351
|
Chen H, Li G, Zhang J, Zheng T, Chen Q, Zhang Y, Yang F, Wang C, Nie H, Zheng B, Gong Q. Sodium butyrate ameliorates Schistosoma japonicum-induced liver fibrosis by inhibiting HMGB1 expression. Exp Parasitol 2021; 231:108171. [PMID: 34736899 DOI: 10.1016/j.exppara.2021.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022]
Abstract
Schistosomiasis is a prevalent zoonotic parasitic disease caused by schistosomes. Its main threat to human health is hepatic granuloma and fibrosis due to worm eggs. Praziquantel remains the first choice for the treatment of schistosomiasis but has limited benefit in treating liver fibrosis. Therefore, the need to develop effective drugs for treating schistosomiasis-induced hepatic fibrosis is urgent. High-mobility group box 1 protein (HMGB1) is a potential immune mediator that is highly associated with the development of some fibrotic diseases and may be involved in the liver pathology of schistosomiasis. We speculated that HMGB1 inhibitors could have an anti-fibrotic effect. Sodium butyrate (SB), a potent inhibitor of HMGB1, has shown anti-inflammatory activity in some animal disease models. In this study, we evaluated the effects of SB on a murine schistosomiasis model. Mice were percutaneously infected with 20 ± 2 cercariae of Schistosoma japonicum. SB (500 mg/kg/day) was administered every 3 days for the entire experiment period. The activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology, HMGB1 expression, and the levels of interferon gamma (IFN-γ), transforming growth factor-β1 (TGF-β1), and interleukin-6 (IL-6) in serum were analyzed. SB reduced hepatic granuloma and fibrosis of schistosomiasis, reflected by the decreased levels of ALT and AST in serum and the reduced expression of pro-inflammatory and fibrogenic cytokines (IFN-γ, TGF-β1, and IL-6). The protective effect could be attributable to the inhibition of the expression of HMGB1 and release by SB.
Collapse
Affiliation(s)
- Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Gang Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Department of Gastroenterology, Jingmen Second People's Hospital, Jingmen, Hubei Province, 448000, PR China
| | - Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Ting Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Qianglin Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Yanxiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Fei Yang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Chao Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China.
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China.
| |
Collapse
|
352
|
Reguera-Gomez M, Valero MA, Oliver-Chiva MC, de Elias-Escribano A, Artigas P, Cabeza-Barrera MI, Salas-Coronas J, Boissier J, Mas-Coma S, Bargues MD. First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology. Acta Trop 2021; 223:106075. [PMID: 34358512 DOI: 10.1016/j.actatropica.2021.106075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Schistosomiasis is a Neglected Tropical Disease caused by trematode species of the genus Schistosoma. Both, autochthonous and imported cases of urogenital schistosomiasis have been described in Europe. The present study focuses on eggs, considered pure S. haematobium by genetic characterisation (intergenic ITS region of the rDNA and cox1 mtDNA). A phenotypic characterisation of S. haematobium eggs was made by morphometric comparison with experimental populations of S. bovis and S. mansoni, to help in the diagnosis of S. haematobium populations infecting sub-Saharan migrants in Spain. Analyses were made by Computer Image Analysis System (CIAS) applied on the basis of new standardised measurements and geometric morphometric tools. The principal component analysis (PCA), including seventeen non-redundant measurements, showed three phenotypic patterns in eggs of S. haematobium, S. bovis and S. mansoni. PCA showed that the S. bovis population presented a large egg size range with a pronouncedly larger maximum size. Similarly, S. bovis shows bigger spine values than S. haematobium. Mahalanobis distances between each pair of groups were calculated for each discriminant analysis performed. In general, S. mansoni and S. bovis present larger distances between them than with S. haematobium, i.e. they present the greatest differences. Regarding the spine, S. haematobium and S. mansoni are the most distant species. Results show the usefulness of this methodology for the phenotypic differentiation between eggs from these Schistosoma species, capable of discerning morphologically close eggs, as is the case of the haematobium group. Schistosoma egg phenotyping approaches may be applied to assess not only hybrid forms but also potential influences of a variety of other factors.
Collapse
Affiliation(s)
- Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - M Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - M Carmen Oliver-Chiva
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Alejandra de Elias-Escribano
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Patricio Artigas
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | | | | | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - M Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
353
|
Martínez-Esquivias F, Guzmán-Flores JM, Pérez-Larios A, González Silva N, Becerra-Ruiz JS. A Review of the Antimicrobial Activity of Selenium Nanoparticles. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5383-5398. [PMID: 33980348 DOI: 10.1166/jnn.2021.19471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance has become a severe problem for health systems worldwide, and counteractions are challenging because of the lack of interest of pharmaceutical companies in generating new and effective antimicrobial drugs. Selenium nanoparticles have attracted considerable interest in treating bacteria, fungi, parasites, and viruses of clinical importance due to their high therapeutic efficacy and almost zero generation of adverse effects. Some studies have revealed that the antimicrobial activity of these nanoparticles is due to the generation of reactive oxygen species, but more studies are needed to clarify their antimicrobial mechanisms. Other studies show that their antimicrobial activity is increased when the surface of the nanoparticles is functionalized with some biomolecules or when their surface carries a specific drug. This review addresses the existing background on the antimicrobial potential offered by selenium nanoparticles against viruses, bacteria, fungi, and parasites of clinical importance.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, 47600, México
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, 47600, México
| | - Alejandro Pérez-Larios
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, 47600, México
| | - Napoleón González Silva
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, 47600, México
| | - Julieta Saraí Becerra-Ruiz
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, 47600, México
| |
Collapse
|
354
|
Yang ZY, Liu ZH, Zhang YN, Li C, Liu L, Pu WJ, Xie SQ, Xu J, Xia CM. Synergistic effect of combination chemotherapy with praziquantel and DW-3-15 for Schistosoma japonicum in vitro and in vivo. Parasit Vectors 2021; 14:550. [PMID: 34702326 PMCID: PMC8549225 DOI: 10.1186/s13071-021-05065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is a debilitating and neglected tropical disease for which praziquantel (PZQ) remains the first-choice drug for treatment and control of the disease. In our previous studies, we found that the patented compound DW-3-15 (patent no. ZL201110142538.2) displayed significant and stabilized antiparasitic activity through a mechanism that might be distinct from PZQ. Here, we investigated the antischistosomal efficacy of PZQ combined with DW-3-15 against schistosomula and adult worms of Schistosoma japonicum in vitro and in vivo, to verify whether there was a synergistic effect of the two compounds. METHODS The antischistosomal efficacy of PZQ combined with DW-3-15 in comparison with an untreated control and monotherapy group against schistosomula and adult worms was assessed both in vitro and in vivo. Parasitological studies, scanning electron microscopy, combination index, and histopathological analysis were used for the assessment. RESULTS The results showed significantly reduced viability of schistosomes, achieving 100% viability reduction for juveniles and males by combination chemotherapy using PZQ together with DW-3-15 in vitro. The combination index was 0.28, 0.27, and 0.53 at the higher concentration of PZQ combined with DW-3-15 against juveniles, males, and females, respectively, indicating that the two compounds display strong synergism. Scanning electron microscopy observations also demonstrated that the compound combination induced more severe and extensive alterations to the tegument and subtegument of S. japonicum than those with each compound alone. In vivo, compared with the single-compound-treated group, the group treated with the higher-dose combination demonstrated the best schistosomicidal efficacy, with significantly reduced worm burden, egg burden, and granuloma count and area, which was evident against schistosomula and adult worms. CONCLUSIONS Our study provides a potential novel chemotherapy for schistosomiasis caused by S. japonicum. It would improve the antischistosomal effect on schistosomula and adult worms of S. japonicum, and decrease individual dosages.
Collapse
Affiliation(s)
- Zi-Yin Yang
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Zi-Hao Liu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Ya-Nan Zhang
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Chen Li
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Lei Liu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Wen-Jie Pu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Shi-Qi Xie
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Jing Xu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| | - Chao-Ming Xia
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123 China
| |
Collapse
|
355
|
Ferrari TCA, Albricker ACL, Gonçalves IM, Freire CMV. Schistosome-Associated Pulmonary Arterial Hypertension: A Review Emphasizing Pathogenesis. Front Cardiovasc Med 2021; 8:724254. [PMID: 34676250 PMCID: PMC8523797 DOI: 10.3389/fcvm.2021.724254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis, especially due to Schistosoma mansoni, is a well-recognized cause of pulmonary arterial hypertension (PAH). The high prevalence of this helminthiasis makes schistosome-related PAH (Sch-PAH) one of the most common causes of this disorder worldwide. The pathogenic mechanisms underlying Sch-PAH remain largely unknown. Available evidence suggests that schistosome eggs reach the lung via portocaval shunts formed as a consequence of portal hypertension due to hepatosplenic schistosomiasis. Once deposited into the lungs, the eggs elicit an immune response resulting in periovular granuloma formation. Immune mediators drive transforming growth factor-β (TGF-β) release, which gives rise to pulmonary vascular inflammation with subsequent remodeling and development of angiomatoid and plexiform lesions. These mechanisms elicited by the eggs seem to become autonomous and the vascular lesions progress independently of the antigen. Portopulmonary hypertension, which pathogenesis is still uncertain, may also play a role in the genesis of Sch-PAH. Recently, there have been substantial advances in the diagnosis and treatment of PAH, but it remains a difficult condition to recognize and manage, and patients still die prematurely from right-heart failure. Echocardiography is used for screening, and the formal diagnosis requires right-heart catheterization. The experience in treating Sch-PAH is largely limited to the phosphodiesterase type 5 inhibitors, with evidence suggesting that these vasodilators improve symptoms and may also improve survival. Considering the great deal of uncertainty about Sch-PAH pathogenesis, course, and treatment, the aim of this review is to summarize current knowledge on this condition emphasizing its pathogenesis.
Collapse
Affiliation(s)
- Teresa Cristina Abreu Ferrari
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Lopes Albricker
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde do Adulto, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ina Morais Gonçalves
- Graduação em Medicina, Centro Universitário de Belo Horizonte, Belo Horizonte, Brazil
| | | |
Collapse
|
356
|
Zhang B, Wu X, Li J, Ning A, Zhang B, Liu J, Song L, Yan C, Sun X, Zheng K, Wu Z. Hepatic progenitor cells promote the repair of schistosomiasis liver injury by inhibiting IL-33 secretion in mice. Stem Cell Res Ther 2021; 12:546. [PMID: 34674752 PMCID: PMC8529826 DOI: 10.1186/s13287-021-02589-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/04/2021] [Indexed: 01/20/2023] Open
Abstract
Background Hepatic schistosomiasis, a chronic liver injury induced by long-term Schistosoma japonicum (S. japonicum) infection, is characterized by egg granulomas and fibrotic pathology. Hepatic progenitor cells (HPCs), which are nearly absent or quiescent in normal liver, play vital roles in chronic and severe liver injury. But their role in the progression of liver injury during infection remains unknown. Methods In this study, the hepatic egg granulomas, fibrosis and proliferation of HPCs were analyzed in the mice model of S. japonicum infection at different infectious stages. For validating the role of HPCs in hepatic injury, tumor necrosis factor-like-weak inducer of apoptosis (TWEAK) and TWEAK blocking antibody were used to manipulate the proliferation of HPCs in wild-type and IL-33−/− mice infected with S. japonicum. Results We found that the proliferation of HPCs was accompanied by inflammatory granulomas and fibrosis formation. HPCs expansion promoted liver regeneration and inhibited inflammatory egg granulomas, as well as the deposition of fibrotic collagen. Interestingly, the expression of IL-33 was negatively associated with HPCs’ expansion. There were no obvious differences of liver injury caused by infection between wild-type and IL-33−/− mice with HPCs’ expansion. However, liver injury was more attenuated in IL-33−/− mice than wild-type mice when the proliferation of HPCs was inhibited by anti-TWEAK. Conclusions Our data uncovered a protective role of HPCs in hepatic schistosomiasis in an IL-33-dependent manner, which might provide a promising progenitor cell therapy for hepatic schistosomiasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02589-y.
Collapse
Affiliation(s)
- Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - An Ning
- Jiangxi Provincial Institute of Parasitic Diseases, Nanchang, Jiangxi, China
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiahua Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Langui Song
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
357
|
Adewale B, Heintz JR, Pastore CF, Rossi HL, Hung LY, Rahman N, Bethony J, Diemert D, Babatunde JA, Herbert DR. Parasitic helminth infections in humans modulate Trefoil Factor levels in a manner dependent on the species of parasite and age of the host. PLoS Negl Trop Dis 2021; 15:e0009550. [PMID: 34662329 PMCID: PMC8553090 DOI: 10.1371/journal.pntd.0009550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/28/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
Helminth infections, including hookworms and Schistosomes, can cause severe disability and death. Infection management and control would benefit from identification of biomarkers for early detection and prognosis. While animal models suggest that Trefoil Factor Family proteins (TFF2 and TFF3) and interleukin-33 (IL-33) -driven type 2 immune responses are critical mediators of tissue repair and worm clearance in the context of hookworm infection, very little is known about how they are modulated in the context of human helminth infection. We measured TFF2, TFF3, and IL-33 levels in serum from patients in Brazil infected with Hookworm and/or Schistosomes, and compared them to endemic and non-endemic controls. TFF2 was specifically elevated by Hookworm infection in females, not Schistosoma or co-infection. This elevation was correlated with age, but not worm burden. TFF3 was elevated by Schistosoma infection and found to be generally higher in females. IL-33 was not significantly altered by infection. To determine if this might apply more broadly to other species or regions, we measured TFFs and cytokine levels (IFNγ, TNFα, IL-33, IL-13, IL-1β, IL-17A, IL-22, and IL-10) in both the serum and urine of Nigerian school children infected with S. haematobium. We found that serum levels of TFF2 and 3 were reduced by infection, likely in an age dependent manner. In the serum, only IL-10 and IL-13 were significantly increased, while in urine IFN-γ, TNF-α, IL-13, IL-1β, IL-22, and IL-10 were significantly increased in by infection. Taken together, these data support a role for TFF proteins in human helminth infection. Billions of people are infected with parasitic helminths across the globe, especially in resource poor regions. These infections can result in severe developmental delay, disability, and death. Adequate management of helminth infection would benefit from the identification of host biomarkers in easily obtained samples (e.g. serum or urine) that correlate to infection state. Our goal was to determine if specific proteins involved in tissue repair and immune modulation are altered by infection with specific helminth species in Brazil (hookworm and S. mansoni species of blood fluke) or Nigeria (S. haematobium species of blood fluke). One of these proteins, Trefoil Factor 2 (TFF2), was elevated in the serum of hookworm infected women from Brazil, while another, TFF3 is higher in women than men, but also increased by S. mansoni blood fluke infection. In contrast, both TFFs were decreased in the serum of Nigerian children infected by S. haematobium, while many pro-inflammatory cytokines were increased in the urine, where the eggs emerge from host tissue.
Collapse
Affiliation(s)
- Babatunde Adewale
- Public Health Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Jonathan R. Heintz
- University of Pennsylvania, Perlman School of Medicine Biostatistics Analysis Center, Philadelphia, Pennsylvania, United States of America
| | - Christopher F. Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
| | - Heather L. Rossi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
| | - Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, United States of Amerca
| | - Nurudeen Rahman
- Public Health Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Jeff Bethony
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States of Amerca
| | - David Diemert
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States of Amerca
| | - James Ayorinde Babatunde
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, United States of Amerca
- * E-mail:
| |
Collapse
|
358
|
Jacobs I, Ceulemans M, Wauters L, Breynaert C, Vermeire S, Verstockt B, Vanuytsel T. Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain? Front Immunol 2021; 12:754413. [PMID: 34737752 PMCID: PMC8560962 DOI: 10.3389/fimmu.2021.754413] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Eosinophils are leukocytes which reside in the gastrointestinal tract under homeostatic conditions, except for the esophagus which is normally devoid of eosinophils. Research on eosinophils has primarily focused on anti-helminth responses and type 2 immune disorders. In contrast, the search for a role of eosinophils in chronic intestinal inflammation and fibrosis has been limited. With a shift in research focus from adaptive to innate immunity and the fact that the eosinophilic granules are filled with inflammatory mediators, eosinophils are becoming a point of interest in inflammatory bowel diseases. In the current review we summarize eosinophil characteristics and recruitment as well as the current knowledge on presence, inflammatory and pro-fibrotic functions of eosinophils in inflammatory bowel disease and other chronic inflammatory conditions, and we identify research gaps which should be covered in the future.
Collapse
Affiliation(s)
- Inge Jacobs
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Ceulemans
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lucas Wauters
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of General Internal Medicine, Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
359
|
Wu Q, Feng Z, Hu W. Reduction of autofluorescence in whole adult worms of Schistosoma japonicum for immunofluorescence assay. Parasit Vectors 2021; 14:532. [PMID: 34649608 PMCID: PMC8515762 DOI: 10.1186/s13071-021-05027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Immunofluorescence assay is one of methods to understand the spatial biology by visualizing localization of biomolecules in cells and tissues. Autofluorescence, as a common phenomenon in organisms, is a background signal interfering the immunolocalization assay of schistosome biomolecules, and may lead to misinterpretation of the biomolecular function. However, applicable method for reducing the autofluorescence in Schistosoma remains unclear. In order to find a suitable method for reducing autofluorescence of schistosomes, different chemical reagents, such as Sudan black B (SBB), trypan blue (TB), copper sulfate (CuSO4), Tris-glycine (Gly), and ammonia/ethanol (AE), at different concentrations and treatment time were tested, and SBB and CuSO4 were verified for the effect of blocking autofluorescence in immunofluorescence to localize the target with anti-SjCRT antibody. By comparing the autofluorescence characteristics of different conditions, it was found that SBB, TB and CuSO4 had a certain degree of reducing autofluorescence effect, and the best effect in females was using 50 mM CuSO4 for 6 h and in males was 0.5% SBB for 6 h. Furthermore, we have applied the optimized conditions to the immunofluorescence of SjCRT protein, and the results revealed that the immunofluorescence signal of SjCRT was clearly visible without autofluorescence interference. We present an effective method to reduce autofluorescence in male and female worm of Schistosoma japonicum for immunofluorescence assay, which could be helpful to better understand biomolecular functions. Our method provides an idea for immunofluorescence assay in other flukes with autofluoresence. ![]()
Collapse
Affiliation(s)
- Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
360
|
Silva BC, Mengarda AC, Rodrigues VC, Cajas RA, Carnaúba PU, Espírito-Santo MCC, Bezerra-Filho CSM, de Sousa DP, de Moraes J. Efficacy of carvacryl acetate in vitro and following oral administration to mice harboring either prepatent or patent Schistosoma mansoni infections. Parasitol Res 2021; 120:3837-3844. [PMID: 34604934 DOI: 10.1007/s00436-021-07333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Schistosomiasis is a major public health problem that afflicts more than 240 million individuals globally, particularly in poor communities. Treatment of schistosomiasis relies heavily on a single oral drug, praziquantel, and there is interest in the search for new antischistosomal drugs. This study reports the anthelmintic evaluation of carvacryl acetate, a derivative of the terpene carvacrol, against Schistosoma mansoni ex vivo and in a schistosomiasis animal model harboring either adult (patent infection) or juvenile (prepatent infection) parasites. For comparison, data obtained with gold standard antischistosomal drug praziquantel are also presented. Initially in vitro effective concentrations of 50% (EC50) and 90% (EC90) were determined against larval and adult stages of S. mansoni. In an animal with patent infection, a single oral dose of carvacryl acetate (100, 200, or 400 mg/kg) caused a significant reduction in worm burden (30-40%). S. mansoni egg production, a process responsible for both life cycle and pathogenesis, was also markedly reduced (70-80%). Similar to praziquantel, carvacryl acetate 400 mg/kg had low efficacy in pre-patent infection. In tandem, although carvacryl acetate had interesting in vitro schistosomicidal activity, the compound exhibited low efficacy in terms of reduction of worm load in S. mansoni-infected mice.
Collapse
Affiliation(s)
- Bianca C Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Vinícius C Rodrigues
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Rayssa A Cajas
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Paulo U Carnaúba
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Maria Cristina C Espírito-Santo
- Laboratório de Imunopatologia da Esquistossomose (LIM-06), Departamento de Moléstias Infecciosas E Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Helmintologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, SP, São Paulo, Brazil
| | - Carlos S M Bezerra-Filho
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Damião P de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil.
| |
Collapse
|
361
|
Grillo F, Campora M, Carlin L, Cornara L, Parente P, Vanoli A, Remo A, Migliora P, Roberto F, Fassan M, Mastracci L. "Stranger things" in the gut: uncommon items in gastrointestinal specimens. Virchows Arch 2021; 480:231-245. [PMID: 34599376 PMCID: PMC8986674 DOI: 10.1007/s00428-021-03188-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
Organic (such as parasites or vegetable remnants) and inorganic substances may be encountered during routine pathology diagnostic work up of endoscopic gastrointestinal biopsy samples and major resections, causing possible diagnostic conundrums for the young and not so young pathologists. The main aim of this review is the description of the most frequent oddities one can encounter as foreign bodies, in gastrointestinal pathology, on the basis of the current literature and personal experience. The types of encountered substances are divided into four principal categories: parasites (helminths such as Enterobius vermicularis, Strongyloides, Schistosoma, and Anisakis, and protozoa such as Entamoeba, Giardia and some intestinal coccidia); drugs and pharmaceutical fillers (found as deposits and as bystanders, innocent or not); seeds (possibly confused with worms) and plant remnants; pollutants (secondary to post-resection or post-biopsy contamination of the sample). An ample library of images is provided in order to consent easy referencing for diagnostic routine.
Collapse
Affiliation(s)
- Federica Grillo
- IRCCS Ospedale Policlinico San Martino, Anatomic Pathology Unit, Genova, Italy
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Michela Campora
- Anatomic Pathology Section, S. Chiara Hospital, Trento, Italy
| | - Luca Carlin
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Laura Cornara
- Department for the Earth, Environment and Life Sciences (DiSTAV), University of Genoa, Genoa, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital, Pavia, Italy
| | - Andrea Remo
- Pathology Unit, Service Department, ULSS9 "Scaligera", Verona, Italy
| | - Paola Migliora
- Clinical Cytopathology Service and Pathology Institute of Locarno, Locarno, Switzerland
| | - Fiocca Roberto
- IRCCS Ospedale Policlinico San Martino, Anatomic Pathology Unit, Genova, Italy
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Anatomic Pathology Unit, Genova, Italy.
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
362
|
Cai P, Mu Y, Weerakoon KG, Olveda RM, Ross AG, McManus DP. Performance of the point-of-care circulating cathodic antigen test in the diagnosis of schistosomiasis japonica in a human cohort from Northern Samar, the Philippines. Infect Dis Poverty 2021; 10:121. [PMID: 34556183 PMCID: PMC8460201 DOI: 10.1186/s40249-021-00905-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Zoonotic schistosomiasis, caused by Schistosoma japonicum, remains a major public health problem in the Philippines. This study aimed to evaluate the commercially available rapid diagnostic point-of-care circulating cathodic antigen (POC-CCA) test in detecting individuals infected with S. japonicum in a human cohort from an endemic area for schistosomiasis japonica in the Philippines. METHODS Clinical samples were collectedin 18 barangays endemic for S. japonicum infection in Laoang and Palapag municipalities, Northern Samar, the Philippines, in 2015. The presence of CCA in filter-concentrated urine samples (n = 412) was evaluated using the commercial kits and the results were converted to images, which were further analyzed by ImageJ software to calculate R values. The diagnostic performance of the immunochromatographic POC-CCA test was compared using the Kato-Katz (KK) procedure, in-house enzyme-linked immunosorbent assays (ELISAs) and droplet digital (dd) PCR assays as reference. RESULTS The POC-CCA test was able to detect S. japonicum-infected individuals in the cohort with an eggs per gram of faeces (EPG) more than or equal to 10 with sensitivity/specificity values of 63.3%/93.3%. However, the assay showed an inability to diagnose schistosomiasis japonica infections in all cohort KK-positive individuals, of which the majority had an extremely low egg burden (EPG: 1-9). The prevalence of S. japonicum infection in the total cohort determined by the POC-CCA test was 12.4%, only half of that determined by the KK method (26.2%). When compared with the ELISAs and ddPCR assays as a reference, the POC-CCA assay was further shown to be a test with low sensitivity. Nevertheless, the assay exhibited significant positive correlations with egg burden determined by the KK technique and the target gene copy number index values determined by the ddPCR assays within the entire cohort. CONCLUSIONS By using in silico image analysis, the POC-CCA cassette test could be converted to a quantitative assay to avoid reader-variability. Because of its low sensitivity, the commercially available POC-CCA assay had limited potential for determining the status of a S. japonicum infection in the target cohort. The assay should be applied with caution in populations where schistosome parasites (especially S. japonicum) are present at low infection intensity.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kosala G Weerakoon
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Remigio M Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | | | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
363
|
Li HM, Qin ZQ, Bergquist R, Qian MB, Xia S, Lv S, Xiao N, Utzinger J, Zhou XN. Nucleic acid amplification techniques for the detection of Schistosoma mansoni infection in humans and the intermediate snail host: a structured review and meta-analysis of diagnostic accuracy. Int J Infect Dis 2021; 112:152-164. [PMID: 34474147 DOI: 10.1016/j.ijid.2021.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease caused by hematodes of genus Schistosoma. This review evaluated the available nucleic acid amplification techniques for diagnosing S. mansoni infections in humans, intermediate host snails, and presumed rodent reservoirs. METHODS Sensitivity, specificity, diagnostic odds ratio (DOR), and 95% CI were calculated based on available literature. The potential of PCR, nPCR, PCR-ELISA, qPCR, and LAMP was compared for diagnosing S. mansoni infections. RESULTS A total of 546 published records were identified. Quality assessment by QUADAS-2 revealed an uncertain risk in most studies, and 21 references were included in the final. For human samples, the four nucleic acid amplification techniques showed an overall sensitivity of 89.79% (95% CI: 83.92%-93.67%), specificity of 87.70% (95% CI: 72.60%-95.05%), and DOR of 37.73 (95% CI: 21.79-65.33). LAMP showed the highest sensitivity, followed by PCR-ELISA, PCR, and qPCR, while this order was almost reversed for specificity; qPCR had the highest AUC. For rodent samples, qPCR showed modest sensitivity (68.75%, 95% CI: 43.32%-86.36%) and high specificity (92.45%, 95% CI: 19.94%-99.83%). For snail samples, PCR and nPCR assays showed high sensitivity of 90.06% (95% CI: 84.39%-93.82%) and specificity of 85.51% (95% CI: 54.39%-96.69%). CONCLUSION Nucleic acid amplification techniques had high diagnostic potential for identifying S. mansoni infections in humans.
Collapse
Affiliation(s)
- Hong-Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China
| | - Zhi-Qiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China
| | | | - Men-Bao Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; Ingerod, Brastad, Sweden (formerly with the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland)
| | - Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jurg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
364
|
Coelho PRS, Ker FTO, Araújo AD, Guimarães RJPS, Negrão-Corrêa DA, Caldeira RL, Geiger SM. Identification of Risk Areas for Intestinal Schistosomiasis, Based on Malacological and Environmental Data and on Reported Human Cases. Front Med (Lausanne) 2021; 8:642348. [PMID: 34422845 PMCID: PMC8377395 DOI: 10.3389/fmed.2021.642348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to use an integrated approach for the identification of risk areas for Schistosoma mansoni transmission in an area of low endemicity in Minas Gerais, Brazil. For that, areas of distribution of Biomphalaria glabrata were identified and were related to environmental variables and communities with reported schistosomiasis cases, in order to determine the risk of infection by spatial analyses with predictive models. The research was carried out in the municipality of Alvorada de Minas, with data obtained between the years 2017 and 2019 inclusive. The Google Earth Engine was used to obtain geo-climatic variables (temperature, precipitation, vegetation index and digital elevation model), R software to determine Pearson's correlation and MaxEnt software to obtain an ecological model. ArcGis Software was used to create maps with data spatialization and risk maps, using buffer models (diameters: 500, 1,000 and 1,500 m) and CoKriging. Throughout the municipality, 46 collection points were evaluated. Of these, 14 presented snails of the genus Biomphalaria. Molecular analyses identified the presence of different species of Biomphalaria, including B. glabrata. None of the snails eliminated S. mansoni cercariae. The distribution of B. glabrata was more abundant in areas of natural vegetation (forest and cerrado) and, for spatial analysis (Buffer), the main risk areas were identified especially in the main urban area and toward the northern and eastern extensions of the municipality. The distribution of snails correlated with temperature and precipitation, with the latter being the main variable for the ecological model. In addition, the integration of data from malacological surveys, environmental characterization, fecal contamination, and data from communities with confirmed human cases, revealed areas of potential risk for infection in the northern and eastern regions of the municipality. In the present study, information was integrated on epidemiological aspects, transmission and risk areas for schistosomiasis in a small, rural municipality with low endemicity. Such integrated methods have been proposed as important tools for the creation of schistosomiasis transmission risk maps, serve as an example for other communities and can be used for control actions by local health authorities, e.g., indicate priority sectors for sanitation measures.
Collapse
Affiliation(s)
- Paulo R S Coelho
- Department for Parasitology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício T O Ker
- Department for Parasitology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Amanda D Araújo
- Oswaldo Cruz Foundation (Fiocruz), Research Group on Helminthology and Medical Malacology, René Rachou Institute, Belo Horizonte, Brazil
| | | | | | - Roberta L Caldeira
- Oswaldo Cruz Foundation (Fiocruz), Research Group on Helminthology and Medical Malacology, René Rachou Institute, Belo Horizonte, Brazil
| | - Stefan M Geiger
- Department for Parasitology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
365
|
Carnaúba PU, Mengarda AC, Rodrigues VC, Morais TR, de Oliveira A, Lago JHG, de Moraes J. Evaluation of Gibbilimbol B, Isolated from Piper malacophyllum (Piperaceae), as an Antischistosomal Agent. Chem Biodivers 2021; 18:e2100503. [PMID: 34418297 DOI: 10.1002/cbdv.202100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022]
Abstract
Infections caused by parasitic worms impose a considerable worldwide health burden. One of the most impactful is schistosomiasis, a disease caused by blood-dwelling of the genus Schistosoma that affects more than 230 million people worldwide. Since praziquantel has also been extensively used to treat schistosomiasis and other parasitic flatworm infections, there is an urgent need to identify novel anthelmintic compounds, mainly from natural sources. In this study, the hexane extract from roots of Piper malacophyllum (Piperaceae) showed to be mainly composed for gibbilimbol B by HPLC/ESI-HRMS. Based on this result, this compound was isolated by chromatographic steps and its structure was confirmed by NMR. In vitro bioassays showed that gibbilimbol B was more active than praziquantel against larval stage of S. mansoni, with effective concentrations of 50 % (EC50 ) and 90 % (EC90 ) values of 2.6 and 3.4 μM, respectively. Importantly, gibbilimbol B showed no cytotoxicity to mammalian cells at a concentration 190 times greater than the antiparasitic effect, giving support for the anthelmintic potential of gibbilimbol B as lead compound for novel antischistosomal agents.
Collapse
Affiliation(s)
- Paulo U Carnaúba
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Vinícius C Rodrigues
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Thiago R Morais
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Alberto de Oliveira
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408-100, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| |
Collapse
|
366
|
Cimini A, Ricci M, Gigliotti PE, Pugliese L, Chiaravalloti A, Danieli R, Schillaci O. Medical Imaging in the Diagnosis of Schistosomiasis: A Review. Pathogens 2021; 10:pathogens10081058. [PMID: 34451522 PMCID: PMC8401107 DOI: 10.3390/pathogens10081058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis is one of the most important parasitic diseases and it is endemic in tropical and subtropical areas. Clinical and laboratory data are fundamental for the diagnosis of schistosomiasis, but diagnostic imaging techniques such as x-rays, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) may be helpful in the evaluation of disease severity and complications. In this context, the aim of this review is to explore the actual role of diagnostic imaging in the diagnosis of schistosomiasis, underlining advantages and drawbacks providing information about the utilization of diagnostic imaging techniques in this context. Furthermore, we aim to provide a useful guide regarding imaging features of schistosomiasis for radiology and nuclear medicine physicians of non-endemic countries: in fact, in the last years non-endemic countries have experienced important flows of migrants from endemic areas, therefore it is not uncommon to face cases of this disease in daily practice.
Collapse
Affiliation(s)
- Andrea Cimini
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Correspondence: ; Tel.: +39-(06)-20902467
| | - Maria Ricci
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
| | - Paola Elda Gigliotti
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
| | - Luca Pugliese
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Department of Radiology, San Giovanni Calibita Fatebenefratelli Hospital, Via di Ponte di Quattro Capi 39, 00186 Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Nuclear Medicine Section, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Roberta Danieli
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Via Cracovia 50, 00133 Rome, Italy; (M.R.); (P.E.G.); (L.P.); (A.C.); (O.S.)
- Nuclear Medicine Section, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
367
|
Yu Y, Wang J, Wang X, Gu P, Lei Z, Tang R, Wei C, Xu L, Wang C, Chen Y, Pu Y, Qi X, Yu B, Chen X, Zhu J, Li Y, Zhang Z, Zhou S, Su C. Schistosome eggs stimulate reactive oxygen species production to enhance M2 macrophage differentiation and promote hepatic pathology in schistosomiasis. PLoS Negl Trop Dis 2021; 15:e0009696. [PMID: 34398890 PMCID: PMC8389433 DOI: 10.1371/journal.pntd.0009696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease of public health concern. The most devastating pathology in schistosomiasis japonica and mansoni is mainly attributed to the egg-induced granulomatous response and secondary fibrosis in host liver, which may lead to portal hypertension or even death of the host. Schistosome eggs induce M2 macrophages-rich granulomas and these M2 macrophages play critical roles in the maintenance of granuloma and subsequent fibrosis. Reactive oxygen species (ROS), which are highly produced by stimulated macrophages during infection and necessary for the differentiation of M2 macrophages, are massively distributed around deposited eggs in the liver. However, whether ROS are induced by schistosome eggs to subsequently promote M2 macrophage differentiation, and the possible underlying mechanisms as well, remain to be clarified during S. japonicum infection. Herein, we observed that extensive expression of ROS in the liver of S. japonicum-infected mice. Injection of ROS inhibitor in infected mice resulted in reduced hepatic granulomatous responses and fibrosis. Further investigations revealed that inhibition of ROS production in S. japonicum-infected mice reduces the differentiation of M2, accompanied by increased M1 macrophage differentiation. Finally, we proved that S. japonicum egg antigens (SEA) induce a high level of ROS production via both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and mitochondria in macrophages. Our study may help to better understand the mechanism of schistosomiasis japonica-induced hepatic pathology and contribute to the development of potential therapeutic strategies by interfering with ROS production. Schistosomiasis is a neglected parasitic disease of poverty that affects ~200 million people mainly in (sub)tropical regions, resulting in a massive health burden and serious morbidity. During Schistosoma japonicum (S. japonicum) or S. mansoni infection, parasite eggs are trapped in host liver and induce hepatic granulomas and fibrosis, which leads to severe liver damage, and even death of the host. In hepatic schistosomiasis, considerable amounts of ROS accumulate in granulomas surrounding liver-trapped eggs. However, whether schistosome eggs trigger the production of ROS, and if so, whether and how ROS promote hepatic pathology in host remain unknown. In this study, the authors illustrated that S. japonicum eggs evoke high production of ROS in macrophages, which is necessary for egg-mediated M2 macrophage differentiation and promotes hepatic granulomas and fibrosis in S. japonicum-infected mice. These discoveries provide a potential target regarding schistosome eggs-induced ROS production, which can be manipulated to regulate immunopathology in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Yanxiong Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junling Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohong Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Gu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhigang Lei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Pu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Beibei Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (SZ); (CS)
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (SZ); (CS)
| |
Collapse
|
368
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
369
|
McManus DP. The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel) 2021; 9:vaccines9080872. [PMID: 34451997 PMCID: PMC8402410 DOI: 10.3390/vaccines9080872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
370
|
Zhang Y, Li J, Li H, Zhou Z, Guo C, Jiang J, Ming Y. A preliminary investigation into the immune cell landscape of schistosome-associated liver fibrosis in humans. Immunol Cell Biol 2021; 99:803-813. [PMID: 34355810 PMCID: PMC8456952 DOI: 10.1111/imcb.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
Schistosomiasis is a widespread helminth disease that poses a heavy social and economic burden on people worldwide. Advanced schistosomiasis often develops into schistosome‐associated liver fibrosis, the pathogenesis of which remains unclear. This study aimed preliminarily to profile immune cells of schistosome‐associated liver fibrosis using single‐cell RNA sequencing. Three patient groups were enrolled, including an Schistosomiasis japonicum (SJ) group (n = 1), a chronic liver failure (CLF) group (n = 3) and a healthy control (HC) group (n = 2), revealing 17 cell clusters out of 20 093 cells. From these limited datasets, it was observed that T cell(1), mononuclear phagocytes‐1 and dendritic cells (DCs) were higher in the SJ group. CAVIN2+ MP(2) was the predominant cell type in the MP subset of the SJ group (53%), and was higher than that in both the CLF (8%) and HC (1%) groups. Kupffer cell marker genes (CD163, MARCO and TIMD4) were enriched in caveolae‐associated protein 2 (CAVIN2)+ MP(2), which was also an important source of TGFB1. The KEGG pathways of CAVIN2+ MP(2) indicated that they were associated with lysosome, endocytosis, phagosome and antigen processing and presentation. The preliminary study showed that granzyme B (GZMB)+ T cell(1) and ankyrin repeat domain‐containing protein 36B+ T cell(3) were the most common T cells in the SJ group (50% and 32%, respectively). The KEGG pathways of GZMB+ T cell(1) were mainly related to natural killer cell‐mediated cytotoxicity. The percentage of ring1 and YY1 binding protein (RYBP)+ DC(1) was higher in the SJ group (57%) than in the CLF (16%) and HC (6%) groups. The KEGG pathway of RYBP+ DC(1) was related to Fc gamma R‐mediated phagocytosis and antigen processing and presentation. Overall, CAVIN2+ Kupffer cells were the main source of TGFB1, consisting primarily of mononuclear phagocytes in the livers of the SJ group subjects and potentially playing an irreplaceable role in hepatic fibrosis of schistosomiasis.
Collapse
Affiliation(s)
- Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| |
Collapse
|
371
|
Hoekstra PT, van Dam GJ, van Lieshout L. Context-Specific Procedures for the Diagnosis of Human Schistosomiasis – A Mini Review. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.722438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode blood flukes of the genus Schistosoma, affecting over 250 million people mainly in the tropics. Clinically, the disease can present itself with acute symptoms, a stage which is relatively more common in naive travellers originating from non-endemic regions. It can also develop into chronic disease, with the outcome depending on the Schistosoma species involved, the duration and intensity of infection and several host-related factors. A range of diagnostic tests is available to determine Schistosoma infection, including microscopy, antibody detection, antigen detection using the Point-Of-Care Circulating Cathodic Antigen (POC-CCA) test and the Up-Converting Particle Lateral Flow Circulating Anodic Antigen (UCP-LF CAA) test, as well as Nucleic Acid Amplification Tests (NAATs) such as real-time PCR. In this mini review, we discuss these different diagnostic procedures and explore their most appropriate use in context-specific settings. With regard to endemic settings, diagnostic approaches are described based on their suitability for individual diagnosis, monitoring control programs, determining elimination as a public health problem and eventual interruption of transmission. For non-endemic settings, we summarize the most suitable diagnostic approaches for imported cases, either acute or chronic. Additionally, diagnostic options for disease-specific clinical presentations such as genital schistosomiasis and neuro-schistosomiasis are included. Finally, the specific role of diagnostic tests within research settings is described, including a controlled human schistosomiasis infection model and several clinical studies. In conclusion, context-specific settings have different requirements for a diagnostic test, stressing the importance of a well-considered decision of the most suitable diagnostic procedure.
Collapse
|
372
|
Chesdachai S, Helou EF, Siechen KD, Alpern JD. A 29-Year-Old with Chronic Abdominal Pain; Beyond Helicobacter pylori. Clin Infect Dis 2021; 73:341-343. [PMID: 34265853 DOI: 10.1093/cid/ciaa1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Emelie F Helou
- HealthPartners Medical Group, Department of Gastroenterology, Saint Paul, Minnesota, USA
| | - Kathleen D Siechen
- HealthPartners Medical Group, Department of Pathology, Saint Paul, Minnesota, USA
| | - Jonathan D Alpern
- HealthPartners Travel and Tropical Medicine Center, Saint Paul, Minnesota, USA
| |
Collapse
|
373
|
von Bülow V, Lichtenberger J, Grevelding CG, Falcone FH, Roeb E, Roderfeld M. Does Schistosoma Mansoni Facilitate Carcinogenesis? Cells 2021; 10:1982. [PMID: 34440754 PMCID: PMC8393187 DOI: 10.3390/cells10081982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022] Open
Abstract
Schistosomiasis is one of the most prominent parasite-induced infectious diseases, causing tremendous medical and socioeconomic problems. Current studies have reported on the spread of endemic regions and the fear of development of resistance against praziquantel, the only effective drug available. Among the Schistosoma species, only S. haematobium is classified as a Group 1 carcinogen (definitely cancerogenic to humans), causing squamous cell carcinoma of the bladder, whereas infection with S. mansoni is included in Group 3 of carcinogenic hazards to humans by the International Agency for Research on Cancer (IARC), indicating insufficient evidence to determine its carcinogenicity. Nevertheless, although S. mansoni has not been discussed as an organic carcinogen, the multiplicity of case reports, together with recent data from animal models and cell culture experiments, suggests that this parasite can predispose patients to or promote hepatic and colorectal cancer. In this review, we discuss the current data, with a focus on new developments regarding the association of S. mansoni infection with human cancer and the recently discovered biomolecular mechanisms by which S. mansoni may predispose patients to cancer development and carcinogenesis.
Collapse
Affiliation(s)
- Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Jakob Lichtenberger
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (C.G.G.); (F.H.F.)
| | - Franco H. Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (C.G.G.); (F.H.F.)
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (V.v.B.); (J.L.); (E.R.)
| |
Collapse
|
374
|
Wang W, Bergquist R, King CH, Yang K. Elimination of schistosomiasis in China: Current status and future prospects. PLoS Negl Trop Dis 2021; 15:e0009578. [PMID: 34351907 PMCID: PMC8341657 DOI: 10.1371/journal.pntd.0009578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Elimination of schistosomiasis as a public health problem among all disease-endemic countries in 2030 is an ambitious goal. Recent achievements resulting from mass drug administration (MDA) with praziquantel is promising but may need to be complemented with also other means. Schistosomiasis was highly prevalent in China before the initiation of the national schistosomiasis control program in the mid-1950s, and, at that time, the country bore the world's highest burden of schistosomiasis. The concerted control efforts, upheld without interruption for more than a half century, have resulted in elimination of the disease as a public health problem in China as of 2015. Here, we describe the current status of schistosomiasis in China, analyze the potential challenges affecting schistosomiasis elimination, and propose the future research needs and priorities for the country, aiming to provide more universal insights into the structures needed for a global schistosomiasis elimination encompassing also other endemic regions.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of National Health Commission of Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory of Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Robert Bergquist
- Ingerod, Brastad, Sweden (formerly with the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases), World Health Organization, Geneva, Switzerland
| | - Charles H. King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kun Yang
- Key Laboratory of National Health Commission of Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory of Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
375
|
Ondari E, Calvino-Sanles E, First NJ, Gestal MC. Eosinophils and Bacteria, the Beginning of a Story. Int J Mol Sci 2021; 22:8004. [PMID: 34360770 PMCID: PMC8347986 DOI: 10.3390/ijms22158004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.
Collapse
Affiliation(s)
| | | | | | - Monica C. Gestal
- LSU Health, Department of Microbiology and Immunology, Louisiana State University (LSU), Shreveport, LA 71103, USA; (E.O.); (E.C.-S.); (N.J.F.)
| |
Collapse
|
376
|
In vitro, in vivo, and ADME evaluation of SF 5-containing N,N'-diarylureas as antischistosomal agents. Antimicrob Agents Chemother 2021; 65:e0061521. [PMID: 34310210 DOI: 10.1128/aac.00615-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, N,N'-diarylureas have emerged as a promising chemotype for the treatment of schistosomiasis, a disease that poses a considerable health burden to millions of people worldwide. Here, we report a novel series of N,N'-diarylureas featuring the scarcely explored pentafluorosulfanyl group. Low IC50 values for Schistosoma mansoni newly transformed schistosomula (0.6 - 7.7 μM) and adult worms (0.1 - 1.6 μM) were observed. Four selected compounds, highly active in presence of albumin (>70% at 10 μM), endowed with decent cytotoxicity profile (SI against L6 cells >8.5) and good microsomal hepatic stability (>62.5% of drug remaining after 60 min), were tested in S. mansoni infected mice. Despite the promising in vitro worm killing potency, none of them showed significant activity in vivo. Pharmacokinetic data showed a slow absorption, with maximal drug concentrations reached after 24 h of exposure. Finally, no direct correlation between drug exposure and in vivo activity was found. Thus, further investigations are needed to better understand the underlying mechanisms of SF5-containing N,N'-diarylureas.
Collapse
|
377
|
Gasparotto J, Senger MR, Telles de Sá Moreira E, Brum PO, Carazza Kessler FG, Peixoto DO, Panzenhagen AC, Ong LK, Campos Soares M, Reis PA, Schirato GV, Góes Valente WC, Araújo Montoya BO, Silva FP, Fonseca Moreira JC, Dal-Pizzol F, Castro-Faria-Neto HC, Gelain DP. Neurological impairment caused by Schistosoma mansoni systemic infection exhibits early features of idiopathic neurodegenerative disease. J Biol Chem 2021; 297:100979. [PMID: 34303703 PMCID: PMC8361297 DOI: 10.1016/j.jbc.2021.100979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by trematodes of the Schistosoma genus, affects over 250 million people around the world. This disease has been associated with learning and memory deficits in children, whereas reduced attention levels, impaired work capacity, and cognitive deficits have been observed in adults. Strongly correlated with poverty and lack of basic sanitary conditions, this chronic endemic infection is common in Africa, South America, and parts of Asia and contributes to inhibition of social development and low quality of life in affected areas. Nonetheless, studies on the mechanisms involved in the neurological impairment caused by schistosomiasis are scarce. Here, we used a murine model of infection with Schistosoma mansoni in which parasites do not invade the central nervous system to evaluate the consequences of systemic infection on neurologic function. We observed that systemic infection with S. mansoni led to astrocyte and microglia activation, expression of oxidative stress-induced transcription factor Nrf2, oxidative damage, Tau phosphorylation, and amyloid-β peptide accumulation in the prefrontal cortex of infected animals. We also found impairment in spatial learning and memory as evaluated by the Morris water maze task. Administration of anthelmintic (praziquantel) and antioxidant (N-acetylcysteine plus deferoxamine) treatments was effective in inhibiting most of these phenotypes, and the combination of both treatments had a synergistic effect to prevent such changes. These data demonstrate new perspectives toward the understanding of the pathology and possible therapeutic approaches to counteract long-term effects of systemic schistosomiasis on brain function.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mario Roberto Senger
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Emilio Telles de Sá Moreira
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Pedro Ozorio Brum
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Flávio Gabriel Carazza Kessler
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alana Castro Panzenhagen
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lin Kooi Ong
- Monash University Malaysia, School of Pharmacy, Bandar Sunway, Selangor, Malaysia; School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Australia, Callaghan, NSW, Australia
| | - Marlene Campos Soares
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Alves Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Giuliana Viegas Schirato
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Walter César Góes Valente
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Bogar Omar Araújo Montoya
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Floriano P Silva
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - José Claudio Fonseca Moreira
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
378
|
Porto R, Mengarda AC, Cajas RA, Salvadori MC, Teixeira FS, Arcanjo DDR, Siyadatpanah A, Pereira MDL, Wilairatana P, de Moraes J. Antiparasitic Properties of Cardiovascular Agents against Human Intravascular Parasite Schistosoma mansoni. Pharmaceuticals (Basel) 2021; 14:ph14070686. [PMID: 34358112 PMCID: PMC8308662 DOI: 10.3390/ph14070686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, a disease of great global public health significance. Praziquantel is the only drug available to treat schistosomiasis and there is an urgent demand for new anthelmintic agents. Adopting a phenotypic drug screening strategy, here, we evaluated the antiparasitic properties of 46 commercially available cardiovascular drugs against S. mansoni. From these screenings, we found that amiodarone, telmisartan, propafenone, methyldopa, and doxazosin affected the viability of schistosomes in vitro, with effective concentrations of 50% (EC50) and 90% (EC90) values ranging from 8 to 50 µM. These results were further supported by scanning electron microscopy analysis. Subsequently, the most effective drug (amiodarone) was further tested in a murine model of schistosomiasis for both early and chronic S. mansoni infections using a single oral dose of 400 mg/kg or 100 mg/kg daily for five consecutive days. Amiodarone had a low efficacy in chronic infection, with the worm and egg burden reduction ranging from 10 to 30%. In contrast, amiodarone caused a significant reduction in worm and egg burden in early infection (>50%). Comparatively, treatment with amiodarone is more effective in early infection than praziquantel, demonstrating the potential role of this cardiovascular drug as an antischistosomal agent.
Collapse
Affiliation(s)
- Raquel Porto
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Ana C. Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Rayssa A. Cajas
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Maria C. Salvadori
- Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; (M.C.S.); (F.S.T.)
| | - Fernanda S. Teixeira
- Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; (M.C.S.); (F.S.T.)
| | - Daniel D. R. Arcanjo
- Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, PI, Brazil;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (J.d.M.)
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
- Correspondence: (P.W.); (J.d.M.)
| |
Collapse
|
379
|
Jafari AA, Keikha M, Mirmoeeni S, Rahimi MT, Jafari R. Parasite-based interventions in systemic lupus erythematosus (SLE): A systematic review. Autoimmun Rev 2021; 20:102896. [PMID: 34274545 DOI: 10.1016/j.autrev.2021.102896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The hygiene hypothesis proposed in 1989 expresses that allergic and infectious diseases are inversely related. Accordingly, it has been demonstrated that infection with some microorganisms such as parasites and helminths can provide a potential immunity and prevent the onset of some life-threatening autoimmune diseases like systemic lupus erythematosus (SLE). Therefore, in this comprehensive study, we systematically reviewed and discussed the use of live parasites or parasitic products in the treatment of mouse models of SLE. METHODS The present systematic review was performed using the following search terms: ("systemic lupus erythematosus" OR "SLE" OR "lupus") AND ("parasite" OR "protozoa" OR "helminths" OR "worms" OR "helminth" OR "worm") in PubMed, Scopus, and Web of Science online databases. We included studies reporting the effect of any intervention using parasites or parasitic-based products on animal models of SLE, which were published until January 20th, 2021 without any language or date restrictions. For each included study, we extracted the authors' names, publication year, type of animal, number of groups, types of intervention, sample size, changes in immunologic cells, auto-Abs, cytokines, and blood cells count, urine analysis, histological analysis of kidney/spleen/liver, outcome and survival. (PROSPERO CRD42020160460). RESULTS A total of 17 eligible articles were included in this systematic review. Sixteen out of the 17 studies reported immunomodulating changes in immunologic cells, cytokines, and/or auto-Abs in mouse models of SLE after using parasitic interventions compared to not-infected or control groups. Moreover, 14 studies reported decreased level of proteinuria and/or favorable kidney, liver, or spleen histological changes. CONCLUSION In conclusion, we have demonstrated that parasites like Hymenolepis microstoma, TPC and ES-62 from Acanthocheilonema viteae, Plasmodium chabaudi, Schistosoma mansoni, and Toxoplasma gondii have favorable immunomodulating effects on SLE outcomes in lupus-prone mice.
Collapse
Affiliation(s)
- Amirhossein Azari Jafari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Keikha
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, Iran
| | | | - Mohammad Taghi Rahimi
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Jafari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
380
|
Lombardo FC, Ravaynia PS, Modena MM, Hierlemann A, Keiser J. Evaluation of Human Liver Microtissues for Drug Screening on Schistosoma mansoni Schistosomula. ACS Infect Dis 2021; 7:1894-1900. [PMID: 33105989 DOI: 10.1021/acsinfecdis.0c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schistosomiasis is a major neglected tropical disease with more than 200 million infections annually. Despite only one drug, praziquantel, being available, the drug pipeline against schistosomiasis is empty, and drug screening tools have limitations. We evaluated the potential of human liver microtissues (hLiMTs) in antischistosomal drug discovery. Because hLiMTs express all human P450 enzymes, they are an excellent tool to evaluate compounds' bioinactivation, bioactivation, and toxicity. To validate the metabolic conversion capacity of hLiMTs, we first quantified (R)- and (S)-praziquantel and the main metabolite trans-OH-praziquantel following incubation with 0.032-50 μM (0.01-15.62 μg/mL) praziquantel for up to 72 h by a validated LC-MS/MS method. We cocultured hLiMTs with newly transformed schistosomula (NTS) and evaluated the antischistosomal activity and cytotoxicity of three prodrugs terfenadine, tamoxifen citrate, and flutamide. HLiMTs converted 300-350 ng (R)-praziquantel within 24 h into trans-OH-praziquantel. We observed changes in the IC50 values for terfenadine, flutamide, and tamoxifen citrate in comparison to the standard NTS assay in vitro. Cytotoxicity was observed at high concentrations of flutamide and tamoxifen citrate. An in vitro platform containing hLiMTs could serve as an advanced drug screening tool for Schistosoma mansoni, providing information on reduced or increased activity and toxicity.
Collapse
Affiliation(s)
- Flavio C. Lombardo
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- Universität Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Paolo S. Ravaynia
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mario M. Modena
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- Universität Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| |
Collapse
|
381
|
Philippsen GS. Transposable Elements in the Genome of Human Parasite Schistosoma mansoni: A Review. Trop Med Infect Dis 2021; 6:tropicalmed6030126. [PMID: 34287380 PMCID: PMC8293314 DOI: 10.3390/tropicalmed6030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences able to transpose within the host genome and, consequently, influence the dynamics of evolution in the species. Among the possible effects, TEs insertions may alter the expression and coding patterns of genes, leading to genomic innovations. Gene-duplication events, resulting from DNA segmental duplication induced by TEs transposition, constitute another important mechanism that contributes to the plasticity of genomes. This review aims to cover the current knowledge regarding TEs in the genome of the parasite Schistosoma mansoni, an agent of schistosomiasis-a neglected tropical disease affecting at least 250 million people worldwide. In this context, the literature concerning TEs description and TEs impact on the genomic architecture for S. mansoni was revisited, displaying evidence of TEs influence on schistosome speciation-mediated by bursts of transposition-and in gene-duplication events related to schistosome-host coevolution processes, as well several instances of TEs contribution into the coding sequences of genes. These findings indicate the relevant role of TEs in the evolution of the S. mansoni genome.
Collapse
|
382
|
Mughal MN, Ye Q, Zhao L, Grevelding CG, Li Y, Di W, He X, Li X, Gasser RB, Hu M. First Evidence of Function for Schistosoma japonicumriok-1 and RIOK-1. Pathogens 2021; 10:862. [PMID: 34358012 PMCID: PMC8308690 DOI: 10.3390/pathogens10070862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Protein kinases are known as key molecules that regulate many biological processes in animals. The right open reading frame protein kinase (riok) genes are known to be essential regulators in model organisms such as the free-living nematode Caenorhabditis elegans. However, very little is known about their function in parasitic trematodes (flukes). In the present study, we characterized the riok-1 gene (Sj-riok-1) and the inferred protein (Sj-RIOK-1) in the parasitic blood fluke, Schistosoma japonicum. We gained a first insight into function of this gene/protein through double-stranded RNA interference (RNAi) and chemical inhibition. RNAi significantly reduced Sj-riok-1 transcription in both female and male worms compared with untreated control worms, and subtle morphological alterations were detected in the ovaries of female worms. Chemical knockdown of Sj-RIOK-1 with toyocamycin (a specific RIOK-1 inhibitor/probe) caused a substantial reduction in worm viability and a major accumulation of mature oocytes in the seminal receptacle (female worms), and of spermatozoa in the sperm vesicle (male worms). These phenotypic alterations indicate that the function of Sj-riok-1 is linked to developmental and/or reproductive processes in S. japonicum.
Collapse
Affiliation(s)
- Mudassar N. Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Christoph G. Grevelding
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China;
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Xuesong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (M.N.M.); (Q.Y.); (L.Z.); (Y.L.); (X.H.); (X.L.)
| |
Collapse
|
383
|
Antibacterial, Antibiofilm, and Antischistosomal Activity of Montrichardia linifera (Arruda) Schott (Araceae) Leaf Extracts. Sci Pharm 2021. [DOI: 10.3390/scipharm89030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With a broad ethnopharmacological tradition in Brazil, Montrichardia linifera has been reported as a potent antirheumatic, antimicrobial, and antiprotozoan agent. However, there is a lack of studies on its effect on bacterial biofilm formation and Schistosoma mansoni worms. This study reports the effects of antibacterial, antibiofilm, and antischistosomal properties of leaf extracts of M. linifera. Phytochemical screening and identification of the main compounds of the extracts were performed. All the extracts evaluated showed antibacterial activity at the concentrations tested. We checked for the presence of flavonoids and derivatives of phenolic acids by the presence of spectra with bands characteristic of these classes in the sample analyzed. The antibacterial assays showed that the best MICs corresponded to 125 µg/mL against Enterococcus faecalis ATCC 29212 in all fractions. The ethanolic and methanolic extracts showed the ability to inhibit biofilm of Staphylococcus aureus ATCC 25123. For the antischistosomal activity, only the acetone and ethyl acetate extracts had a significant effect against helminths, with potent activity at a concentration of 50 µg/mL, killing 100% of the worms after 72 h of incubation. The M. linifera leaf extracts showed antibacterial activity, biofilm inhibition capacity, and anthelmintic activity against S. mansoni.
Collapse
|
384
|
Masamba P, Kappo AP. Immunological and Biochemical Interplay between Cytokines, Oxidative Stress and Schistosomiasis. Int J Mol Sci 2021; 22:ijms22137216. [PMID: 34281269 PMCID: PMC8268096 DOI: 10.3390/ijms22137216] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
The host–parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host’s standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.
Collapse
|
385
|
Oliveira NF, Silva CLM. Unveiling the Potential of Purinergic Signaling in Schistosomiasis Treatment. Curr Top Med Chem 2021; 21:193-204. [PMID: 32972342 DOI: 10.2174/1568026620666200924115113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
386
|
Ali GA, Goravey W, Al‐Bozom I, Al Maslamani MA, Abdel Hadi H. Schistosoma gallbladder polyp masquerading as a neoplasm: Rare case report and literature review. Clin Case Rep 2021; 9:e04420. [PMID: 34267906 PMCID: PMC8271254 DOI: 10.1002/ccr3.4420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/17/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022] Open
Abstract
Schistosomiasis affecting the gastrointestinal tract is common in tropical and subtropical areas but associated polyps presenting as gallbladder pathology are rare clinical entities necessitating high clinical suspicion.
Collapse
Affiliation(s)
- Gawahir A. Ali
- Department of Infectious DiseasesCommunicable Diseases Centre Hamad Medical CorporationDohaQatar
| | - Wael Goravey
- Department of Infectious DiseasesCommunicable Diseases Centre Hamad Medical CorporationDohaQatar
| | - Issam Al‐Bozom
- Department of laboratory medicine and pathologyHMCDohaQatar
| | - Muna A. Al Maslamani
- Department of Infectious DiseasesCommunicable Diseases Centre Hamad Medical CorporationDohaQatar
| | - Hamad Abdel Hadi
- Department of Infectious DiseasesCommunicable Diseases Centre Hamad Medical CorporationDohaQatar
| |
Collapse
|
387
|
Sivaram S, Perkins S, He M, Ginsburg E, Dominguez G, Vedham V, Katz F, Parascandola M, Bogler O, Gopal S. Building Capacity for Global Cancer Research: Existing Opportunities and Future Directions. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2021; 36:5-24. [PMID: 34273100 PMCID: PMC8285681 DOI: 10.1007/s13187-021-02043-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 05/21/2023]
Abstract
Cancer incidence and mortality are increasing in low- and middle-income countries (LMICs), where more than 75% of global cancer burden will occur by the year 2040. The primary drivers of cancer morbidity and mortality in LMICs are environmental and behavioral risk factors, inadequate prevention and early detection services, presence of comorbidities, and poor access to treatment and palliation. These same drivers also contribute to marked cancer health disparities in high-income countries. Studying cancer in LMICs provides opportunities to better understand and address these drivers to benefit populations worldwide, and reflecting this, global oncology as an academic discipline has grown substantially in recent years. However, sustaining this growth requires a uniquely trained workforce with the skills to pursue relevant, rigorous, and equitable global oncology research. Despite this need, dedicated global cancer research training programs remain somewhat nascent and uncoordinated. In this paper, we discuss efforts to address these gaps in global cancer research training at the US National Institutes of Health.
Collapse
Affiliation(s)
- Sudha Sivaram
- Center for Global Health, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| | - Susan Perkins
- Center for Cancer Training, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| | - Min He
- Office of Cancer Centers, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| | - Erika Ginsburg
- Center for Cancer Training, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| | - Geraldina Dominguez
- Office of HIV/AIDS Malignancy, National Cancer Institute, National Institutes of Health, 31 Center Dr, Room 3A33, Bethesda, MD 20892‑2440 USA
| | - Vidya Vedham
- Center for Global Health, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| | - Flora Katz
- Fogarty International Center, National Institutes of Health, 31 Center Drive, Building 31, Bethesda, MD 20892-2220 USA
| | - Mark Parascandola
- Center for Global Health, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| | - Oliver Bogler
- Center for Cancer Training, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| | - Satish Gopal
- Center for Global Health, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Bethesda, MD 20892-9760 USA
| |
Collapse
|
388
|
Eosinophils and helminth infection: protective or pathogenic? Semin Immunopathol 2021; 43:363-381. [PMID: 34165616 DOI: 10.1007/s00281-021-00870-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Since the earliest descriptions of this enigmatic cell, eosinophils have been implicated in both protective and pathogenic immune responses to helminth infection. Nevertheless, despite substantial data from in vitro studies, human infections, and animal models, their precise role in helminth infection remains incompletely understood. This is due to a number of factors, including the heterogeneity of the many parasites included in the designation "helminth," the complexity and redundancy in the host immune response to helminths, and the pleiotropic functions of eosinophils themselves. This review examines the consequences of helminth-associated eosinophilia in the context of protective immunity, pathogenesis, and immunoregulation.
Collapse
|
389
|
Roucher C, Brosius I, Mbow M, Faye BT, De Hondt A, Smekens B, Arango D, Burm C, Tsoumanis A, Paredis L, van Herrewege Y, Potters I, Cisse B, Mboup S, Polman K, Bottieau E. Evaluation of Artesunate-mefloquine as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM): protocol of a proof-of-concept, open-label, two-arm, individually-randomised controlled trial. BMJ Open 2021; 11:e047147. [PMID: 34168029 PMCID: PMC8231067 DOI: 10.1136/bmjopen-2020-047147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Alternative drugs and diagnostics are needed for the treatment and control of schistosomiasis. The exclusive use of praziquantel (PZQ) in mass drug administration programmes may result in the emergence of drug resistance. PZQ has little activity against Schistosoma larvae, thus reinfection remains a problem in high-risk communities. Furthermore, the insufficient sensitivity of conventional microscopy hinders therapeutic response assessment. Evaluation of artesunate-mefloquine (AM) as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM) aims to evaluate the safety and efficacy of the antimalarial combination artesunate-mefloquine, re-purposed for the treatment of schistosomiasis, and to assess the performance of highly sensitive novel antigen-based and DNA-based assays as tools for monitoring treatment response. METHODS AND ANALYSIS The SchistoSAM study is an open-label, two-arm, individually randomised controlled non-inferiority trial, with a follow-up of 48 weeks. Primary school-aged children from the Richard Toll district in northern Senegal, an area endemic for Schistosoma mansoni and Schistosoma haematobium, are allocated to the AM intervention arm (3-day courses at 6-week intervals) or the PZQ control arm (single dose of 40 mg/kg). The trial's primary endpoints are the efficacy (cure rate (CR), assessed by microscopy) and safety (frequency and pattern of drug-related adverse events) of one AM course versus PZQ at 4 weeks after treatment. Secondary endpoints include (1) cumulative CR, egg reduction rate and safety after each additional course of AM, and at weeks 24 and 48, (2) prevalence and severity of schistosomiasis-related morbidity and (3) malaria prevalence, incidence and morbidity, both after 24 and 48 weeks. CRs and intensity reduction rates are also assessed by antigen-based and DNA-based diagnostic assays, for which performance for treatment monitoring is evaluated. ETHICS AND DISSEMINATION Ethics approval was obtained both in Belgium and Senegal. Oral assent from the children and signed informed consent from their legal representatives was obtained, prior to enrolment. The results will be disseminated in peer-reviewed journals and at international conferences. TRIAL REGISTRATION NUMBER NCT03893097; pre-results.
Collapse
Affiliation(s)
- Clémentine Roucher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Moustapha Mbow
- Department of Immunology, Cheikh Anta Diop University, Dakar, Senegal
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | | | - Annelies De Hondt
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Bart Smekens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Diana Arango
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Christophe Burm
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Linda Paredis
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yven van Herrewege
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Idzi Potters
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Badara Cisse
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Katja Polman
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
390
|
Alharazi TH, Al-Mekhlafi HM. A cross-sectional survey of the knowledge, attitudes and practices regarding schistosomiasis among rural schoolchildren in Taiz governorate, southwestern Yemen. Trans R Soc Trop Med Hyg 2021; 115:687-698. [PMID: 33130880 DOI: 10.1093/trstmh/traa115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This cross-sectional survey aimed to assess the knowledge, attitudes and practices (KAP) towards schistosomiasis among rural schoolchildren in Taiz governorate, southwestern Yemen. METHODS A total of 406 children were screened for urogenital and intestinal schistosomiasis. A pretested questionnaire was used to collect the children's demographic and socio-economic information and their KAP towards schistosomiasis. RESULTS Overall, 73 children (18%) were found to be infected by Schistosoma mansoni. None of the children were positive for Schistosoma haematobium. The prevalence of intestinal schistosomiasis was significantly higher among boys than girls (22.1% vs 12%; p=0.010). Approximately two-thirds (63.3% [257/406]) of the children had heard about schistosomiasis, however, only 38.5%, 53.6%, 28.4% and 38.1% had correct knowledge concerning the causes, symptoms, transmission and prevention, respectively. A significantly higher level of knowledge was observed among boys and Schistosoma-infected children compared with girls and non-infected children (p<0.05). However, a better level of knowledge does not seem to translate directly into the performance of hygienic practices. Multivariate logistic regression showed that sex and infection status were the significant predictors of good knowledge. CONCLUSIONS Intestinal schistosomiasis is prevalent among schoolchildren in rural Yemen. The findings reveal that children's knowledge about schistosomiasis is inadequate. Therefore, besides mass drug administration, integrated control programmes should also include health education and the provision of improved drinking water and proper sanitation.
Collapse
Affiliation(s)
- Talal H Alharazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia.,Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Hesham M Al-Mekhlafi
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia.,Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| |
Collapse
|
391
|
Aula OP, McManus DP, Jones MK, Gordon CA. Schistosomiasis with a Focus on Africa. Trop Med Infect Dis 2021; 6:109. [PMID: 34206495 PMCID: PMC8293433 DOI: 10.3390/tropicalmed6030109] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Schistosomiasis is a common neglected tropical disease of impoverished people and livestock in many developing countries in tropical Africa, the Middle East, Asia, and Latin America. Substantial progress has been made in controlling schistosomiasis in some African countries, but the disease still prevails in most parts of sub-Saharan Africa with an estimated 800 million people at risk of infection. Current control strategies rely primarily on treatment with praziquantel, as no vaccine is available; however, treatment alone does not prevent reinfection. There has been emphasis on the use of integrated approaches in the control and elimination of the disease in recent years with the development of health infrastructure and health education. However, there is a need to evaluate the present status of African schistosomiasis, primarily caused by Schistosoma mansoni and S. haematobium, and the factors affecting the disease as the basis for developing more effective control and elimination strategies in the future. This review provides an historical perspective of schistosomiasis in Africa and discusses the current status of control efforts in those countries where the disease is endemic.
Collapse
Affiliation(s)
- Oyime Poise Aula
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Donald P. McManus
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
| | - Malcolm K. Jones
- School of Veterinary Sciences, University of Queensland, Gatton 4343, Australia;
| | - Catherine A. Gordon
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
| |
Collapse
|
392
|
Desta KT, Abd El-Aty AM. Triterpenoid and Saponin Rich Phytolacca dodecandra L'Herit (Endod): A Review on Its Phytochemistry and Pharmacological Properties. Mini Rev Med Chem 2021; 21:23-34. [PMID: 32552643 DOI: 10.2174/1389557520666200617110241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
Phytolacca dodecandra L'Herit (Endod) is the most extensively studied plant among 35 known species in the genus Phytolacca (Family: Phytolaccaceae). The plant has been used as a viable treatment for various ailments, such as malaria, rabies, ascariasis, and skin disorders, in many parts of Africa. In Ethiopia, the dried and powdered Endod berries have been used for a long period of time as a detergent to clean clothes. Since the discovery of the molluscicidal activities of its berries more than five decades ago, P. dodecandra has been a research focus worldwide and several phytochemicals mainly of triterpenoids and saponins were reported. Additionally, various biological activities, including larvicidal, insecticidal, antibacterial, antifungal, and anti-inflammatory activities of its isolated compounds and crude extracts were investigated. Furthermore, some of the findings from pharmacological and phytochemical investigations were patented to be used in various medicinal formulations. The plant is still the subject of many investigations and hence, a thorough up-to-date review is required to provide comprehensive information needed for future exploitation of the plant. In this review, the phytochemical compositions and pharmacological activities are comprehensively addressed and discussed in details.
Collapse
Affiliation(s)
- Kebede Taye Desta
- Department of Applied Chemistry College of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
393
|
You H, Mayer JU, Johnston RL, Sivakumaran H, Ranasinghe S, Rivera V, Kondrashova O, Koufariotis LT, Du X, Driguez P, French JD, Waddell N, Duke MG, Ittiprasert W, Mann VH, Brindley PJ, Jones MK, McManus DP. CRISPR/Cas9-mediated genome editing of Schistosoma mansoni acetylcholinesterase. FASEB J 2021; 35:e21205. [PMID: 33337558 DOI: 10.1096/fj.202001745rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.
Collapse
Affiliation(s)
- Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Rebecca L Johnston
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Haran Sivakumaran
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shiwanthi Ranasinghe
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Vanessa Rivera
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olga Kondrashova
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lambros T Koufariotis
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiaofeng Du
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Patrick Driguez
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Juliet D French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicola Waddell
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mary G Duke
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Victoria H Mann
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - Malcolm K Jones
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
394
|
Xiong D, Luo S, Wu K, Yu Y, Sun J, Wang Y, Hu J, Hu W. Transcriptional profiling of Microtus fortis responses to S. japonicum: New sight into Mf-Hsp90α resistance mechanism. Parasite Immunol 2021; 43:e12842. [PMID: 33959966 PMCID: PMC8365665 DOI: 10.1111/pim.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
AIMS Schistosomiasis is a parasitic disease with a chronic debilitating character caused by parasitic flatworms of the genus Schistosoma. The main disease-causing species of Schistosoma in China is S. japonicum. M fortis has been proved to be a nonpermissive host of S. japonicum. Mf-HSP90α (Microtus fortis heat shock protein 90alpha), the homologue of HSP90α, display anti-schistosome effect in vitro and in vivo. In the current study, in order to investigate the mechanism of anti-schistosome effect of Mf-HSP90α, we conducted RNA-Seq to obtain the transcriptome profile of M. fortis liver infected with S. japonicum at different time points. METHODS AND RESULTS By mapping the differential expressed genes (DEGs) to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the JAK2/STAT1 pathway was highly enriched with an elevated level of IL-10 and HSP90α. We then checked the IL-10-JAK2/STAT1-HSP90α pathway, and found that this pathway was activated in the infected mice with S. japonicum. The expression of the molecules in this pathway was elevated on the 10th day after infection and gradually decreased on the 20th day. CONCLUSIONS The IL-10-JAK2/STAT1-HSP90α axis was associated with the anti-schistosome effect of Mf-HSP90α, and targeting IL-10-JAK2/STAT1-HSP90α axis might be a novel therapeutic strategy for developing resistance to S. japonicum infection.
Collapse
Affiliation(s)
- Dehui Xiong
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, China
| | - Saiqun Luo
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, China
| | - Kunlu Wu
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, China
| | - Yuanjing Yu
- Department of Laboratory Animal, Central South University, Changsha, China
| | - Jiameng Sun
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, China
| | - Jingping Hu
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, China
| | - Weixin Hu
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, China
| |
Collapse
|
395
|
Li Z, Zhang W, Luo F, Li J, Yang W, Zhu B, Wu Q, Wang X, Sun C, Xie Y, Xu B, Wang Z, Qian F, Chen J, Wan Y, Hu W. Allergen-Specific Treg Cells Upregulated by Lung-Stage S. japonicum Infection Alleviates Allergic Airway Inflammation. Front Cell Dev Biol 2021; 9:678377. [PMID: 34169075 PMCID: PMC8217774 DOI: 10.3389/fcell.2021.678377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post–lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post–lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.
Collapse
Affiliation(s)
- Zhidan Li
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Hu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China.,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
396
|
Mengarda AC, Silva MP, Cirino ME, Morais TR, Conserva GAA, Lago JHG, de Moraes J. Licarin A, a neolignan isolated from Nectandra oppositifolia Nees & Mart. (Lauraceae), exhibited moderate preclinical efficacy against Schistosoma mansoni infection. Phytother Res 2021; 35:5154-5162. [PMID: 34089558 DOI: 10.1002/ptr.7184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Schistosomiasis is a widespread human parasitic disease currently affecting over 200 million people, particularly in poor communities. Chemotherapy for schistosomiasis relies exclusively on praziquantel (PZQ). Previous studies have shown that licarin A (LIC-A), a dihydrobenzofuran neolignan, exhibited in vitro antiparasitic activity against Schistosoma mansoni adult worms. This study aimed to investigate the potential of LIC-A, isolated as main metabolite from leaves of Nectandra oppositifolia Nees & Mart. (Lauraceae), as an antischistosomal agent orally active in schistosomiasis animal model. PZQ was used as a reference compound. As result, LIC-A showed, at a single dose of 400 mg/kg, to be able to partially cure infected mice (worm burden reductions of ~50%). Parasite eggs, that are responsible for a variety of pathologies and transmission of schistosomiasis, were also moderately inhibited by LIC-A (egg burden reductions of ~50%-60%). Furthermore, it was observed that LIC-A achieved a slight reduction of hepatomegaly and splenomegaly. Collectively, although LIC-A was partially active when administered orally, these results give support for the antiparasitic potential LIC-A as lead compound for novel antischistosomal agent.
Collapse
Affiliation(s)
- Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Maria E Cirino
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Thiago R Morais
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Geanne A A Conserva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| |
Collapse
|
397
|
Strike a Balance: Between Metals and Non-Metals, Metalloids as a Source of Anti-Infective Agents. INORGANICS 2021. [DOI: 10.3390/inorganics9060046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most of the commercially available anti-infective agents are organic molecules. In fact, though, during the pioneering times of modern medicine, at the beginning of the 20th century, several inorganic compounds of transition metals were used for medicinal application, to date, only a small number of inorganic drugs are used in clinical practice. Beyond the transition metals, metalloids—or semimetals—offer a rich chemistry in between that of metallic and non-metallic elements, and accordingly, peculiar features for their exploitation in medicinal chemistry. A few important examples of metalloid-based drugs currently used for the treatment of various diseases do exist. However, the use of this group of elements could be further expanded on the basis of their current applications and the clinical trials they entered. Considering that metalloids offer the opportunity to expand the “chemical-space” for developing novel anti-infective drugs and protocols, in this paper, we briefly recapitulate and discuss the current applications of B-, Si-, As-, Sb- and Te-based anti-infective drugs.
Collapse
|
398
|
Silva JT, Fernández-Ruiz M, Grossi PA, Hernández-Jimenez P, López-Medrano F, Mularoni A, Prista-Leão B, Santos L, Aguado JM. Reactivation of latent infections in solid organ transplant recipients from sub-Saharan Africa: What should be remembered? Transplant Rev (Orlando) 2021; 35:100632. [PMID: 34130253 DOI: 10.1016/j.trre.2021.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 11/30/2022]
Abstract
International migration from Sub-Saharan African countries to the European Union and the United States has significantly increased over the past decades. Although the vast majority of these immigrants are young and healthy people, a minority can be affected by chronic conditions eventually leading to solid organ transplantation (SOT). Importantly, these candidates can bear geographically restricted fungal and parasitic latent infections that can reactivate after the procedure. An appropriate evaluation before transplantation followed by treatment, whenever necessary, is essential to minimize such risk, as covered in the present review. In short, infection due to helminths (Schistosoma spp. and Strongyloides stercoralis) and intestinal protozoa (Entamoeba histolytica, Giardia lamblia or Cyclospora cayetanensis) can be diagnosed by multiple direct stool examination, serological assays and stool antigen testing. Leishmaniasis can be assessed by means of serology, followed by nucleic acid amplification testing (NAAT) if the former test is positive. Submicroscopic malaria should be ruled out by NAAT. Screening for Histoplasma spp. or Cryptococcus spp. is not routinely indicated. Consultation with an Infectious Diseases specialist is recommended in order to adjust preemptive treatment among Sub-Saharan African SOT candidates and recipients.
Collapse
Affiliation(s)
- Jose Tiago Silva
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain.
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Paolo Antonio Grossi
- Department of Medicine and Surgery, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy
| | - Pilar Hernández-Jimenez
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Alessandra Mularoni
- Department of Infectious Diseases, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (IRCCS-ISMETT), Palermo, Italy
| | - Beatriz Prista-Leão
- Department of Infectious Diseases, University Hospital Center "São João", School of Medicine, University of Porto, Porto, Portugal
| | - Lurdes Santos
- Department of Infectious Diseases, University Hospital Center "São João", School of Medicine, University of Porto, Porto, Portugal
| | - José María Aguado
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Research Institute Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
399
|
Silva JC, Lins CR, Lacerda SS, Ramos RE, Araújo HD, Melo-Junior MR, Alves LC, Brayner FA, Nunes IS, Melo FL, Carvalho BM. In vitro and in vivo effects of P-MAPA immunomodulator on schistosomiasis. Acta Trop 2021; 218:105909. [PMID: 33789153 DOI: 10.1016/j.actatropica.2021.105909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Schistosomiasis is an infectious disease caused by helminth parasites of the genus Schistosoma; it is transmitted in over 78 countries. The main strategy for schistosomiasis control is treatment of infected people with praziquantel (PZQ). As PZQ-resistant strains have emerged, new anti-schistosomal agents have become necessary. We evaluated the in vitro and in vivo effect of P-MAPA, an aggregated polymer of protein magnesium ammonium phospholinoleate-palmitoleate anhydride with immunomodulatory properties; it is produced by Aspergillus oryzae fermentation. In vitro, P-MAPA (5, 50, and 100 µg/mL) damaged the Schistosoma mansoni tegument, causing thorn losses and tuber destruction in male worms and peeling and erosion in females after 24-h incubation. In vivo, P-MAPA (5 and 100 mg/kg, alone and combined with PZQ - 50 mg/kg) reduced the number of eggs by up to 69.20% in the liver and 88.08% in the intestine. Furthermore, granulomas were reduced up to 83.13%, and there was an increase in the number of dead eggs and a reduction of serum aspartate aminotransferase levels. These data suggest that P-MAPA activity can help improve schistosomiasis treatment and patients' quality of life.
Collapse
|
400
|
Braseth AL, Elliott DE, Ince MN. Parasitic Infections of the Gastrointestinal Track and Liver. Gastroenterol Clin North Am 2021; 50:361-381. [PMID: 34024446 PMCID: PMC11095845 DOI: 10.1016/j.gtc.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Parasites have coevolved with humans. Several of them colonize the human body and establish a symbiotic relationship. Other parasites cause severe and lethal diseases. Prevalence of parasitic infections is decreased in highly industrialized countries, largely due to enforced hygienic practices. In contrast, parasites cause significant morbidity and mortality in parts of the world with barriers to effective public hygiene. Some parasites have emerged as potent pathogens in specific patient populations, such as immune suppressed individuals, regardless of sanitation. This article reviews common parasites encountered in clinical practice and, in the setting of host-parasite symbiosis, discusses their immune regulatory role.
Collapse
Affiliation(s)
- Annie L Braseth
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - David E Elliott
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, 4546 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - M Nedim Ince
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, 4546 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|