351
|
Kapasi AA, Coscia SA, Pandya MP, Singhal PC. Morphine modulates HIV-1 gp160-induced murine macrophage and human monocyte apoptosis by disparate ways. J Neuroimmunol 2004; 148:86-96. [PMID: 14975589 DOI: 10.1016/j.jneuroim.2003.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 11/11/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
We studied the effect of HIV-1 gp160 protein and morphine on murine macrophage and human monocyte apoptosis. gp160 not only promoted murine macrophage apoptosis but also enhanced macrophage iNOS expression/NO generation. gp160 also altered macrophage bax and bcl-2 expression. Morphine enhanced (P<0.001) the effect of gp160 on macrophage apoptosis as well as iNOS expression/NO generation. Nevertheless, both morphine- and gp160-induced murine macrophage apoptosis was attenuated by nitric oxide synthase (NOS) inhibitors (L-NAME and L-NMMA). On the other hand, free radical scavengers such as superoxide dismutase (SOD), dimethylthiourea (DMTU) and catalase attenuated morphine and gp160-induced human monocyte apoptosis.
Collapse
Affiliation(s)
- Aditi A Kapasi
- Immunology and Inflammation Center, North Shore-LIJ Research Institute, The Division of Kidney Disease and Hypertension, Long Island Jewish Medical Center, New Hyde Park, NY 11040, USA
| | | | | | | |
Collapse
|
352
|
Paula S, Tabet MR, Farr CD, Norman AB, Ball WJ. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody. J Med Chem 2004; 47:133-42. [PMID: 14695827 DOI: 10.1021/jm030351z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | |
Collapse
|
353
|
Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, Hunziker W, Weber P, Martin I, Bendik I. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 2004; 145:848-59. [PMID: 14605006 DOI: 10.1210/en.2003-1014] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we investigated the role of the phytoestrogen genistein and 17beta-estradiol in human bone marrow stromal cells, undergoing induced osteogenic or adipogenic differentiation. Profiling of estrogen receptors (ERs)-alpha, -beta1, -beta2, -beta3, -beta4, -beta5, and aromatase mRNAs revealed lineage-dependent expression patterns. During osteogenic differentiation, the osteoblast-determining core binding factor-alpha1 showed a progressive increase, whereas the adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARgamma) was sequentially decreased. This temporal regulation of lineage-determining marker genes was strongly enhanced by genistein during the early osteogenic phase. Moreover, genistein increased alkaline phosphatase mRNA levels and activity, the osteoprotegerin:receptor activator of nuclear factor-kappaB ligand gene expression ratio, and the expression of TGFbeta1. During adipogenic differentiation, down-regulation in the mRNA levels of PPARgamma and CCAAT/enhancer-binding protein-alpha at d 3 and decreased lipoprotein lipase and adipsin mRNA levels at d 21 were observed after genistein treatment. This led to a lower number of adipocytes and a reduction in the size of their lipid droplets. At d 3 of adipogenesis, TGFbeta1 was strongly up-regulated by genistein in an ER-dependent manner. Blocking the TGFbeta1 pathway abolished the effects of genistein on PPARgamma protein levels and led to a reduction in the proliferation rate of precursor cells. Overall, genistein enhanced the commitment and differentiation of bone marrow stromal cells to the osteoblast lineage but did not influence the late osteogenic maturation markers. Adipogenic differentiation and maturation, on the other hand, were reduced by genistein (and 17beta-estradiol) via an ER-dependent mechanism involving autocrine or paracrine TGFbeta1 signaling.
Collapse
Affiliation(s)
- M Heim
- Human Nutrition and Health, Research and Development, Roche Vitamins Ltd., VFHF, 205/219A, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Brandwood CP, Hoyland JA, Hillarby MC, Berry JL, Davies M, Selby PL, Mee AP. Apoptotic gene expression in Paget's disease: a possible role for Bcl-2. J Pathol 2004; 201:504-12. [PMID: 14595764 DOI: 10.1002/path.1463] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Paget's disease of bone is characterized by an increase in both the size and the number of bone-resorbing osteoclasts. An important regulator of osteoclast activity is the process of apoptosis, and any aberration in this process could lead to increased osteoclasis. Analysis using human apoptosis cDNA expression arrays revealed that the apoptotic suppressor, Bcl-2, showed a marked increase in expression in Pagetic bone. In situ hybridization (ISH) and computer-assisted image analysis confirmed that the levels of Bcl-2 transcripts were significantly (p<0.0001) increased in Pagetic osteoclasts. The Bcl-2:Bax transcript ratios were similarly elevated. These findings were confirmed by immunohistochemistry. The Bcl-2 gene promoter sequence from 20 Pagetic patients and controls was analysed. Single nucleotide mutations were identified in three of the Paget's patients and one of the controls. Luciferase reporter analysis showed that the mutations induced a basal 12-fold increase and hydrogen peroxide-induced 19-fold increase in luciferase expression, compared with the normal construct. It is concluded that in Paget's disease, there is an increase in the expression of genes that are involved in the inhibition of apoptosis, notably Bcl-2. The increase in Bcl-2 may be explained in some patients by mutations in the Bcl-2 gene promoter. These results provide a potential explanation for the dramatic increase in osteoclasis seen in patients with Paget's disease.
Collapse
Affiliation(s)
- Craig P Brandwood
- University School of Medicine, Manchester Royal Infirmary, Manchester, M13 9WL, UK
| | | | | | | | | | | | | |
Collapse
|
355
|
George M, Stein B, Müller O, Weis-Klemm M, Pap T, Parak WJ, Aicher WK. Metabolic activation stimulates acid secretion and expression of matrix degrading proteases in human osteoblasts. Ann Rheum Dis 2004; 63:67-70. [PMID: 14672894 PMCID: PMC1754733 DOI: 10.1136/ard.2002.005256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Both cellular and matrix components of healthy bone are permanently renewed in a balanced homoeostasis. Osteoclastic bone resorption involves the expression of vacuolar-type ATPase proton pumps (vATPase) on the outer cell membrane and the secretion of matrix degrading proteases. Osteoblasts modulate the deposition of bone mineral components and secrete extracellular matrix proteins. OBJECTIVES To investigate the ability of osteoblasts and osteosarcoma to secrete acid and express matrix degrading proteases upon metabolic activation. To examine also the potential contribution of vATPases to proton secretion expressed on osteoblasts. METHODS Osteoblasts were isolated from trabecular bone and characterised by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Proton secretion was analysed by a cytosensor microphysiometer. RESULTS Osteoblasts not only express matrix degrading proteases upon stimulation with tumour necrosis factor or with phorbol ester but they also secrete protons upon activation. Proton secretion by osteoblasts is associated partially with proton pump ATPases. CONCLUSION These data suggest that, in addition to monocyte derived osteoclasts, cytokine activated mesenchymal osteoblasts and osteosarcoma cells may contribute to the acidic milieu required for bone degradation.
Collapse
Affiliation(s)
- M George
- Institute for Applied Physics and Centre for Nanoscience, Ludwig-Maximilians, University Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
356
|
Secreto FJ, Grover A, Pacurari M, Rice MB, Kantorow M, Bidwai AP, Blaha JD, Keeting PE. Estrogen potentiates the combined effects of transforming growth factor-beta and tumor necrosis factor-alpha on adult human osteoblast-like cell prostaglandin E2 biosynthesis. Calcif Tissue Int 2003; 73:565-74. [PMID: 12958688 PMCID: PMC2957821 DOI: 10.1007/s00223-002-0023-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2003] [Indexed: 01/04/2023]
Abstract
Reports that estrogen treatment modulates arachidonic acid metabolism by bone and bone cells are found in the literature. However, conflicting indications of the relationship that exists between estrogen and arachidonic acid metabolism emerge from the analysis of those reports. The present studies were undertaken to determine if estrogen effected the production of prostaglandins (PG) in human osteoblast-like (hOB) cell cultures derived from adults, under basal or cytokine-stimulated conditions. A 48-hour estrogen pretreatment did not modify hOB cell PG biosynthesis on a qualitative basis, and PGE2 formation predominated under all tested conditions. Estrogen pretreatment did lead to increased PGE2 production in specimens stimulated conjointly with transforming growth factor-beta1 and tumor necrosis factor-alpha ( p < 0.001). No changes in PGE2 production were observed in estrogen pretreated specimens stimulated singly with either tested cytokine, nor in samples in which either TGFbeta or TNF was replaced by interleukin-1beta. Anti-estrogen (ICI 164,384) inclusion prevented the estrogen-dependent increase in PGE2 production in the TGFbeta plus TNF-stimulated samples. These results suggest that an estrogen effect on bone cell prostaglandin biosynthesis may be most evident and significant under conditions in which the cells are exposed to multiple osteotropic cytokines, a condition that applies during the bone remodeling process.
Collapse
Affiliation(s)
- F. J. Secreto
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | - A. Grover
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | - M. Pacurari
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | - M. B. Rice
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | - M. Kantorow
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | - A. P. Bidwai
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | - J. D. Blaha
- Department of Orthopedics, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | - P. E. Keeting
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| |
Collapse
|
357
|
Abstract
UNLABELLED Amounts of bone ingrowth into porous cobalt-chromium plugs were compared between male and female dogs, and among sham-operated and ovariectomized female dogs, with or without estrogen treatment, to investigate the effect of gender and estrogen therapy on biologic fixation. Each group consisted of eight skeletally mature dogs. Plugs were implanted bilaterally in the distal femur at 6 months after ovariectomy or sham operation. Estrogen treatment group received estradiol 20 microg/kg/day subcutaneous injection. Three months after implantation, histological examination showed significantly more bone ingrowth in areas with cortical bone contact than in areas with cancellous bone contact (P<0.001 for all groups). Bone ingrowth was essentially the same in male and female control dogs. Ovariectomized dogs showed less overall bone ingrowth than male and female controls (P=0.007). Bone ingrowth in areas with cortical bone contact did not decrease significantly, whereas bone ingrowth in areas with cancellous bone contact was significantly impaired (P<0.001) in ovariectomized dogs compared with female controls. Short-term, high-dose estradiol treatment did not increase bone ingrowth volume fraction. Mechanical tests did not show any statistical differences among groups. CONCLUSION Type of bone contact is the key factor affecting the amount and pattern of bone ingrowth into the porous surface. Ovariectomy results in decreased bone ingrowth in areas with cancellous bone contact, but does not compromise bone ingrowth in areas with cortical bone contact. Short-term, high-dose estradiol treatment does not enhance bone ingrowth into the porous surface. Extensively coated or full-coated porous prostheses are recommended to achieve enough cortical bone contact and ingrowth for post-menopausal patients.
Collapse
Affiliation(s)
- Lih-Yuann Shih
- Department of Orthopedic Surgery, Chang-Gung Memorial Hospital and Chang-Gung University, Kwei-Shan, 333 Tao-Yuan, Taiwan.
| | | | | |
Collapse
|
358
|
Abstract
The use of dietary phyto-oestrogens as a possible option for the prevention of osteoporosis has raised considerable interest because of the increased concern about the risks associated with the use of hormone-replacement therapy. However, the evidence in support of a bone-sparing effect in post-menopausal women is still not sufficiently convincing. Most studies have been performed on soyabean isoflavones (genistein and daidzein), either in the purified form or as a soyabean-based product or extract. In vitro studies using primary cell cultures or stabilised cell lines indicate that treatment with genistein may lead to a reduction in bone resorption, but effects on bone formation have also been shown. Investigations using animal models have provided convincing evidence of major improvements in bone mass or bone turnover following soyabean feeding. Cross-sectional observations in South-East Asian populations with moderately high intakes of soyabean isoflavones (50 mg/d) have shown that women in the high quartile of intake have higher bone mineral density (BMD) and reduced bone turnover, an effect that has not been shown in populations with low average intakes. Human trials have given an indication of a possible effect on lumbar spine BMD, although they have been either short term (<6 months) or methodologically weak. Unresolved issues are: the optimal dose compatible with safety; the individual differences in response that can be related to diet and genotypes; the duration of exposure. Furthermore, there needs to be an evaluation of the relative biological effects of phyto-oestrogens other than isoflavones (lignans, resorcylic acid lactones, flavanols, coumestans) that are also present in European diets.
Collapse
Affiliation(s)
- Francesco Branca
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, Via Ardeatina 546, 00178 Rome, Italy.
| |
Collapse
|
359
|
Abstract
UNLABELLED The primary function of the skeleton is locomotion, and the primary function of estrogen is reproduction. When the skeleton is considered within this locomotive context, the onset of estrogen secretion at puberty leads to packing of mechanically excess mineral into female bones for reproductive needs. Accordingly, the unpacking of this reproductive safety deposit at menopause denotes the origin of type I osteoporosis. INTRODUCTION According to the prevailing unitary model of involutional osteoporosis, female postmenopausal bone loss can be described as having an initial accelerated, transient phase (type I), followed by a gradual continuous phase (type II). Estrogen withdrawal is generally accepted as the primary cause of the type I osteoporosis. Thus, the quest to uncover the origin of type I osteoporosis has focused on the estrogen withdrawal-related skeletal changes at and around the menopause. However, considering that the cyclical secretion of estrogen normally begins in early adolescence and continues over the entire fertile period, one could argue that focusing on perimenopause alone may be too narrow. MATERIALS AND METHODS This is not a systematic review of the literature on the skeletal function of estrogen(s), but rather, an introduction of a novel structure- and locomotion-oriented perspective to this particular issue through pertinent experimental and clinical studies. RESULTS AND CONCLUSIONS When considering locomotion as the primary function of the skeleton and integrating the classic findings of the pubertal effects of estrogen on female bones and the more recent hypothesis-driven experimental and clinical studies on estrogen and mechanical loading on bone within this context, a novel evolution-based explanation for the role of estrogen in controlling female bone mass can be outlined: the onset of estrogen secretion at puberty induces packing of mechanically excess bone into female skeleton for needs of reproduction (pregnancy and lactation). Accordingly, the unpacking of this reproductive safety deposit of calcium at menopause denotes the accelerated phase of bone loss and thus the origin of type I osteoporosis.
Collapse
Affiliation(s)
- Teppo L N Järvinen
- Medical School, Institute of Medical Technology, University of Tampere, Tampere, Finland.
| | | | | |
Collapse
|
360
|
Elefteriou F, Takeda S, Liu X, Armstrong D, Karsenty G. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology 2003; 144:3842-7. [PMID: 12933656 DOI: 10.1210/en.2003-0369] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
361
|
Carruba G, D'Agostino P, Miele M, Calabrò M, Barbera C, Bella GD, Milano S, Ferlazzo V, Caruso R, Rosa ML, Cocciadiferro L, Campisi I, Castagnetta L, Cillari E. Estrogen regulates cytokine production and apoptosis in PMA-differentiated, macrophage-like U937 cells. J Cell Biochem 2003; 90:187-96. [PMID: 12938167 DOI: 10.1002/jcb.10607] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have investigated the effects of sex steroids, estradiol (E2), and testosterone (T) on the synthesis of tumor necrosis factor alpha (TNF-alpha) and interleukin-10 (IL-10) in phorbol-myristate-acetate (PMA)-differentiated human monoblastic U937 cells. The ability of both hormones to modulate the viability and programmed cell death of macrophage-like PMA-differentiated U937 cells was also inspected. E2 increased TNF-alpha synthesis, whereas T had no effect on the production of this cytokine. The combination of E2 and its antagonist tamoxifen or ICI-182,789 completely abolished the induction of TNF-alpha, while combination of T and its antagonist Casodex (CSDX) did not significantly affect TNF-alpha production by U937 cells. Exposure of cells to E2 resulted in a dose-dependent decrease of IL-10 synthesis, while again T did not show any detectable effect. In addition, E2 induced a significant increase of apoptosis in macrophage-like U937 cells and this increase was inhibited by the simultaneous addition of either tamoxifen or ICI-182. In contrast, T alone or in combination with CSDX did not modify apoptotic rates of U937 cells. This evidence, taken together, suggests that estrogens, but not androgens, exert a pro-inflammatory action through the modulation of TNF-alpha and IL-10, and regulate the immune effector cells by the induction of programmed cell death.
Collapse
Affiliation(s)
- Giuseppe Carruba
- Department of Experimental Oncology and Clinical Application, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Kwak HB, Lee SW, Lee DG, Hahm KS, Kim KK, Kim HH, Lee ZH. A hybrid peptide derived from cecropin-A and magainin-2 inhibits osteoclast differentiation. Life Sci 2003; 73:993-1005. [PMID: 12818352 DOI: 10.1016/s0024-3205(03)00380-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The adult skeleton is in a dynamic state, being continually broken down and reformed by the coordinated actions of osteoclasts and osteoblasts. Increased osteoclast activity may contribute to the development of osteoporosis. Therefore, the intervention of osteoclast-mediated bone resorption is considered as an effective therapeutic approach in the treatment of osteoporosis. In the course of searching for agents that inhibit osteoclast differentiation and activation, we found that a novel hybrid peptide P1 derived from cecropin-A and magainin-2 reduced osteoclast differentiation in various osteoclast culture systems. As this peptide had no cytotoxicity on various cultures of primary cells and established cell lines, its inhibitory effect on osteoclastogenesis was not due to general cytotoxicity. The effects of P1 on osteoclasts appear to be mediated through the inhibition of NF-kappaB and JNK activation induced by the osteoclastogenic cytokine, receptor activator of NF-kappaB ligand (RANKL). These results provide an evidence for the potential usefulness of P1 for the treatment of bone-resorbing diseases.
Collapse
Affiliation(s)
- Han Bok Kwak
- National Research Laboratory for Bone Metabolism, Chosun University, Gwangju, South Korea
| | | | | | | | | | | | | |
Collapse
|
363
|
Fukui D, Miyagawa S, Soeda J, Tanaka K, Urayama H, Kawasaki S. Overexpression of transforming growth factor beta1 in smooth muscle cells of human abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2003; 25:540-5. [PMID: 12787696 DOI: 10.1053/ejvs.2002.1857] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE to examine the expression of transforming growth factor beta1 (TGF-beta1) and the cell kinetics of smooth muscle cells (SMCs) at the neck of abdominal aortic aneurysms (AAAs). MATERIALS AND METHODS expression of alpha-smooth muscle actin and TGF-beta1 was evaluated by immunostaining, and cell kinetics were estimated by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay and Ki-67 immunostaining in 11 AAAs (at both the dilated region and the neck) and eight occlusive aortas. RESULTS the TUNEL-positive SMC ratio in the neck and dilated region was significantly higher than in the occlusive aorta (p<0.01). The percentage of Ki-67-positive SMCs in the neck was significantly higher than in the dilated region (p<0.01) and the occlusive aorta (p=0.032). When compared with the occlusive aorta, the aneurysmal neck had increased TGF-beta1 expression (p=0.01) and reduced SMC density, and the aneurysmal dilated aorta had much more increased TGF-beta1 expression (p<0.01) and much more reduced SMC density (p<0.01). CONCLUSIONS these results suggest that overexpression of TGF-beta1 might be associated with the reduction of SMC density through SMC apoptosis and reduced proliferative ability of SMCs, leading to dilatation in AAAs.
Collapse
Affiliation(s)
- D Fukui
- First Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
364
|
Lieberherr M, Cournot G, Robins SP. Guidelines for using in vitro methods to study the effects of phyto-oestrogens on bone. Br J Nutr 2003; 89 Suppl 1:S59-73. [PMID: 12725651 DOI: 10.1079/bjn2002797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
These guidelines review the relevant literature on the way plant phyto-oestrogens act on bone and the responsiveness of different bone cell systems to phyto-oestrogenic compounds. The primary emphasis is on the experimental conditions used, the markers available for assessing osteoblast and osteoclast function, and their expected sensitivity. Finally, we assess the published results to derive some general recommendations for in vitro experiments in this area of research.
Collapse
Affiliation(s)
- Michèle Lieberherr
- Laboratoire de Nutrition et de Sécurité Alimentaire, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
365
|
Ahuja SS, Zhao S, Bellido T, Plotkin LI, Jimenez F, Bonewald LF. CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology 2003; 144:1761-9. [PMID: 12697681 DOI: 10.1210/en.2002-221136] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During characterization of the osteocyte-like murine long bone osteocyte-Y4 (MLO-Y4) cell line, comparison was made with antigen-presenting cells of the immune system known as dendritic cells. It was observed that the MLO-Y4 osteocyte-like cells express CD40 antigen and MHC class I antigen, but they are negative for a series of other dendritic cells markers (DEC-205, CD11b, CD11c, CD86, and MHC class II) and immune cell markers [CD45, CD3, CD4, B220, Gr-1, and CD40 ligand (CD40L)]. RT-PCR results showed expression of CD40 mRNA and lack of CD40L mRNA expression. Like MLO-Y4 osteocyte cells, both primary osteoblasts and the osteoblast-like cell lines MC3T3, OCT-1, and 2T3 were shown to express CD40 antigen by fluorescence-activated cell sorting. Because CD40L has been shown to function as an antiapoptotic factor in dendritic cells, it was reasoned that this molecule may have a similar function in bone cells. In three different assays for apoptosis, including trypan blue exclusion, changes in nuclear morphology, and fluorescence-activated cell sorting staining for annexin V/propidium iodide, CD40L significantly inhibited apoptosis of MLO-Y4 cells induced by dexamethasone, TNF alpha, or etoposide. CD40L also inhibited dexamethasone and TNF alpha-induced apoptosis in the osteoblast cell lines, OCT1 and MC3T3-E1. These data support the hypothesis that CD40L preserves viability of osteoblasts and osteocytes against a wide variety of apoptotic factors independent of signaling or transcriptional mechanisms. Because osteocyte cell death appears to result in bone loss, these studies have important implications for the treatment of bone loss due to glucocorticoid excess and/or to osteoporosis in general.
Collapse
Affiliation(s)
- Seema S Ahuja
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284,USA
| | | | | | | | | | | |
Collapse
|
366
|
Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003; 111:1221-30. [PMID: 12697741 PMCID: PMC152939 DOI: 10.1172/jci17215] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies in rodents have implicated various cytokines as paracrine mediators of increased osteoclastogenesis during estrogen deficiency, but increases in RANKL, the final effector of osteoclastogenesis, have not been demonstrated. Thus, we isolated bone marrow mononuclear cells expressing RANKL on their surfaces by two-color flow cytometry using FITC-conjugated osteoprotegerin-Fc (OPG-Fc-FITC) as a probe. The cells were characterized as preosteoblastic marrow stromal cells (MSCs), T lymphocytes, or B lymphocytes by using Ab's against bone alkaline phosphatase (BAP), CD3, and CD20, respectively, in 12 premenopausal women (Group A), 12 early postmenopausal women (Group B), and 12 age-matched, estrogen-treated postmenopausal women (Group C). Fluorescence intensity of OPG-Fc-FITC, an index of the surface concentration of RANKL per cell, was increased in Group B over Groups A and C by two- to threefold for MSCs, T cells, B cells, and total RANKL-expressing cells. Moreover, in the merged groups, RANKL expression per cell correlated directly with the bone resorption markers, serum C-terminal telopeptide of type I collagen and urine N-telopeptide of type I collagen, in all three cell types and inversely with serum 17beta-estradiol for total RANKL-expressing cells. The data suggest that upregulation of RANKL on bone marrow cells is an important determinant of increased bone resorption induced by estrogen deficiency.
Collapse
|
367
|
Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003. [DOI: 10.1172/jci200317215] [Citation(s) in RCA: 556] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
368
|
Xu J, Feng HT, Wang C, Yip KHM, Pavlos N, Papadimitriou JM, Wood D, Zheng MH. Effects of Bafilomycin A1: an inhibitor of vacuolar H (+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. J Cell Biochem 2003; 88:1256-64. [PMID: 12647307 DOI: 10.1002/jcb.10477] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bafilomycin A1, a specific inhibitor of V-ATPases, is a potent inhibitor of bone resorption, but the underlying mechanisms of its action remain unclear. In this study, we investigated the effect of Bafilomycin A1 on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. Quantitative analysis by flow cytometry showed that Bafilomycin A1 increased total transferrin levels when RAW cells were exposed to labeled transferrin and decreased the total uptake of Dextran-rhodamine B, both in a dose- and time-dependent fashion, indicating that Bafilomycin influences receptor-mediated and fluid phase endocytosis in these cells. Furthermore, Bafilomycin A1 induced apoptosis of RAW cells in a dose dependent manner as evidenced by Annexin V flow cytometry. The action of Bafilomycin A1 on endocytotic events appeared to be more sensitive and occurred earlier than on its apoptosis inducing effects, suggesting that interrupting of endocytosis might be an early sign of Bafilomycin-mediated osteoclast inhibition. Semi-quantitative RT-PCR analysis showed that the gene transcripts of putative Bafilomycin A1 binding subunit, V-ATPase-subunit a3, were expressed in the preosteoclastic RAW cell line, and up-regulated during RANKL-induced osteoclastogenesis. Osteoclasts treated with Bafilomycin A1 exhibited apoptosis as well as altered cellular localization of Transferrin Alexa 647. Given that endocytosis and apoptosis are important processes during osteoclastic bone resorption, the potent effect of Bafilomycin A1 on endocytosis and apoptosis of osteoclasts and their precursor cells may in part account for Bafilomycin A1 inhibited bone resorption.
Collapse
Affiliation(s)
- Jiake Xu
- Department of Surgery (Orthopaedics), University of Western Australia, QEII Medical Center, Nedlands WA.
| | | | | | | | | | | | | | | |
Collapse
|
369
|
Winding B, Misander H, Høegh-Andersen P, Brünner N, Foged NT. Estradiol enhances osteolytic lesions in mice inoculated with human estrogen receptor-negative MDA-231 breast cancer cells in vivo. Breast Cancer Res Treat 2003; 78:205-16. [PMID: 12725420 DOI: 10.1023/a:1022943127689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of 17-beta-estradiol (E2) on the induction of osteolytic lesions by estrogen receptor (ER)-negative breast cancer cells was investigated in 4-week-old female nude mice. Exposure to exogenous E2 was found to increase osteolytic areas on radiographs up to 5.3 times in mice inoculated intracardially with MDA-231 human breast cancer cells. The MDA-231 cells were ER-negative, both before inoculation, and after isolation from osteolytic lesions, and the corresponding cell cultures were insensitive to E2. The induction of skeletal lesions by E2 in this mouse model was mainly effectuated at the early development of bone metastases, since exposure to E2 for 8 days around MDA-231 inoculation increased osteolysis to the same level, as did E2 given throughout the entire 31-day experimental period, and because E2-exposure for just the final 14 days had no effect. Independently of exposure to E2, histology revealed cancer cells in hind limp long bones of approximately 80% of the mice, and tumors were absent in non-skeletal organs. In vitro studies showed that the number and activity of osteoclasts generated from mouse bone marrow cells were increased 5-6 times when co-cultured with MDA-231 cells. Addition of 0.1-10 nM E2 further dose-dependently increased the osteoclastogenesis and associated bone resorption in these co-cultures. In conclusion, E2 was found to increase the morbidity in mice inoculated with ER-negative MDA-231 cells, and to stimulate osteoclast formation and bone resorption in co-cultures of bone marrow cells and MDA-231, suggesting that the progression of osteolytic metastases by ER-negative breast cancer cells can be induced by E2 due to stimulation of osteoclastogenesis.
Collapse
|
370
|
Abstract
The past years several have witnessed a significant transformation in our understanding of sex steroid action in the male and female skeleton. Data from animal and human studies indicate that sex steroids have important skeletal effects in both genders. It seems from the in vivo human data that estrogen is likely more potent than testosterone in inhibiting bone resorption. Estrogen and testosterone appear to be important for maintaining bone formation. In addition, androgens clearly enhance bone size, likely through effects on periosteal bone formation. How much of this gender cross-talk at the physiological level is caused by "promiscuous" actions of sex steroids at the molecular level, with estrogen acting by way of the androgen receptor (and androgens via the estrogen receptor) is an interesting and important question, the answer to which may well provide additional surprises.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic and Foundation, 200 First Street SW, 5-194 Joseph, Rochester, MN 55905, USA.
| | | |
Collapse
|
371
|
Abstract
There are many pathways that might lead to decreased bone mass, skeletal fragility, and increased fracture risk in osteoporosis. Some of these have been clearly identified, such as estrogen deficiency. Others that were conceived on the basis of experimental findings and recent scientific discoveries such as abnormalities of cytokines, bone growth factors, and osteoblast transcription factors remain interesting but speculative. The recent revolution in genomics and proteomics opens new avenues for pursuing in great depth the pathways leading to osteoporosis. Animal models developed largely in rodents can suggest specific factors that can be further studied in primate models and in osteoporotic patients. Identification of specific pathogenetic mechanisms should lead to new approaches to the diagnosis and management of this disorder.
Collapse
Affiliation(s)
- Lawrence G Raisz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, MC 1850, Farmington, CT 06030-1850, USA. raisznso.uchc.edu
| | | |
Collapse
|
372
|
Lehenkari P, Parikka V, Rautiala TJ, Weckström M, Dahllund J, Härkönen PL, Väänänen HK. The effects of tamoxifen and toremifene on bone cells involve changes in plasma membrane ion conductance. J Bone Miner Res 2003; 18:473-81. [PMID: 12619932 DOI: 10.1359/jbmr.2003.18.3.473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Selective estrogen receptor modulators (SERMs), tamoxifen (Tam) and toremifene (Tor), are widely used in the treatment of breast cancer. In addition, they have been demonstrated to prevent estrogen deficiency-induced bone loss in postmenopausal women. These effects are thought to be caused by the interaction of the SERMs with the estrogen receptor, although SERMs have also been shown to conduct non-receptor-mediated effects such as rapid changes in membrane functions. We compared the effects of Tam, Tor, and 17beta-estradiol (E2) on the viability of rat osteoclasts and osteoblasts. Both Tam and Tor were found to cause osteoclast apoptosis in in vitro cultures, which was reversed by E2. In addition, at higher concentration (10 microM), both SERMs had an estrogen receptor-independent effect, which involved interaction with the plasma membrane as demonstrated with UMR-108 osteosarcoma cells by Tam and Tor, but not E2. A leak of protons leading to changes in intracellular pH was shown both in medullary bone derived membrane vesicles and in intact cells. These effects were followed by a rapid loss of cell viability and subsequent cell lysis. Our results show that both Tam and Tor have an ionophoric effect on the plasma membranes of bone cells and that these SERMs differed in this ability: Tor induced rapid membrane depolarization only in the presence of high concentration of potassium. These non-receptor-mediated effects may be involved in therapeutic responses and explain some clinical side effects associated with the treatment of patients with these SERMs.
Collapse
Affiliation(s)
- Petri Lehenkari
- Department of Surgery and Anatomy, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | |
Collapse
|
373
|
Abstract
The coexistence of liver disease and osteopenic bone disease has been recognized for many years and is now the subject of increasing attention. Osteoporosis has been characterized well in patients with cholestatic liver disease, but new research suggests that osteopenia and osteoporosis may also be prevalent in patients with other chronic liver diseases. Although the precise mechanism of bone loss remains unclear, advances in treatment and prevention are bringing heightened awareness to this common problem.
Collapse
Affiliation(s)
- Elizabeth Carey
- Division of Transplantation Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | | |
Collapse
|
374
|
Xing L, Carlson L, Story B, Tai Z, Keng P, Siebenlist U, Boyce BF. Expression of either NF-kappaB p50 or p52 in osteoclast precursors is required for IL-1-induced bone resorption. J Bone Miner Res 2003; 18:260-9. [PMID: 12568403 DOI: 10.1359/jbmr.2003.18.2.260] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-1 is implicated in postmenopausal- and inflammation-mediated bone loss. Its expression is regulated by NF-kappaB and vice versa. To examine the role of NF-kappaB p50 and p52 (they are required for osteoclast formation during embryonic development) in IL-1-induced resorption, we used various NF-kappaB knockout (KO) mice, including p50-/- and p52-/- single KO, p50-/- and p52+/- (3/4KO), and p50-/- and p52-/- double KO (dKO) mice. IL-1 increased blood calcium and bone resorption in wild-type (wt), p50, and p52 single KO mice, but not in 3/4KO or dKO mice. Osteoclast formation was impaired in bone marrow cultures from 3/4KO compared with single KO and wt mice treated with IL-1. IL-1 receptor expression was similar in colony forming unit-granulocyte macrophage (CFU-GM) colony cells from wt and dKO mice. However, IL-1 promoted CFU-GM colony formation and survival as well as the formation, activity, and survival of osteoclasts generated from these colonies from wt mouse splenocytes, but not from dKO splenocytes. No difference in expression of the osteoclast regulatory cytokines, RANKL, and OPG, was observed in osteoblasts from wt and dKO mice. Thus, expression of either NF-kappaB p50 or p52 is required in osteoclasts and their precursors, rather than osteoblasts, for IL-1-mediated bone resorption.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
375
|
Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int 2003; 14 Suppl 3:S2-8. [PMID: 12730770 DOI: 10.1007/s00198-002-1340-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 08/20/2002] [Indexed: 10/20/2022]
Abstract
The net amount of bone lost during aging is determined by the difference between the amount of bone removed from the endocortical, trabecular and intracortical components of its endosteal (inner) envelope and formed beneath its periosteal (outer) envelope. Endosteal bone loss is determined by the remodeling rate (number of basic multicellular units, BMUs) and the negative balance (the difference between the volumes of bone resorbed and formed in each BMU). Bone loss already occurs in young adult women and men and is probably due to a decline in the volume of bone formed in each BMU. The rate of loss is slow because the remodeling rate is low in young adulthood. Bone loss accelerates in women at menopause because remodeling intensity increases and BMU balance becomes more negative as estrogen deficiency reduces osteoblast lifespan and increases osteoclast lifespan. The high remodeling rate also reduces the mineral content of bone tissue. The negative BMU balance results in trabecular thinning, disappearance and loss of connectivity, cortical thinning and increased intracortical porosity. These changes compromise the material and structural properties of bone while concurrent age-related subperiosteal bone formation increases the cross-sectional area (CSA) of bone partly offsetting endosteal bone loss and the loss of structural and material strength. Thus, treatments aimed at reducing the progression of bone fragility, and reversing it, should reduce activation frequency and so reduce the number of remodeling sites, reduce osteoclastic resorption in the BMU, and so reduce the volume of bone resorbed on each of the three components of the endosteal surface thereby reducing the progression of trabecular thinning, loss of connectivity, cortical thinning and porosity. If treatment also increases periosteal bone formation, the CSA of the whole bone and its cortical area will increase. If treatment also increases endosteal bone formation in the BMU, bone balance will be less negative, especially if resorption depth is reduced. This may produce thickening of trabeculae provided activation frequency is not too low. If treatment can increase de novo bone formation at quiescent endosteal surfaces, this will increase cortical and trabecular thickness, and reduce intracortical porosity. In this way, drugs directed at both the resorptive and formative aspects of remodeling, and bone modeling may (i) increase compressive and bending strength of cortical bone by increasing the diameter of the whole bone, its CSA and the distance the cortical mass is placed from the neutral long bone axis; (ii) maintain or increase peak compressive stress and peak strain in trabecular bone, preventing microcracks and buckling; and (iii) increase the material density of bone tissue, an effect that probably should not be permitted to reach a level which reduces resistance to microdamage accumulation and progression (toughness).
Collapse
Affiliation(s)
- Ego Seeman
- Department of Endocrinology, Austin and Repatriation Medical Centre, 3084, Heidelberg, Melbourne, Australia.
| |
Collapse
|
376
|
Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 2003; 65:35-42. [PMID: 12473376 DOI: 10.1016/s0006-2952(02)01445-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several recent studies have suggested that flavonols, a class of phytochemicals with many biological activities, might exert a protective effect against post-menopausal bone loss. In the present study, we investigated the effects of quercetin and kaempferol, two of the major naturally occurring flavonols on the in vitro bone resorbing activity of osteoclasts. Our results indicate that both compounds, at concentrations ranging from 0.1 to 100 microM reduce bone resorption in a time and dose-dependent manner. Significant inhibitory effects were observed at concentrations as low as 0.1 microM especially with kaempferol. The IC(50)s, or concentration inhibitory of 50% of basal resorption, calculated for quercetin and kaempferol were 1.6 and 5.3 microM, respectively. Using highly purified rabbit osteoclasts, we showed that both flavonols directly induce apoptosis of mature osteoclasts in the same dose-range effective for inhibiting bone resorption. When osteoclasts were treated with 50 microM of quercetin and kaempferol, intracellular reactive oxygen species levels decreased significantly by 75 and 25%, respectively, indicating these molecules keep their antioxidant properties at this concentration. However, at concentrations below 50 microM, neither quercetin nor kaempferol exerted antiradical action, suggesting that antioxidant properties cannot fully explain the inhibitory effect on bone resorption. Finally, we report that kaempferol-, but not the quercetin-induced inhibition of bone resorption was partially abolished by the presence of the pure anti-estrogen ICI 182780 suggesting that kaempferol's estrogenic effect could be involved in the inhibition of bone resorption. The present study demonstrates that flavonols widely distributed in human diet such as quercetin and kaempferol, exert a potent inhibitory effect on in vitro bone resorption.
Collapse
Affiliation(s)
- Alice Wattel
- Clinical Pharmacy Laboratory, Université de Picardie Jules Verne, 1 rue des Louvels, 80000 Amiens, France
| | | | | | | | | | | | | | | |
Collapse
|
377
|
D'Elia HF, Mattsson LA, Ohlsson C, Nordborg E, Carlsten H. Hormone replacement therapy in rheumatoid arthritis is associated with lower serum levels of soluble IL-6 receptor and higher insulin-like growth factor 1. Arthritis Res Ther 2003; 5:R202-9. [PMID: 12823855 PMCID: PMC165058 DOI: 10.1186/ar761] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 03/12/2003] [Accepted: 03/21/2003] [Indexed: 01/15/2023] Open
Abstract
Hormone replacement therapy (HRT) modulates the imbalance in bone remodeling, thereby decreasing bone loss. Sex hormones are known to influence rheumatic diseases. The aim of this study was to investigate the effects of HRT on the serum levels of hormones and cytokines regulating bone turnover in 88 postmenopausal women with active rheumatoid arthritis (RA) randomly allocated to receive HRT plus calcium and vitamin D3 or calcium and vitamin D3 alone for 2 years. An increase in estradiol (E2) correlated strongly with improvement of bone mineral density in the hip (P < 0.001) and lumbar spine (P < 0.001). Both baseline levels and changes during the study of IL-6 and erythrocyte sedimentation rate were correlated positively (P < 0.001). HRT for 2 years resulted in an increase of the bone anabolic factor, insulin-like growth factor 1 (IGF-1) (P < 0.05) and a decrease of serum levels of soluble IL-6 receptor (sIL-6R) (P < 0.05), which is known to enhance the biological activity of IL-6, an osteoclast-stimulating and proinflammatory cytokine. Baseline levels of IL-6 and IGF-1 were inversely associated (P < 0.05), and elevation of IGF-1 was connected with decrease in erythrocyte sedimentation rate (P < 0.05) after 2 years. Interestingly, increase in serum levels of E2 was associated with reduction of sIL-6R (P < 0.05) and reduction of sIL-6R was correlated with improved bone mineral density in the lumbar spine (P < 0.05). The latter association was however not significant after adjusting for the effect of E2 (P = 0.075). The influences of IGF-1 and the IL-6/sIL-6R pathways suggest possible mechanisms whereby HRT may exert beneficial effects in RA. However, to confirm this hypothesis future and larger studies are needed.
Collapse
Affiliation(s)
- Helena Forsblad D'Elia
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
378
|
Lindberg MK, Movérare S, Eriksson AL, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, Ohlsson C. Identification of estrogen-regulated genes of potential importance for the regulation of trabecular bone mineral density. J Bone Miner Res 2002; 17:2183-95. [PMID: 12469912 DOI: 10.1359/jbmr.2002.17.12.2183] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Estrogen is of importance for the regulation of trabecular bone mineral density (BMD). The aim of this study was to search for possible mechanisms of action of estrogen on bone. Ovariectomized (OVX) mice were treated with 17beta-estradiol. Possible effects of estrogen on the expression of 125 different bone-related genes in humerus were analyzed using the microarray technique. Estrogen regulated 12 of these genes, namely, two growth factor-related genes, 8 cytokines, and 2 bone matrix-related genes. Five of the 12 genes are known to be estrogen-regulated, and the remaining 7 genes are novel estrogen-regulated genes. Seven genes, including interleukin-1 receptor antagonist (IL-1ra), IL-1receptor type II (IL-1RII), insulin-like growth factor-binding protein 4 (IGFBP-4), transforming growth factor beta (TGF-beta), granulocyte colony-stimulating factor receptor (G-CSFR), leukemia inhibitory factor receptor (LIFR), and soluble IL-4 receptor (sIL-4R) were selected as probable candidate genes for the trabecular bone-sparing effect of estrogen, as the mRNA levels of these genes were highly correlated (r2 > 0.65) to the trabecular BMD. The regulation of most of these seven genes was predominantly estrogen receptor alpha (ER-alpha)-mediated (5/7) while some genes (2/7) were regulated both via ER-alpha and ER-beta. In conclusion, by using the microarray technique, we have identified four previously known and three novel estrogen-regulated genes of potential importance for the trabecular bone-sparing effect of estrogen.
Collapse
Affiliation(s)
- Marie K Lindberg
- Center for Bone Research at the Sahlgrenska Academy, Division of Endocrinology, Department of Internal Medicine, Göteborgs Universitet. Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X, Xing L, Boyce BF, Hung MC, Zhang S, Gan L, Chang C, Hung MC. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 2002; 99:13498-503. [PMID: 12370412 PMCID: PMC129702 DOI: 10.1073/pnas.212474399] [Citation(s) in RCA: 495] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By using a cre-lox conditional knockout strategy, we report here the generation of androgen receptor knockout (ARKO) mice. Phenotype analysis shows that ARKO male mice have a female-like appearance and body weight. Their testes are 80% smaller and serum testosterone concentrations are lower than in wild-type (wt) mice. Spermatogenesis is arrested at pachytene spermatocytes. The number and size of adipocytes are also different between the wt and ARKO mice. Cancellous bone volumes of ARKO male mice are reduced compared with wt littermates. In addition, we found the average number of pups per litter in homologous and heterozygous ARKO female mice is lower than in wt female mice, suggesting potential defects in female fertility and/or ovulation. The cre-lox ARKO mouse provides a much-needed in vivo animal model to study androgen functions in the selective androgen target tissues in female or male mice.
Collapse
Affiliation(s)
- Shuyuan Yeh
- Departments of Urology and Pathology, George H. Whipple Lab for Cancer Research, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Ehrlich PJ, Noble BS, Jessop HL, Stevens HY, Mosley JR, Lanyon LE. The effect of in vivo mechanical loading on estrogen receptor alpha expression in rat ulnar osteocytes. J Bone Miner Res 2002; 17:1646-55. [PMID: 12211435 DOI: 10.1359/jbmr.2002.17.9.1646] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The presence of estrogen receptor alpha (ER alpha) in osteocytes was identified immunocytochemically in transverse sections from 560 to 860 microm distal to the midshaft of normal neonatal and adult male and female rat ulnas (n = 3 of each) and from adult male rat ulnas that had been exposed to 10 days of in vivo daily 10-minute periods of cyclic loading producing peak strains of either -3000 (n = 3) or -4000 microstrain (n = 5). Each animal ambulated normally between loading periods, and its contralateral ulna was used as a control. In animals in which limbs were subject to normal locomotor loading alone, 14 +/- 1.2% SEM of all osteocytes in each bone section were ER alpha positive. There was no influence of either gender (p = 0.725) or age (p = 0.577) and no interaction between them (p = 0.658). In bones in which normal locomotion was supplemented by short periods of artificial loading, fewer osteocytes expressed ER alpha (7.5 +/- 0.91% SEM) than in contralateral control limbs, which received locomotor loading alone (14 +/- 1.68% SEM; p = 0.01; median difference, 6.43; 95% CI, 2.60, 10.25). The distribution of osteocytes expressing ER alpha was uniform across all sections and thus did not reflect local peak strain magnitude. This suggests that osteocytes respond to strain as a population, rather than as individual strain-responsive cells. These data are consistent with the hypothesis that ER alpha is involved in bone cells' responses to mechanical strain. High strains appear to decrease ER alpha expression. In osteoporotic bone, the high strains assumed to accompany postmenopausal bone loss may reduce ER alpha levels and therefore impair the capacity for appropriate adaptive remodeling.
Collapse
Affiliation(s)
- P J Ehrlich
- Department of Veterinary Basic Sciences, The Royal Veterinary College, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
381
|
Xing L, Bushnell TP, Carlson L, Tai Z, Tondravi M, Siebenlist U, Young F, Boyce BF. NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J Bone Miner Res 2002; 17:1200-10. [PMID: 12096833 DOI: 10.1359/jbmr.2002.17.7.1200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Expression of RANKL by stromal cells and of RANK and both NF-kappaB p50 and p52 by osteoclast precursors is essential for osteoclast formation. To examine further the role of RANKL, RANK, and NF-KB signaling in this process, we used NF-kappaB p50-/- ;p52-/- double knockout (dKO) and wild-type (WT) mice. Osteoclasts formed in cocultures of WT osteoblasts with splenocytes from WT mice but not from dKO mice, a finding unchanged by addition of RANKL and macrophage colony-stimulating factor (M-CSF). NF-kappaB dKO splenocytes formed more colony-forming unit granulocyte macrophage (CFU-GM) colonies than WT cells, but no osteoclasts were formed from dKO CFU-GM colonies. RANKL increased the number of CFU-GM colonies twofold in WT cultures but not in dKO cultures. Fluorescence-activated cell sorting (FACS) analysis of splenocytes from NF-kappaB dKO mice revealed a two-to threefold increase in the percentage of CD11b (Mac-1) and RANK double-positive cells compared with WT controls. Treatment of NF-kappaB dKO splenocytes with interleukin (IL)-1, TNF-alpha, M-CSF, GM-CSF, and IL-6 plus soluble IL-6 receptor did not rescue the osteoclast defect. No increase in apoptosis was observed in cells of the osteoclast lineage in NF-kappaB dKO or p50-/-;p52+/- (3/4KO) mice. Thus, NF-kappaB p50 and p52 expression is not required for formation of RANK-expressing osteoclast progenitors but is essential for RANK-expressing osteoclast precursors to differentiate into TRAP+ osteoclasts in response to RANKL and other osteoclastogenic cytokines.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Heino TJ, Hentunen TA, Väänänen HK. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 2002; 85:185-97. [PMID: 11891862 DOI: 10.1002/jcb.10109] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteocytes are the most abundant cells in bone and distributed throughout the bone matrix. They are connected to the each other and to the cells on the bone surface. Thus, they may also secrete some regulatory factors controlling bone remodeling. Using a newly established osteocyte-like cell line MLO-Y4, we have studied the interactions between osteocytes and osteoclasts. We collected the conditioned medium (CM) from MLO-Y4 cells, and added it into the rat osteoclast cultures. The conditioned medium had no effect on osteoclast number in 24-h cultures, but it dramatically inhibited resorption. With 5, 10, and 20% CM, there was 25, 39, and 42% inhibition of resorption, respectively. Interestingly, the inhibitory effect was even more pronounced, when MLO-Y4 cells were pretreated with 10(-8) M 17-beta-estradiol. With 5, 10, and 20% CM, there was 46, 51, and 58% of inhibition. When the conditioned medium was treated with neutralizing antibody against transforming growth factor-beta (TGF-beta), the inhibitory effect was abolished. This suggests that osteocytes secrete significant amounts of TGF-beta, which inhibits bone resorption and is modulated by estrogen. RT-PCR and Western blot analysis show that in MLO-Y4 cells, the prevalent TGF-beta isoform is TGF-beta3. We conclude that osteocytes have an active, inhibitory role in the regulation of bone resorption. Our results further suggest a novel role for TGF-beta in the regulation of communication between different bone cells and suggest that at least part of the antiresorptive effect of estrogen in bone could be mediated via osteocytes.
Collapse
Affiliation(s)
- Terhi J Heino
- Department of Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland.
| | | | | |
Collapse
|
383
|
Miao D, Scutt A. Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3 in vivo. BMC Musculoskelet Disord 2002; 3:16. [PMID: 12052261 PMCID: PMC116579 DOI: 10.1186/1471-2474-3-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2001] [Accepted: 06/07/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. METHODS OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. RESULTS Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. CONCLUSIONS This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo.
Collapse
Affiliation(s)
- Dengshun Miao
- Royal Victoria Hospital, Montreal QC, H3A 1A1, Canada
| | - Andrew Scutt
- Tissue Engineering/Department of Engineering Materials University of Sheffield Sheffield S1 3JD, UK
| |
Collapse
|
384
|
Abstract
Here we review and extend a new unitary model for the pathophysiology of involutional osteoporosis that identifies estrogen (E) as the key hormone for maintaining bone mass and E deficiency as the major cause of age-related bone loss in both sexes. Also, both E and testosterone (T) are key regulators of skeletal growth and maturation, and E, together with GH and IGF-I, initiate a 3- to 4-yr pubertal growth spurt that doubles skeletal mass. Although E is required for the attainment of maximal peak bone mass in both sexes, the additional action of T on stimulating periosteal apposition accounts for the larger size and thicker cortices of the adult male skeleton. Aging women undergo two phases of bone loss, whereas aging men undergo only one. In women, the menopause initiates an accelerated phase of predominantly cancellous bone loss that declines rapidly over 4-8 yr to become asymptotic with a subsequent slow phase that continues indefinitely. The accelerated phase results from the loss of the direct restraining effects of E on bone turnover, an action mediated by E receptors in both osteoblasts and osteoclasts. In the ensuing slow phase, the rate of cancellous bone loss is reduced, but the rate of cortical bone loss is unchanged or increased. This phase is mediated largely by secondary hyperparathyroidism that results from the loss of E actions on extraskeletal calcium metabolism. The resultant external calcium losses increase the level of dietary calcium intake that is required to maintain bone balance. Impaired osteoblast function due to E deficiency, aging, or both also contributes to the slow phase of bone loss. Although both serum bioavailable (Bio) E and Bio T decline in aging men, Bio E is the major predictor of their bone loss. Thus, both sex steroids are important for developing peak bone mass, but E deficiency is the major determinant of age-related bone loss in both sexes.
Collapse
Affiliation(s)
- B Lawrence Riggs
- Division of Endocrinology and Metabolism, Department of Health Sciences Research, Mayo Clinic and Mayo Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
385
|
Abstract
There is no one cause of bone fragility; genetic and environmental factors play a part in development of smaller bones, fewer or thinner trabeculae, and thin cortices, all of which result in low peak bone density. Material and structural strength is maintained in early adulthood by remodelling; the focal replacement of old with new bone. However, as age advances less new bone is formed than resorbed in each site remodelled, producing bone loss and structural damage. In women, menopause-related oestrogen deficiency increases remodelling, and at each remodelled site more bone is resorbed and less is formed, accelerating bone loss and causing trabecular thinning and disconnection, cortical thinning and porosity. There is no equivalent midlife event in men, though reduced bone formation and subsequent trabecular and cortical thinning do result in bone loss. Hypogonadism contributes to bone loss in 20-30% of elderly men, and in both sexes hyperparathyroidism secondary to calcium malabsorption increases remodelling, worsening the cortical thinning and porosity and predisposing to hip fractures. Concurrent bone formation on the outer (periosteal) cortical bone surface during ageing partly compensates for bone loss and is greater in men than in women, so internal bone loss is better offset in men. More women than men sustain fractures because their smaller skeleton incurs greater architectural damage and adapts less effectively by periosteal bone formation. The structural basis of bone fragility is determined before birth, takes root during growth, and gains full expression during ageing in both sexes.
Collapse
Affiliation(s)
- Ego Seeman
- Department of Endocrinology, Austin and Repatriation Medical Centre, Heidelberg 3084, Victoria, Australia.
| |
Collapse
|
386
|
Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, Jilka RL, Parfitt AM, Manolagas SC. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 2002. [DOI: 10.1172/jci0214538] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
387
|
Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, Jilka RL, Parfitt AM, Manolagas SC. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 2002; 109:1041-8. [PMID: 11956241 PMCID: PMC150947 DOI: 10.1172/jci14538] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoids depress bone formation by inhibiting osteoblastogenesis and increasing osteoblast apoptosis. However, the role of bone resorption in the initial rapid phase of bone loss characteristic of glucocorticoid-induced osteoporosis is unexplained, and the reason for the efficacy of bisphosphonates in this condition remains unknown. We report that in murine osteoclast cultures, glucocorticoids prolonged the baseline survival of osteoclasts and antagonized bisphosphonate-induced caspase activation and apoptosis by a glucocorticoid receptor-mediated action. Consistent with the in vitro evidence, in a murine model of glucocorticoid-induced osteoporosis, the number of cancellous osteoclasts increased, even though osteoclast progenitor number was reduced. Moreover, in mice receiving both glucocorticoids and bisphosphonates, the expected proapoptotic effect of bisphosphonates on osteoclasts was abrogated, as evidenced by maintenance of osteoclast numbers and, additionally, loss of bone density. In contrast, bisphosphonate administration prevented glucocorticoid-induced osteoblast apoptosis. These results indicate that the early loss of bone with glucocorticoid excess is caused by extension of the life span of pre-existing osteoclasts, an effect not preventable by bisphosphonates. Therefore, the early beneficial effects of these agents must be due, in part, to prolonging the life span of osteoblasts.
Collapse
Affiliation(s)
- Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205-7199, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
388
|
Isomura S, Hoffman TZ, Wirsching P, Janda KD. Synthesis, properties, and reactivity of cocaine benzoylthio ester possessing the cocaine absolute configuration. J Am Chem Soc 2002; 124:3661-8. [PMID: 11929256 DOI: 10.1021/ja012376y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One aspect of immunopharmacotherapy for cocaine abuse involves the use of a catalytic monoclonal antibody (mAb) to degrade cocaine via hydrolysis of the benzoate ester. A cocaine benzoylthio ester analogue provides a means to implement high-throughput selection strategies to potentially isolate mAbs with high activity. The required analogue was synthesized starting from (-)-cocaine hydrochloride and possessed the cocaine absolute configuration. Key points in the preparation were the introduction of the sulfur atom at C-3 via a bromomagnesium thiolate addition to the exo face of anhydroecgonine, separation of C-2 diastereomers, recycling of a C-2 thio ester byproduct, and formation of the necessary C-2 methyl and C-3 benzoylthio esters. Effects resulting from the lower electronegativity and greater hydrophobicity of sulfur compared to oxygen were observed. These characteristics could result in interesting drug properties. Furthermore, the analogue was found to be a substrate for catalytic mAbs that hydrolyze cocaine as monitored by HPLC and also spectrophotometry by coupling cleavage of the benzoylthio ester to the disulfide exchange with Ellman's reagent. Screening antibody libraries with the new cocaine analogue using the spectroscopic assay provides an avenue for the high-throughput identification of catalysts that efficiently breakdown cocaine.
Collapse
Affiliation(s)
- Shigeki Isomura
- Department of Chemistry BCC-582, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
389
|
de Grey ADNJ, Ames BN, Andersen JK, Bartke A, Campisi J, Heward CB, McCarter RJM, Stock G. Time to talk SENS: critiquing the immutability of human aging. Ann N Y Acad Sci 2002; 959:452-62; discussion 463-5. [PMID: 11976218 DOI: 10.1111/j.1749-6632.2002.tb02115.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aging is a three-stage process: metabolism, damage, and pathology. The biochemical processes that sustain life generate toxins as an intrinsic side effect. These toxins cause damage, of which a small proportion cannot be removed by any endogenous repair process and thus accumulates. This accumulating damage ultimately drives age-related degeneration. Interventions can be designed at all three stages. However, intervention in metabolism can only modestly postpone pathology, because production of toxins is so intrinsic a property of metabolic processes that greatly reducing that production would entail fundamental redesign of those processes. Similarly, intervention in pathology is a "losing battle" if the damage that drives it is accumulating unabated. By contrast, intervention to remove the accumulating damage would sever the link between metabolism and pathology, and so has the potential to postpone aging indefinitely. We survey the major categories of such damage and the ways in which, with current or foreseeable biotechnology, they could be reversed. Such ways exist in all cases, implying that indefinite postponement of aging--which we term "engineered negligible senescence"--may be within sight. Given the major demographic consequences if it came about, this possibility merits urgent debate.
Collapse
|
390
|
Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G. Down-regulation of osteoclast differentiation by daidzein via caspase 3. J Bone Miner Res 2002; 17:630-8. [PMID: 11918220 DOI: 10.1359/jbmr.2002.17.4.630] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phytoestrogens are plant-derived compounds with estrogen-like activity. Phytoestrogen-rich diets may prevent postmenopausal osteoporosis and these molecules maintain bone mass in ovariectomized animals. We compared the effects of the isoflavone daidzein, which has no action on tyrosine kinases, and 17beta-estradiol on the development and activity of osteoclasts in vitro. Nonadherent porcine bone marrow cells were cultured on dentine slices or on culture slides in the presence of 10-8 M of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], with or without 10(-8) M of daidzein, 10(-8) M of 17beta-estradiol for 9-11 days. Multinucleated tartrate-resistant acid phosphatase-positive (TRAP+) cells that resorbed bone (osteoclasts) developed in the presence of 1,25(OH)2D3. The number of osteoclasts formed in response to 1,25(OH)2D3 was reduced by 58 +/- 8% by daidzein and 52 +/- 5% by estrogen (p < 0.01); these effects were reversed by 10-6 M of ICI 182,780. The area resorbed by mature osteoclasts was reduced by 39 +/- 5% by daidzein and 42 +/- 6% by estradiol (p < 0.01). Both compounds also inhibited the 1,25(OH)2D3-induced differentiation of osteoclast progenitors (mononucleated TRAP+ cells), 53 +/- 8% by daidzein and 50 +/- 7% by estradiol (p < 0.05). Moreover, daidzein and estradiol promoted caspase-8 and caspase-3 cleavage and DNA fragmentation of monocytic bone marrow cells. Caspase-3 cleavage was reversed by 10-8 M of ICI 182,780. Both compounds up-regulated the expression of nuclear estrogen receptors ER-alpha and ER-beta. Thus, daidzein, at the same concentration as 17beta-estradiol, inhibits osteoclast differentiation and activity. This may be caused by, at least in part, greater apoptosis of osteoclast progenitors mediated by ERs.
Collapse
|
391
|
Khosla S, Atkinson EJ, Dunstan CR, O'Fallon WM. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab 2002; 87:1550-4. [PMID: 11932280 DOI: 10.1210/jcem.87.4.8397] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Recent studies have shown that estrogen (E) likely plays a dominant role in inhibiting bone resorption in normal elderly men. Because both E and T inhibit osteoclast development and activity, stimulate osteoclast apoptosis, and inhibit osteoblast production of IL-6, it is unclear why T is less potent than E in inhibiting bone resorption in vivo. Osteoprotegerin (OPG) binds to and inactivates RANKL, the final mediator of osteoclastogenesis. In vitro, OPG production is stimulated by E, and preliminary data suggest that T has the opposite effect. Thus, we analyzed serum for OPG levels from a study in which 59 elderly men (mean age, 68 yr) were made acutely hypogonadal using a GnRH agonist and were also placed on an aromatase inhibitor to block conversion of androgens to estrogens. They were studied first under conditions of physiologic E and T replacement, and then randomized to no replacement, replacement with E alone, T alone, or both E and T. E alone resulted in an 18.6 +/- 7.9% (mean +/- SEM) increase in serum OPG levels (P < 0.05), whereas T alone tended to decrease OPG levels (by 10.0 +/- 8.5%; P < 0.05 compared with E alone). Using a two-factor ANOVA model, there was a highly significant T effect (P = 0.006) on decreasing serum OPG levels. Serum TNF-alpha, IL-6, and IL-6 soluble receptor levels increased significantly in the men who had both E and T withdrawn, and the increases in TNF-alpha and IL-6sR were absent in the men treated with either E or T. However, due to the variability in these cytokine measurements, the ANOVA models were not significant for E or T effects. Taken together, these data suggest that in vivo, T decreases OPG levels, whereas E tends to have the opposite effect. These differential effects of E vs. T on OPG production may explain, at least in part, why T has weaker effects than E on inhibiting bone resorption in vivo in humans.
Collapse
Affiliation(s)
- Sundeep Khosla
- Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
392
|
Maran A, Zhang M, Kennedy AM, Sibonga JD, Rickard DJ, Spelsberg TC, Turner RT. 2-methoxyestradiol induces interferon gene expression and apoptosis in osteosarcoma cells. Bone 2002; 30:393-8. [PMID: 11856647 DOI: 10.1016/s8756-3282(01)00681-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
2-Methoxyestradiol (2-ME), a naturally occurring mammalian metabolite of 17beta-estradiol, has been implicated as a physiological inhibitor of tumor cell proliferation. In this study, the effects of 2-ME on cultured osteosarcomatous cells were investigated. Dose-dependent growth inhibition was observed in MG63 and TE85 human osteosarcoma cells exposed to 2-ME. The cell killing by 2-ME was ligand-specific; the immediate precursor (2-hydroxyestradiol), the parent compound (17beta-estradiol), and the equivalent metabolite of estrone (2-methoxyestrone) exhibited less potency and efficacy. Furthermore, 2-ME was similarly effective at killing immortalized human fetal osteoblastic cells (hFOB) with and without estrogen receptor-alpha and -beta and rat osteosarcoma cells (ROS17/2.8). The cytotoxicity of 2-ME was selective to transformed and immortalized osteoblastic cells; 2-ME (2 microm) had no effect on the proliferation of primary cultures of human osteoblasts. Co-treatment with the potent estrogen receptor ligand, ICI-182,780, did not reduce 2-ME-induced osteosarcoma cell death, implying that this action is not mediated by conventional estrogen receptors. The expression levels of bone matrix protein genes, type 1 collagen and osteonectin, were transiently reduced after 2-ME treatment, suggesting that the surviving cells are capable of producing bone matrix. The 2-ME-mediated killing of osteosarcoma cells was due to the induction of apoptosis; treatment induced expression of interferon genes within 12 h and histological evidence of apoptosis within 48 h of 2-ME treatment. Thus, our results demonstrate that 2-ME is highly cytotoxic to osteosarcoma cells but not normal osteoblasts. These findings suggest that further study of 2-ME as a potential intervention for treatment of osteosarcoma is warranted.
Collapse
Affiliation(s)
- A Maran
- Department of Orthopedics, Mayo Foundation, MN, Rochester 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
393
|
Abstract
There is now a large body of evidence suggesting that the decline in ovarian function with menopause is associated with spontaneous increases in proinflammatory cytokines. The cytokines that have obtained the most attention are IL-1, IL-6, and TNF-alpha. The exact mechanisms by which estrogen interferes with cytokine activity are still incompletely known but may potentially include interactions of the ER with other transcription factors, modulation of nitric oxide activity, antioxidative effects, plasma membrane actions, and changes in immune cell function. Experimental and clinical studies strongly support a link between the increased state of proinflammatory cytokine activity and postmenopausal bone loss. Preliminary evidence suggests that these changes also might be relevant to vascular homeostasis and the development of atherosclerosis. Better knowledge of the mechanisms and the time course of these interactions may open new avenues for the prevention and treatment of some of the most prevalent and important disorders in postmenopausal women.
Collapse
Affiliation(s)
- Johannes Pfeilschifter
- Department of Internal Medicine, Berufsgenossenschaftliche Kliniken Bergmannsheil, University of Bochum, D-44789 Bochum, Germany.
| | | | | | | |
Collapse
|
394
|
Abstract
The natural female sex hormone estrogens binds once inside the cell to a protein receptor to form a 'ligand-hormone receptor complex'. The binding activates the hormone receptor, which triggers specific cellular processes. The activated hormone receptor then turns on specific genes, causing cellular changes that lead to responses typical of a ligand-hormone receptor complex. Estrogens (especially estradiol) bring out the feminine characteristics, control reproductive cycles and pregnancy, influence skin, bone, the cardiovascular system and immunity. Natural hormones are more potent than any of the known synthetic environmental estrogens (except drugs such as diethylstilbestrol [DES]). Estrogen production varies according to different factors (gender, age and reproductive cycles). Women produce more estrogen than men and the production is more abundant during fetal development than in the postmenopausal period. Most natural estrogens are short-lived, do not accumulate in tissue and are easily broken down in the liver. In contrast to natural estrogens, estrogenic drugs such as ethynylestradiol diethylstilbestrol (DES), synthetic environmental estrogens such as beta-hexachlorocyclohexane (beta-HCH), polychlorinated biphenyls (PCBs), o, p, p'DDT, 4-nonylphenol (NP) and phytoestrogens such as isoflavones or lignans, are more stable and remain in the body longer than natural estrogens. Because most of these compounds are lipophilic, they tend to accumulate within the fat and tissue of animals and humans. Thus, depending on the natural estrogen levels, environmental estrogens may have different influences (mimicking, blocking or cancelling out estrogen's effects) on estrogen activities.
Collapse
Affiliation(s)
- H Tapiero
- Laboratoire de Pharmacologie Cellulaire & Moléculaire, CNRS UMR 8612, Université de Paris Sud, Faculté de Pharmacie, Chatenay Malabry, France.
| | | | | |
Collapse
|
395
|
Taranta A, Brama M, Teti A, De luca V, Scandurra R, Spera G, Agnusdei D, Termine JD, Migliaccio S. The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 2002; 30:368-76. [PMID: 11856644 DOI: 10.1016/s8756-3282(01)00685-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raloxifene is a selective estrogen receptor modulator (SERM) that prevents bone loss. Although it is largely used for the treatment of osteoporosis, the mechanisms by which this compound modulates the activity of bone cells are still poorly understood. In this study we investigate whether raloxifene affects osteoclast and osteoblast activity in vitro. Bone marrow cultures were established from neonatal mice and treated with 1,25(OH)(2) vitamin D(3) (VitD(3), 10(-8) mol/L) to induce osteoclast generation. Similar to 17beta-estradiol, raloxifene significantly reduced the number of osteoclasts in a concentration-dependent manner, with maximal inhibition at 10(-11) mol/L (-48%). However, as for 17beta-estradiol, at a high concentration (10(-7) mol/L), the inhibitory effect of raloxifene was abolished. In a pit assay, raloxifene inhibited bone resorption. A maximal effect was observed at 10(-9) mol/L, and maintained at a high concentration, indicating that inhibition of osteoclast formation and inhibition of bone resorption may be due to activation of, at least in part, different pathways. Osteoblasts from neonatal mice calvariae were also exposed to raloxifene. In these cells, this compound induced a concentration-dependent increase of proliferation, which was blocked by the estrogen-receptor antagonist ICI 164,384. Raloxifene also increased the osteoblast-specific transcription factor Cbfa1/Runx2 and alpha2 procollagen type I chain mRNAs, with a pattern that only partially coincided with that of 17beta-estradiol. Consistent with decreased osteoclastogenesis, raloxifene inhibited the mRNA expression of interleukin (IL)-1beta and IL-6 at a low concentration, but not at a high concentration, whereas 17beta-estradiol had similar effects on IL-6 and inhibited IL-1beta at both concentrations. Furthermore, both compounds were able to inhibit tumor necrosis factor (TNF)-alpha-induced IL-1beta, but not IL-6, increase. In conclusion, these data show that raloxifene negatively modulates osteoclasts, and positively affects osteoblasts, suggesting not only an antiresorptive role, but also an osteoblast stimulatory role.
Collapse
Affiliation(s)
- A Taranta
- Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Affiliation(s)
- Juliet Compston
- Department of Medicine, University of Cambridge School of Clinical Medicine, UK.
| |
Collapse
|
397
|
Felsenberg D. [Supporting function of collagen and hydroxyapatite. Structure and function of bone]. PHARMAZIE IN UNSERER ZEIT 2002; 30:488-94. [PMID: 11715680 DOI: 10.1002/1615-1003(200111)30:6<488::aid-pauz488>3.0.co;2-u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- D Felsenberg
- Universitätsklinikum Benjamin Franklin Ragiologische Klinik und Poliklinik Hindenburgdamm 30 12200 Berlin
| |
Collapse
|
398
|
Quinn JMW, Whitty GA, Byrne RJ, Gillespie MT, Hamilton JA. The generation of highly enriched osteoclast-lineage cell populations. Bone 2002; 30:164-70. [PMID: 11792580 DOI: 10.1016/s8756-3282(01)00654-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Osteoclasts form when hematopoietic cells are stimulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) or tumor necrosis factor-alpha (TNFalpha). Osteoclast precursors derive from M-CSF-dependent proliferating hematopoietic cells but cannot yet be purified from mixed populations. M-CSF stimulation of bone marrow cells results in large numbers of nonadherent, proliferating macrophage precursors. These rapidly form adherent bone marrow macrophages (BMM). BMM and their precursors can be isolated free from mesenchymal and lymphocytic cells. BMM precursors derived from CBA-strain mouse bone marrow, when cocultured with ST2 cells (which express RANKL and M-CSF), formed numerous mononuclear osteoclasts, which resorbed bone and expressed tartrate-resistant acid phosphatase (TRAP) and calcitonin receptors (CTR). Addition of approximately 10 BMM precursors to ST2 cultures resulted in over 80% of these cocultures forming functional osteoclasts, suggesting that they are a highly enriched source of osteoclast progenitors. Supporting this, recombinant RANKL/M-CSF-stimulated BMM precursors formed populations in which all cells expressed TRAP. While only a small proportion of these cells (8.6%) expressed CTR, with transforming growth factor-beta (TGFbeta) present RANKL/M-CSF-stimulated BMM precursors formed almost pure (98.4%) CTR-positive osteoclasts after 7 days. This suggests that TGFbeta stimulated the maturation rate of these cells. Passaged or viably frozen BMM precursors gave rise to BMM that also all formed osteoclasts lineage cells after RANKL/M-CSF stimulation. These data suggest that BMM precursors derived from CBA mice are an expanded pool of osteoclast progenitors. These can be employed to generate osteoclast populations of high purity and in large numbers when stimulated by TGFbeta, which greatly augments the osteoclastogenic effects of RANKL.
Collapse
Affiliation(s)
- J M W Quinn
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | | | | | | | | |
Collapse
|
399
|
Osteoclast-Like Cell Formation in Medullary Bone Marrow Cell Culture of Laying Hens. J Poult Sci 2002. [DOI: 10.2141/jpsa.39.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
400
|
|