peterson CW, Kiem HP. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy 2017; 19:1325-1338. [PMID: 28751153 DOI: 10.1016/j.jcyt.2017.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) was first reported and characterized more than three decades ago. Once thought of as a death sentence, HIV infection has become a chronically manageable disease. However, it is estimated that a staggering 0.8% of the world's population is infected with HIV, with more than 1 million deaths reported in 2015 alone. Despite the development of effective anti-retroviral drugs, a permanent cure has only been documented in one patient to date. In 2007, an HIV-positive patient received a bone marrow transplant to treat his leukemia from an individual who was homozygous for a mutation in the CCR5 gene. This mutation, known as CCR5Δ32, prevents HIV replication by inhibiting the early stage of viral entry into cells, resulting in resistance to infection from the majority of HIV isolates. More than 10 years after his last dose of anti-retroviral therapy, the transplant recipient remains free of replication-competent virus. Multiple groups are now attempting to replicate this success through the use of other CCR5-negative donor cell sources. Additionally, developments in the use of lentiviral vectors and targeted nucleases have opened the doors of precision medicine and enabled new treatment methodologies to combat HIV infection through targeted ablation or down-regulation of CCR5 expression. Here, we review historical cases of CCR5-edited cell-based therapies, current clinical trials and future benefits and challenges associated with this technology.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christopher W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
353
|
Wu Y, Smith AE, Reineke TM. Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types. Bioconjug Chem 2017; 28:2035-2040. [PMID: 28731685 DOI: 10.1021/acs.bioconjchem.7b00306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A class of cationic poly(alkylamidoamine)s (PAAAs) containing lipophilic methylene linkers were designed and examined as in vitro plasmid DNA (pDNA) delivery agents. The PAAAs were synthesized via step-growth polymerization between a diamine monomer and each of four different diacid chloride monomers with varying methylene linker lengths, including glutaryl chloride, adipoyl chloride, pimeloyl chloride, and suberoyl chloride, which served to systematically increase the lipophilicity of the polymers. The synthesized polymers successfully complexed with pDNA in reduced serum medium at N/P ratios of 5 and greater, resulting in polyplexes with hydrodynamic diameters of approximately 1 μm. These polyplexes were tested for in vitro transgene expression and cytotoxicity using HDFa (human dermal fibroblast), HeLa (human cervical carcinoma), HMEC (human mammary epithelial), and HUVEC (human umbilical vein endothelial) cells. Interestingly, select PAAA polyplex formulations were found to be more effective than Lipofectamine 2000 at promoting transgene expression (GFP) while maintaining comparable or higher cell viability. Transgene expression was highest in HeLa cells (∼90% for most formulations) and lowest in HDFa cells (up to ∼20%) as measured by GFP fluorescence. In addition, the cytotoxicity of PAAA polyplex formulations was significantly increased as the molecular weight, N/P ratio, and methylene linker length were increased. The PAAA vehicles developed herein provide a new delivery vehicle design strategy of displaying attributes of both polycations and lipids, which show promise as a tunable scaffold for refining the structure-activity-toxicity profiles for future genome editing studies.
Collapse
Affiliation(s)
- Yaoying Wu
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Adam E Smith
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Chemical Engineering, University of Mississippi , 134 Anderson, University, Mississippi 38677, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
354
|
COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa. Mol Ther 2017; 25:2573-2584. [PMID: 28800953 PMCID: PMC5675435 DOI: 10.1016/j.ymthe.2017.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Designer nucleases allow specific and precise genomic modifications and represent versatile molecular tools for the correction of disease-associated mutations. In this study, we have exploited an ex vivo CRISPR/Cas9-mediated homology-directed repair approach for the correction of a frequent inherited mutation in exon 80 of COL7A1, which impairs type VII collagen expression, causing the severe blistering skin disease recessive dystrophic epidermolysis bullosa. Upon CRISPR/Cas9 treatment of patient-derived keratinocytes, using either the wild-type Cas9 or D10A nickase, corrected single-cell clones expressed and secreted similar levels of type VII collagen as control keratinocytes. Transplantation of skin equivalents grown from corrected keratinocytes onto immunodeficient mice showed phenotypic reversion with normal localization of type VII collagen at the basement membrane zone, compared with uncorrected keratinocytes, as well as fully stratified and differentiated skin layers without indication of blister development. Next-generation sequencing revealed on-target efficiency of up to 30%, whereas nuclease-mediated off-target site modifications at predicted genomic loci were not detected. These data demonstrate the potential of the CRISPR/Cas9 technology as a possible ex vivo treatment option for genetic skin diseases in the future.
Collapse
|
355
|
Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol 2017; 101:1147-1154. [PMID: 28689169 PMCID: PMC5574398 DOI: 10.1136/bjophthalmol-2016-309975] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/29/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) are both genetically and phenotypically heterogeneous, and characterised clinically by severe congenital/early infancy visual loss, nystagmus, amaurotic pupils and markedly reduced/absent full-field electroretinograms. The vast genetic heterogeneity of inherited retinal disease has been established over the last 10 - 20 years, with disease-causing variants identified in 25 genes to date associated with LCA/EOSRD, accounting for 70–80% of cases, with thereby more genes yet to be identified. There is now far greater understanding of the structural and functional associations seen in the various LCA/EOSRD genotypes. Subsequent development/characterisation of LCA/EOSRD animal models has shed light on the underlying pathogenesis and allowed the demonstration of successful rescue with gene replacement therapy and pharmacological intervention in multiple models. These advancements have culminated in more than 12 completed, ongoing and anticipated phase I/II and phase III gene therapy and pharmacological human clinical trials. This review describes the clinical and genetic characteristics of LCA/EOSRD and the differential diagnoses to be considered. We discuss in further detail the diagnostic clinical features, pathophysiology, animal models and human treatment studies and trials, in the more common genetic subtypes and/or those closest to intervention.
Collapse
Affiliation(s)
- Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,University of California San Francisco, San Francisco CA, California, USA
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
356
|
Elezgarai SR, Biasini E. Common therapeutic strategies for prion and Alzheimer's diseases. Biol Chem 2017; 397:1115-1124. [PMID: 27279060 DOI: 10.1515/hsz-2016-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 01/19/2023]
Abstract
A number of unexpected pathophysiological connections linking different neurodegenerative diseases have emerged over the past decade. An example is provided by prion and Alzheimer's diseases. Despite being distinct pathologies, these disorders share several neurotoxic mechanisms, including accumulation of misfolded protein isoforms, stress of the protein synthesis machinery, and activation of a neurotoxic signaling mediated by the cellular prion protein. Here, in addition to reviewing these mechanisms, we will discuss the potential therapeutic interventions for prion and Alzheimer's diseases that are arising from the comprehension of their common neurodegenerative pathways.
Collapse
|
357
|
Tizzano Ferrari E. La Genética Clínica en la actualidad. Med Clin (Barc) 2017; 149:75-77. [DOI: 10.1016/j.medcli.2016.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
358
|
Abstract
Therapeutic gene editing is significant for medical advancement. Safety is intricately linked to the specificity of the editing tools used to cut at precise genomic targets. Improvements can be achieved by thoughtful design of nucleases and repair templates, analysis of off-target editing, and careful utilization of viral vectors. Advancements in DNA repair mechanisms and development of new generations of tools improve targeting of specific sequences while minimizing risks. It is important to plot a safe course for future clinical trials. This article reviews safety and specificity for therapeutic gene editing to spur dialogue and advancement.
Collapse
Affiliation(s)
- Christopher T Lux
- Department of Pediatrics, Cancer and Blood Disorders Center, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Andrew M Scharenberg
- Department of Pediatrics, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA; Department of Immunology, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| |
Collapse
|
359
|
Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis 2017; 70:54-65. [PMID: 28651846 DOI: 10.1016/j.bcmd.2017.06.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The remarkable phenotypic diversity of β thalassemia that range from severe anemia and transfusion-dependency, to a clinically asymptomatic state exemplifies how a spectrum of disease severity can be generated in single gene disorders. While the genetic basis for β thalassemia, and how severity of the anemia could be modified at different levels of its pathophysiology have been well documented, therapy remains largely supportive with bone marrow transplant being the only cure. Identification of the genetic variants modifying fetal hemoglobin (HbF) production in combination with α globin genotype provide some prediction of disease severity for β thalassemia but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered. Nonetheless, genetic studies have been successful in characterizing the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation. BCL11A has been established as a quantitative repressor, and progress has been made in manipulating its expression using genomic and gene-editing approaches for therapeutic benefits. Recent discoveries and understanding in the mechanisms associated with ineffective and abnormal erythropoiesis have also provided additional therapeutic targets, a couple of which are currently being tested in clinical trials.
Collapse
|
360
|
Lehmann J, Seebode C, Emmert S. Research on genodermatoses using novel genome-editing tools. J Dtsch Dermatol Ges 2017. [PMID: 28622433 DOI: 10.1111/ddg.13270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genodermatoses comprise a clinically heterogeneous group of mostly devastating disorders affecting the skin. To date, treatment options have in general been limited to symptom relief. However, the recent technical evolution in genome editing has ushered in a new era in the development of causal therapies for rare monogenetic diseases such as genodermatoses. The present review revisits the advantages and drawbacks of engineered nuclease tools currently available: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases, and - the most innovative - clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease 9 (CRISPR/Cas9) system. A mechanistic overview of the different modes of action of these programmable nucleases as well as their significance for causal therapy of genodermatoses is presented. Remaining limitations and challenges such as efficient delivery and off-target activity are critically discussed, highlighting both the past and future of gene therapy in dermatology.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany.,Clinic for Dermatology, Venereology, and Allergology, University Medical Center Goettingen, Germany
| | - Christina Seebode
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany.,Clinic for Dermatology, Venereology, and Allergology, University Medical Center Goettingen, Germany
| |
Collapse
|
361
|
Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 2017; 38:738-753. [PMID: 28392568 PMCID: PMC5520188 DOI: 10.1038/aps.2017.2] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022] Open
Abstract
Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.
Collapse
|
362
|
Abstract
Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
Collapse
Affiliation(s)
- Fuguo Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; ,
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; ,
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
363
|
Canver MC, Bauer DE, Orkin SH. Functional interrogation of non-coding DNA through CRISPR genome editing. Methods 2017; 121-122:118-129. [PMID: 28288828 PMCID: PMC5483188 DOI: 10.1016/j.ymeth.2017.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA.
Collapse
Affiliation(s)
| | - Daniel E Bauer
- Harvard Medical School, Boston, MA 02115, United States; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States.
| | - Stuart H Orkin
- Harvard Medical School, Boston, MA 02115, United States; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States; Howard Hughes Medical Institute, Boston, MA 02115, United States.
| |
Collapse
|
364
|
Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein Cell 2017; 8:896-925. [PMID: 28466386 PMCID: PMC5712290 DOI: 10.1007/s13238-017-0400-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) is a recombinant immunoreceptor combining an antibody-derived targeting fragment with signaling domains capable of activating cells, which endows T cells with the ability to recognize tumor-associated surface antigens independent of the expression of major histocompatibility complex (MHC) molecules. Recent early-phase clinical trials of CAR-modified T (CAR-T) cells for relapsed or refractory B cell malignancies have demonstrated promising results (that is, anti-CD19 CAR-T in B cell acute lymphoblastic leukemia (B-ALL)). Given this success, broadening the clinical experience of CAR-T cell therapy beyond hematological malignancies has been actively investigated. Here we discuss the basic design of CAR and review the clinical results from the studies of CAR-T cells in B cell leukemia and lymphoma, and several solid tumors. We additionally discuss the major challenges in the further development and strategies for increasing anti-tumor activity and safety, as well as for successful commercial translation.
Collapse
|
365
|
CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods 2017; 14:607-614. [PMID: 28459458 PMCID: PMC5924695 DOI: 10.1038/nmeth.4278] [Citation(s) in RCA: 511] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022]
Abstract
Sensitive detection of off-target effects is important for translating CRISPR-Cas9 nucleases into human therapeutics. In vitro biochemical methods for finding off-targets offer the potential advantages of greater reproducibility and scalability while avoiding limitations associated with strategies that require the culture and manipulation of living cells. Here we describe circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), a highly sensitive, sequencing-efficient in vitro screening strategy that outperforms existing cell-based or biochemical approaches for identifying CRISPR-Cas9 genome-wide off-target mutations. In contrast to previously described in vitro methods, we show that CIRCLE-seq can be practiced using widely accessible next-generation sequencing technology and does not require reference genome sequences. Importantly, CIRCLE-seq can be used to identify off-target mutations associated with cell-type-specific single-nucleotide polymorphisms, demonstrating the feasibility and importance of generating personalized specificity profiles. CIRCLE-seq provides an accessible, rapid, and comprehensive method for identifying genome-wide off-target mutations of CRISPR-Cas9.
Collapse
|
366
|
Brunger JM, Zutshi A, Willard VP, Gersbach CA, Guilak F. Genome Engineering of Stem Cells for Autonomously Regulated, Closed-Loop Delivery of Biologic Drugs. Stem Cell Reports 2017; 8:1202-1213. [PMID: 28457885 PMCID: PMC5425682 DOI: 10.1016/j.stemcr.2017.03.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
Abstract
Chronic inflammatory diseases such as arthritis are characterized by dysregulated responses to pro-inflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α). Pharmacologic anti-cytokine therapies are often effective at diminishing this inflammatory response but have significant side effects and are used at high, constant doses that do not reflect the dynamic nature of disease activity. Using the CRISPR/Cas9 genome-engineering system, we created stem cells that antagonize IL-1- or TNF-α-mediated inflammation in an autoregulated, feedback-controlled manner. Our results show that genome engineering can be used successfully to rewire endogenous cell circuits to allow for prescribed input/output relationships between inflammatory mediators and their antagonists, providing a foundation for cell-based drug delivery or cell-based vaccines via a rapidly responsive, autoregulated system. The customization of intrinsic cellular signaling pathways in stem cells, as demonstrated here, opens innovative possibilities for safer and more effective therapeutic approaches for a wide variety of diseases.
Collapse
Affiliation(s)
- Jonathan M Brunger
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ananya Zutshi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Farshid Guilak
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cytex Therapeutics, Inc., Durham, NC 27705, USA; Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
367
|
Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:153-164. [PMID: 28497073 PMCID: PMC5424571 DOI: 10.1016/j.omtm.2017.04.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
The CRISPR/Cas9 systems have revolutionized the field of genome editing by providing unprecedented control over gene sequences and gene expression in many species, including humans. Lentiviral vectors (LVs) are one of the primary delivery platforms for the CRISPR/Cas9 system due to their ability to accommodate large DNA payloads and sustain robust expression in a wide range of dividing and non-dividing cells. However, long-term expression of LV-delivered Cas9/guide RNA may lead to undesirable off-target effects characterized by non-specific RNA-DNA interactions and off-target DNA cleavages. Integrase-deficient lentiviral vectors (IDLVs) present an attractive means for delivery of CRISPR/Cas9 components because: (1) they are capable of transducing a broad range of cells and tissues, (2) have superior packaging capacity compared to other vectors (e.g., adeno-associated viral vectors), and (3) they are expressed transiently and demonstrate very weak integration capability. In this manuscript, we aimed to establish IDLVs as a means for safe and efficient delivery of CRISPR/Cas9. To this end, we developed an all-in-one vector cassette with increased production efficacy and demonstrated that CRISPR/Cas9 delivered by the improved IDLV vectors can mediate rapid and robust gene editing in human embryonic kidney (HEK293T) cells and post-mitotic brain neurons in vivo, via transient expression and with higher gene-targeting specificity than the corresponding integrase-competent vectors.
Collapse
|
368
|
Kelton W, Waindok AC, Pesch T, Pogson M, Ford K, Parola C, Reddy ST. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange. Sci Rep 2017; 7:45775. [PMID: 28374766 PMCID: PMC5379551 DOI: 10.1038/srep45775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/02/2017] [Indexed: 11/20/2022] Open
Abstract
The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation.
Collapse
Affiliation(s)
- William Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ann Cathrin Waindok
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Theresa Pesch
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Mark Pogson
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kyle Ford
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
369
|
Control of gene editing by manipulation of DNA repair mechanisms. Mamm Genome 2017; 28:262-274. [DOI: 10.1007/s00335-017-9688-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/25/2017] [Indexed: 12/22/2022]
|
370
|
Brunger JM, Zutshi A, Willard VP, Gersbach CA, Guilak F. CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues. Arthritis Rheumatol 2017; 69:1111-1121. [PMID: 27813286 DOI: 10.1002/art.39982] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/01/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Proinflammatory cytokines such as interleukin-1 (IL-1) are found in elevated levels in diseased or injured tissues and promote rapid tissue degradation while preventing stem cell differentiation. This study was undertaken to engineer inflammation-resistant murine induced pluripotent stem cells (iPSCs) through deletion of the IL-1 signaling pathway and to demonstrate the utility of these cells for engineering replacements for diseased or damaged tissues. METHODS Targeted deletion of the IL-1 receptor type I (IL-1RI) gene in murine iPSCs was achieved using the RNA-guided, site-specific clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome engineering system. Clonal cell populations with homozygous and heterozygous deletions were isolated, and loss of receptor expression and cytokine signaling was confirmed by flow cytometry and transcriptional reporter assays, respectively. Cartilage was engineered from edited iPSCs and tested for its ability to resist IL-1-mediated degradation in gene expression, histologic, and biomechanical assays after a 3-day treatment with 1 ng/ml of IL-1α. RESULTS Three of 41 clones isolated possessed the IL-1RI+/- genotype. Four clones possessed the IL-1RI-/- genotype, and flow cytometry confirmed loss of IL-1RI on the surface of these cells, which led to an absence of NF-κB transcription activation after IL-1α treatment. Cartilage engineered from homozygous null clones was resistant to cytokine-mediated tissue degradation. In contrast, cartilage derived from wild-type and heterozygous clones exhibited significant degradative responses, highlighting the need for complete IL-1 blockade. CONCLUSION This work demonstrates proof-of-concept of the ability to engineer custom-designed stem cells that are immune to proinflammatory cytokines (i.e., IL-1) as a potential cell source for cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Farshid Guilak
- Washington University and Shriners Hospitals for Children, St. Louis, Missouri
| |
Collapse
|
371
|
Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. PROGRESS IN BRAIN RESEARCH 2017; 231:191-223. [PMID: 28554397 DOI: 10.1016/bs.pbr.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration and inherited retinal degenerations represent the leading causes of blindness in industrialized countries. Despite different initiating causes, they share a common final pathophysiology, the loss of the light sensitive photoreceptors. Replacement by transplantation may offer a potential treatment strategy for both patient populations. The last decade has seen remarkable progress in our ability to generate retinal cell types, including photoreceptors, from a variety of murine and human pluripotent stem cell sources. Driven in large part by the requirement for renewable cell sources, stem cells have emerged not only as a promising source of replacement photoreceptors but also to provide in vitro systems with which to study retinal development and disease processes and to test therapeutic agents.
Collapse
Affiliation(s)
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
372
|
Doetschman T, Georgieva T. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circ Res 2017; 120:876-894. [DOI: 10.1161/circresaha.116.309727] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases.
Collapse
Affiliation(s)
- Thomas Doetschman
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| | - Teodora Georgieva
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| |
Collapse
|
373
|
Diez-Fernandez C, Häberle J. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder. Expert Opin Ther Targets 2017; 21:391-399. [PMID: 28281899 DOI: 10.1080/14728222.2017.1294685] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.
Collapse
Affiliation(s)
- Carmen Diez-Fernandez
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| | - Johannes Häberle
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| |
Collapse
|
374
|
Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 2017; 27:419-426. [PMID: 28209587 PMCID: PMC5340969 DOI: 10.1101/gr.219089.116] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/13/2017] [Indexed: 12/26/2022]
Abstract
RNA-guided genome surgery using CRISPR-Cas9 nucleases has shown promise for the treatment of diverse genetic diseases. Yet, the potential of such nucleases for therapeutic applications in nongenetic diseases is largely unexplored. Here, we focus on age-related macular degeneration (AMD), a leading cause of blindness in adults, which is associated with retinal overexpression of, rather than mutations in, the VEGFA gene. Subretinal injection of preassembled, Vegfa gene–specific Cas9 ribonucleoproteins (RNPs) into the adult mouse eye gave rise to mutagenesis at the target site in the retinal pigment epithelium. Furthermore, Cas9 RNPs effectively reduced the area of laser-induced choroidal neovascularization (CNV) in a mouse model of AMD. Genome-wide profiling of Cas9 off-target effects via Digenome-seq showed that off-target mutations were rarely induced in the human genome. Because Cas9 RNPs can function immediately after in vivo delivery and are rapidly degraded by endogenous proteases, their activities are unlikely to be hampered by antibody- and cell-mediated adaptive immune systems. Our results demonstrate that in vivo genome editing with Cas9 RNPs has the potential for the local treatment for nongenetic degenerative diseases, expanding the scope of RNA-guided genome surgery to a new dimension.
Collapse
|
375
|
Gong H, Liu M, Klomp J, Merrill BJ, Rehman J, Malik AB. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Sci Rep 2017; 7:42127. [PMID: 28198371 PMCID: PMC5309830 DOI: 10.1038/srep42127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion.
Collapse
Affiliation(s)
- Haixia Gong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Menglin Liu
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Genome Editing Core, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B. Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
376
|
Weber J, Valiante V, Nødvig CS, Mattern DJ, Slotkowski RA, Mortensen UH, Brakhage AA. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing. ACS Synth Biol 2017; 6:62-68. [PMID: 27611015 DOI: 10.1021/acssynbio.6b00203] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.
Collapse
Affiliation(s)
- Jakob Weber
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Vito Valiante
- Leibniz
Research Group − Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Christina S. Nødvig
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Derek J. Mattern
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rebecca A. Slotkowski
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Uffe H. Mortensen
- Eukaryotic
Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department
of Systems Biology, Technical University of Denmark, Søltofts
Plads, 2800 Kongens
Lyngby, Denmark
| | - Axel A. Brakhage
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute
of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
377
|
Santilli G, Thrasher AJ. A New Chapter on Targeted Gene Insertion for X-CGD: Do Not Skip the Intro(n). Mol Ther 2017; 25:307-309. [PMID: 28109956 DOI: 10.1016/j.ymthe.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Giorgia Santilli
- Molecular Immunology Unit, Centre for Immunodeficiency, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Adrian J Thrasher
- Molecular Immunology Unit, Centre for Immunodeficiency, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
378
|
Sergeeva OV, Koteliansky VE, Zatsepin TS. mRNA-Based Therapeutics - Advances and Perspectives. BIOCHEMISTRY (MOSCOW) 2017; 81:709-22. [PMID: 27449617 DOI: 10.1134/s0006297916070075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review we discuss features of mRNA synthesis and modifications used to minimize immune response and prolong efficiency of the translation process in vivo. Considerable attention is given to the use of liposomes and nanoparticles containing lipids and polymers for the mRNA delivery. Finally we briefly discuss mRNAs which are currently in the clinical trials for cancer immunotherapy, vaccination against infectious diseases, and replacement therapy.
Collapse
Affiliation(s)
- O V Sergeeva
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
379
|
Guha TK, Wai A, Hausner G. Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Comput Struct Biotechnol J 2017; 15:146-160. [PMID: 28179977 PMCID: PMC5279741 DOI: 10.1016/j.csbj.2016.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
Abstract
Targeted genome editing has become a powerful genetic tool for studying gene function or for modifying genomes by correcting defective genes or introducing genes. A variety of reagents have been developed in recent years that can generate targeted double-stranded DNA cuts which can be repaired by the error-prone, non-homologous end joining repair system or via the homologous recombination-based double-strand break repair pathway provided a suitable template is available. These genome editing reagents require components for recognizing a specific DNA target site and for DNA-cleavage that generates the double-stranded break. In order to reduce potential toxic effects of genome editing reagents, it might be desirable to control the in vitro or in vivo activity of these reagents by incorporating regulatory switches that can reduce off-target activities and/or allow for these reagents to be turned on or off. This review will outline the various genome editing tools that are currently available and describe the strategies that have so far been employed for regulating these editing reagents. In addition, this review will examine potential regulatory switches/strategies that can be employed in the future in order to provide temporal control for these reagents.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
380
|
Chandrasegaran S. Recent advances in the use of ZFN-mediated gene editing for human gene therapy. ACTA ACUST UNITED AC 2017; 3:33-41. [PMID: 29270315 DOI: 10.18609/cgti.2017.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeted genome editing with programmable nucleases has revolutionized biomedical research. The ability to make site-specific modifications to the human genome, has invoked a paradigm shift in gene therapy. Using gene editing technologies, the sequence in the human genome can now be precisely engineered to achieve a therapeutic effect. Zinc finger nucleases (ZFNs) were the first programmable nucleases designed to target and cleave custom sites. This article summarizes the advances in the use of ZFN-mediated gene editing for human gene therapy and discusses the challenges associated with translating this gene editing technology into clinical use.
Collapse
Affiliation(s)
- Srinivasan Chandrasegaran
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
381
|
Hong SG, Yada RC, Choi K, Carpentier A, Liang TJ, Merling RK, Sweeney CL, Malech HL, Jung M, Corat MAF, AlJanahi AA, Lin Y, Liu H, Tunc I, Wang X, Palisoc M, Pittaluga S, Boehm M, Winkler T, Zou J, Dunbar CE. Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers. Mol Ther 2017; 25:44-53. [PMID: 28129126 DOI: 10.1016/j.ymthe.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Nonhuman primate (NHP) induced pluripotent stem cells (iPSCs) offer the opportunity to investigate the safety, feasibility, and efficacy of proposed iPSC-derived cellular delivery in clinically relevant in vivo models. However, there is need for stable, robust, and safe labeling methods for NHP iPSCs and their differentiated lineages to study survival, proliferation, tissue integration, and biodistribution following transplantation. Here we investigate the utility of the adeno-associated virus integration site 1 (AAVS1) as a safe harbor for the addition of transgenes in our rhesus macaque iPSC (RhiPSC) model. A clinically relevant marker gene, human truncated CD19 (hΔCD19), or GFP was inserted into the AAVS1 site in RhiPSCs using the CRISPR/Cas9 system. Genetically modified RhiPSCs maintained normal karyotype and pluripotency, and these clones were able to further differentiate into all three germ layers in vitro and in vivo. In contrast to transgene delivery using randomly integrating viral vectors, AAVS1 targeting allowed stable transgene expression following differentiation. Off-target mutations were observed in some edited clones, highlighting the importance of careful characterization of these cells prior to downstream applications. Genetically marked RhiPSCs will be useful to further advance clinically relevant models for iPSC-based cell therapies.
Collapse
Affiliation(s)
- So Gun Hong
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| | - Ravi Chandra Yada
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Kyujoo Choi
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Arnaud Carpentier
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Randall K Merling
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Colin L Sweeney
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Moonjung Jung
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Marcus A F Corat
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; Multidisciplinar Center for Biological Research, University of Campinas, Campinas, SP 13083-877, Brazil
| | - Aisha A AlJanahi
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; Department of Chemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C. 20057, USA
| | - Yongshun Lin
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Huimin Liu
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Systems Biology Core, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Xujing Wang
- Systems Biology Core, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Maryknoll Palisoc
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
382
|
Tabebordbar M, Cheng J, Wagers AJ. Therapeutic Gene Editing in Muscles and Muscle Stem Cells. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
383
|
Ehrke-Schulz E, Schiwon M, Hagedorn C, Ehrhardt A. Establishment of the CRISPR/Cas9 System for Targeted Gene Disruption and Gene Tagging. Methods Mol Biol 2017; 1654:165-176. [PMID: 28986789 DOI: 10.1007/978-1-4939-7231-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
CRISPR/Cas9 RNA-guided nucleases refashioned in vivo gene editing approaches for specific gene disruption, gene correction, or gene addition. Moreover, chimeric Cas9 proteins can be applied to direct fused cis-acting effector protein domains, enzymes, or fluorescent markers to DNA to target sequences to regulate gene expression, to introduce epigenetic changes, or to fluorescently label DNA sequences of interest. Here we show how to design guide RNAs for specific DNA targeting. We provide a protocol to customize the CRISPR/Cas9 machinery encoded on commercially available plasmids and present how to test the targeting efficiency of Cas9 with a target-specific gRNA by testing mutation induction efficiency. To exemplify related applications we provide a guideline of how to apply the CRISPR/Cas9 technology for gene labeling.
Collapse
Affiliation(s)
- Eric Ehrke-Schulz
- Faculty of Health, School of Medicine, Center for Biomedical Research and Education ZBAF, Witten/Herdecke University, Stockumer Straße 10, Witten, 58453, Germany
| | - Maren Schiwon
- Faculty of Health, School of Medicine, Center for Biomedical Research and Education ZBAF, Witten/Herdecke University, Stockumer Straße 10, Witten, 58453, Germany
| | - Claudia Hagedorn
- Faculty of Health, School of Medicine, Center for Biomedical Research and Education ZBAF, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Faculty of Health, School of Medicine, Center for Biomedical Research and Education ZBAF, Witten/Herdecke University, Stockumer Straße 10, Witten, 58453, Germany.
| |
Collapse
|
384
|
Bornert O, Peking P, Bremer J, Koller U, van den Akker PC, Aartsma-Rus A, Pasmooij AMG, Murauer EM, Nyström A. RNA-based therapies for genodermatoses. Exp Dermatol 2017; 26:3-10. [PMID: 27376675 PMCID: PMC5593095 DOI: 10.1111/exd.13141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Genetic disorders affecting the skin, genodermatoses, constitute a large and heterogeneous group of diseases, for which treatment is generally limited to management of symptoms. RNA-based therapies are emerging as a powerful tool to treat genodermatoses. In this review, we discuss in detail RNA splicing modulation by antisense oligonucleotides and RNA trans-splicing, transcript replacement and genome editing by in vitro-transcribed mRNAs, and gene knockdown by small interfering RNA and antisense oligonucleotides. We present the current state of these therapeutic approaches and critically discuss their opportunities, limitations and the challenges that remain to be solved. The aim of this review was to set the stage for the development of new and better therapies to improve the lives of patients and families affected by a genodermatosis.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| | - Patricia Peking
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Peter C. van den Akker
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center,
Leiden, The Netherlands
| | - Anna M. G. Pasmooij
- Department of Dermatology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands
| | - Eva M. Murauer
- EB House Austria, Research Program for Molecular Therapy of
Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus
Medical University, Salzburg, Austria
| | - Alexander Nyström
- Department of Dermatology, Medical Center – University of
Freiburg, Freiburg, Germany
| |
Collapse
|
385
|
Yucel D, Kocabas F. Developments in Hematopoietic Stem Cell Expansion and Gene Editing Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:103-125. [DOI: 10.1007/5584_2017_114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
386
|
Lv YH, Li XQ, Yue CW, Wang M. Application of genome editing technologies in gastrointestinal cancers. Shijie Huaren Xiaohua Zazhi 2016; 24:4772-4780. [DOI: 10.11569/wcjd.v24.i36.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome editing is a site-directed modification technology for gene targeting and a powerful tool to edit the target DNA by site-specific DNA knockout or knockin. Genome editing has achieved a considerable success from lower microbes to human in the past years and may play a very important role in tumor staging, precision medicine as well as prognosis evaluation in gastrointestinal cancers. This review discusses the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including transcription activator-like effector nucleases, zinc finger nucleases and the CRISPR/Cas9 system. We also summarize the progress made in applying genome editing to the research of gastrointestinal cancers.
Collapse
|
387
|
Mansilla-Soto J, Riviere I, Boulad F, Sadelain M. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Hum Gene Ther 2016; 27:295-304. [PMID: 27021486 DOI: 10.1089/hum.2016.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade.
Collapse
Affiliation(s)
- Jorge Mansilla-Soto
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Isabelle Riviere
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Farid Boulad
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York.,2 Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Michel Sadelain
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York
| |
Collapse
|
388
|
Fiszer A, Wroblewska JP, Nowak BM, Krzyzosiak WJ. Mutant CAG Repeats Effectively Targeted by RNA Interference in SCA7 Cells. Genes (Basel) 2016; 7:genes7120132. [PMID: 27999335 PMCID: PMC5192508 DOI: 10.3390/genes7120132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a human neurodegenerative polyglutamine (polyQ) disease caused by a CAG repeat expansion in the open reading frame of the ATXN7 gene. The allele-selective silencing of mutant transcripts using a repeat-targeting strategy has previously been used for several polyQ diseases. Herein, we demonstrate that the selective targeting of a repeat tract in a mutant ATXN7 transcript by RNA interference is a feasible approach and results in an efficient decrease of mutant ataxin-7 protein in patient-derived cells. Oligonucleotides (ONs) containing specific base substitutions cause the downregulation of the ATXN7 mutant allele together with the upregulation of its normal allele. The A2 ON shows high allele selectivity at a broad range of concentrations and also restores UCHL1 expression, which is downregulated in SCA7.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Joanna P Wroblewska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Bartosz M Nowak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
389
|
Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med 2016; 16:174. [PMID: 27919253 PMCID: PMC5139081 DOI: 10.1186/s12890-016-0339-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The airways of patients with cystic fibrosis (CF) are highly complex, subject to various environmental conditions as well as a distinct microbiota. Pseudomonas aeruginosa is recognized as one of the most important pulmonary pathogens and the predominant cause of morbidity and mortality in CF. A multifarious interplay between the host, pathogens, microbiota, and the environment shapes the course of the disease. There have been several excellent reviews detailing CF pathology, Pseudomonas and the role of environment in CF but only a few reviews connect these entities with regards to influence on the overall course of the disease. A holistic understanding of contributing factors is pertinent to inform new research and therapeutics. Discussion In this article, we discuss the deterministic alterations in lung physiology as a result of CF. We also revisit the impact of those changes on the microbiota, with special emphasis on P. aeruginosa and the influence of other non-genetic factors on CF. Substantial past and current research on various genetic and non-genetic aspects of cystic fibrosis has been reviewed to assess the effect of different factors on CF pulmonary infection. A thorough review of contributing factors in CF and the alterations in lung physiology indicate that CF lung infection is multi-factorial with no isolated cause that should be solely targeted to control disease progression. A combinatorial approach may be required to ensure better disease outcomes. Conclusion CF lung infection is a complex disease and requires a broad multidisciplinary approach to improve CF disease outcomes. A holistic understanding of the underlying mechanisms and non-genetic contributing factors in CF is central to development of new and targeted therapeutic strategies.
Collapse
|
390
|
Gaj T, Sirk SJ, Shui SL, Liu J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb Perspect Biol 2016; 8:a023754. [PMID: 27908936 PMCID: PMC5131771 DOI: 10.1101/cshperspect.a023754] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted nucleases have provided researchers with the ability to manipulate virtually any genomic sequence, enabling the facile creation of isogenic cell lines and animal models for the study of human disease, and promoting exciting new possibilities for human gene therapy. Here we review three foundational technologies-clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs). We discuss the engineering advances that facilitated their development and highlight several achievements in genome engineering that were made possible by these tools. We also consider artificial transcription factors, illustrating how this technology can complement targeted nucleases for synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Sai-Lan Shui
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
391
|
Abstract
Despite significant advances in HIV drug treatment regimens, which grant near-normal life expectancies to infected individuals who have good virological control, HIV infection itself remains incurable. In recent years, novel gene- and cell-based therapies have gained increasing attention due to their potential to provide a functional or even sterilizing cure for HIV infection with a one-shot treatment. A functional cure would keep the infection in check and prevent progression to AIDS, while a sterilizing cure would eradicate all HIV viruses from the patient. Genome editing is the most precise form of gene therapy, able to achieve permanent genetic disruption, modification, or insertion at a predesignated genetic locus. The most well-studied candidate for anti-HIV genome editing is CCR5, an essential coreceptor for the majority of HIV strains, and the lack of which confers HIV resistance in naturally occurring homozygous individuals. Genetic disruption of CCR5 to treat HIV has undergone clinical testing, with seven completed or ongoing trials in T cells and hematopoietic stem and progenitor cells, and has shown promising safety and potential efficacy profiles. Here we summarize clinical findings of CCR5 editing for HIV therapy, as well as other genome editing-based approaches under pre-clinical development. The anticipated development of more sophisticated genome editing technologies should continue to benefit HIV cure efforts.
Collapse
Affiliation(s)
- Cathy X Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
392
|
Barbon E, Ferrarese M, van Wittenberghe L, Sanatine P, Ronzitti G, Collaud F, Colella P, Pinotti M, Mingozzi F. Transposon-mediated Generation of Cellular and Mouse Models of Splicing Mutations to Assess the Efficacy of snRNA-based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e392. [PMID: 27898092 PMCID: PMC5155329 DOI: 10.1038/mtna.2016.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
Disease-causing splicing mutations can be rescued by variants of the U1 small nuclear RNA (U1snRNAs). However, the evaluation of the efficacy and safety of modified U1snRNAs as therapeutic tools is limited by the availability of cellular and animal models specific for a given mutation. Hence, we exploited the hyperactive Sleeping Beauty transposon system (SB100X) to integrate human factor IX (hFIX) minigenes into genomic DNA in vitro and in vivo. We generated stable HEK293 cell lines and C57BL/6 mice harboring splicing-competent hFIX minigenes either wild type (SChFIX-wt) or mutated (SChFIXex5-2C). In both models the SChFIXex5-2C variant, found in patients affected by Hemophilia B, displayed an aberrant splicing pattern characterized by exon 5 skipping. This allowed us to test, for the first time in a genomic DNA context, the efficacy of the snRNA U1-fix9, delivered with an adeno-associated virus (AAV) vector. With this approach, we showed rescue of the correct splicing pattern of hFIX mRNA, leading to hFIX protein expression. These data validate the SB100X as a versatile tool to quickly generate models of human genetic mutations, to study their effect in a stable DNA context and to assess mutation-targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Federico Mingozzi
- Genethon, Evry, France
- INSERM U951, Evry, France
- Institute of Myology, University Pierre and Marie Curie – Paris 6, Paris, France
| |
Collapse
|
393
|
Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Fact 2016; 15:196. [PMID: 27846887 PMCID: PMC5111286 DOI: 10.1186/s12934-016-0595-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/06/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cyanobacterium Synechococcus elongatus PCC 7942 holds promise for biochemical conversion, but gene deletion in PCC 7942 is time-consuming and may be lethal to cells. CRISPR interference (CRISPRi) is an emerging technology that exploits the catalytically inactive Cas9 (dCas9) and single guide RNA (sgRNA) to repress sequence-specific genes without the need of gene knockout, and is repurposed to rewire metabolic networks in various procaryotic cells. RESULTS To employ CRISPRi for the manipulation of gene network in PCC 7942, we integrated the cassettes expressing enhanced yellow fluorescent protein (EYFP), dCas9 and sgRNA targeting different regions on eyfp into the PCC 7942 chromosome. Co-expression of dCas9 and sgRNA conferred effective and stable suppression of EYFP production at efficiencies exceeding 99%, without impairing cell growth. We next integrated the dCas9 and sgRNA targeting endogenous genes essential for glycogen accumulation (glgc) and succinate conversion to fumarate (sdhA and sdhB). Transcription levels of glgc, sdhA and sdhB were effectively suppressed with efficiencies depending on the sgRNA binding site. Targeted suppression of glgc reduced the expression to 6.2%, attenuated the glycogen accumulation to 4.8% and significantly enhanced the succinate titer. Targeting sdhA or sdhB also effectively downregulated the gene expression and enhanced the succinate titer ≈12.5-fold to ≈0.58-0.63 mg/L. CONCLUSIONS These data demonstrated that CRISPRi-mediated gene suppression allowed for re-directing the cellular carbon flow, thus paving a new avenue to rationally fine-tune the metabolic pathways in PCC 7942 for the production of biotechnological products.
Collapse
Affiliation(s)
- Chun-Hung Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Claire R Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Meng-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
394
|
Sato M, Saitoh I, Inada E. Efficient CRISPR/Cas9-based gene correction in induced pluripotent stem cells established from fibroblasts of patients with sickle cell disease. Stem Cell Investig 2016; 3:78. [PMID: 28066780 DOI: 10.21037/sci.2016.11.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
395
|
Abstract
The concept that interactions between nutrition and genetics determine phenotype was established by Garrod at the beginning of the 20th century through his ground-breaking work on inborn errors of metabolism. A century later, the science and technologies involved in sequencing of the human genome stimulated development of the scientific discipline which we now recognise as nutritional genomics (nutrigenomics). Much of the early hype around possible applications of this new science was unhelpful and raised expectations, which have not been realised as quickly as some would have hoped. However, major advances have been made in quantifying the contribution of genetic variation to a wide range of phenotypes and it is now clear that for nutrition-related phenotypes, such as obesity and common complex diseases, the genetic contribution made by SNP alone is often modest. There is much scope for innovative research to understand the roles of less well explored types of genomic structural variation, e.g. copy number variants, and of interactions between genotype and dietary factors, in phenotype determination. New tools and models, including stem cell-based approaches and genome editing, have huge potential to transform mechanistic nutrition research. Finally, the application of nutrigenomics research offers substantial potential to improve public health e.g. through the use of metabolomics approaches to identify novel biomarkers of food intake, which will lead to more objective and robust measures of dietary exposure. In addition, nutrigenomics may have applications in the development of personalised nutrition interventions, which may facilitate larger, more appropriate and sustained changes in eating (and other lifestyle) behaviours and help to reduce health inequalities.
Collapse
|
396
|
Chen S, Sun H, Miao K, Deng CX. CRISPR-Cas9: from Genome Editing to Cancer Research. Int J Biol Sci 2016; 12:1427-1436. [PMID: 27994508 PMCID: PMC5166485 DOI: 10.7150/ijbs.17421] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies.
Collapse
Affiliation(s)
- Si Chen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
397
|
Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 2016; 38:293-302. [DOI: 10.1016/j.ymben.2016.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
398
|
Dutta D, Chattopadhyay A, Ghosh SS. Cationic BSA Templated Au–Ag Bimetallic Nanoclusters As a Theranostic Gene Delivery Vector for HeLa Cancer Cells. ACS Biomater Sci Eng 2016; 2:2090-2098. [DOI: 10.1021/acsbiomaterials.6b00517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Deepanjalee Dutta
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
399
|
Buchholz F, Hauber J. Antiviral therapy of persistent viral infection using genome editing. Curr Opin Virol 2016; 20:85-91. [PMID: 27723558 DOI: 10.1016/j.coviro.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
Chronic viral infections are often incurable because current antiviral strategies do not target chromosomally integrated or non-replicating episomal viral genomes. The rapid development of technologies for genome editing may possibly soon allow for therapeutic targeting of viral genomes and, hence, for development of curative strategies for persistent viral infection. However, detailed investigation of different antiviral genome editing approaches recently revealed various undesired effects. In particular, the problem of frequent and swift development of resistant viruses has to be thoroughly analysed before genome editing approaches become an established option for antiviral treatment.
Collapse
Affiliation(s)
- Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Am Tatzberg 47/49, D-01307 Dresden, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
400
|
MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv Drug Deliv Rev 2016; 105:20-34. [PMID: 27568463 DOI: 10.1016/j.addr.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology. The examples detailed in this review provide insight to further understand genetic circuits, how they are used to program cells with novel functions, and current methods to reliably interface this technology in vivo; thus paving the way for the design of promising novel therapeutic applications.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|