351
|
Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 2017; 14:49. [PMID: 29121951 PMCID: PMC5679385 DOI: 10.1186/s12977-017-0374-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) structural protein Gag is necessary and sufficient to form viral particles. In addition to encoding the amino acid sequence for Gag, the underlying RNA sequence could encode cis-acting elements or nucleotide biases that are necessary for viral replication. Furthermore, RNA sequences that inhibit viral replication could be suppressed in gag. However, the functional relevance of RNA elements and nucleotide biases that promote or repress HIV-1 replication remain poorly understood. RESULTS To characterize if the RNA sequence in gag controls HIV-1 replication, the matrix (MA) region was codon modified, allowing the RNA sequence to be altered without affecting the protein sequence. Codon modification of nucleotides (nt) 22-261 or 22-378 in gag inhibited viral replication by decreasing genomic RNA (gRNA) abundance, gRNA stability, Gag expression, virion production and infectivity. Comparing the effect of these point mutations to deletions of the same region revealed that the mutations inhibited infectious virus production while the deletions did not. This demonstrated that codon modification introduced inhibitory sequences. There is a much lower than expected frequency of CpG dinucleotides in HIV-1 and codon modification introduced a substantial increase in CpG abundance. To determine if they are necessary for inhibition of HIV-1 replication, codons introducing CpG dinucleotides were mutated back to the wild type codon, which restored efficient Gag expression and infectious virion production. To determine if they are sufficient to inhibit viral replication, CpG dinucleotides were inserted into gag in the absence of other changes. The increased CpG dinucleotide content decreased HIV-1 infectivity and viral replication. CONCLUSIONS The HIV-1 RNA sequence contains low abundance of CpG dinucleotides. Increasing the abundance of CpG dinucleotides inhibits multiple steps of the viral life cycle, providing a functional explanation for why CpG dinucleotides are suppressed in HIV-1.
Collapse
Affiliation(s)
- Irati Antzin-Anduetza
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Mahiet
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Luke A Granger
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Odendall
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
352
|
Liu Y, Chen J, Nikolaitchik OA, Desimmie BA, Busan S, Pathak VK, Weeks KM, Hu WS. The roles of five conserved lentiviral RNA structures in HIV-1 replication. Virology 2017; 514:1-8. [PMID: 29128752 DOI: 10.1016/j.virol.2017.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/16/2022]
Abstract
The HIV-1 RNA genome contains complex structures with many structural elements playing regulatory roles during viral replication. A recent study has identified multiple RNA structures with unknown functions that are conserved among HIV-1 and two simian immunodeficiency viruses. To explore the roles of these conserved RNA structures, we introduced synonymous mutations into the HIV-1 genome to disrupt each structure. These mutants exhibited similar particle production, viral infectivity, and replication kinetics relative to the parent NL4-3 virus. However, when replicating in direct competition with the wild-type NL4-3 virus, mutations of RNA structures at inter-protein domain junctions can cause fitness defects. These findings reveal the ability of HIV-1 to tolerate changes in its sequences, even in apparently highly conserved structures, which permits high genetic diversity in HIV-1 population. Our results also suggest that some conserved RNA structures may function to fine-tune viral replication.
Collapse
Affiliation(s)
- Yang Liu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Jianbo Chen
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Belete A Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
353
|
Sztuba-Solinska J, Rausch JW, Smith R, Miller JT, Whitby D, Le Grice SFJ. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Res 2017; 45:6805-6821. [PMID: 28383682 PMCID: PMC5499733 DOI: 10.1093/nar/gkx241] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 01/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer T Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
354
|
An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression. Proc Natl Acad Sci U S A 2017; 114:E10244-E10253. [PMID: 29109288 PMCID: PMC5703279 DOI: 10.1073/pnas.1706539114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Protein and mRNA expression are in most cases poorly correlated, which suggests that the posttranscriptional regulatory program of a cell is an important component of gene expression. This regulatory network is still poorly understood, including how RNA structure quantitatively contributes to translational control. We present here a series of structural and functional experiments that together allow us to derive a quantitative, structure-dependent model of translation that accurately predicts translation efficiency in reporter assays and primary human tissue for a complex and medically important protein, α-1-antitrypsin. Our model demonstrates the importance of accurate, experimentally derived RNA structural models partnered with Kozak sequence information to explain protein expression and suggests a strategy by which α-1-antitrypsin expression may be increased in diseased individuals. Chronic obstructive pulmonary disease (COPD) affects over 65 million individuals worldwide, where α-1-antitrypsin deficiency is a major genetic cause of the disease. The α-1-antitrypsin gene, SERPINA1, expresses an exceptional number of mRNA isoforms generated entirely by alternative splicing in the 5′-untranslated region (5′-UTR). Although all SERPINA1 mRNAs encode exactly the same protein, expression levels of the individual mRNAs vary substantially in different human tissues. We hypothesize that these transcripts behave unequally due to a posttranscriptional regulatory program governed by their distinct 5′-UTRs and that this regulation ultimately determines α-1-antitrypsin expression. Using whole-transcript selective 2′-hydroxyl acylation by primer extension (SHAPE) chemical probing, we show that splicing yields distinct local 5′-UTR secondary structures in SERPINA1 transcripts. Splicing in the 5′-UTR also changes the inclusion of long upstream ORFs (uORFs). We demonstrate that disrupting the uORFs results in markedly increased translation efficiencies in luciferase reporter assays. These uORF-dependent changes suggest that α-1-antitrypsin protein expression levels are controlled at the posttranscriptional level. A leaky-scanning model of translation based on Kozak translation initiation sequences alone does not adequately explain our quantitative expression data. However, when we incorporate the experimentally derived RNA structure data, the model accurately predicts translation efficiencies in reporter assays and improves α-1-antitrypsin expression prediction in primary human tissues. Our results reveal that RNA structure governs a complex posttranscriptional regulatory program of α-1-antitrypsin expression. Crucially, these findings describe a mechanism by which genetic alterations in noncoding gene regions may result in α-1-antitrypsin deficiency.
Collapse
|
355
|
Lei Z, Yi C. A Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine Detection. Angew Chem Int Ed Engl 2017; 56:14878-14882. [DOI: 10.1002/anie.201708276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences; Peking-Tsinghua Center for Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
356
|
Deforges J, de Breyne S, Ameur M, Ulryck N, Chamond N, Saaidi A, Ponty Y, Ohlmann T, Sargueil B. Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic Acids Res 2017; 45:7382-7400. [PMID: 28449096 PMCID: PMC5499600 DOI: 10.1093/nar/gkx303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
In the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S. Aiming at elucidating the specificity and the relevance of this interaction, we probed HIV-1 Gag-IRES structure and developed an innovative integrative modelling strategy to take into account all the gathered information. We propose a novel Gag-IRES secondary structure strongly supported by all experimental data. We further demonstrate the presence of two regions within Gag-IRES that independently and directly interact with the ribosome. Importantly, these binding sites are functionally relevant to Gag translation both in vitro and ex vivo. This work provides insight into the Gag-IRES molecular mechanism and gives compelling evidence for its physiological importance. It allows us to propose original hypotheses about the IRES physiological role and conservation among primate lentiviruses.
Collapse
Affiliation(s)
- Jules Deforges
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Sylvain de Breyne
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Melissa Ameur
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Ulryck
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Chamond
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Afaf Saaidi
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Yann Ponty
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Theophile Ohlmann
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| |
Collapse
|
357
|
Piao M, Sun L, Zhang QC. RNA Regulations and Functions Decoded by Transcriptome-wide RNA Structure Probing. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:267-278. [PMID: 29031843 PMCID: PMC5673676 DOI: 10.1016/j.gpb.2017.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/09/2017] [Accepted: 05/27/2017] [Indexed: 01/07/2023]
Abstract
RNA folds into intricate structures that are crucial for its functions and regulations. To date, a multitude of approaches for probing structures of the whole transcriptome, i.e., RNA structuromes, have been developed. Applications of these approaches to different cell lines and tissues have generated a rich resource for the study of RNA structure–function relationships at a systems biology level. In this review, we first introduce the designs of these methods and their applications to study different RNA structuromes. We emphasize their technological differences especially their unique advantages and caveats. We then summarize the structural insights in RNA functions and regulations obtained from the studies of RNA structuromes. And finally, we propose potential directions for future improvements and studies.
Collapse
Affiliation(s)
- Meiling Piao
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Sun
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
358
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
359
|
Sexton AN, Wang PY, Rutenberg-Schoenberg M, Simon MD. Interpreting Reverse Transcriptase Termination and Mutation Events for Greater Insight into the Chemical Probing of RNA. Biochemistry 2017; 56:4713-4721. [PMID: 28820243 PMCID: PMC5648349 DOI: 10.1021/acs.biochem.7b00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemical probing has the power to provide insight into RNA conformation in vivo and in vitro, but interpreting the results depends on methods to detect the chemically modified nucleotides. Traditionally, the presence of modified bases was inferred from their ability to halt reverse transcriptase during primer extension and the locations of termination sites observed by electrophoresis or sequencing. More recently, modification-induced mutations have been used as a readout for chemical probing data. Given the variable propensity for mismatch incorporation and read-through with different reverse transcriptases, we examined how termination and mutation events compare to each other in the same chemical probing experiments. We found that mutations and terminations induced by dimethyl sulfate probing are both specific for methylated bases, but these two measures have surprisingly little correlation and represent largely nonoverlapping indicators of chemical modification data. We also show that specific biases for modified bases depend partly on local sequence context and that different reverse transcriptases show different biases toward reading a modification as a stop or a mutation. These results support approaches that incorporate analysis of both termination and mutation events into RNA probing experiments.
Collapse
Affiliation(s)
- Alec N. Sexton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Peter Y. Wang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
360
|
Huber RG, Marzinek JK, Holdbrook DA, Bond PJ. Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:121-132. [DOI: 10.1016/j.pbiomolbio.2016.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
|
361
|
RNA structure inference through chemical mapping after accidental or intentional mutations. Proc Natl Acad Sci U S A 2017; 114:9876-9881. [PMID: 28851837 DOI: 10.1073/pnas.1619897114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the critical roles RNA structures play in regulating gene expression, sequencing-based methods for experimentally determining RNA base pairs have remained inaccurate. Here, we describe a multidimensional chemical-mapping method called "mutate-and-map read out through next-generation sequencing" (M2-seq) that takes advantage of sparsely mutated nucleotides to induce structural perturbations at partner nucleotides and then detects these events through dimethyl sulfate (DMS) probing and mutational profiling. In special cases, fortuitous errors introduced during DNA template preparation and RNA transcription are sufficient to give M2-seq helix signatures; these signals were previously overlooked or mistaken for correlated double-DMS events. When mutations are enhanced through error-prone PCR, in vitro M2-seq experimentally resolves 33 of 68 helices in diverse structured RNAs including ribozyme domains, riboswitch aptamers, and viral RNA domains with a single false positive. These inferences do not require energy minimization algorithms and can be made by either direct visual inspection or by a neural-network-inspired algorithm called M2-net. Measurements on the P4-P6 domain of the Tetrahymena group I ribozyme embedded in Xenopus egg extract demonstrate the ability of M2-seq to detect RNA helices in a complex biological environment.
Collapse
|
362
|
Ball CB, Solem AC, Meganck RM, Laederach A, Ramos SBV. Impact of RNA structure on ZFP36L2 interaction with luteinizing hormone receptor mRNA. RNA (NEW YORK, N.Y.) 2017; 23:1209-1223. [PMID: 28455422 PMCID: PMC5513066 DOI: 10.1261/rna.060467.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
ZFP36L2 (L2) destabilizes AU-rich element (ARE)-containing transcripts and has been implicated in female fertility. We have shown that only one of three putative AREs within the 3' UTR of murine luteinizing hormone receptor mRNA, ARE2197 (UAUUUAU), is capable of interacting with L2. To assess whether structural elements of ARE2197 could explain this unique binding ability, we performed whole-transcript SHAPE-MaP (selective 2' hydroxyl acylation by primer extension-mutational profiling) of the full-length mLHR mRNA. The data revealed that the functional ARE2197 is located in a hairpin loop structure and most nucleotides are highly reactive. In contrast, each of the nonbinding AREs, 2301 and 2444, contains only a pentamer AUUUA; and in ARE2301 much of the ARE sequence is poorly accessible. Because the functional mARE was also found to be conserved in humans at the sequence level (ARE 2223), we decided to investigate whether binding and structure are also preserved. Similar to mouse, only one ARE in hLHR mRNA is capable of binding to L2; and it is also located in a hairpin structure, based on our SHAPE-MaP data. To investigate the role of secondary structure in the binding, we mutated specific nucleotides in both functional AREs. Mutations in the flexible stem region proximal to the loop that enforce strong base-pairing, drastically reduced L2 binding affinity; this confirms that the structural context is critical for L2 recognition of hARE2223. Collectively, our results suggest that a combination of minimal ARE sequence, placement of the ARE in a hairpin loop, and stem flexibility mediate high-affinity L2 binding to hLHR mRNA.
Collapse
Affiliation(s)
- Christopher B Ball
- Biochemistry and Biophysics Department, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Amanda C Solem
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Rita M Meganck
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Alain Laederach
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Bioinformatics and Computational Biology Program, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Silvia B V Ramos
- Biochemistry and Biophysics Department, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
363
|
Schlick T, Pyle AM. Opportunities and Challenges in RNA Structural Modeling and Design. Biophys J 2017; 113:225-234. [PMID: 28162235 PMCID: PMC5529161 DOI: 10.1016/j.bpj.2016.12.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023] Open
Abstract
We describe opportunities and challenges in RNA structural modeling and design, as recently discussed during the second Telluride Science Research Center workshop organized in June 2016. Topics include fundamental processes of RNA, such as structural assemblies (hierarchical folding, multiple conformational states and their clustering), RNA motifs, and chemical reactivity of RNA, as used for structural prediction and functional inference. We also highlight the software and database issues associated with RNA structures, such as the multiple approaches for motif annotation, the need for frequent database updating, and the importance of quality control of RNA structures. We discuss various modeling approaches for structure prediction, mechanistic analysis of RNA reactions, and RNA design, and the complementary roles that both atomistic and coarse-grained approaches play in such simulations. Collectively, as scientists from varied disciplines become familiar and drawn into these unique challenges, new approaches and collaborative efforts will undoubtedly be catalyzed.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York.
| | - Anna Marie Pyle
- Department of Molecular and Cellular and Developmental Biology and Department of Chemistry, Yale University; Howard Hughes Medical Institute, New Haven, Connecticut.
| |
Collapse
|
364
|
Dawn of the in vivo RNA structurome and interactome. Biochem Soc Trans 2017; 44:1395-1410. [PMID: 27911722 DOI: 10.1042/bst20160075] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases.
Collapse
|
365
|
Busan S, Weeks KM. Visualization of RNA structure models within the Integrative Genomics Viewer. RNA (NEW YORK, N.Y.) 2017; 23:1012-1018. [PMID: 28428329 PMCID: PMC5473135 DOI: 10.1261/rna.060194.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis.
Collapse
Affiliation(s)
- Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
366
|
Woods CT, Lackey L, Williams B, Dokholyan NV, Gotz D, Laederach A. Comparative Visualization of the RNA Suboptimal Conformational Ensemble In Vivo. Biophys J 2017. [PMID: 28625696 PMCID: PMC5529173 DOI: 10.1016/j.bpj.2017.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When a ribonucleic acid (RNA) molecule folds, it often does not adopt a single, well-defined conformation. The folding energy landscape of an RNA is highly dependent on its nucleotide sequence and molecular environment. Cellular molecules sometimes alter the energy landscape, thereby changing the ensemble of likely low-energy conformations. The effects of these energy landscape changes on the conformational ensemble are particularly challenging to visualize for large RNAs. We have created a robust approach for visualizing the conformational ensemble of RNAs that is well suited for in vitro versus in vivo comparisons. Our method creates a stable map of conformational space for a given RNA sequence. We first identify single point mutations in the RNA that maximally sample suboptimal conformational space based on the ensemble’s partition function. Then, we cluster these diverse ensembles to identify the most diverse partition functions for Boltzmann stochastic sampling. By using, to our knowledge, a novel nestedness distance metric, we iteratively add mutant suboptimal ensembles to converge on a stable 2D map of conformational space. We then compute the selective 2′ hydroxyl acylation by primer extension (SHAPE)-directed ensemble for the RNA folding under different conditions, and we project these ensembles on the map to visualize. To validate our approach, we established a conformational map of the Vibrio vulnificus add adenine riboswitch that reveals five classes of structures. In the presence of adenine, projection of the SHAPE-directed sampling correctly identified the on-conformation; without the ligand, only off-conformations were visualized. We also collected the whole-transcript in vitro and in vivo SHAPE-MaP for human β-actin messenger RNA that revealed similar global folds in both conditions. Nonetheless, a comparison of in vitro and in vivo data revealed that specific regions exhibited significantly different SHAPE-MaP profiles indicative of structural rearrangements, including rearrangement consistent with binding of the zipcode protein in a region distal to the stop codon.
Collapse
Affiliation(s)
- Chanin T Woods
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Gotz
- Carolina Health Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alain Laederach
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
367
|
Shi J, Li X, Dong M, Graham M, Yadav N, Liang C. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures. PLoS One 2017; 12:e0179040. [PMID: 28582416 PMCID: PMC5459502 DOI: 10.1371/journal.pone.0179040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.
Collapse
Affiliation(s)
- Jieming Shi
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Xi Li
- Department of Biology, Miami University, Oxford, Ohio, United States of America
- College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Min Dong
- Department of Biology, Miami University, Oxford, Ohio, United States of America
- Department of Automation, Xiamen University, Fujian, China
| | - Mitchell Graham
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Nehul Yadav
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
368
|
Gillingham D, Geigle S, Anatole von Lilienfeld O. Properties and reactivity of nucleic acids relevant to epigenomics, transcriptomics, and therapeutics. Chem Soc Rev 2017; 45:2637-55. [PMID: 26992131 DOI: 10.1039/c5cs00271k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Developments in epigenomics, toxicology, and therapeutic nucleic acids all rely on a precise understanding of nucleic acid properties and chemical reactivity. In this review we discuss the properties and chemical reactivity of each nucleobase and attempt to provide some general principles for nucleic acid targeting or engineering. For adenine-thymine and guanine-cytosine base pairs, we review recent quantum chemical estimates of their Watson-Crick interaction energy, π-π stacking energies, as well as the nuclear quantum effects on tautomerism. Reactions that target nucleobases have been crucial in the development of new sequencing technologies and we believe further developments in nucleic acid chemistry will be required to deconstruct the enormously complex transcriptome.
Collapse
Affiliation(s)
- Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | - Stefanie Geigle
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | | |
Collapse
|
369
|
McClary B, Zinshteyn B, Meyer M, Jouanneau M, Pellegrino S, Yusupova G, Schuller A, Reyes JCP, Lu J, Guo Z, Ayinde S, Luo C, Dang Y, Romo D, Yusupov M, Green R, Liu JO. Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A. Cell Chem Biol 2017; 24:605-613.e5. [PMID: 28457705 PMCID: PMC5562292 DOI: 10.1016/j.chembiol.2017.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/09/2017] [Accepted: 04/06/2017] [Indexed: 01/10/2023]
Abstract
Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents.
Collapse
Affiliation(s)
- Brandon McClary
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, and Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Mélanie Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U964, Illkirch 67404, France
| | - Morgan Jouanneau
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Simone Pellegrino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U964, Illkirch 67404, France
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U964, Illkirch 67404, France
| | - Anthony Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, and Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | | | - Junyan Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zufeng Guo
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Safiat Ayinde
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA.
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U964, Illkirch 67404, France.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, and Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
370
|
Li B, Tambe A, Aviran S, Pachter L. PROBer Provides a General Toolkit for Analyzing Sequencing-Based Toeprinting Assays. Cell Syst 2017; 4:568-574.e7. [PMID: 28501650 DOI: 10.1016/j.cels.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 11/19/2022]
Abstract
A number of sequencing-based transcriptase drop-off assays have recently been developed to probe post-transcriptional dynamics of RNA-protein interaction, RNA structure, and RNA modification. Although these assays survey a diverse set of epitranscriptomic marks, we use the term toeprinting assays since they share methodological similarities. Their interpretation is predicated on addressing a similar computational challenge: how to learn isoform-specific chemical modification profiles in the face of complex read multi-mapping. We introduce PROBer, a statistical model and associated software, that addresses this challenge for the analysis of toeprinting assays. PROBer takes sequencing data as input and outputs estimated transcript abundances and isoform-specific modification profiles. Results on both simulated and biological data demonstrate that PROBer significantly outperforms individual methods tailored for specific toeprinting assays. Since the space of toeprinting assays is ever expanding and these assays are likely to be performed and analyzed together, we believe PROBer's unified data analysis solution will be valuable to the RNA community.
Collapse
Affiliation(s)
- Bo Li
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Akshay Tambe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Lior Pachter
- Departments of Biology and Computing & Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
371
|
Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell 2017; 167:1610-1622.e15. [PMID: 27912064 DOI: 10.1016/j.cell.2016.11.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 11/23/2022]
Abstract
The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines.
Collapse
|
372
|
Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ, Biesiada M, Boniecki MJ, Bujnicki JM, Chen SJ, Cheng CY, Chou FC, Ferré-D'Amaré AR, Das R, Dawson WK, Ding F, Dokholyan NV, Dunin-Horkawicz S, Geniesse C, Kappel K, Kladwang W, Krokhotin A, Łach GE, Major F, Mann TH, Magnus M, Pachulska-Wieczorek K, Patel DJ, Piccirilli JA, Popenda M, Purzycka KJ, Ren A, Rice GM, Santalucia J, Sarzynska J, Szachniuk M, Tandon A, Trausch JJ, Tian S, Wang J, Weeks KM, Williams B, Xiao Y, Xu X, Zhang D, Zok T, Westhof E. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA (NEW YORK, N.Y.) 2017; 23:655-672. [PMID: 28138060 PMCID: PMC5393176 DOI: 10.1261/rna.060368.116] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/26/2017] [Indexed: 05/21/2023]
Abstract
RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson-Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/.
Collapse
Affiliation(s)
- Zhichao Miao
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67000 Strasbourg, France;
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Poznan University of Technology, Institute of Computing Science, 60-965 Poznan, Poland
| | - Maciej Antczak
- Poznan University of Technology, Institute of Computing Science, 60-965 Poznan, Poland
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0596, USA
| | - Alexander J Becka
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marcin Biesiada
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Michał J Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Clarence Yu Cheng
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fang-Chieh Chou
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Caleb Geniesse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kalli Kappel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Grzegorz E Łach
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - François Major
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Thomas H Mann
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marcin Magnus
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | | | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Katarzyna J Purzycka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Aiming Ren
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Greggory M Rice
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - John Santalucia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
- DNA Software, Ann Arbor, Michigan 48104, USA
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Poznan University of Technology, Institute of Computing Science, 60-965 Poznan, Poland
| | - Arpit Tandon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeremiah J Trausch
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0596, USA
| | - Siqi Tian
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jian Wang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaojun Xu
- Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Dong Zhang
- Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Tomasz Zok
- Poznan University of Technology, Institute of Computing Science, 60-965 Poznan, Poland
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67000 Strasbourg, France;
| |
Collapse
|
373
|
Larman BC, Dethoff EA, Weeks KM. Packaged and Free Satellite Tobacco Mosaic Virus (STMV) RNA Genomes Adopt Distinct Conformational States. Biochemistry 2017; 56:2175-2183. [PMID: 28332826 DOI: 10.1021/acs.biochem.6b01166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNA genomes of viruses likely undergo multiple functionally important conformational changes during their replication cycles, changes that are poorly understood at present. We used two complementary in-solution RNA structure probing strategies (SHAPE-MaP and RING-MaP) to examine the structure of the RNA genome of satellite tobacco mosaic virus inside authentic virions and in a capsid-free state. Both RNA states feature similar three-domain architectures in which each major replicative function-translation, capsid coding, and genome synthesis-fall into distinct domains. There are, however, large conformational differences between the in-virion and capsid-free states, primarily in one arm of the central T domain. These data support a model in which the packaged capsid-bound RNA is constrained in a local high-energy conformation by the native capsid shell. The removal of the viral capsid then allows the RNA genome to relax into a more thermodynamically stable conformation. The RNA architecture of the central T domain thus likely changes during capsid assembly and disassembly and may play a role in genome packaging.
Collapse
Affiliation(s)
- Bridget C Larman
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
374
|
Abstract
The discoveries of myriad non-coding RNA molecules, each transiting through multiple flexible states in cells or virions, present major challenges for structure determination. Advances in high-throughput chemical mapping give new routes for characterizing entire transcriptomes in vivo, but the resulting one-dimensional data generally remain too information-poor to allow accurate de novo structure determination. Multidimensional chemical mapping (MCM) methods seek to address this challenge. Mutate-and-map (M2), RNA interaction groups by mutational profiling (RING-MaP and MaP-2D analysis) and multiplexed •OH cleavage analysis (MOHCA) measure how the chemical reactivities of every nucleotide in an RNA molecule change in response to modifications at every other nucleotide. A growing body of in vitro blind tests and compensatory mutation/rescue experiments indicate that MCM methods give consistently accurate secondary structures and global tertiary structures for ribozymes, ribosomal domains and ligand-bound riboswitch aptamers up to 200 nucleotides in length. Importantly, MCM analyses provide detailed information on structurally heterogeneous RNA states, such as ligand-free riboswitches that are functionally important but difficult to resolve with other approaches. The sequencing requirements of currently available MCM protocols scale at least quadratically with RNA length, precluding general application to transcriptomes or viral genomes at present. We propose a modify-cross-link-map (MXM) expansion to overcome this and other current limitations to resolving the in vivo 'RNA structurome'.
Collapse
|
375
|
Chan D, Feng C, Spitale RC. Measuring RNA structure transcriptome-wide with icSHAPE. Methods 2017; 120:85-90. [PMID: 28336307 DOI: 10.1016/j.ymeth.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 11/17/2022] Open
Abstract
RNA molecules can be found at the heart of nearly every aspect of gene regulation: from gene expression to protein translation. The ability of RNA molecules to fold into intricate structures guides their function. Chemical methods to measure RNA structure have been part of the RNA biologists toolkit for several decades. These methods, although often cumbersome and difficult to perform on large RNAs, are notable for their accuracy and precision of structural measurements. Recent extension of these methods to transcriptome-wide analyses has opened the door to interrogating the structure of complete RNA molecules inside cells. Within this manuscript we describe the biochemical basis for the methodology behind a novel technology, icSHAPE, which measures RNA flexibility and single-strandedness in RNA. Novel methods such as icSHAPE have greatly expanded our understanding of RNA function and have paved the way to expansive analyses of large groups of RNA structures as they function inside the native environment of the cell.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
376
|
Choudhary K, Deng F, Aviran S. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. QUANTITATIVE BIOLOGY 2017; 5:3-24. [PMID: 28717530 PMCID: PMC5510538 DOI: 10.1007/s40484-017-0093-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. RESULTS We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. CONCLUSIONS To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
Collapse
Affiliation(s)
| | | | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
377
|
Portoso M, Ragazzini R, Brenčič Ž, Moiani A, Michaud A, Vassilev I, Wassef M, Servant N, Sargueil B, Margueron R. PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J 2017; 36:981-994. [PMID: 28167697 PMCID: PMC5391141 DOI: 10.15252/embj.201695335] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) play diverse roles in physiological and pathological processes. Several lncRNAs have been suggested to modulate gene expression by guiding chromatin‐modifying complexes to specific sites in the genome. However, besides the example of Xist, clear‐cut evidence demonstrating this novel mode of regulation remains sparse. Here, we focus on HOTAIR, a lncRNA that is overexpressed in several tumor types and previously proposed to play a key role in gene silencing through direct recruitment of Polycomb Repressive Complex 2 (PRC2) to defined genomic loci. Using genetic tools and a novel RNA‐tethering system, we investigated the interplay between HOTAIR and PRC2 in gene silencing. Surprisingly, we observed that forced overexpression of HOTAIR in breast cancer cells leads to subtle transcriptomic changes that appear to be independent of PRC2. Mechanistically, we found that artificial tethering of HOTAIR to chromatin causes transcriptional repression, but that this effect does not require PRC2. Instead, PRC2 recruitment appears to be a consequence of gene silencing. We propose that PRC2 binding to RNA might serve functions other than chromatin targeting.
Collapse
Affiliation(s)
- Manuela Portoso
- Institut Curie, PSL Research University, Paris, France.,INSERM U934, CNRS UMR3215, Paris, France
| | - Roberta Ragazzini
- Institut Curie, PSL Research University, Paris, France.,INSERM U934, CNRS UMR3215, Paris, France
| | - Živa Brenčič
- Institut Curie, PSL Research University, Paris, France.,INSERM U934, CNRS UMR3215, Paris, France
| | - Arianna Moiani
- Institut Curie, PSL Research University, Paris, France.,INSERM U934, CNRS UMR3215, Paris, France
| | - Audrey Michaud
- Institut Curie, PSL Research University, Paris, France.,INSERM U934, CNRS UMR3215, Paris, France
| | - Ivaylo Vassilev
- Institut Curie, PSL Research University, Paris, France.,INSERM U934, CNRS UMR3215, Paris, France
| | - Michel Wassef
- Institut Curie, PSL Research University, Paris, France.,INSERM U934, CNRS UMR3215, Paris, France
| | - Nicolas Servant
- Institut Curie, PSL Research University, Paris, France.,INSERM U900, Mines ParisTech, Paris, France
| | - Bruno Sargueil
- CNRS UMR 8015, Université Paris Descartes, Paris, France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, Paris, France .,INSERM U934, CNRS UMR3215, Paris, France
| |
Collapse
|
378
|
Lee B, Flynn RA, Kadina A, Guo JK, Kool ET, Chang HY. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA (NEW YORK, N.Y.) 2017; 23:169-174. [PMID: 27879433 PMCID: PMC5238792 DOI: 10.1261/rna.058784.116] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/20/2016] [Indexed: 05/10/2023]
Abstract
Recent advances in SHAPE technology have converted the classic primer extension method to next-generation sequencing platforms, allowing transcriptome-level analysis of RNA secondary structure. In particular, icSHAPE and SHAPE-MaP, using NAI-N3 and 1M7 reagents, respectively, are methods that claim to measure in vivo structure with high-throughput sequencing. However, these compounds have not been compared on an unbiased, raw-signal level. Here, we directly compare several in vivo SHAPE acylation reagents using the simple primer extension assay. We conclude that while multiple SHAPE technologies are effective at measuring purified RNAs in vitro, acylimidazole reagents NAI and NAI-N3 give markedly greater signals with lower background than 1M7 for in vivo measurement of the RNA structurome.
Collapse
Affiliation(s)
- Byron Lee
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Ryan A Flynn
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Anastasia Kadina
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Jimmy K Guo
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
379
|
Eubanks CS, Forte JE, Kapral GJ, Hargrove AE. Small Molecule-Based Pattern Recognition To Classify RNA Structure. J Am Chem Soc 2017; 139:409-416. [PMID: 28004925 PMCID: PMC5465965 DOI: 10.1021/jacs.6b11087] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three-dimensional RNA structures are notoriously difficult to determine, and the link between secondary structure and RNA conformation is only beginning to be understood. These challenges have hindered the identification of guiding principles for small molecule:RNA recognition. We herein demonstrate that the strong and differential binding ability of aminoglycosides to RNA structures can be used to classify five canonical RNA secondary structure motifs through principal component analysis (PCA). In these analyses, the aminoglycosides act as receptors, while RNA structures labeled with a benzofuranyluridine fluorophore act as analytes. Complete (100%) predictive ability for this RNA training set was achieved by incorporating two exhaustively guanidinylated aminoglycosides into the receptor library. The PCA was then externally validated using biologically relevant RNA constructs. In bulge-stem-loop constructs of HIV-1 transactivation response element (TAR) RNA, we achieved nucleotide-specific classification of two independent secondary structure motifs. Furthermore, examination of cheminformatic parameters and PCA loading factors revealed trends in aminoglycoside:RNA recognition, including the importance of shape-based discrimination, and suggested the potential for size and sequence discrimination within RNA structural motifs. These studies present a new approach to classifying RNA structure and provide direct evidence that RNA topology, in addition to sequence, is critical for the molecular recognition of RNA.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jordan E Forte
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Gary J Kapral
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Amanda E Hargrove
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
380
|
Krokhotin A, Mustoe AM, Weeks KM, Dokholyan NV. Direct identification of base-paired RNA nucleotides by correlated chemical probing. RNA (NEW YORK, N.Y.) 2017; 23:6-13. [PMID: 27803152 PMCID: PMC5159650 DOI: 10.1261/rna.058586.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/28/2016] [Indexed: 05/04/2023]
Abstract
Many RNA molecules fold into complex secondary and tertiary structures that play critical roles in biological function. Among the best-established methods for examining RNA structure are chemical probing experiments, which can report on local nucleotide structure in a concise and extensible manner. While probing data are highly useful for inferring overall RNA secondary structure, these data do not directly measure through-space base-pairing interactions. We recently introduced an approach for single-molecule correlated chemical probing with dimethyl sulfate (DMS) that measures RNA interaction groups by mutational profiling (RING-MaP). RING-MaP experiments reveal diverse through-space interactions corresponding to both secondary and tertiary structure. Here we develop a framework for using RING-MaP data to directly and robustly identify canonical base pairs in RNA. When applied to three representative RNAs, this framework identified 20%-50% of accepted base pairs with a <10% false discovery rate, allowing detection of 88% of duplexes containing four or more base pairs, including pseudoknotted pairs. We further show that base pairs determined from RING-MaP analysis significantly improve secondary structure modeling. RING-MaP-based correlated chemical probing represents a direct, experimentally concise, and accurate approach for detection of individual base pairs and helices and should greatly facilitate structure modeling for complex RNAs.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Anthony M Mustoe
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
381
|
Zanini F, Puller V, Brodin J, Albert J, Neher RA. In vivo mutation rates and the landscape of fitness costs of HIV-1. Virus Evol 2017; 3:vex003. [PMID: 28458914 PMCID: PMC5399928 DOI: 10.1093/ve/vex003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quantitative understanding of evolution. Using whole genome deep sequencing data from longitudinal samples during untreated HIV-1 infection, we estimated mutation rates and fitness costs in HIV-1 from the dynamics of genetic variation. At approximately neutral sites, mutations accumulate with a rate of 1.2 × 10-5 per site per day, in agreement with the rate measured in cell cultures. We estimated the rate from G to A to be the largest, followed by the other transitions C to T, T to C, and A to G, while transversions are less frequent. At other sites, mutations tend to reduce virus replication. We estimated the fitness cost of mutations at every site in the HIV-1 genome using a model of mutation selection balance. About half of all non-synonymous mutations have large fitness costs (>10 percent), while most synonymous mutations have costs <1 percent. The cost of synonymous mutations is especially low in most of pol where we could not detect measurable costs for the majority of synonymous mutations. In contrast, we find high costs for synonymous mutations in important RNA structures and regulatory regions. The intra-patient fitness cost estimates are consistent across multiple patients, indicating that the deleterious part of the fitness landscape is universal and explains a large fraction of global HIV-1 group M diversity.
Collapse
Affiliation(s)
- Fabio Zanini
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vadim Puller
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Richard A. Neher
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| |
Collapse
|
382
|
Incarnato D, Oliviero S. The RNA Epistructurome: Uncovering RNA Function by Studying Structure and Post-Transcriptional Modifications. Trends Biotechnol 2016; 35:318-333. [PMID: 27988057 DOI: 10.1016/j.tibtech.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023]
Abstract
A large fraction of higher metazoan genomes transcribe RNA molecules whose functions extend far beyond carrying instructions for protein synthesis. Although RNA is apparently a simple molecule, the ways in which it performs many of its functions have remained highly elusive for decades. As learned from studying ribosomal and transfer RNAs, two of the key features influencing the function of RNA are its structure and post-transcriptional modifications. A deep understanding of RNA function therefore requires rapid and straightforward approaches to study the complex and intricate landscape of RNA structures and modifications. In this review we summarize and discuss the most recent methods and findings in the field of RNA biology, with an eye toward new frontiers and open questions.
Collapse
Affiliation(s)
- Danny Incarnato
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy; Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, Torino, Italy.
| | - Salvatore Oliviero
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Torino, Italy; Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, Torino, Italy.
| |
Collapse
|
383
|
Watters KE, Strobel EJ, Yu AM, Lis JT, Lucks JB. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat Struct Mol Biol 2016; 23:1124-1131. [PMID: 27798597 PMCID: PMC5497173 DOI: 10.1038/nsmb.3316] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
RNAs can begin to fold immediately as they emerge from RNA polymerase. During cotranscriptional folding, interactions between nascent RNAs and ligands are able to direct the formation of alternative RNA structures, a feature exploited by noncoding RNAs called riboswitches to make gene-regulatory decisions. Despite their importance, cotranscriptional folding pathways have yet to be uncovered with sufficient resolution to reveal how cotranscriptional folding governs RNA structure and function. To access cotranscriptional folding at nucleotide resolution, we extended selective 2'-hydroxyl acylation analyzed by primer-extension sequencing (SHAPE-seq) to measure structural information of nascent RNAs during transcription. Using cotranscriptional SHAPE-seq, we determined how the cotranscriptional folding pathway of the Bacillus cereus crcB fluoride riboswitch undergoes a ligand-dependent bifurcation that delays or promotes terminator formation via a series of coordinated structural transitions. Our results directly link cotranscriptional RNA folding to a genetic decision and establish a framework for cotranscriptional analysis of RNA structure at nucleotide resolution.
Collapse
Affiliation(s)
- Kyle E. Watters
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
| | - Eric J. Strobel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
| | - Angela M Yu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, Weill Cornell Medical College, New York, NY, Memorial Sloan-Kettering Cancer Center, New York, NY
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Julius B. Lucks
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| |
Collapse
|
384
|
Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat Methods 2016; 14:83-89. [DOI: 10.1038/nmeth.4068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
|
385
|
DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 2016; 14:75-82. [PMID: 27819661 DOI: 10.1038/nmeth.4057] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022]
Abstract
Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.
Collapse
|
386
|
Thomas EM, Testa SM. The colorimetric determination of selectively cleaved adenosines and guanosines in DNA oligomers using bicinchoninic acid and copper. J Biol Inorg Chem 2016; 22:31-46. [PMID: 27807667 DOI: 10.1007/s00775-016-1405-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Colorimetric methods combined with color-changing chemical probes are widely used as simple yet effective tools for identifying and quantifying a wide variety of molecules in solution. For nucleic acids (DNA and RNA), perhaps the most commonly used colorimetric probe is potassium permanganate, which can be used to identify single-stranded pyrimidines (thymine and cytosine) in polymers. Unfortunately, permanganate is not an effective probe for identifying purines (adenine and guanine), especially in the presence of the more reactive pyrimidines. Therefore, robust methods for discriminating between the purines remain elusive, thereby creating a barrier toward developing more complex colorimetric applications. In this proof-of-principle study, we demonstrate that bicinchoninic acid (BCA) and copper, when combined with purine-specific chemical cleavage reactions, can be a colorimetric probe for the identification and quantification of adenosines and/or guanosines in single-stranded DNA oligomers, even in the presence of pyrimidines. Furthermore, the reactions are stoichiometric, which allows for the quantification of the number of adenosines and/or guanosines in these oligomers. Because the BCA/copper reagent detects the reducing sugar, 2-deoxyribose, that results from the chemical cleavage of a given nucleotide's N-glycosidic bond, these colorimetric assays are effectively detecting apurinic sites in DNA oligomers, which are known to occur via DNA damage in biological systems. We demonstrate that simple digital analysis of the color-changing chromophore (BCA/copper) is all that is necessary to obtain quantifiable and reproducible data, which indicates that these assays should be broadly accessible.
Collapse
Affiliation(s)
- Elizabeth M Thomas
- Department of Chemistry, University of Kentucky, 550 Rose Street, Lexington, KY, 40506, USA
| | - Stephen M Testa
- Department of Chemistry, University of Kentucky, 550 Rose Street, Lexington, KY, 40506, USA.
| |
Collapse
|
387
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
388
|
Song J, Perreault JP, Topisirovic I, Richard S. RNA G-quadruplexes and their potential regulatory roles in translation. ACTA ACUST UNITED AC 2016; 4:e1244031. [PMID: 28090421 PMCID: PMC5173311 DOI: 10.1080/21690731.2016.1244031] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
DNA guanine (G)-rich 4-stranded helical nucleic acid structures called G-quadruplexes (G4), have been extensively studied during the last decades. However, emerging evidence reveals that 5′- and 3′-untranslated regions (5′- and 3′-UTRs) as well as open reading frames (ORFs) contain putative RNA G-quadruplexes. These stable secondary structures play key roles in telomere homeostasis and RNA metabolism including pre-mRNA splicing, polyadenylation, mRNA targeting and translation. Interestingly, multiple RNA binding proteins such as nucleolin, FMRP, DHX36, and Aven were identified to bind RNA G-quadruplexes. Moreover, accumulating reports suggest that RNA G-quadruplexes regulate translation in cap-dependent and -independent manner. Herein, we discuss potential roles of RNA G-quadruplexes and associated trans-acting factors in the regulation of mRNA translation.
Collapse
Affiliation(s)
- Jingwen Song
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Ivan Topisirovic
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
389
|
Mongkolsiriwattana C, Zhou JS, Ng JCK. A 3'-end structure in RNA2 of a crinivirus is essential for viral RNA synthesis and contributes to replication-associated translation activity. Sci Rep 2016; 6:34482. [PMID: 27694962 PMCID: PMC5046102 DOI: 10.1038/srep34482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023] Open
Abstract
The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3' terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5' and YSS-containing 3' terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons.
Collapse
Affiliation(s)
- Chawin Mongkolsiriwattana
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - Jaclyn S. Zhou
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - James C. K. Ng
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
390
|
Abstract
Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast, Arabidopsis, and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry.,Department of Biochemistry and Molecular Biology.,Center for RNA Molecular Biology
| | | | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
391
|
The Life-Cycle of the HIV-1 Gag-RNA Complex. Viruses 2016; 8:v8090248. [PMID: 27626439 PMCID: PMC5035962 DOI: 10.3390/v8090248] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.
Collapse
|
392
|
SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc Natl Acad Sci U S A 2016; 113:10322-7. [PMID: 27578869 DOI: 10.1073/pnas.1600008113] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The 18-kb Xist long noncoding RNA (lncRNA) is essential for X-chromosome inactivation during female eutherian mammalian development. Global structural architecture, cell-induced conformational changes, and protein-RNA interactions within Xist are poorly understood. We used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) to examine these features of Xist at single-nucleotide resolution both in living cells and ex vivo. The Xist RNA forms complex well-defined secondary structure domains and the cellular environment strongly modulates the RNA structure, via motifs spanning one-half of all Xist nucleotides. The Xist RNA structure modulates protein interactions in cells via multiple mechanisms. For example, repeat-containing elements adopt accessible and dynamic structures that function as landing pads for protein cofactors. Structured RNA motifs create interaction domains for specific proteins and also sequester other motifs, such that only a subset of potential binding sites forms stable interactions. This work creates a broad quantitative framework for understanding structure-function interrelationships for Xist and other lncRNAs in cells.
Collapse
|
393
|
Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF. J Bacteriol 2016; 198:2458-69. [PMID: 27381913 DOI: 10.1128/jb.00343-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED CsrA family RNA-binding proteins are widely distributed in bacteria and regulate gene expression at the posttranscriptional level. Pseudomonas aeruginosa has a canonical member of the CsrA family (RsmA) and a novel, structurally distinct variant (RsmF). To better understand RsmF binding properties, we performed parallel systematic evolution of ligands by exponential enrichment (SELEX) experiments for RsmA and RsmF. The initial target library consisted of 62-nucleotide (nt) RNA transcripts with central cores randomized at 15 sequential positions. Most targets selected by RsmA and RsmF were the expected size and shared a common consensus sequence (CANGGAYG) that was positioned in a hexaloop region of the stem-loop structure. RsmA and RsmF also selected for longer targets (≥96 nt) that were likely generated by rare PCR errors. Most of the long targets contained two consensus-binding sites. Representative short (single consensus site) and long (two consensus sites) targets were tested for RsmA and RsmF binding. Whereas RsmA bound the short targets with high affinity, RsmF was unable to bind the same targets. RsmA and RsmF both bound the long targets. Mutation of either consensus GGA site in the long targets reduced or eliminated RsmF binding, suggesting a requirement for two tandem binding sites. Conversely, RsmA bound long targets containing only a single GGA site with unaltered affinity. The RsmF requirement for two binding sites was confirmed with tssA1, an in vivo regulatory target of RsmA and RsmF. Our findings suggest that RsmF binding requires two GGA-containing sites, while RsmA binding requirements are less stringent. IMPORTANCE The CsrA family of RNA-binding proteins is widely conserved in bacteria and plays important roles in the posttranscriptional regulation of protein synthesis. P. aeruginosa has two CsrA proteins, RsmA and RsmF. Although RsmA and RsmF share a few RNA targets, RsmF is unable to bind to other targets recognized by RsmA. The goal of the present study was to better understand the basis for differential binding by RsmF. Our data indicate that RsmF binding requires target RNAs with two consensus-binding sites, while RsmA recognizes targets with just a single binding site. This information should prove useful to future efforts to define the RsmF regulon and its contribution to P. aeruginosa physiology and virulence.
Collapse
|
394
|
Crawford DW, Blakeley BD, Chen PH, Sherpa C, Le Grice SF, Laird-Offringa IA, McNaughton BR. An Evolved RNA Recognition Motif That Suppresses HIV-1 Tat/TAR-Dependent Transcription. ACS Chem Biol 2016; 11:2206-15. [PMID: 27253715 DOI: 10.1021/acschembio.6b00145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potent and selective recognition and modulation of disease-relevant RNAs remain a daunting challenge. We previously examined the utility of the U1A N-terminal RNA recognition motif as a scaffold for tailoring new RNA hairpin recognition and showed that as few as one or two mutations can result in moderate affinity (low μM dissociation constant) for the human immunodeficiency virus (HIV) trans-activation response element (TAR) RNA, an RNA hairpin controlling transcription of the human immunodeficiency virus (HIV) genome. Here, we use yeast display and saturation mutagenesis of established RNA-binding regions in U1A to identify new synthetic proteins that potently and selectively bind TAR RNA. Our best candidate has truly altered, not simply broadened, RNA-binding selectivity; it binds TAR with subnanomolar affinity (apparent dissociation constant of ∼0.5 nM) but does not appreciably bind the original U1A RNA target (U1hpII). It specifically recognizes the TAR RNA hairpin in the context of the HIV-1 5'-untranslated region, inhibits the interaction between TAR RNA and an HIV trans-activator of transcription (Tat)-derived peptide, and suppresses Tat/TAR-dependent transcription. Proteins described in this work are among the tightest TAR RNA-binding reagents-small molecule, nucleic acid, or protein-reported to date and thus have potential utility as therapeutics and basic research tools. Moreover, our findings demonstrate how a naturally occurring RNA recognition motif can be dramatically resurfaced through mutation, leading to potent and selective recognition-and modulation-of disease-relevant RNA.
Collapse
Affiliation(s)
| | | | - Po-Han Chen
- Department of Surgery and Department of Biochemistry & Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California 90033, United States
| | - Chringma Sherpa
- Basic
Research Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stuart F.J. Le Grice
- Basic
Research Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ite A. Laird-Offringa
- Department of Surgery and Department of Biochemistry & Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California 90033, United States
| | | |
Collapse
|
395
|
Deng F, Ledda M, Vaziri S, Aviran S. Data-directed RNA secondary structure prediction using probabilistic modeling. RNA (NEW YORK, N.Y.) 2016; 22:1109-1119. [PMID: 27251549 PMCID: PMC4931104 DOI: 10.1261/rna.055756.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Structure dictates the function of many RNAs, but secondary RNA structure analysis is either labor intensive and costly or relies on computational predictions that are often inaccurate. These limitations are alleviated by integration of structure probing data into prediction algorithms. However, existing algorithms are optimized for a specific type of probing data. Recently, new chemistries combined with advances in sequencing have facilitated structure probing at unprecedented scale and sensitivity. These novel technologies and anticipated wealth of data highlight a need for algorithms that readily accommodate more complex and diverse input sources. We implemented and investigated a recently outlined probabilistic framework for RNA secondary structure prediction and extended it to accommodate further refinement of structural information. This framework utilizes direct likelihood-based calculations of pseudo-energy terms per considered structural context and can readily accommodate diverse data types and complex data dependencies. We use real data in conjunction with simulations to evaluate performances of several implementations and to show that proper integration of structural contexts can lead to improvements. Our tests also reveal discrepancies between real data and simulations, which we show can be alleviated by refined modeling. We then propose statistical preprocessing approaches to standardize data interpretation and integration into such a generic framework. We further systematically quantify the information content of data subsets, demonstrating that high reactivities are major drivers of SHAPE-directed predictions and that better understanding of less informative reactivities is key to further improvements. Finally, we provide evidence for the adaptive capability of our framework using mock probe simulations.
Collapse
Affiliation(s)
- Fei Deng
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, California 95616, USA
| | - Mirko Ledda
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, California 95616, USA
| | - Sana Vaziri
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, California 95616, USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
396
|
Weidmann CA, Mustoe AM, Weeks KM. Direct Duplex Detection: An Emerging Tool in the RNA Structure Analysis Toolbox. Trends Biochem Sci 2016; 41:734-736. [PMID: 27427309 DOI: 10.1016/j.tibs.2016.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 11/18/2022]
Abstract
While a variety of powerful tools exists for analyzing RNA structure, identifying long-range and intermolecular base-pairing interactions has remained challenging. Recently, three groups introduced a high-throughput strategy that uses psoralen-mediated crosslinking to directly identify RNA-RNA duplexes in cells. Initial application of these methods highlights the preponderance of long-range structures within and between RNA molecules and their widespread structural dynamics.
Collapse
Affiliation(s)
- Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Anthony M Mustoe
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
397
|
Kutchko KM, Laederach A. Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27396578 PMCID: PMC5179297 DOI: 10.1002/wrna.1374] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Selective 2′‐hydroxyl acylation analyzed by primer extension (SHAPE) provides information on RNA structure at single‐nucleotide resolution. It is most often used in conjunction with RNA secondary structure prediction algorithms as a probabilistic or thermodynamic restraint. With the recent advent of ultra‐high‐throughput approaches for collecting SHAPE data, the applications of this technology are extending beyond structure prediction. In this review, we discuss recent applications of SHAPE data in the transcriptomic context and how this new experimental paradigm is changing our understanding of these experiments and RNA folding in general. SHAPE experiments probe both the secondary and tertiary structure of an RNA, suggesting that model‐free approaches for within and comparative RNA structure analysis can provide significant structural insight without the need for a full structural model. New methods incorporating SHAPE at different nucleotide resolutions are required to parse these transcriptomic data sets to transcend secondary structure modeling with global structural metrics. These ‘multiscale’ approaches provide deeper insights into RNA global structure, evolution, and function in the cell. WIREs RNA 2017, 8:e1374. doi: 10.1002/wrna.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Katrina M Kutchko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
398
|
Abstract
The regulatory potential of RNA has never ceased to amaze: from RNA catalysis, to RNA-mediated splicing, to RNA-based silencing of an entire chromosome during dosage compensation. More recently, thousands of long noncoding RNA (lncRNA) transcripts have been identified, the majority with unknown function. Thus, it is tempting to think that these lncRNAs represent a cadre of new factors that function through ribonucleic mechanisms. Some evidence points to several lncRNAs with tantalizing physiological contributions and thought-provoking molecular modalities. However, dissecting the RNA biology of lncRNAs has been difficult, and distinguishing the independent contributions of functional RNAs from underlying DNA elements, or the local act of transcription, is challenging. Here, we aim to survey the existing literature and highlight future approaches that will be needed to link the RNA-based biology and mechanisms of lncRNAs in vitro and in vivo.
Collapse
Affiliation(s)
- Loyal A Goff
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA; The Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
399
|
Huang L, Wang J, Lilley DMJ. A critical base pair in k-turns determines the conformational class adopted, and correlates with biological function. Nucleic Acids Res 2016; 44:5390-8. [PMID: 27016741 PMCID: PMC4914095 DOI: 10.1093/nar/gkw201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
k-turns are commonly-occurring motifs that introduce sharp kinks into duplex RNA, thereby facilitating tertiary contacts. Both the folding and conformation of k-turns are determined by their local sequence. k-turns fall into two conformational classes, called N3 and N1, that differ in the pattern of hydrogen bonding in the core. We show here that this is determined by the basepair adjacent to the critical G•A pairs. We determined crystal structures of a series of Kt-7 variants in which this 3b,3n position has been systematically varied, showing that this leads to a switch in the conformation. We have previously shown that the 3b,3n position also determines the folding characteristics of the k-turn, i.e. whether or not the k-turn can fold in the presence of metal ions alone. We have analyzed the distribution of 3b,3n sequences from four classes of k-turns from ribosomes, riboswitches and U4 snRNA, finding a strong conservation of properties for a given k-turn type. We thus demonstrate a strong association between biological function, 3b,3n sequence and k-turn folding and conformation. This has strong predictive power, and can be applied to the modeling of large RNA architectures.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
400
|
Kalloush RM, Vivet-Boudou V, Ali LM, Mustafa F, Marquet R, Rizvi TA. Packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA depends upon conserved long-range interactions (LRIs) between U5 and gag sequences. RNA (NEW YORK, N.Y.) 2016; 22:905-919. [PMID: 27095024 PMCID: PMC4878616 DOI: 10.1261/rna.055731.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses.
Collapse
Affiliation(s)
- Rawan M Kalloush
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|