351
|
Fazzio TG, Panning B. Control of embryonic stem cell identity by nucleosome remodeling enzymes. Curr Opin Genet Dev 2010; 20:500-4. [PMID: 20800472 DOI: 10.1016/j.gde.2010.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/04/2010] [Indexed: 11/19/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells that can self-renew indefinitely or be induced to differentiate into multiple cell lineages, and thus have the potential to be used in regenerative medicine. Pluripotency transcription factors (TFs), such as Oct4, Sox2, and Nanog, function in a regulatory circuit that silences the expression of key TFs required for differentiation and activates the expression of genes important for maintenance of pluripotency. In addition, proteins that remodel chromatin structure also play important roles in determining the ES cell-specific gene expression pattern. Here we review recent studies demonstrating the roles of enzymes that carry out one facet of chromatin regulation, nucleosome remodeling, in control of ES cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Thomas G Fazzio
- Program in Gene Function and Expression, University of Massachusetts Medical School, United States
| | | |
Collapse
|
352
|
Smale ST. Pioneer factors in embryonic stem cells and differentiation. Curr Opin Genet Dev 2010; 20:519-26. [PMID: 20638836 DOI: 10.1016/j.gde.2010.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 06/22/2010] [Indexed: 01/12/2023]
Abstract
Most studies of tissue-specific and developmental stage-specific transcription have focused on the DNA motifs, transcription factors, or chromatin events required for the active transcription of a gene in cells in which the gene is expressed, or for its active or heritable silencing in nonexpressing cells. However, accumulating evidence suggests that, in multicellular eukaryotes, enhancers or promoters for tissue-specific genes interact with pioneer transcription factors in embryonic stem cells and at other early stages of development, long before the genes are transcribed. These early interactions, which can lead to the presence of unmethylated CpG dinucleotides, histone modification signatures, and/or chromatin remodeling, may carry out different functions at different classes of genes.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
353
|
Durand-Dubief M, Persson J, Norman U, Hartsuiker E, Ekwall K. Topoisomerase I regulates open chromatin and controls gene expression in vivo. EMBO J 2010; 29:2126-34. [PMID: 20526281 PMCID: PMC2905247 DOI: 10.1038/emboj.2010.109] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 05/06/2010] [Indexed: 01/08/2023] Open
Abstract
DNA topoisomerases regulate the topological state of the DNA double helix and are key enzymes in the processes of DNA replication, transcription and genome stability. Using the fission yeast model Schizosaccharomyces pombe, we investigate genome wide how DNA topoisomerases I and II affect chromatin dynamics and gene expression in vivo. We show that topoisomerase I activity is directly required for efficient nucleosome disassembly at gene promoter regions. Lack of topoisomerase activity results in increased nucleosome occupancy, perturbed histone modifications and reduced transcription from these promoters. Strong correlative evidence suggests that topoisomerase I cooperates with the ATP-dependent chromatin remodeller Hrp1 in nucleosome disassembly. Our study links topoisomerase activity to the maintenance of open chromatin and regulating transcription in vivo.
Collapse
Affiliation(s)
- Mickaël Durand-Dubief
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Jenna Persson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Ulrika Norman
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Novum, Huddinge, Sweden
| | | | - Karl Ekwall
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Novum, Huddinge, Sweden
| |
Collapse
|
354
|
Koh FM, Sachs M, Guzman-Ayala M, Ramalho-Santos M. Parallel gateways to pluripotency: open chromatin in stem cells and development. Curr Opin Genet Dev 2010; 20:492-9. [PMID: 20598875 DOI: 10.1016/j.gde.2010.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/20/2010] [Accepted: 06/02/2010] [Indexed: 12/23/2022]
Abstract
Open chromatin is a hallmark of pluripotent stem cells, but the underlying molecular mechanisms are only beginning to be unraveled. In this review we highlight recent studies that employ embryonic stem cells and induced pluripotent stem cells to investigate the regulation of open chromatin and its role in the maintenance and acquisition of pluripotency in vitro. We suggest that findings from in vitro studies using pluripotent stem cells are predictive of in vivo processes of epigenetic regulation of pluripotency, specifically in the development of the zygote and primordial germ cells. The combination of in vitro and in vivo approaches is expected to provide a comprehensive understanding of the epigenetic regulation of pluripotency and reprograming.
Collapse
Affiliation(s)
- Fong Ming Koh
- Departments of Ob/Gyn and Pathology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0525, USA
| | | | | | | |
Collapse
|
355
|
Oda Y, Yoshimura Y, Ohnishi H, Tadokoro M, Katsube Y, Sasao M, Kubo Y, Hattori K, Saito S, Horimoto K, Yuba S, Ohgushi H. Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 2010; 285:29270-8. [PMID: 20595386 DOI: 10.1074/jbc.m109.055889] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expression of four transcription factors (OCT3/4, SOX2, KLF4, and MYC) can reprogram mouse as well as human somatic cells to induced pluripotent stem (iPS) cells. We generated iPS cells from mesenchymal stromal cells (MSCs) derived from human third molars (wisdom teeth) by retroviral transduction of OCT3/4, SOX2, and KLF4 without MYC, which is considered as oncogene. Interestingly, some of the clonally expanded MSCs could be used for iPS cell generation with 30-100-fold higher efficiency when compared with that of other clonally expanded MSCs and human dermal fibroblasts. Global gene expression profiles demonstrated some up-regulated genes regarding DNA repair/histone conformational change in the efficient clones, suggesting that the processes of chromatin remodeling have important roles in the cascade of iPS cells generation. The generated iPS cells resembled human embryonic stem (ES) cells in many aspects, including morphology, ES marker expression, global gene expression, epigenetic states, and the ability to differentiate into the three germ layers in vitro and in vivo. Because human third molars are discarded as clinical waste, our data indicate that clonally expanded MSCs derived from human third molars are a valuable cell source for the generation of iPS cells.
Collapse
Affiliation(s)
- Yasuaki Oda
- Tissue Engineering Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Hyogo 661-0974, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Medvedev S, Shevchenko A, Zakian S. Molecular basis of Mammalian embryonic stem cell pluripotency and self-renewal. Acta Naturae 2010; 2:30-46. [PMID: 22649650 PMCID: PMC3347565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Mammalian embryonic stem cells (ESC) have a number of specific properties that make them a unique object of fundamental and applied studies. In culture, ESC can remain in an infinitely undifferentiated state and differentiate into descendants of all three germ layers - ectoderm, endoderm, and mesoderm - that is, they can potentially produce more than 200 cell types comprising the body of an adult mammal. These properties of ESC are refered to as self-renewal and pluripotency. In this review, the basic signal pathways implicated in the maintenance of ESC pluripotency are considered. The major genes comprising a subsystem of "internal regulators of pluripotency," their protein products and regulators, are characterized, and interaction with other factors is described as well. The role of epigenetic mechanisms and microRNAs in the system of ESC self-renewal and pluripotency, as well as the relationship between pluripotency and X-chromosome inactivation in female mammals, is discussed.
Collapse
Affiliation(s)
- S.P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
| | - A.I. Shevchenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
| | - S.M. Zakian
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
- Research Center of Clinical and Experimental Medicine, Siberian Branch, Russian Academy of Medical Sciences
| |
Collapse
|
357
|
Varlakhanova NV, Cotterman RF, deVries WN, Morgan J, Donahue LR, Murray S, Knowles BB, Knoepfler PS. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 2010; 80:9-19. [PMID: 20537458 PMCID: PMC2916696 DOI: 10.1016/j.diff.2010.05.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/19/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
While endogenous Myc (c-myc) and Mycn (N-myc) have been reported to be separately dispensable for murine embryonic stem cell (mESC) function, myc greatly enhances induced pluripotent stem (iPS) cell formation and overexpressed c-myc confers LIF-independence upon mESC. To address the role of myc genes in ESC and in pluripotency generally, we conditionally knocked out both c- and N-myc using myc doubly homozygously floxed mESC lines (cDKO). Both lines of myc cDKO mESC exhibited severely disrupted self-renewal, pluripotency, and survival along with enhanced differentiation. Chimeric embryos injected with DKO mESC most often completely failed to develop or in rare cases survived but with severe defects. The essential nature of myc for self-renewal and pluripotency is at least in part mediated through orchestrating pluripotency-related cell cycle and metabolic programs. This study demonstrates that endogenous myc genes are essential for mESC pluripotency and self-renewal as well as providing the first evidence that myc genes are required for early embryogenesis, suggesting potential mechanisms of myc contribution to iPS cell formation.
Collapse
Affiliation(s)
- Natalia V. Varlakhanova
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Rebecca F. Cotterman
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | | | - Judy Morgan
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Stem Cell Program, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| |
Collapse
|
358
|
Hirabayashi Y, Gotoh Y. Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 2010; 11:377-88. [PMID: 20485363 DOI: 10.1038/nrn2810] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The temporally and spatially restricted nature of the differentiation capacity of cells in the neural lineage has been studied extensively in recent years. Epigenetic control of developmental genes, which is heritable through cell divisions, has emerged as a key mechanism defining the differentiation potential of cells. Short-term or reversible repression of developmental genes puts them in a 'poised state', ready to be activated in response to differentiation-inducing cues, whereas long-term or permanent repression of developmental genes restricts the cell fates they regulate. Here, we review the molecular mechanisms that underlie the establishment and regulation of differentiation potential along the neural lineage during development.
Collapse
Affiliation(s)
- Yusuke Hirabayashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
359
|
Laster K, Kosak ST. Genomic Pangea: coordinate gene regulation and cell-specific chromosomal topologies. Curr Opin Cell Biol 2010; 22:314-9. [PMID: 20547047 DOI: 10.1016/j.ceb.2010.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 01/09/2023]
Abstract
The eukaryotic nucleus is functionally organized. Gene loci, for example, often reveal altered localization patterns according to their developmental regulation. Whole chromosomes also demonstrate non-random nuclear positions, correlated with inherent characteristics such as gene density or size. Given that hundreds to thousands of genes are coordinately regulated in any given cell type, interest has grown in whether chromosomes may be specifically localized according to gene regulation. A synthesis of the evidence for preferential chromosomal organization suggests that, beyond basic characteristics, chromosomes can assume positions functionally related to gene expression. Moreover, analysis of total chromosome organization during cellular differentiation indicates that unique chromosome topologies, albeit probabilistic, in effect define a cell lineage. Future work with new techniques, including the advanced forms of the chromosome conformation capture (3C), and the development of next-generation whole-genome imaging approaches, will help to refine our view of chromosomal organization. We suggest that genomic organization during cellular differentiation should be viewed as a dynamic process, with gene expression patterns leading to chromosome associations that feed back on themselves, leading to the self-organization of the genome according to coordinate gene regulation.
Collapse
Affiliation(s)
- Kyle Laster
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
360
|
Groner B, Vafaizadeh V, Brill B, Klemmt P. Stem cells of the breast and cancer therapy. ACTA ACUST UNITED AC 2010; 6:205-19. [PMID: 20187727 DOI: 10.2217/whe.10.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer remains a significant public health problem despite advances in the understanding of the molecular and cellular events that underlie the disease. Crucial pathways regulating the cell cycle, proliferation and survival of breast cancer cells have been investigated and aberrant components of these pathways have been exploited as new drug targets. However, the mortality from breast cancer is only slowly declining. Recently, a model has been proposed that might explain the heterogeneous biological features of breast cancer cell populations and their differential response to therapeutic agents, which has interesting implications for further progress in therapy. This model links the emergence of breast cancer cells to stem cells and progenitors, an observation originally made in other cancer entities. It hypothesizes that the tumors originate from a small population of undifferentiated cells. These cells can undergo self-renewal and are able to generate a large number of partially differentiated cells, which constitute the bulk of the tumor. These cancer stem cells resemble adult stem and progenitor cells found in the normal breast, but are deregulated in their patterns of proliferation and differentiation. They could originate from normal stem cells or from more differentiated progenitors and lose their normal growth restraints through a series of oncogenic mutations that deregulate a small number of central signaling pathways. If breast cancer really is a stem and progenitor cell disease, this will have important implications for the understanding of the emergence of cancer cells. A combination of the cell-type of origin, stem cells, early or late progenitors and the particular oncogenic mutations acquired could provide a new classification of the different types of breast cancer. These parameters might determine the mechanisms of cancer progression and the responsiveness of patients to drug treatment. Stem cell-specific features could possibly be exploited as innovative drug targets.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt, Germany.
| | | | | | | |
Collapse
|
361
|
Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP. Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 2010; 5:e10531. [PMID: 20479880 PMCID: PMC2866533 DOI: 10.1371/journal.pone.0010531] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/13/2010] [Indexed: 01/07/2023] Open
Abstract
An open chromatin architecture devoid of compact chromatin is thought to be associated with pluripotency in embryonic stem cells. Establishing this distinct epigenetic state may also be required for somatic cell reprogramming. However, there has been little direct examination of global structural domains of chromatin during the founding and loss of pluripotency that occurs in preimplantation mouse development. Here, we used electron spectroscopic imaging to examine large-scale chromatin structural changes during the transition from one-cell to early postimplantation stage embryos. In one-cell embryos chromatin was extensively dispersed with no noticeable accumulation at the nuclear envelope. Major changes were observed from one-cell to two-cell stage embryos, where chromatin became confined to discrete blocks of compaction and with an increased concentration at the nuclear envelope. In eight-cell embryos and pluripotent epiblast cells, chromatin was primarily distributed as an extended meshwork of uncompacted fibres and was indistinguishable from chromatin organization in embryonic stem cells. In contrast, lineage-committed trophectoderm and primitive endoderm cells, and the stem cell lines derived from these tissues, displayed higher levels of chromatin compaction, suggesting an association between developmental potential and chromatin organisation. We examined this association in vivo and found that deletion of Oct4, a factor required for pluripotency, caused the formation of large blocks of compact chromatin in putative epiblast cells. Together, these studies show that an open chromatin architecture is established in the embryonic lineages during development and is sufficient to distinguish pluripotent cells from tissue-restricted progenitor cells.
Collapse
Affiliation(s)
- Kashif Ahmed
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hesam Dehghani
- Department of Physiology, School of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Peter Rugg-Gunn
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eden Fussner
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janet Rossant
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David P. Bazett-Jones
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
362
|
Abstract
The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional "higher order" levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study.
Collapse
|
363
|
Ramirez JM, Bai Q, Dijon-Grinand M, Assou S, Gerbal-Chaloin S, Hamamah S, De Vos J. Human pluripotent stem cells: from biology to cell therapy. World J Stem Cells 2010; 2:24-33. [PMID: 21607113 PMCID: PMC3097919 DOI: 10.4252/wjsc.v2.i2.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (PSCs), encompassing embryonic stem cells and induced pluripotent stem cells, proliferate extensively and differentiate into virtually any desired cell type. PSCs endow regenerative medicine with an unlimited source of replacement cells suitable for human therapy. Several hurdles must be carefully addressed in PSC research before these theoretical possibilities are translated into clinical applications. These obstacles are: (1) cell proliferation; (2) cell differentiation; (3) genetic integrity; (4) allogenicity; and (5) ethical issues. We discuss these issues and underline the fact that the answers to these questions lie in a better understanding of the biology of PSCs. To contribute to this aim, we have developed a free online expression atlas, Amazonia!, that displays for each human gene a virtual northern blot for PSC samples and adult tissues (http://www.amazonia.transcriptome.eu).
Collapse
Affiliation(s)
- Jean-Marie Ramirez
- Jean-Marie Ramirez, Qiang Bai, Marilyne Dijon-Grinand, Said Assou, Samir Hamamah, John De Vos, INSERM, U847, Montpellier, F 34000, France
| | | | | | | | | | | | | |
Collapse
|
364
|
Soft skills turned into hard facts: nucleosome remodelling at developmental switches. Heredity (Edinb) 2010; 105:71-9. [DOI: 10.1038/hdy.2010.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
365
|
Selvaraj V, Plane JM, Williams AJ, Deng W. Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends Biotechnol 2010; 28:214-23. [PMID: 20149468 PMCID: PMC2843790 DOI: 10.1016/j.tibtech.2010.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/23/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
Cell reprogramming, in which a differentiated cell is made to switch its fate, is an emerging field with revolutionary prospects in biotechnology and medicine. The recent discovery of induced pluripotency by means of in vitro reprogramming has made way for unprecedented approaches for regenerative medicine, understanding human disease and drug discovery. Moreover, recent studies on regeneration and repair by direct lineage reprogramming in vivo offer an attractive novel alternative to cell therapy. Although we continue to push the limits of current knowledge in the field of cell reprogramming, the mechanistic elements that underlie these processes remain largely elusive. This article reviews landmark developments in cell reprogramming, current knowledge, and technological developments now on the horizon with significant promise for biomedical applications.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Cell Biology and Human Anatomy, Institute for Pediatric Regenerative Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Jennifer M. Plane
- Department of Cell Biology and Human Anatomy, Institute for Pediatric Regenerative Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Ambrose J. Williams
- Department of Cell Biology and Human Anatomy, Institute for Pediatric Regenerative Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Wenbin Deng
- Department of Cell Biology and Human Anatomy, Institute for Pediatric Regenerative Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| |
Collapse
|
366
|
Fazzio TG, Panning B. Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. ACTA ACUST UNITED AC 2010; 188:491-503. [PMID: 20176923 PMCID: PMC2828918 DOI: 10.1083/jcb.200908026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Loss of the condensin complex components Smc2 and -4 disrupts epigenetic modifications required for embryonic stem cell survival. In an RNA interference screen interrogating regulators of mouse embryonic stem (ES) cell chromatin structure, we previously identified 62 genes required for ES cell viability. Among these 62 genes were Smc2 and -4, which are core components of the two mammalian condensin complexes. In this study, we show that for Smc2 and -4, as well as an additional 49 of the 62 genes, knockdown (KD) in somatic cells had minimal effects on proliferation or viability. Upon KD, Smc2 and -4 exhibited two phenotypes that were unique to ES cells and unique among the ES cell–lethal targets: metaphase arrest and greatly enlarged interphase nuclei. Nuclear enlargement in condensin KD ES cells was caused by a defect in chromatin compaction rather than changes in DNA content. The altered compaction coincided with alterations in the abundance of several epigenetic modifications. These data reveal a unique role for condensin complexes in interphase chromatin compaction in ES cells.
Collapse
Affiliation(s)
- Thomas G Fazzio
- Biochemistry and Biophysics Department, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
367
|
Masaki H, Nishida T, Sakasai R, Teraoka H. DPPA4 modulates chromatin structure via association with DNA and core histone H3 in mouse embryonic stem cells. Genes Cells 2010; 15:327-37. [PMID: 20298437 DOI: 10.1111/j.1365-2443.2010.01382.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developmental pluripotency associated 4 (DPPA4) is one of the uncharacterized genes that is highly expressed in embryonic stem (ES) cells. DPPA4 is associated with active chromatin and involved in the pluripotency of mouse ES cells. However, the biological function of DPPA4 remains poorly understood. In this study, we performed fluorescence recovery after photobleaching (FRAP) analysis to examine the dynamics of DPPA4 in ES cells. FRAP analysis showed that the mobility of DPPA4 is similar to that of histone H1. In addition, biochemical analysis with purified proteins and immunoprecipitation analysis showed that DPPA4 directly binds to both DNA and core histone H3. The analysis using truncated proteins indicated that DPPA4 is associated with DNA via the N-terminal region and histone H3 via the C-terminal region. In vitro assembled chromatin showed resistance to micrococcal nuclease (MNase) digestion in the presence of DPPA4. Moreover, MNase assay and FRAP analysis with the truncated proteins implies that DPPA4 binding to both DNA and histone H3 is necessary for the chromatin structure resistant to MNase and for the proper localization of DPPA4 in ES cell nuclei. These results suggest that DPPA4 modulates the chromatin structure in association with DNA and histone H3 in ES cells.
Collapse
Affiliation(s)
- Hisaharu Masaki
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | |
Collapse
|
368
|
Abstract
Induction of pluripotency from somatic cells by exogenous transcription factors is made possible by a variety of epigenetic changes that take place during the reprogramming process. The derivation of fully reprogrammed induced pluripotent stem (iPS) cells is achieved through establishment of embryonic stem cell (ESC)-like epigenetic architecture permitting the reactivation of key endogenous pluripotency-related genes, establishment of appropriate bivalent chromatin domains and DNA hypomethylation of genomic heterochromatic regions. Restructuring of the epigenetic landscape, however, is a very inefficient process and the vast majority of the induced cells fail to complete the reprogramming process. Optimal ESC-like epigenetic reorganization is necessary for all reliable downstream uses of iPS cells, including in vitro modeling of disease and clinical applications. Here, we discuss the key advancements in the understanding of dynamic epigenetic changes taking place over the course of the reprogramming process and how aberrant epigenetic remodeling may impact downstream applications of iPS cell technology.
Collapse
|
369
|
Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol 2010; 22:334-41. [PMID: 20226651 DOI: 10.1016/j.ceb.2010.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 12/23/2022]
Abstract
In search of the mechanisms that govern pluripotency and embryonic stem cell (ESC) self-renewal, a growing list of evidence highlights chromatin as a leading factor, controlling ESC maintenance and differentiation. In-depth investigation of chromatin in ESCs revealed distinct features, including DNA methylation, histone modifications, chromatin protein composition and nuclear architecture. Here we review recent literature describing different aspects of chromatin and genome organization in ESCs. The emerging theme seems to support a mechanism maintaining chromatin plasticity in ESCs but without any dramatic changes in the organization and nuclear positioning of chromosomes and gene loci themselves. Plasticity thus seems to be supported more by different mechanisms maintaining an open chromatin state and less by regulating the location of genomic regions.
Collapse
|
370
|
Persson J, Ekwall K. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation. Exp Cell Res 2010; 316:1316-23. [PMID: 20211173 DOI: 10.1016/j.yexcr.2010.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/24/2010] [Indexed: 01/19/2023]
Abstract
Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.
Collapse
Affiliation(s)
- Jenna Persson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Sweden
| | | |
Collapse
|
371
|
Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010; 140:678-91. [PMID: 20211137 PMCID: PMC2885838 DOI: 10.1016/j.cell.2010.01.003] [Citation(s) in RCA: 1005] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/23/2009] [Accepted: 12/31/2009] [Indexed: 12/17/2022]
Abstract
The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.
Collapse
Affiliation(s)
- Aaron D. Goldberg
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Laura A. Banaszynski
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kyung-Min Noh
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Peter W. Lewis
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Simon J. Elsaesser
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sonja Stadler
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Scott Dewell
- Genomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Martin Law
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Xingyi Guo
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xuan Li
- Gene Targeting Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Duancheng Wen
- Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ariane Chapgier
- Molecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Russell C. DeKelver
- Sangamo BioSciences, Inc. Pt. Richmond Tech Center 501, Canal Blvd, Suite A100 Richmond, CA 94804, USA
| | - Jeffrey C. Miller
- Sangamo BioSciences, Inc. Pt. Richmond Tech Center 501, Canal Blvd, Suite A100 Richmond, CA 94804, USA
| | - Ya-Li Lee
- Sangamo BioSciences, Inc. Pt. Richmond Tech Center 501, Canal Blvd, Suite A100 Richmond, CA 94804, USA
| | - Elizabeth A. Boydston
- Sangamo BioSciences, Inc. Pt. Richmond Tech Center 501, Canal Blvd, Suite A100 Richmond, CA 94804, USA
| | - Michael C. Holmes
- Sangamo BioSciences, Inc. Pt. Richmond Tech Center 501, Canal Blvd, Suite A100 Richmond, CA 94804, USA
| | - Philip D. Gregory
- Sangamo BioSciences, Inc. Pt. Richmond Tech Center 501, Canal Blvd, Suite A100 Richmond, CA 94804, USA
| | - John M. Greally
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shahin Rafii
- Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chingwen Yang
- Gene Targeting Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Peter J. Scambler
- Molecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - David Garrick
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Richard J. Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Douglas R. Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Fyodor D. Urnov
- Sangamo BioSciences, Inc. Pt. Richmond Tech Center 501, Canal Blvd, Suite A100 Richmond, CA 94804, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - C. David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
372
|
Abstract
Embryonic stem (ES) cells are pluripotent cells that can self renew or be induced to differentiate into multiple cell lineages, and thus have the potential to be utilized in regenerative medicine. Key pluripotency specific factors (Oct 4/Sox2/Nanog/Klf4) maintain the pluripotent state by activating expression of pluripotency specific genes and by inhibiting the expression of developmental regulators. Pluripotent ES cells are distinguished from differentiated cells by a specialized chromatin state that is required to epigenetically regulate the ES cell phenotype. Recent studies show that in addition to pluripotency specific factors, chromatin remodeling enzymes play an important role in regulating ES cell chromatin and the capacity to self-renew and to differentiate. Here we review recent studies that delineate the role of ATP dependent chromatin remodeling enzymes in regulating ES cell chromatin structure.
Collapse
Affiliation(s)
- Srinivas Vinod Saladi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Block Health Sciences Building, Mail Stop 1010, 3035 Arlington Avenue, Toledo, OH 43614, USA,
| | - Ivana L. de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Block Health Sciences Building, Mail Stop 1010, 3035 Arlington Avenue, Toledo, OH 43614, USA,
| |
Collapse
|
373
|
Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A 2010; 152A:674-86. [PMID: 20186815 PMCID: PMC2918278 DOI: 10.1002/ajmg.a.33323] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CHARGE syndrome [coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities (including deafness)] is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Here, we review the clinical features of 379 CHARGE patients who tested positive or negative for mutations in CHD7. We found that CHARGE individuals with CHD7 mutations more commonly have ocular colobomas, temporal bone anomalies (semicircular canal hypoplasia/dysplasia), and facial nerve paralysis compared with mutation negative individuals. We also highlight recent genetic and genomic studies that have provided functional insights into CHD7 and the pathogenesis of CHARGE syndrome.
Collapse
Affiliation(s)
- Gabriel E. Zentner
- Department of Genetics, Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Wanda S. Layman
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, 48109 USA
| | - Donna M. Martin
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, 48109 USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, 48109 USA
| | - Peter C. Scacheri
- Department of Genetics, Case Western Reserve University, Cleveland, OH, 44106 USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106 USA
| |
Collapse
|
374
|
Abstract
New methods for the genome-wide analysis of chromatin are providing insight into its roles in development and their underlying mechanisms. Current studies indicate that chromatin is dynamic, with its structure and its histone modifications undergoing global changes during transitions in development and in response to extracellular cues. In addition to DNA methylation and histone modification, ATP-dependent enzymes that remodel chromatin are important controllers of chromatin structure and assembly, and are major contributors to the dynamic nature of chromatin. Evidence is emerging that these chromatin-remodelling enzymes have instructive and programmatic roles during development. Particularly intriguing are the findings that specialized assemblies of ATP-dependent remodellers are essential for establishing and maintaining pluripotent and multipotent states in cells.
Collapse
Affiliation(s)
- Lena Ho
- Stanford University Medical School, Room B211, Beckman Center, 279 Campus Drive, Stanford, California 94305, USA
| | | |
Collapse
|
375
|
Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. Int J Hematol 2010; 91:360-72. [DOI: 10.1007/s12185-010-0517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
|
376
|
Abstract
The discovery that somatic cells can be reprogrammed to become induced pluripotent stem (iPS) cells has ushered in a new and exciting era in regenerative medicine. Since the seminal discovery of somatic cell reprogramming by Takahashi and Yamanaka in 2006, there has been remarkable progress in the characterization of iPS cells and the protocols used to generate them. The new information generated during the past year alone has vastly expanded our understanding of these cells. Accordingly, this review provides a basic overview of the different strategies used to generate iPS cells and focuses on recent developments in the field of iPS cells. In the final section, we discuss three broad, unanswered questions related to somatic cell reprogramming, which are just starting to be addressed.
Collapse
Affiliation(s)
- Jesse L Cox
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
377
|
Morris KJ, Chotalia M, Pombo A. Nuclear architecture in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:14-25. [PMID: 21222196 DOI: 10.1007/978-1-4419-7037-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fundamental features of genome regulation depend on the linear DNA sequence, cell type specific modification of DNA and chromatin-associated proteins, which locally control the expression of single genes. Architectural features of genome organization within the three-dimensional (3D) nuclear space establish preferential positioning of genes relative to nuclear subcompartments associated with specific biochemical activities, thereby influencing states of expression. The structural and temporal organization of the genome within the nucleus of stem cells, together with specific features of epigenetic and transcriptional regulation are emerging as key players that influence pluripotency and differentiation.1,2.
Collapse
Affiliation(s)
- Kelly J Morris
- Genome Function Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|
378
|
Abstract
Stem cells of all types are characterized by a stable, heritable state permissive of multiple developmental pathways. The past five years have seen remarkable advances in understanding these heritable states and the ways that they are initiated or terminated. Transcription factors that bind directly to DNA and have sufficiency roles have been most easy to investigate and, perhaps for this reason, are most solidly implicated in pluripotency. In addition, large complexes of ATP-dependent chromatin-remodeling and histone-modification enzymes that have specialized functions have also been implicated by genetic studies in initiating and/or maintaining pluripotency or multipotency. Several of these ATP-dependent remodeling complexes play non-redundant roles, and the esBAF complex facilitates reprogramming of induced pluripotent stem cells. The recent finding that virtually all histone modifications can be rapidly reversed and are often highly dynamic has raised new questions about how histone modifications come to play a role in the steady state of pluripotency. Another surprise from genetic studies has been the frequency with which the global effects of mutations in chromatin regulators can be largely reversed by a single target gene. These genetic studies help define the arena for future mechanistic studies that might be helpful to harness pluripotency for therapeutic goals.
Collapse
Affiliation(s)
- Julie A. Lessard
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal H3C 3J7, Quebec, Canada;
| | - Gerald R. Crabtree
- Departments of Developmental Biology and Pathology, School of Medicine, Stanford University, Stanford, California 94305-5323;
| |
Collapse
|
379
|
Tomazou EM, Meissner A. Epigenetic regulation of pluripotency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:26-40. [PMID: 21222197 DOI: 10.1007/978-1-4419-7037-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epigenetic regulation refers to the mechanisms that alter gene expression patterns in the absence of changes in the nucleotide sequence of the DNA molecule. The best understood epigenetic marks include posttranslational modifications of the histone tails and DNA methylation. Both play central roles in normal development and in diseases. Pluripotent stem cells have great promise for regenerative medicine and recent efforts have focused on identifying molecular networks that govern pluripotency. This chapter provides an overview of epigenetic regulation in embryonic stem cells. We present a brief introduction into epigenetic mechanisms and focus on their role in pluripotent cells.
Collapse
Affiliation(s)
- Eleni M Tomazou
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusettes, 02138, USA
| | | |
Collapse
|
380
|
Heng JCD, Ng HH. Transcriptional Regulation in Embryonic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:76-91. [DOI: 10.1007/978-1-4419-7037-4_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
381
|
Xu J, Watts JA, Pope SD, Gadue P, Kamps M, Plath K, Zaret KS, Smale ST. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev 2009; 23:2824-38. [PMID: 20008934 DOI: 10.1101/gad.1861209] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We reported previously that well-characterized enhancers but not promoters for typical tissue-specific genes, including the classic Alb1 gene, contain unmethylated CpG dinucleotides and evidence of pioneer factor interactions in embryonic stem (ES) cells. These properties, which are distinct from the bivalent histone modification domains that characterize the promoters of genes involved in developmental decisions, raise the possibility that genes expressed only in differentiated cells may need to be marked at the pluripotent stage. Here, we demonstrate that the forkhead family member FoxD3 is essential for the unmethylated mark observed at the Alb1 enhancer in ES cells, with FoxA1 replacing FoxD3 following differentiation into endoderm. Up-regulation of FoxD3 and loss of CpG methylation at the Alb1 enhancer accompanied the reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. Studies of two genes expressed in specific hematopoietic lineages revealed that the establishment of enhancer marks in ES cells and iPS cells can be regulated both positively and negatively. Furthermore, the absence of a pre-established mark consistently resulted in resistance to transcriptional activation in the repressive chromatin environment that characterizes differentiated cells. These results support the hypothesis that pluripotency and successful reprogramming may be critically dependent on the marking of enhancers for many or all tissue-specific genes.
Collapse
Affiliation(s)
- Jian Xu
- Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Abstract
Embryonic stem (ES) cells possess a globally open, decondensed chromatin structure that, together with trans-acting factors, supports transcriptional competence of developmentally regulated genes. However, our understanding of the mechanisms that establish transcriptional competence of specific genes is limited. In this issue of Genes & Development, Xu and colleagues (pp. 2824-2838) show that tissue-specific enhancers are actively marked by an unmethylated window in ES cells and induced pluripotent stem (iPS) cells. They propose a model and present supporting evidence to demonstrate the active involvement of pioneer transcription factors in this process. This work marks an important step toward the understanding of the mechanisms that define and maintain pluripotency, and calls for the identification of the factors that participate in the establishment of transcriptional competence in pluripotent cells.
Collapse
Affiliation(s)
- Edupuganti V S Raghu Ram
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
383
|
Epigenetic regulatory mechanisms during preimplantation development. ACTA ACUST UNITED AC 2009; 87:297-313. [DOI: 10.1002/bdrc.20165] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
384
|
Lin CH, Lin C, Tanaka H, Fero ML, Eisenman RN. Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. PLoS One 2009; 4:e7839. [PMID: 19915707 PMCID: PMC2773118 DOI: 10.1371/journal.pone.0007839] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/17/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Myc oncoprotein, a transcriptional regulator involved in the etiology of many different tumor types, has been demonstrated to play an important role in the functions of embryonic stem (ES) cells. Nonetheless, it is still unclear as to whether Myc has unique target and functions in ES cells. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the role of c-Myc in murine ES cells, we mapped its genomic binding sites by chromatin-immunoprecipitation combined with DNA microarrays (ChIP-chip). In addition to previously identified targets we identified genes involved in pluripotency, early development, and chromatin modification/structure that are bound and regulated by c-Myc in murine ES cells. Myc also binds and regulates loci previously identified as Polycomb (PcG) targets, including genes that contain bivalent chromatin domains. To determine whether c-Myc influences the epigenetic state of Myc-bound genes, we assessed the patterns of trimethylation of histone H3-K4 and H3-K27 in mES cells containing normal, increased, and reduced levels of c-Myc. Our analysis reveals widespread and surprisingly diverse changes in repressive and activating histone methylation marks both proximal and distal to Myc binding sites. Furthermore, analysis of bulk chromatin from phenotypically normal c-myc null E7 embryos demonstrates a 70-80% decrease in H3-K4me3, with little change in H3-K27me3, compared to wild-type embryos indicating that Myc is required to maintain normal levels of histone methylation. CONCLUSIONS/SIGNIFICANCE We show that Myc induces widespread and diverse changes in histone methylation in ES cells. We postulate that these changes are indirect effects of Myc mediated by its regulation of target genes involved in chromatin remodeling. We further show that a subset of PcG-bound genes with bivalent histone methylation patterns are bound and regulated in response to altered c-Myc levels. Our data indicate that in mES cells c-Myc binds, regulates, and influences the histone modification patterns of genes involved in chromatin remodeling, pluripotency, and differentiation.
Collapse
Affiliation(s)
- Chin-Hsing Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - ChenWei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Matthew L. Fero
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Robert N. Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
385
|
Hager GL, McNally JG, Misteli T. Transcription dynamics. Mol Cell 2009; 35:741-53. [PMID: 19782025 DOI: 10.1016/j.molcel.2009.09.005] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 09/08/2009] [Indexed: 01/09/2023]
Abstract
All aspects of transcription and its regulation involve dynamic events. The basal transcription machinery and regulatory components are dynamically recruited to their target genes, and dynamic interactions of transcription factors with chromatin--and with each other--play a key role in RNA polymerase assembly, initiation, and elongation. These short-term binding dynamics of transcription factors are superimposed by long-term cyclical behavior of chromatin opening and transcription factor-binding events. Its dynamic nature is not only a fundamental property of the transcription machinery, but it is emerging as an important modulator of physiological processes, particularly in differentiation and development.
Collapse
Affiliation(s)
- Gordon L Hager
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
386
|
|
387
|
Abstract
All aspects of transcription and its regulation involve dynamic events. The basal transcription machinery and regulatory components are dynamically recruited to their target genes, and dynamic interactions of transcription factors with chromatin--and with each other--play a key role in RNA polymerase assembly, initiation, and elongation. These short-term binding dynamics of transcription factors are superimposed by long-term cyclical behavior of chromatin opening and transcription factor-binding events. Its dynamic nature is not only a fundamental property of the transcription machinery, but it is emerging as an important modulator of physiological processes, particularly in differentiation and development.
Collapse
Affiliation(s)
- Gordon L Hager
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
388
|
Abstract
The discovery that adult somatic cells can be induced to become pluripotent by overexpression of a few key transcription factors provides an exciting new window into the basic biology of pluripotency and differentiation.
Collapse
Affiliation(s)
- Miguel Ramalho-Santos
- Department of Ob/Gyn, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0525, USA.
| |
Collapse
|
389
|
|