351
|
Jayabharathi J, Thanikachalam V. Robust luminogens as cutting-edge tools for efficient light emission in recent decades. Phys Chem Chem Phys 2024; 26:13561-13605. [PMID: 38655772 DOI: 10.1039/d4cp00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Blue luminogens play a vital role in white lighting and potential metal-free fluorescent materials and their high-lying excited states contribute to harvesting triplet excitons in devices. However, in TADF-OLEDs (ΔEST < 0.1 eV), although T1 excitons transfer to S1via RISC with 100% IQE, the longer lifetime of blue TADF suffers from efficiency roll-off (RO). In this case, hybridized local and charge transfer (HLCT) materials have attracted significant interest in lighting owing to their 100% hot exciton harvesting and enhanced efficiency. Both academics and industrialists widely use the HLCT strategy to improve the efficiency of fluorescent organic light-emitting diodes (FOLEDs) by harvesting dark triplet excitons through the RISC process. Aggregation-induced emissive materials (AIEgens) possess tight packing in the aggregation state, and twisted AIEgens with HLCT behaviour have a shortened conjugation length, inducing blue emission and making them suitable candidates for OLED applications. TTA-OLEDs are used in commercial BOLEDs because of their moderate efficiency and reasonable operation lifetime. In this review, we discuss the devices based on TTA fluorophores, TADF fluorophores, HLCT fluorophores, AIEgens and HLCT-sensitized fluorophores (HLCT-SF), which break through the statistical limitations.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Annamalai University, Annamalainagar, Tamilnadu-608 002, India.
| | | |
Collapse
|
352
|
Xu J, Wang S, Yi Z, Wu X, Wang M, Liu Y, Wu Y, Chen D, Lai J, Sun H. Novel biocompatible N-rich AIE fluorescent probe for live cell imaging and visual onsite detection of uranium. Mikrochim Acta 2024; 191:302. [PMID: 38709346 DOI: 10.1007/s00604-024-06390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.
Collapse
Affiliation(s)
- Jie Xu
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shenneng Wang
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhenni Yi
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyi Wu
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Menghao Wang
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuexi Wu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Diyun Chen
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiaping Lai
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Hui Sun
- College of Environmental Science & Engineering, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
353
|
Huo W, Miki K, Mu H, Osawa T, Yamaguma H, Kasahara Y, Obika S, Kawaguchi Y, Hirose H, Futaki S, Miyazaki Y, Shinoda W, Akai S, Ohe K. Light-controllable cell-membrane disturbance for intracellular delivery. J Mater Chem B 2024; 12:4138-4147. [PMID: 38456552 DOI: 10.1039/d3tb02956e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Highly polar and charged molecules, such as oligonucleotides, face significant barriers in crossing the cell membrane to access the cytoplasm. To address this problem, we developed a light-triggered twistable tetraphenylethene (TPE) derivative, TPE-C-N, to facilitate the intracellular delivery of charged molecules through an endocytosis-independent pathway. The central double bond of TPE in TPE-C-N is planar in the ground state but becomes twisted in the excited state. Under light irradiation, this planar-to-twisted structural change induces continuous cell membrane disturbances. Such disturbance does not lead to permanent damage to the cell membrane. TPE-C-N significantly enhanced the intracellular delivery of negatively charged molecules under light irradiation when endocytosis was inhibited through low-temperature treatment, confirming the endocytosis-independent nature of this delivery method. We have successfully demonstrated that the TPE-C-N-mediated light-controllable method can efficiently promote the intracellular delivery of charged molecules, such as peptides and oligonucleotides, with molecular weights ranging from 1000 to 5000 Da.
Collapse
Affiliation(s)
- Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Harumi Yamaguma
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yuuya Kasahara
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan
| | | | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
354
|
Liu S, Feng Y, Tan Y, Chen J, Yang T, Wang X, Li L, Wang F, Liang H, Zhong JL, Qi C, Lei X. Photosensitizer-loaded hydrogels: A new antibacterial dressing. Wound Repair Regen 2024; 32:301-313. [PMID: 38308577 DOI: 10.1111/wrr.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 02/05/2024]
Abstract
Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.
Collapse
Affiliation(s)
- Shunying Liu
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Yanhai Feng
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, China
| | - Yang Tan
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Jinyi Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Tao Yang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Xiaoyu Wang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Fangjie Wang
- The First Research Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Huaping Liang
- The First Research Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Julia-Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| |
Collapse
|
355
|
Gong Z, Kang G, Shi R, Jiang X, Rong X, Du X, Wu J, Huang H, Meng S. Intermolecular Interaction Between BODIPY and TPE Enhances Phototherapy. ADVANCED OPTICAL MATERIALS 2024; 12. [DOI: 10.1002/adom.202303033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 03/05/2025]
Abstract
AbstractFluoroborodipyrrole (BODIPY) and Tetraphenylethylene (TPE) are well‐known molecules in the realm of optical materials, celebrated for their exceptional properties. Recent research increasingly focuses on their combined use. In this study, a novel non‐synthetic method is taken to harness the synergistic therapeutic potential stemming from intermolecular interactions by employing nanoparticle encapsulation and core–shell structure. In vitro and in vivo experiments results show that the nanoparticles encapsulating BODIPY and TPE exhibit low cytotoxicity, efficient antitumor properties, and excellent visualization, achieving remarkable 1+1>2 effects. This innovative method not only provides high therapeutic efficacy, but also reduces time and economic costs, providing a novel perspective for exploring the combination of BODIPY and TPE as well as similar molecules in the field of optical materials.
Collapse
Affiliation(s)
- Zhichao Gong
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Guangbo Kang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Ruijie Shi
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Xu Jiang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Xuejiao Rong
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Xiaobing Du
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province College of Pharmacy Qinghai Nationalities University Xining 810007 P. R. China
| | - He Huang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| | - Shuxian Meng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P. R. China
| |
Collapse
|
356
|
Yu JX, Duan BH, Chen Z, Liu N, Wu ZQ. Polymers with Circularly Polarized Luminescent Properties: Design, Synthesis, and Prospects. Chempluschem 2024; 89:e202300481. [PMID: 37955194 DOI: 10.1002/cplu.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Chiral materials with circularly polarized luminescence (CPL) have garnered significant attention owing to their distinctive luminescent properties and wide array of applications. CPL enables the selective emission of left and right circularly polarized light. The fluorescence quantum yield and dissymmetry factor play pivotal roles in the generation of CPL. Helical polymers exhibit immense promise as CPL materials due to their inherent chirality, structural versatility, modifiability, and capacity to incorporate diverse chromophores. This Review provides a brief review of the synthesis of CPL materials based on helical polymers. The CPL can be realized by aggregation-induced CPL of non-emissive helical polymers, and helices bearing chromophores on the pendants and on the chain end. Furthermore, future challenges and potential applications of CPL materials are summarized and discussed.
Collapse
Affiliation(s)
- Jia-Xin Yu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bing-Hui Duan
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Zheng Chen
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Zong-Quan Wu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
357
|
Pham TC, Cho M, Nguyen VN, Nguyen VKT, Kim G, Lee S, Dehaen W, Yoon J, Lee S. Charge Transfer-Promoted Excited State of a Heavy-Atom-Free Photosensitizer for Efficient Application of Mitochondria-Targeted Fluorescence Imaging and Hypoxia Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21699-21708. [PMID: 38634764 DOI: 10.1021/acsami.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Conventional photosensitizers (PSs) used in photodynamic therapy (PDT) have shown preliminary success; however, they are often associated with several limitations including potential dark toxicity in healthy tissues, limited efficacy under acidic and hypoxic conditions, suboptimal fluorescence imaging capabilities, and nonspecific targeting during treatment. In response to these challenges, we developed a heavy-atom-free PS, denoted as Cz-SB, by incorporating ethyl carbazole into a thiophene-fused BODIPY core. A comprehensive investigation into the photophysical properties of Cz-SB was conducted through a synergistic approach involving experimental and computational investigations. The enhancement of intersystem crossing (kISC) and fluorescence emission (kfl) rate constants was achieved through a donor-acceptor pair-mediated charge transfer mechanism. Consequently, Cz-SB demonstrated remarkable efficiency in generating reactive oxygen species (ROS) under acidic and low-oxygen conditions, making it particularly effective for hypoxic cancer PDT. Furthermore, Cz-SB exhibited good biocompatibility, fluorescence imaging capabilities, and a high degree of localization within the mitochondria of living cells. We posit that Cz-SB holds substantial prospects as a versatile PS with innovative molecular design, representing a potential "one-for-all" solution in the realm of cancer phototheranostics.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van Kieu Thuy Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Seongman Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Songyi Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
358
|
Chen M, Chen Y, Zhong M, Xie D, Wang C, Ren X, Huang S, Xu J, Zhu M. The Synergistic Mechanisms of AIE, ESIPT and ICT in the α-cyanostilbene-based Derivative: A Red-fluorescence Probe With a Large Stokes' Shift for Copper (II) Ion Determination and Reversible Response to Amine/acid Vapor. J Fluoresc 2024; 34:1075-1090. [PMID: 37458937 DOI: 10.1007/s10895-023-03341-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/06/2023] [Indexed: 05/02/2024]
Abstract
Herein, α-cyanostilbene-based luminogen with an electron donor-π-electron acceptor (D-π-A) architecture was formylated into the salicylaldehyde-analogue luminogen, followed by the Schiff base reaction with phenylamine, a red-emitting luminogen was elaborately designed and successfully synthesized in a high yield of 89%. Its well-defined structure was confirmed by FT-IR, MALDI-TOF-MS, HR-MS and 1H/13C NMR technologies. Based on the synergistic mechanisms of aggregation-induced emission (AIE), excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT), it enjoyed a red-fluorescence emission at 627 nm in THF/water mixtures (fw = 95%) and was used as a probe. Moreover, the TLC-based test strips loaded with the probe not only exhibited the reversible fluorescence response to amine/acid vapor but also showed sensitive and selective fluorescence response towards Cu2+. Furthermore, the fluorescence titration experiment between the probe and Cu2+ in THF/water mixtures (fw = 95%, pH = 7.4) revealed that the detection limit was 1.18 × 10-7 M and the binding constant was 1.59 × 105. Job's plot experiment and HR-MS analysis revealed the 2:1 binding stoichiometry of the probe with Cu2+. The method enabled real-time assessment for Cu2+ in real water samples. This study could offer insightful opinions on the development of long-wavelength emissive luminogens based on α-cyanostilbene.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Yongchun Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Min Zhong
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Donghong Xie
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Chuan Wang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Xiaorui Ren
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Shizhou Huang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Jia Xu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China.
| |
Collapse
|
359
|
Liang S, Gao SH. Development research of latent fingermarks based on aggregation-induced emission technique. J Forensic Sci 2024; 69:856-868. [PMID: 38491780 DOI: 10.1111/1556-4029.15506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fingerprints hold evidential value for individual identification; a sensitive, efficient, and convenient method for visualizing latent fingermarks (LFMs) is of great importance in the field of crime scene investigation. In this study, we proposed an aggregation-induced emission atomization technique (AIE-AT) to obtain high-quality fingermark images. Six volunteers made over 1566 fingerprint samples on 17 different objects. The quality of fingermark development was evaluated using grayscale analysis for quantitative assessment, combining the fluency of fingermark ridges and the degree of level 2 and level 3 features. Both qualitative and quantitative methods were employed to explore the effectiveness of AIE molecule C27H19N3SO in developing fingermarks, its applicability to objects, and its individual selectivity. Additionally, the stability of the AIE molecule was examined. Comparative experimental results demonstrated the high stability of the AIE molecule, making it suitable for long-term preservation. The grayscale ratio of the ridges and furrows was at least 2, with high brightness contrast, the level 2 and level 3 features were clearly observable. The AIE-AT proved to be effective for developing fingermarks on nonporous, porous, and semiporous objects. It exhibited low selectivity on suspects who leave fingermarks and showed better development effects on challenging objects, as well as efficient extraction capability for in situ fingermarks. In summary, AIE-AT can efficiently develop latent fingermarks on common objects and even challenging ones. It locates the latent fingermarks for further accurate extraction of touch exfoliated cells in situ, providing technical support for the visualization of fingermarks and the localization for extraction of touch DNA.
Collapse
Affiliation(s)
- Shuai Liang
- School of Investigation, People's Public Security University of China, Beijing, China
| | - Shu-Hui Gao
- School of Investigation, People's Public Security University of China, Beijing, China
| |
Collapse
|
360
|
Yang M, Ji C, Yin M. Aggregation-enhanced photothermal therapy of organic dyes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1960. [PMID: 38695260 DOI: 10.1002/wnan.1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 04/06/2024] [Indexed: 05/12/2024]
Abstract
Photothermal therapy (PTT) represents a groundbreaking approach to targeted disease treatment by harnessing the conversion of light into heat. The efficacy of PTT heavily relies on the capabilities of photothermal agents (PTAs). Among PTAs, those based on organic dyes exhibit notable characteristics such as adjustable light absorption wavelengths, high extinction coefficients, and high compatibility in biological systems. However, a challenge associated with organic dye-based PTAs lies in their efficiency in converting light into heat while maintaining stability. Manipulating dye aggregation is a key aspect in modulating non-radiative decay pathways, aiming to augment heat generation. This review delves into various strategies aimed at improving photothermal performance through constructing aggregation. These strategies including protecting dyes from photodegradation, inhibiting non-photothermal pathways, maintaining space within molecular aggregates, and introducing intermolecular photophysical processes. Overall, this review highlights the precision-driven assembly of organic dyes as a promising frontier in enhancing PTT-related applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Mengyun Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
361
|
Wang J, Zhao X, Tao Y, Wang X, Yan L, Yu K, Hsu Y, Chen Y, Zhao J, Huang Y, Wei W. Biocompatible aggregation-induced emission active polyphosphate-manganese nanosheets with glutamine synthetase-like activity in excitotoxic nerve cells. Nat Commun 2024; 15:3534. [PMID: 38670989 PMCID: PMC11053040 DOI: 10.1038/s41467-024-47947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yucheng Tao
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Li Yan
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, PR China
| | - Yi Hsu
- Taipei Wego Private Senior High School, Taipei, TWN, PR China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| |
Collapse
|
362
|
Yang XX, Li C, Chen SM, Gu ZG, Zhang J. Layer by Layer Spraying Fabrication of Aggregation-Induced Emission Metal-Organic Frameworks Thin Film. Chemistry 2024; 30:e202400350. [PMID: 38407517 DOI: 10.1002/chem.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The development of new metal-organic frameworks (MOFs) thin films is important for expanding their functions and applications. Herein, we first report a new kind of MOF thin film by using aggregation-induced emission (AIE) dicarboxyl ligand through a liquid-phase epitaxial (LPE) layer-by-layer (LBL) spraying method (named AIE surface-coordinated metal-organic frameworks thin film, AIE-SURMOF). The obtained AIE-SURMOF Zn4O(TPE)3 (ZnTPE) has highly growth orientation and homogeneous thin film, showing strong fluorescent property. Furthermore, by loading chiral guest in the MOF pore, the formed chiral encapsulated AIE-SURMOF can clearly indicate obvious circularly polarized luminescence performance with glum of 0.01. This study provides new MOF thin film and new strategy for expanding function and application of MOF materials.
Collapse
Affiliation(s)
- Xue-Xian Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chong Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhi-Gang Gu
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
363
|
Sun K, Kurki L, Silveira OJ, Nishiuchi T, Kubo T, Foster AS, Kawai S. On-Surface Synthesis of Silole and Disila-Cyclooctene Derivatives. Angew Chem Int Ed Engl 2024; 63:e202401027. [PMID: 38415373 DOI: 10.1002/anie.202401027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
The incorporation of Si atoms into organic compounds significantly increases a variety of functionality, facilitating further applications. Recently, on-surface synthesis was introduced into organosilicon chemistry as 1,4-disilabenzene bridged nanostructures were obtained via coupling between silicon atoms and brominated phenyl groups at the ortho position on Au(111). Here, we demonstrate a high generality of this strategy via syntheses of silole derivatives and nanoribbon structures with eight-membered sila-cyclic rings from dibrominated molecules at the bay and peri positions on Au(111), respectively. Their structures and electronic properties were investigated by a combination of scanning tunneling microscopy/spectroscopy and density functional theory calculations. This work demonstrates a great potential to deal with heavy group 14 elements in on-surface silicon chemistry.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lauri Kurki
- Department of Applied Physics, Aalto University, P.O. Box, 11100, Aalto, Espoo 00076, Finland
| | - Orlando J Silveira
- Department of Applied Physics, Aalto University, P.O. Box, 11100, Aalto, Espoo 00076, Finland
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Adam S Foster
- Department of Applied Physics, Aalto University, P.O. Box, 11100, Aalto, Espoo 00076, Finland
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
364
|
Cyniak JS, Kasprzak A. Grind, shine and detect: mechanochemical synthesis of AIE-active polyaromatic amide and its application as molecular receptor of monovalent anions or nucleotides. RSC Adv 2024; 14:13227-13236. [PMID: 38655472 PMCID: PMC11037028 DOI: 10.1039/d4ra02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
A mechanochemical synthesis of novel polyaromatic amide consisting of 1,3,5-triphenylbenzene and 1,1',2,2'-tetraphenylethylene skeletons has been established. The designed mechanochemical approach using readily available and low-cost equipment allowed a twofold increase in reaction yield, a 350-fold reduction in reaction time and a significant reduction in the use of harmful reactants in comparison to the solution synthesis method. The parameters of Green Chemistry were used to highlight the advantages of the developed synthesis method over the solution-based approach. The title compound was found to exhibit attractive optical properties related to the Aggregation-induced emission (AIE) behaviour. Taking the advantage of AIE-active properties of the synthesized polyaromatic amide, its application as effective and versatile molecular receptor towards detection of monovalent anions, as well as bio-relevant anions - nucleotides, has been demonstrated. The values of the binding constants were at the satisfactory level of 104, the detection limit values were low and ranged from 0.2 μM to 19.9 μM.
Collapse
Affiliation(s)
- Jakub S Cyniak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| |
Collapse
|
365
|
Hu X, Wang D, Wang Y, Wang Y, Zhang S. Ultrafast restricted intramolecular rotation in molecules with aggregation induced emission. J Chem Phys 2024; 160:154302. [PMID: 38619455 DOI: 10.1063/5.0200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
In this work, the ultrafast intramolecular rotation behavior of 1,1,2,3,4,5-hexaphenylsilole has been investigated in several solutions with different viscosities using femtosecond transient absorption spectroscopy combined with density functional theory and time-dependent density functional theory calculations. It is demonstrated that the nonradiative process, which competes with radiative decay, involves two main stages, namely the restricted intramolecular rotation and internal conversion processes. The intramolecular rotation depends on viscosity and presents a significant restriction. The restricted rotational rate is determined to be dozens of picoseconds. The following nonradiative process is strongly dominated by intramolecular rotation. The nonradiative decay rate will decrease with the increase in viscosity, leading to a rise in the radiative probability and photoluminous yield. These results have borne out the mechanism of ultrafast restricted intramolecular rotation of aggregation induced emission and provided a detailed photophysical picture of nonradiative processes.
Collapse
Affiliation(s)
- Xiao Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
366
|
Nayak S, Das K, Sivagnanam S, Baskar S, Stewart A, Kumar D, Maity B, Das P. Cystine-cored diphenylalanine appended peptide-based self-assembled fluorescent nanostructures direct redox-responsive drug delivery. iScience 2024; 27:109523. [PMID: 38577103 PMCID: PMC10993133 DOI: 10.1016/j.isci.2024.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Fabrication of stimuli-responsive superstructure capable of delivering chemotherapeutics directly to the cancer cell by sparing healthy cells is crucial. Herein, we developed redox-responsive hollow spherical assemblies through self-assembly of disulfide-linked cysteine-diphenylalanine (SN). These fluorescent hollow spheres display intrinsic green fluorescence, are proteolytically stable and biocompatible, and allow for real-time monitoring of their intracellular entry. The disulfide bond facilitates selective degradation in the presence of high glutathione (GSH) concentrations, prevalent in cancer cells. We achieved efficient encapsulation (68.72%) of the anticancer drug doxorubicin (Dox) and demonstrated GSH-dependent, redox-responsive drug release within cancerous cells. SN-Dox exhibited a 20-fold lower effective concentration (2.5 μM) for compromising breast cancer cell viability compared to non-malignant cells (50 μM). The ability of SN-Dox to initiate DNA damage signaling and trigger apoptosis was comparable to that of the unencapsulated drug. Our findings highlight the potential of SN for creating site-specific drug delivery vehicles for sustained therapeutic release.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Shyamvarnan Baskar
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
367
|
Kaur J, Mirgane HA, Patil VS, Ahlawat GM, Bhosale SV, Singh PK. Expanding the scope of self-assembled supramolecular biosensors: a highly selective and sensitive enzyme-responsive AIE-based fluorescent biosensor for trypsin detection and inhibitor screening. J Mater Chem B 2024; 12:3786-3796. [PMID: 38546335 DOI: 10.1039/d4tb00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Trypsin, a pancreatic enzyme associated with diseases like pancreatic cancer and cystic fibrosis, requires effective diagnostic tools. Current detection systems seldom utilize macrocyclic molecules and tetraphenyl ethylene (TPE) derivative-based supramolecular assemblies, known for their biocompatibility and aggregation-induced emission (AIE) properties, for trypsin detection. This study presents an enzyme-responsive, AIE-based fluorescence 'Turn-On' sensing platform for trypsin detection, employing sulfated-β-cyclodextrin (S-βCD), an imidazolium derivative of TPE (TPE-IM), and protamine sulfate (PrS). The anionic S-βCD and cationic TPE-IM formed a strongly fluorescent supramolecular aggregation complex in an aqueous buffer. However, PrS suppresses fluorescence because of its strong binding affinity with S-βCD. The non-fluorescent TPE-IM/S-βCD/PrS supramolecular assembly system exhibits trypsin-responsive properties, as PrS is a known trypsin substrate. Trypsin restores fluorescence in the TPE-IM/S-βCD system through the enzymatic cleavage of PrS, correlating linearly with trypsin catalytic activity in the 0-10 nM concentration range. The limit of detection is 10 pM. This work contributes to the development of self-assembled supramolecular biosensors using charged TPE derivatives and β-cyclodextrin-based host-guest chemistry, offering an innovative fluorescence 'Turn-On' trypsin sensing platform. The sensing system is highly stable under various conditions, selective for trypsin, and demonstrates potential for biological analysis and disease diagnosis in human serum. Additionally, it shows promise for the screening of trypsin inhibitors.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- University Institute of Biotechnology, Chandigarh University, Panjab 140 413, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Vrushali S Patil
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- School of Nanoscience & Technology, Shivaji University Kolhapur, Vidya Nagar, Kolhapur 416004, Maharashtra, India
| | - Geetika M Ahlawat
- University Institute of Biotechnology, Chandigarh University, Panjab 140 413, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
368
|
Saletti M, Paolino M, Venditti J, Bonechi C, Giuliani G, Lamponi S, Tassone G, Boccia A, Botta C, Blancafort L, Poggialini F, Vagaggini C, Cappelli A. A Facile Access to Green Fluorescent Albumin Derivatives. Chembiochem 2024; 25:e202300862. [PMID: 38369609 DOI: 10.1002/cbic.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 01/24/2024] [Accepted: 12/22/2023] [Indexed: 02/20/2024]
Abstract
A Morita-Baylis-Hillman Adduct (MBHA) derivative bearing a triphenylamine moiety was found to react with human serum albumin (HSA) shifting its emission from the blue to the green-yellow thus leading to green fluorescent albumin (GFA) derivatives and enlarging the platform of probes for aggregation-induced fluorescent-based detection techniques. A possible interaction of MBHA derivative 7 with a lipophilic pocket within the HSA structure was suggested by docking studies. DLS experiments showed that the reaction with HSA induce a conformational change of the protein contributing to the aggregation process of GFA derivatives. The results of investigations on the biological properties suggested that GFA retained the ability of binding drug molecules such as warfarin and diazepam. Finally, cytotoxicity evaluation studies suggested that, although the MBHA derivative 7 at 0.1 μg/mL affected the percentage of cell viability in comparison to the negative control, it cannot be considered cytotoxic, whereas at all the other concentrations≥0.5 μg/mL resulted cytotoxic at different extent.
Collapse
Affiliation(s)
- Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Jacopo Venditti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Claudia Bonechi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Lamponi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Antonella Boccia
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" - SCITEC (CNR), Via A. Corti 12, 20133, Milano, Italy
| | - Chiara Botta
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" - SCITEC (CNR), Via A. Corti 12, 20133, Milano, Italy
| | - Lluís Blancafort
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/M. A. Capmany 69, 17003, Girona, Spain
| | - Federica Poggialini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Chiara Vagaggini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di, Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
369
|
Ma W, Zhao Q, Zhu S, Wang X, Zhang C, Ma D, Li N, Yin Y. Construction of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided targeted delivery and breast cancer therapy. RSC Adv 2024; 14:12796-12806. [PMID: 38645515 PMCID: PMC11027725 DOI: 10.1039/d4ra00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024] Open
Abstract
Paclitaxel (PTX) remains an essential drug in the treatment of breast cancer. To improve metabolic stability and real-time monitoring of drug location, we develop a visualized nano-prodrug. Novel hyaluronic acid (HA)-coated glutathione (GSH)-sensitive chitosan (CS)-based nano-prodrug (HA/TPE-CS-SS-PTX NPs) with aggregation-induced emission effects (AIE) were accomplished. The prodrug NPs (drug loading 29.32%, particle size 105 nm, regular sphericity) exhibit excellent fluorescence stability. The prodrug NPs could target tumor cells with high expression of CD44 and decompose in the presence of high concentrations of glutathione. In vitro evaluations revealed that the prodrug NPs have significant cytotoxicity on 4T1 cells, and due to their excellent AIE characteristics, their position in cells can be tracked. Moreover, the prodrug NPs also shown superior anti-tumor effects in vivo experimental. Overall, the HA/TPE-CS-SS-PTX NPs we constructed have excellent bio-imaging capabilities and can be served as a potential nanomedicine for PTX delivery against breast cancer.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Qiufeng Zhao
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Shilong Zhu
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Xinyue Wang
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Chuangchuang Zhang
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Daming Ma
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Na Li
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Yanyan Yin
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| |
Collapse
|
370
|
Zeng Y, Gan X, Xu Z, Hu X, Hu C, Ma H, Tu H, Chai B, Yang C, Hu S, Chai Y. AIEgens-enhanced rapid sensitive immunofluorescent assay for SARS-CoV-2 with digital microfluidics. Anal Chim Acta 2024; 1298:342398. [PMID: 38462346 DOI: 10.1016/j.aca.2024.342398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Sensitive and rapid antigen detection is critical for the diagnosis and treatment of infectious diseases, but conventional ELISAs including chemiluminescence-based assays are limited in sensitivity and require many operation steps. Fluorescence immunoassays are fast and convenient but often show limited sensitivity and dynamic range. RESULTS To address the need, an aggregation-induced emission fluorgens (AIEgens) enhanced immunofluorescent assay with beads-based quantification on the digital microfluidic (DMF) platform was developed. Portable DMF devices and chips with small electrodes were fabricated, capable of manipulating droplets within 100 nL and boosting the reaction efficiency. AIEgen nanoparticles (NPs) with high fluorescence and photostability were synthesized to enhance the test sensitivity and detection range. The integration of AIEgen probes, transparent DMF chip design, and the large magnetic beads (10 μm) as capture agents enabled rapid and direct image-taking and signal calculation of the test result. The performance of this platform was demonstrated by point-of-care quantification of SARS-CoV-2 nucleocapsid (N) protein. Within 25 min, a limit of detection of 5.08 pg mL-1 and a limit of quantification of 8.91 pg mL-1 can be achieved using <1 μL sample. The system showed high reproducibility across the wide dynamic range (10-105 pg mL-1), with the coefficient of variance ranging from 2.6% to 9.8%. SIGNIFICANCE This rapid, sensitive AIEgens-enhanced immunofluorescent assay on the DMF platform showed simplified reaction steps and improved performance, providing insight into the small-volume point-of-care testing of different biomarkers in research and clinical applications.
Collapse
Affiliation(s)
- Yuping Zeng
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xiangyu Gan
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Zhourui Xu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xiaoxiang Hu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong province, China.
| | - Hangjia Tu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Chengbin Yang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Yujuan Chai
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
371
|
Peng Z, Zhang J, Feng N, Zhang J, Liu SH. Manipulation of aurophilicity in constructed clusters of gold(I) complexes with boosted luminescence and smart responsiveness. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123979. [PMID: 38310742 DOI: 10.1016/j.saa.2024.123979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
High-performance luminescent gold(I) complexes have attracted considerable attention due to their potential applications in various fields, but their construction is a significantly challenging task. Herein, we designed and synthesized a series of novel dinuclear gold(I) complexes 1-4 based on 1,2-bis(diphenylphosphino)benzene and 1,4-bis(diphenylphosphino)benzene frameworks, where para-substitutions of benzene ring were employed for comparison and bulky t-butyl groups were introduced into carbazole ligands to assist flexibly regulating the aurophilicity. Among them, the structure of complex 1 was confirmed by single-crystal X-ray diffraction, and all the complexes exhibited typical aggregation-induced emission characteristics. Due to the construction of intramolecular aurophilicity and the formation of molecular clusters, noticeable enhancement of the luminescent efficiency was achieved for the core complex 1. Together with the introduction of flexible t-butyl groups, good responsiveness towards external mechanical force and solvent vapors were also realized. Moreover, the specific bioimaging ability of complex 1 towards cancer cells was demonstrated. Thus, this work presents the crucial capability of aurophilic manipulation in tuning the luminescence and smart behaviors of gold complexes, and it will open a new route to developing high-performance luminescent materials.
Collapse
Affiliation(s)
- Zhen Peng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
372
|
Cen P, Cui C, Huang J, Chen H, Wu F, Niu J, Zhong Y, Jin C, Zhu WH, Zhang H, Tian M. Cellular senescence imaging and senolysis monitoring in cancer therapy based on a β-galactosidase-activated aggregation-induced emission luminogen. Acta Biomater 2024; 179:340-353. [PMID: 38556136 DOI: 10.1016/j.actbio.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Cellular senescence is a permanent state of cell cycle arrest characterized by increased activity of senescence associated β-galactosidase (SA-β-gal). Notably, cancer cells have been also observed to exhibit the senescence response and are being considered for sequential treatment with pro-senescence therapy followed by senolytic therapy. However, there is currently no effective agent targeting β-galactosidase (β-Gal) for imaging cellular senescence and monitoring senolysis in cancer therapy. Aggregation-induced emission luminogen (AIEgen) demonstrates strong fluorescence, good photostability, and biocompatibility, making it a potential candidate for imaging cellular senescence and monitoring senolysis in cancer therapy when endowed with β-Gal-responsive capabilities. In this study, we introduced a β-Gal-activated AIEgen named QM-β-gal for cellular senescence imaging and senolysis monitoring in cancer therapy. QM-β-gal exhibited good amphiphilic properties and formed aggregates that emitted a fluorescence signal upon β-Gal activation. It showed high specificity towards the activity of β-Gal in lysosomes and successfully visualized DOX-induced senescent cancer cells with intense fluorescence both in vitro and in vivo. Encouragingly, QM-β-gal could image senescent cancer cells in vivo for over 14 days with excellent biocompatibility. Moreover, it allowed for the monitoring of senescent cancer cell clearance during senolytic therapy with ABT263. This investigation indicated the potential of the β-Gal-activated AIEgen, QM-β-gal, as an in vivo approach for imaging cellular senescence and monitoring senolysis in cancer therapy via highly specific and long-term fluorescence imaging. STATEMENT OF SIGNIFICANCE: This work reported a β-galactosidase-activated AIEgen called QM-β-gal, which effectively imaged DOX-induced senescent cancer cells both in vitro and in vivo. QM-β-gal specifically targeted the increased expression and activity of β-galactosidase in senescent cancer cells, localized within lysosomes. It was cleared rapidly before activation but maintained stability after activation in the DOX-induced senescent tumor. The AIEgen exhibited a remarkable long-term imaging capability for senescent cancer cells, lasting over 14 days and enabled monitoring of senescent cancer cell clearance through ABT263-induced apoptosis. This approach held promise for researchers seeking to achieve prolonged imaging of senescent cells in vivo.
Collapse
Affiliation(s)
- Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Jiani Huang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Hetian Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Fei Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Human Phenome Institute, Fudan University, Shanghai 201203, China.
| |
Collapse
|
373
|
Liu Y, Pan X, He Y, Guo B, Xu J. In Situ Monitoring and Tuning Multilayer Stacking of Polymer Lamellar Crystals in Solution with Aggregation-Induced Emission. NANO LETTERS 2024. [PMID: 38621356 DOI: 10.1021/acs.nanolett.3c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Many types of self-assembled 2D materials with fascinating morphologies and novel properties have been prepared and used in solution. However, it is still a challenge to monitor their in situ growth in solution and to control the number of layers in these materials. Here, we demonstrate that the aggregation-induced emission (AIE) effect can be applied for the in situ decoupled tracing of the lateral growth and multilayer stacking of polymer lamellar crystals in solution. Multilayer stacking considerably enhances the photoluminescence intensity of the AIE molecules sandwiched between two layers of lamellar crystals, which is 2.4 times that on the surface of monolayer crystals. Both variation of the self-seeding temperature of crystal seeds and addition of a trace amount of long polymer chains during growth can control multilayer lamellar stacking, which are applied to produce tunable fluorescent patterns for functional applications.
Collapse
Affiliation(s)
- Yang Liu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Xinyi Pan
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Yaning He
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
374
|
Xie J, Li W, Lu Y, Zheng Y, Huang Y, Chen S, Song Q. Unlocking Diverse π-Bond Enrichment Frameworks by the Synthesis and Conversion of Boronated Phenyldiethynylethylenes. J Am Chem Soc 2024; 146:10167-10176. [PMID: 38536043 DOI: 10.1021/jacs.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The π-bond enrichment frameworks not only serve as a crucial building block in organic synthesis but also assume a pivotal role in the fields of materials science, biomedicine, photochemistry, and other related disciplines owing to their distinctive structural characteristics. The incorporation of various substituents into the C═C double bonds of tetrasubstituted alkenes is currently a highly significant research area. However, the synthesis of tetrasubstituted alkenes with diverse substituents on double bonds poses a significant challenge in achieving stereoselectivity. Here, we reported an efficient and convergent route of Cu-catalyzed borylalkynylation of both symmetrical and unsymmetrical 1,3-diynes, B2pin2, and acetylene bromide to the construction of boronated phenyldiethynylethylene (BPDEE) derivatives with excellent chemo-, stereo-, and regioselectivities. BPDEE derivatives could transform into novel tetrasubstituted organic π-conjugated gem-diphenyldiethynylethylene (DPDEE), vinylphenyldiethynylethylene (VPDEE), and phenyltriethynylethylene (PTEE) derivatives by a stepwise process, which provides a flexible platform for the synthesis of complex π-bond enrichment frameworks that were difficult to synthesize by previous methods. The initial optical characterization revealed that the synthesized molecules exhibited aggregation-induced emission (AIE) properties, which further establishes the groundwork for future applications and enriches and advances the field of functional π-conjugated frameworks research.
Collapse
Affiliation(s)
- Jinhui Xie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wangyang Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yong Lu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanping Zheng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanying Huang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shanglin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
375
|
Zeng Y, Qu J, Wu G, Zhao Y, Hao J, Dong Y, Li Z, Shi J, Francisco JS, Zheng X. Two Key Descriptors for Designing Second Near-Infrared Dyes and Experimental Validation. J Am Chem Soc 2024; 146:9888-9896. [PMID: 38546165 DOI: 10.1021/jacs.3c14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Second near-infrared (NIR-II) optical imaging technology has emerged as a powerful tool for diagnostic and image-guided surgery due to its higher imaging contrast. However, a general strategy for efficiently designing NIR-II organic molecules is still lacking, because NIR-II dyes are usually difficult to synthesize, which has impeded the rapid development of NIR-II bioprobes. Herein, based on the theoretical calculations on 62 multiaryl-pyrrole (MAP) systems with spectra ranging from the visible to the NIR-II region, a continuous red shift of the spectra toward the NIR-II region could be achieved by adjusting the type and site of substituents on the MAPs. Two descriptors (ΔEgs and μgs) were identified as exhibiting strong correlations with the maximum absorption/emission wavelengths, and the descriptors could be used to predict the emission spectrum in the NIR-II region only if ΔEgs ≤ 2.5 eV and μgs ≤ 22.55 D. The experimental absorption and emission spectra of ten MAPs fully confirmed the theoretical predictions, and biological imaging in vivo of newly designed MAP23-BBT showed high spatial resolution in the NIR-II region in deep tissue angiography. More importantly, both descriptors of ΔEgs and μgs have shown general applicability to most of the reported donor-acceptor-donor-type non-MAP NIR-II dyes. These results have broad implications for the efficient design of NIR-II dyes.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guanghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yeyun Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaman Hao
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
376
|
Sindhurattavej N, Jampana S, Pham MP, Romero LC, Rogers AG, Stevens GA, Fowler WC. Tuning Molecular Motion Enhances Intrinsic Fluorescence in Peptide Amphiphile Nanofibers. Biomacromolecules 2024; 25:2531-2541. [PMID: 38508219 PMCID: PMC11005007 DOI: 10.1021/acs.biomac.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Peptide amphiphiles (PAs) are highly tunable molecules that were recently found to exhibit aggregation-induced emission (AIE) when they self-assemble into nanofibers. Here, we leverage decades of molecular design and self-assembly study of PAs to strategically tune their molecular motion within nanofibers to enhance AIE, making them a highly useful platform for applications such as sensing, bioimaging, or materials property characterization. Since AIE increases when aggregated molecules are rigidly and closely packed, we altered the four most closely packed amino acids nearest to the hydrophobic core by varying the order and composition of glycine, alanine, and valine pairs. Of the six PA designs studied, C16VVAAK2 had the highest quantum yield at 0.17, which is a more than 10-fold increase from other PA designs including the very similar C16AAVVK2, highlighting the importance of precise amino acid placement to anchor rigidity closest to the core. We also altered temperature to increase AIE. C16VVAAK2 exhibited an additional 4-fold increase in maximum fluorescence intensity when the temperature was raised from 5 to 65 °C. As the temperature increased, the secondary structure transitioned from β-sheet to random coil, indicating that further packing an already aligned molecular system makes it even more readily able to transfer energy between the electron-rich amides. This work both unveils a highly fluorescent AIE PA system design and sheds insights into the molecular orientation and packing design traits that can significantly enhance AIE in self-assembling systems.
Collapse
Affiliation(s)
| | - Shreya Jampana
- Department
of Engineering, Harvey Mudd College, Claremont, California 91711, United States
| | - Mai Phuong Pham
- Department
of Engineering, Harvey Mudd College, Claremont, California 91711, United States
| | - Leonardo C. Romero
- Department
of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Anna Grace Rogers
- Department
of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Griffin A. Stevens
- Department
of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Whitney C. Fowler
- Department
of Engineering, Harvey Mudd College, Claremont, California 91711, United States
| |
Collapse
|
377
|
Antoniou AI, Pesenti M, Crespi S, Shenoy DS, Penconi M, Bossi A, Pellegrino S. Aggregation-Induced Enhanced Emission of Tetraphenylethene-phenylalanine Hybrids: Synthesis and Characterization. J Org Chem 2024; 89:4733-4740. [PMID: 38520355 DOI: 10.1021/acs.joc.3c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Aggregation-induced emitting (AIE) luminophores are sensitive and easy-to-handle types of probes that allow driving a stimulus-responsive off/on optical tool through the manipulation of the aggregation behavior. In this work, tetraphenylethene (TPE)-phenylalanine derivatives, characterized by strong aggregation-induced luminescence, were obtained through Suzuki-Miyaura cross-coupling reactions. The reaction proved to be straightforwardly applicable in the single amino acid synthesis as well as in the late-stage peptide functionalization by means of both the classical solution-phase reaction and solid-phase synthesis. A comprehensive structural and analytical investigation highlighted the features driving the self-assembly process and its relationship to AIE efficiency. In particular, we showed that the simple slight (asymmetric) extension of the TPE π-systems results in more efficient and brighter emissions, with respect to the simple TPE system itself.
Collapse
Affiliation(s)
- Antonia I Antoniou
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Michela Pesenti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Stefania Crespi
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Dhriti S Shenoy
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" del Consiglio Nazionale delle Ricerche, CNR-SCITEC; Photoactive Molecular Materials & Devices Group, IT-20138 Milan, Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" del Consiglio Nazionale delle Ricerche, CNR-SCITEC; Photoactive Molecular Materials & Devices Group, IT-20138 Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, IT-20133 Milan, Italy
| |
Collapse
|
378
|
Li YL, Wang HL, Zhu ZH, Wang YF, Liang FP, Zou HH. Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors. Nat Commun 2024; 15:2896. [PMID: 38575592 PMCID: PMC10994944 DOI: 10.1038/s41467-024-47246-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Yu-Feng Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
379
|
Li S, Li Y, Zhang S, Fang H, Huang Z, Zhang D, Ding A, Uvdal K, Hu Z, Huang K, Li L. Response strategies and biological applications of organic fluorescent thermometry: cell- and mitochondrion-level detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1968-1984. [PMID: 38511286 DOI: 10.1039/d4ay00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Temperature homeostasis is critical for cells to perform their physiological functions. Among the diverse methods for temperature detection, fluorescent temperature probes stand out as a proven and effective tool, especially for monitoring temperature in cells and suborganelles, with a specific emphasis on mitochondria. The utilization of these probes provides a new opportunity to enhance our understanding of the mechanisms and interconnections underlying various physiological activities related to temperature homeostasis. However, the complexity and variability of cells and suborganelles necessitate fluorescent temperature probes with high resolution and sensitivity. To meet the demanding requirements for intracellular/subcellular temperature detection, several strategies have been developed, offering a range of options to address this challenge. This review examines four fundamental temperature-response strategies employed by small molecule and polymer probes, including intramolecular rotation, polarity sensitivity, Förster resonance energy transfer, and structural changes. The primary emphasis was placed on elucidating molecular design and biological applications specific to each type of probe. Furthermore, this review provides an insightful discussion on factors that may affect fluorescent thermometry, providing valuable perspectives for future development in the field. Finally, the review concludes by presenting cutting-edge response strategies and research insights for mitigating biases in temperature sensing.
Collapse
Affiliation(s)
- Shuai Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaoxuan Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shiji Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Haixiao Fang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Duoteng Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
380
|
Thierry T, Giuso V, Polo F, Mercandelli P, Chen YT, Chang CH, Mauro M, Bellemin-Laponnaz S. A stable and true-blue emissive hexacoordinate Si(IV) N-heterocyclic carbene complex and its use in organic light-emitting diodes. Dalton Trans 2024; 53:6445-6450. [PMID: 38511259 DOI: 10.1039/d4dt00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A neutral hexacoordinate Si(IV) complex containing two tridentate N-heterocyclic carbene ligands is synthesised and characterized by X-ray crystallography, optical spectroscopy, electrochemistry and computational methods. The stable compound exhibits remarkable deep-blue photoluminescence particularly in the solid state, which enables its use as an electroluminescent material in organic light-emitting diodes.
Collapse
Affiliation(s)
- Thibault Thierry
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 - Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg, France.
| | - Valerio Giuso
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 - Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg, France.
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- European Centre for Living Technology (ECLT), Ca' Foscari University of Venice, Ca' Bottacin, 30124, Venice, Italy
| | | | - Yi-Ting Chen
- Department of Electrical Engineering, Yuan Ze University, 32003 Taoyuan, Taiwan
| | - Chih-Hao Chang
- Department of Electrical Engineering, Yuan Ze University, 32003 Taoyuan, Taiwan
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 - Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg, France.
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 - Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg, France.
| |
Collapse
|
381
|
Gui Y, Wang Y, Wang D, Qin Y, Song G, Yan D, Tang BZ, Wang D. Thiophene π-Bridge Manipulation of NIR-II AIEgens for Multimodal Tumor Phototheranostics. Angew Chem Int Ed Engl 2024; 63:e202318609. [PMID: 38345594 DOI: 10.1002/anie.202318609] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 03/01/2024]
Abstract
The fabrication of a multimodal phototheranostic platform on the basis of single-component theranostic agent to afford both imaging and therapy simultaneously, is attractive yet full of challenges. The emergence of aggregation-induced emission luminogens (AIEgens), particularly those emit fluorescence in the second near-infrared window (NIR-II), provides a powerful tool for cancer treatment by virtue of adjustable pathway for radiative/non-radiative energy consumption, deeper penetration depth and aggregation-enhanced theranostic performance. Although bulky thiophene π-bridges such as ortho-alkylated thiophene, 3,4-ethoxylene dioxythiophene and benzo[c]thiophene are commonly adopted to construct NIR-II AIEgens, the subtle differentiation on their theranostic behaviours has yet to be comprehensively investigated. In this work, systematical investigations discovered that AIEgen BT-NS bearing benzo[c]thiophene possesses acceptable NIR-II fluorescence emission intensity, efficient reactive oxygen species generation, and high photothermal conversion efficiency. Eventually, by using of BT-NS nanoparticles, unprecedented performance on NIR-II fluorescence/photoacoustic/photothermal imaging-guided synergistic photodynamic/photothermal elimination of tumors was demonstrated. This study thus offers useful insights into developing versatile phototheranostic systems for clinical trials.
Collapse
Affiliation(s)
- Yixiong Gui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518034, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, East 2nd Ring Rd. No. 759, China
| | - Yi Qin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
382
|
Sun S, Xue K, Zhao Y, Qi Z. A near-infrared AIE fluorescent probe for accurate detection of sulfur dioxide derivatives and visualization of fingerprints. Talanta 2024; 270:125568. [PMID: 38150966 DOI: 10.1016/j.talanta.2023.125568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In most biophysiological processes, sulfur dioxide (SO2) is an important intracellular signaling molecule that plays an important role. The change of SO2 in cells are closely related to various diseases such as neurological disorders and lung cancer, so it is necessary to develop fluorescent probes with the ability to accurately detect SO2 during physiological processes. In this work, we designed and synthesized a multifunctional fluorescent probe TIS. TIS has excellent properties such as near-infrared emission, large stokes shift, excellent SO2 detection capabilities, low detection limit, high specificity and visualization of color change before and after reaction. Simultaneously, TIS has low cytotoxicity, good biocompatibility, clear cell imaging capability and mitochondrial targeting ability. In addition, the ability of TIS to be applied to different material surfaces for latent fingerprint fluorescence imaging was also explored. TIS provides an excellent method for the accurate detection of SO2 derivatives and shows great potential applications in near-infrared cellular imaging and latent fingerprint fluorescence imaging.
Collapse
Affiliation(s)
- Saidong Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.
| |
Collapse
|
383
|
Qian H, Tian J, Jiang X, Zhang B, Li X, Yang Y, Gao S, Shao L, Li F. Mechanofluorochromic behaviors and data security protection properties of salicylaldimine-based difluoroboron complexes with different aryl substituents. LUMINESCENCE 2024; 39:e4729. [PMID: 38548706 DOI: 10.1002/bio.4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
To further explore the relationship between aryl substituents and mechanofluorochromic (MFC) behaviors, four salicylaldimine-based difluoroboron complexes (ts-Ph BF2, ts-Ph-NA BF2, ts-2NA BF2, and ts-triphenylamine [TPA] BF2), including aromatic substituents with different steric hindrance effects, were designed and successfully synthesized. Four complexes with twisted molecular conformation displayed intramolecular charge transfer and aggregation-induced emission properties. Under external mechanical stimuli, the as-synthesized powders of ts-Ph BF2, ts-Ph-NA BF2, and ts-TPA BF2 exhibited redshift fluorescence emission behaviors, and ts-Ph BF2 and ts-TPA BF2 could be recovered to original shifts by fuming, but ts-Ph-NA BF2 displayed irreversible switching. ts-2NA BF2 had no change during the grinding and fuming processes. The results indicated that the MFC behaviors could be attributed to the phase transformation between the well-defined crystalline and disordered amorphous states by X-ray diffraction measurement. Further research illustrated that ts-TPA BF2 with the most significant MFC phenomenon could be applied in data security protection in ink-free rewritable paper.
Collapse
Affiliation(s)
- Han Qian
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Jiazhuang Tian
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Xiaozhou Jiang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Bangcui Zhang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Xueliang Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Yanhua Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Shulin Gao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Lin Shao
- Chromatographic Analysis Center, Dali Institute for Food Control, Dali, P.R. China
| | - Fumin Li
- Physical and Chemical Inspection Center, Dali Institute for Food Control, Dali, P.R. China
| |
Collapse
|
384
|
Gallucci N, Appavou MS, Cowieson N, D'Errico G, Di Girolamo R, Lettieri S, Sica F, Vitiello G, Paduano L. Ordered hierarchical superlattice amplifies coated-CeO 2 nanoparticles luminescence. J Colloid Interface Sci 2024; 659:926-935. [PMID: 38219311 DOI: 10.1016/j.jcis.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties.
Collapse
Affiliation(s)
- Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Nathan Cowieson
- Diamond Light Source, Didcot, Oxfordshire, England, United Kingdom
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefano Lettieri
- Department of Physics, University of Naples Federico II, Via Cupa Cintia 21, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
385
|
Wang RP, Liu W, Wang X, Shan G, Liu T, Xu F, Dai H, Qi C, Feng HT, Tang BZ. Supramolecular Assembly Based on Calix(4)arene and Aggregation-Induced Emission Photosensitizer for Phototherapy of Drug-Resistant Bacteria and Skin Flap Transplantation. Adv Healthc Mater 2024; 13:e2303336. [PMID: 38211556 DOI: 10.1002/adhm.202303336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Photodynamic therapy as a burgeoning and non-invasive theranostic technique has drawn great attention in the field of antibacterial treatment but often encounters undesired phototoxicity of photosensitizers during systemic circulation. Herein, a supramolecular substitution strategy is proposed for phototherapy of drug-resistant bacteria and skin flap repair by using macrocyclic p-sulfonatocalix(4)arene (SC4A) as a host, and two cationic aggregation-induced emission luminogens (AIEgens), namely TPE-QAS and TPE-2QAS, bearing quaternary ammonium group(s) as guests. Through host-guest assembly, the obtained complex exhibits obvious blue fluorescence in the solution due to the restriction of free motion of AIEgens and drastically inhibits efficient type I ROS generation. Then, upon the addition of another guest 4,4'-benzidine dihydrochloride, TPE-QAS can be competitively replaced from the cavity of SC4A to restore its pristine ROS efficiency and photoactivity in aqueous solution. The dissociative TPE-QAS shows a high bacterial binding ability with an efficient treatment for methicillin-resistant Staphylococcus aureus (MRSA) in dark and light irradiation. Meanwhile, it also exhibits an improved survival rate for MRSA-infected skin flap transplantation and largely accelerates the healing process. Thus, such cascaded host-guest assembly is an ideal platform for phototheranostics research.
Collapse
Affiliation(s)
- Rui-Peng Wang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, Changsha, 410013, China
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 413000, China
| | - Xiaoxuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Guogang Shan
- National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tuozhou Liu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 413000, China
| | - Fengrui Xu
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Chunxuan Qi
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| |
Collapse
|
386
|
Ma Z, Wang Q, Cai Z, Chen Z, Li N, Zhao N. Benzothiazolium-based NIR AIE photosensitizers with type I and II ROS generation for efficient mitochondria-targeted photodynamic therapy. LUMINESCENCE 2024; 39:e4735. [PMID: 38565323 DOI: 10.1002/bio.4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
In this work, a near-infrared emissive photosensitizer of 3,3-dimethyl-N,N-diphenyl-2-(thiophen-2-yl)-3H-indol-6-amine functionlized benzothiazolium (DPITT) was developed. DPITT exhibited aggregation-induced emission effect and potent type I and II reactive oxygen species generation capacities after white light irradiation. Taking advantage of the cationic feature, DPITT penetrated the cell membrane and selectively accumulated in the mitochondria in living cells. Upon white light irradiation, the photosensitized DPITT was able to induce mitochondrial dysfunction, leading to cell death. Photosensitized DPITT was further applied to disrupt the multicellular tumour spheroids, demonstrating its potential application in inhibiting hypoxic solid tumours.
Collapse
Affiliation(s)
- Zhedong Ma
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Qi Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Ziying Cai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Zuxiao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
387
|
Pan Z, Zeng Y, Ye Z, Li Y, Wang Y, Feng Z, Bao Y, Yuan J, Cao G, Dong J, Long W, Lu YJ, Zhang K, He Y, Liu X. Rotor-based image-guided therapy of glioblastoma. J Control Release 2024; 368:650-662. [PMID: 38490374 DOI: 10.1016/j.jconrel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Glioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM. IRLy was synthesized successfully through a rational molecular rotor modification with stronger penetration, higher signal-to-noise ratio, and a high photothermal conversion efficiency (PCE) up to ∼60%, which can achieve efficient NIR-II photo-response. The multifunctional nanoparticles (Tf-IRLy NPs) were further fabricated to cross the blood-brain barrier (BBB) introducing transferrin (Tf) as a targeting ligand. Tf-IRLy NPs showed high biosafety and good tumor enrichment for GBM in vitro and in vivo, and thus enabled accurate, efficient, and less invasive NIR-II multimodal imaging and photothermal therapy. This versatile Tf-IRLy nanosystem can provide a reference for the efficient, precise and low-invasive multi-synergistic brain targeted photo-theranostics. In addition, the "extended conjugation & molecular rotor" strategy can be used to guide the design of other photothermal agents.
Collapse
Affiliation(s)
- Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yakun Wang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiapeng Dong
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Long
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu-Jing Lu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
388
|
Li H, Zhang T, Liao Y, Liu C, He Y, Wang Y, Li C, Jiang C, Li C, Luo G, Xiang Z, Duo Y. Recent advances of aggregation‐induced emission in body surface organs. AGGREGATE 2024; 5. [DOI: 10.1002/agt2.470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
AbstractThe surface organs mainly comprise the superficial layers of various parts of the mammalian body, including the skin, eyes, and ears, which provide solid protection against various threats to the entire body. Damage to surface organs could lead to many serious diseases or even death. Currently, despite significant advancements in this field, there remain numerous enigmas that necessitate expeditious resolution, particularly pertaining to diagnostic and therapeutic objectives. The advancements in nanomedicine have provided a significant impetus for the development of novel approaches in the diagnosis, bioimaging, and therapy of superficial organs. The aggregation‐induced emission (AIE) phenomenon, initially observed by Prof. Ben Zhong Tang, stands out due to its contrasting behavior to the aggregation‐caused quenching effect. This discovery has significantly revolutionized the field of nanomedicine for surface organs owing to its remarkable advantages. In this review of literature, we aim to provide a comprehensive summary of recent advances of AIE lumenogen (AIEgen)‐based nanoplatforms in the fields of detection, diagnosis, imaging, and therapeutics of surface organ‐related diseases and discuss their prospects in the domain. It is hoped that this review will help attract researchers’ attention toward the utilization of this field for the exploration of a wider range of biomedical and clinical applications.
Collapse
Affiliation(s)
- Hang Li
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Tingting Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yingying Liao
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chutong Liu
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Yisheng He
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Yongfei Wang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Conglei Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Cheng Jiang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Chenzhong Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Guanghong Luo
- Department of Radiation Oncology Shenzhen People's Hospital (The Second Clinical Medical College The First Affiliated Hospital Jinan University Southern University of Science and Technology) Shenzhen China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Science Harvard University Boston Massachusetts USA
| |
Collapse
|
389
|
Yin W, Li J, Ma Y, Li W, Huo Y, Zhao Z, Ji S. Precise molecular engineering for the preparation of pyridinium photosensitizers with efficient ROS generation and photothermal conversion. Phys Chem Chem Phys 2024; 26:10156-10167. [PMID: 38495015 DOI: 10.1039/d3cp05718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Organic photosensitizers (PSs) with aggregation-induced emission properties have great development potential in the integrated application of multi-mode diagnosis and treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). However, preparing high-quality PSs with both optical and biological properties, high reactive oxygen species (ROS) and photothermal conversion ability are undoubtedly a great challenge. In this work, a series of pyridinium AIE PSs modified with benzophenone have been synthesized. A wide wavelength range of fluorescent materials was obtained by changing the conjugation and donor-acceptor strength. TPAPs5 has a significant advantage over similar compounds, and we have also identified the causes of high ROS generation and high photothermal conversion in terms of natural transition orbitals, excited state energy levels, ground-excited state configuration differences and recombination energy. Interestingly, migration of target sites was also found in biological imaging experiments, which also provided ideas for the design of double-targeted fluorescent probes. Therefore, the present work proposed an effective molecular design strategy for synergistic PDT and PTT therapy.
Collapse
Affiliation(s)
- Weidong Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yucheng Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
390
|
Zhang JL, Wang TT, Liang WB, Yuan R, Xiao DR. Rigidifying AIEgens in covalent organic framework nanosheets for electrochemiluminescence enhancement: TABE-PZ-CON as a novel emitter for microRNA-21 detection. Anal Chim Acta 2024; 1295:342321. [PMID: 38355235 DOI: 10.1016/j.aca.2024.342321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Enhancing electrochemiluminescence (ECL) properties of luminophores is a hot direction in the current ECL field. Herein, we found that covalent rigidification of the aggregation-induced emission luminogens (AIEgens) TABE (TABE = tetra-(4-aldehyde-(1,1-biphenyl))ethylene) into covalent organic framework nanosheets (TABE-PZ-CON, PZ = piperazine) could result in stronger ECL emission than those of TABE aggregates and TABE monomers. We termed the interesting phenomenon "covalent rigidification-triggered electrochemiluminescence (CRT-ECL) enhancement". The superior ECL performance of TABE-PZ-CON not only because massive TABE luminogens were covalently assembled into the rigid TABE-PZ-CON network, which limited the intramolecular motions of TABE and hampered the radiationless transition, but also because the ultrathin porous TABE-PZ-CON significantly reduced the transportation distance of ions, electrons, and coreactants, which enabled the electrochemical excitation of more TABE luminogens and thus enhanced the ECL efficiency. Bearing in mind the exceptional ECL performance of TABE-PZ-CON, it was utilized as a high-efficient ECL indicator in combination with the DNA walker and duplex-specific nuclease-assisted target recycling amplification strategies to design an "off-on" ECL biosensor for the ultrasensitive assay of microRNA-21, exhibiting a favorable response range (100 aM-1 nM) with an ultralow detection limit of 17.9 aM. Overall, this work offers a valid way to inhibit the intramolecular motions of AIEgens for ECL enhancement, which gives a new vision for building high-performance AIEgen-based ECL materials, thus offering more chances for assembling hypersensitive ECL biosensors.
Collapse
Affiliation(s)
- Jin-Ling Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China; Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, PR China
| | - Tian-Tian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
391
|
Kohlbecher R, Müller TJJ. A Rational Design of Electrochemically and Photophysically Tunable Triarylamine Luminophores by Consecutive (Pseudo-)Four-Component Syntheses. Chemistry 2024; 30:e202304119. [PMID: 38227421 DOI: 10.1002/chem.202304119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The concatenation of Suzuki coupling and two-fold Buchwald-Hartwig amination in sequentially palladium-catalyzed consecutive multicomponent syntheses paves a concise, convergent route to diversely functionalized para-biaryl-substituted triarylamines (p-bTAAs) from simple, readily available starting materials. An extensive library of p-bTAAs permits comprehensive investigations of their electronic properties by absorption and emission spectroscopy, cyclic voltammetry, and quantum chemical calculations, which contribute to a deep understanding of their electronic structure. The synthesized p-bTAAs exhibit tunable fluorescence from blue to yellow upon photonic excitation with quantum yields up to 98 % in solution and 92 % in the solid state. Furthermore, a pronounced bathochromic shift of the emission maxima by increasing solvent polarity indicates positive emission solvatochromism. Aggregation-induced enhanced emission (AIEE) in dimethyl sulfoxide (DMSO)/water mixtures causes the formation of intensely blue fluorescent aggregates. Cyclic voltammetry shows reversible first and second oxidations of p-bTAAs at low potentials, which are tunable by variation of the introduced para substituents. 3D Hammett plots resulting from the correlation of oxidation potentials and emission maxima with electronic substituent parameters emphasize the rational design of tailored p-bTAAs with predictable electrochemical and photophysical properties.
Collapse
Affiliation(s)
- Regina Kohlbecher
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätstrasse 1, 40225, Düsseldorf, Germany
| |
Collapse
|
392
|
Yang B, Yan S, Zhang Y, Feng F, Huang W. Stimuli-responsive luminescence from polar cyano/isocyano-derived luminophores via structural tailoring and self-assembly. Dalton Trans 2024; 53:5320-5341. [PMID: 38411983 DOI: 10.1039/d3dt04049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Polar cyano fragments and their isomeric isocyano counterparts have attracted great attention as stimuli-responsive luminescent materials in a wide range of fields including organic light-emitting diode devices, chemical fluorescent sensors, photoelectric semiconductors, anti-counterfeit products, etc., mainly because of their typical electron-deficient activity, noncovalent recognition ability, and variable coordination capacity. The electron-deficient and polar nature of these blocks have significant effects on the properties of the cyano/isocyano-based luminophore materials, especially concerning their condensed state-dependent electronic structures. Among them, donor-acceptor (D-A) derived unimolecular and co-assembled luminophores have attracted more attention because their large delocalized structures and noncovalent interaction recognition sites can rebuild the electronic transfer character in the aggregative state, thus endowing them with outstanding stimuli-responsive luminescent behavior via intermolecular and intramolecular charge transfer in polytropic morphologies. In this perspective paper, we give a brief introduction on stimuli-responsive organic and coordinated luminophores and the documented typical design concepts and applications in recent years. It is expected that this perspective article will not only summarize the recent developments of polar cyano/isocyano-derived luminophores and their coordination compounds via structural tailoring and self-assembly but also throw light on the future of the design of more sophisticated stimuli-responsive architectures and their versatile properties.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518005, P. R. China
| |
Collapse
|
393
|
Jagadhane KS, Birajdar NB, Kolekar GB, Anbhule PV. A Reversible Mechanochromic AIEgen Based on Triphenylamine for the Selective Detection of Vitamin B2 (Riboflavin) in Aqueous Media and Histotoxicity. Chem Res Toxicol 2024; 37:455-464. [PMID: 38452272 DOI: 10.1021/acs.chemrestox.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
(E)-Ethyl 2-cyano-3-(4'-(diphenyl amino)-[1,1'-biphenyl]-4-yl) acrylate (RSJ) is a novel luminogen based on triphenylamine. It has been fully synthesized and characterized, exhibiting an incredible photophysical phenomenon known as aggregation-induced emission (AIE). This work describes a fluorescent sensor that detects vitamin B2 in mixed aqueous media with high selectivity and a low limit of detection as well as a mechanism for reversible mechanochromic luminescence. Moreover, the molecule was validated for its nontoxicity in water using a histotoxicological study. Fish subjected to two different concentrations of the "novel luminogen" that displayed photophysical phenomena during sensing of vitamin B2 (riboflavin) in mixed aqueous media did not exhibit any significant differences in the structural makeup of their liver, kidney, gills, brain, and muscle tissues when compared with the control group.
Collapse
Affiliation(s)
- Kishor S Jagadhane
- Department of Chemistry, Yashwantrao Chavan College Science, Karad, Maharashtra 415124, India
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Nagesh B Birajdar
- Department of Zoology, Vishwasrao Naik Arts, Commerce and Baba Naik Science Mahavidyalaya Shirala, Sangli, Maharashtra 415408, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Prashant V Anbhule
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| |
Collapse
|
394
|
Nongthombam GS, Barman D, Iyer PK. Through-Space Charge-Transfer-Based Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence in Fused 2H-Chromene Coumarin Congener Generating ROS for Antiviral (SARS-CoV-2) Approach. ACS APPLIED BIO MATERIALS 2024; 7:1899-1909. [PMID: 38417048 DOI: 10.1021/acsabm.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Harvesting triplets in metal-free organic frameworks at ambient conditions and finding appropriate applications are a formidable challenge. Herein, we report a donor-acceptor-type system composed of carbazole and fused 2H-chromene coumarin derivative, exhibiting triplet harvesting thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) behavior in solid and aggregated states, respectively. The presence of an sp3 linker and the introduction of a selected cyano/ester group in the acceptor result in twisted D-A architectures, further assisting in the suppression of nonradiative deactivation via through-space charge transfer and H-bonding interactions, fulfilling the stringent requirements for the simultaneous process of TADF and AIE, successively. Experimental and theoretical results revealed that the participation of the singlet/triplet charge transfer (1CT/3CT) and the higher lying hybrid triplet locally excited charge-transfer state (3LE + 3CT) leads to an efficient TADF. Both of the synthesized AIE-TADF congeners actively participated in the generation of reactive oxygen species (ROS) in nanoaggregate forms and were further explored computationally for antiviral prospects as inhibitors of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
| | - Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
395
|
Li Z, Liu K, Wang Y, Han T, Han H, Zhang L, Li Y. Schiff base fluorescent sensor with aggregation induced emission characteristics for the sensitive and specific Fe 3+ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123809. [PMID: 38159381 DOI: 10.1016/j.saa.2023.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
An aggregation induced emission based compound ((E)-4-((2-hydroxy-5-methoxybenzylidene)amino)benzoic acid) was synthesized through facile Schiff base condensation and characterized by various spectral techniques. The as-prepared compound represented a typical aggregation induced emission behavior in aqueous solution and exploited as a turn-off fluorescent sensor for Fe3+ detection in THF-H2O system (3:7, v/v) with high sensitivity and selectivity. The mechanism of the fluorescence quenching was intensively studied, which was attributed to both dynamic quenching and inner filter effect. The fluorescence probe displayed a highly broad dynamic response range (0.5-500 μM) for selective detection of Fe3+ with a limit of detection of 0.079 μM. The proposed method was successfully employed for detection and quantification of Fe3+ in human urine samples and proved to have potential for practical applications in biological field.
Collapse
Affiliation(s)
- Ziyan Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Kuo Liu
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yuhui Wang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Tianyu Han
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Lan Zhang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yaping Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China.
| |
Collapse
|
396
|
Nong XM, Gu A, Zhai S, Li J, Yue ZY, Li MY, Liu Y. 1,3-diene-based AIEgens: Stereoselective synthesis and applications. iScience 2024; 27:109223. [PMID: 38439978 PMCID: PMC10910282 DOI: 10.1016/j.isci.2024.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
In recent years, significant advancements have been made in the synthesis and application of 1,3-dienes. This specific structural motif has garnered significant attention from researchers in materials science and biology due to its unique aggregation-induced emission (AIE) properties and extensive conjugation systems. The luminescent characteristics of these compounds are notably influenced by the geometry of the two double bonds. Therefore, it is essential to consolidate stereoselective synthetic strategies for 1,3-dienes. This comprehensive review seeks to elucidate the diverse techniques employed to attain stereo-control in the synthesis of 1,3-diene-based AIE luminogens (AIEgens). Particular emphasis is placed on comprehending the determinants of stereoselectivity and exploring the array of substrates amenable to these methods. Furthermore, the review underscores the AIE properties exhibited by these compounds and their extensive utility in organic light-emitting diodes (OLEDs), stimuli-responsive materials, sensors, bioimaging, and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
397
|
Wang Z, Zhou Y, Hao Y, Zhao Z, Gao A, Ma H, Zhang P, Shen Q, Xu R, Xu Y, Dang D, Meng L. One Stone, Two Birds: High-Brightness Aggregation-Induced Emission Photosensitizers for Super-Resolution Imaging and Photodynamic Therapy. NANO LETTERS 2024; 24:3005-3013. [PMID: 38416810 DOI: 10.1021/acs.nanolett.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yu Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ying Hao
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Zhiqin Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Anran Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Qifei Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ruohan Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
398
|
Du X, Liu Y, Zhao D, Gleeson HF, Luo D. A wireless fluorescent flexible force sensor based on aggregation-induced emission doped liquid crystal elastomers. SOFT MATTER 2024; 20:2562-2567. [PMID: 38410086 DOI: 10.1039/d3sm01715j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Flexible strain sensors have drawn a lot of interest in various applications including human mobility tracking, rehabilitation/personalized health monitoring, and human-machine interaction, but suffer from interference of electromagnetic (EM). To overcome the EM interference, flexible force sensors without sensitive electronic elements have been developed, with drawbacks of bulky modules that hinders their applications in remote measurement with power-free environment. Therefore, it is highly desirable to fabricate a compact wireless flexible force sensor but it is still a challenge. Here, we demonstrate a fluorescent flexible force sensor based on aggregation-induced emission (AIE) doped liquid crystal elastomer (LCE) experimentally. The proposed force sensor film can be used to measure force through the variation of fluorescent intensity induced by the extension or contraction of LCE film, which leads to reduce or increase of the aggregation degree of AIE molecules within. This compact wireless force sensor features lightweight, low-cost, high flexibility, passivity and anti-EM interference, which also enables the naked eye observation. The proposed sensor provides inspiration and a platform for a new concept of non-contact detection, showing application potential in human-friendly interactive electronics and remote-control integration platform.
Collapse
Affiliation(s)
- Xiaoxue Du
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Dongyu Zhao
- School of Chemistry and Environment, Beihang University, Beijing, 100191, China.
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
399
|
Zeng Y, Xu T, Chen W, Fang J, Chen D. Quasi-Chromophores Segregated by Single-Chain Nanoparticles of Fluorinated Zwitterionic Random Copolymers Showing Remarkably Enhanced Fluorescence Emission Capable of Fluorescent Cell Imaging. Macromol Rapid Commun 2024:e2400029. [PMID: 38477018 DOI: 10.1002/marc.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Organic and polymer fluorescent nanomaterials are a frontier research focus. Here in this work, a series of fluorinated zwitterionic random copolymers end-attached with a quasi-chromophoric group of pyrene or tetraphenylethylene (TPE) are well synthesized via atom transfer radical polymerization with activators regenerated by electron transfer (ARGET ATRP). Those random copolymers with total degree of polymerization 100 or 200 are able to produce fluorescent single-chain nanoparticles (SCNPs) through intra-chain self-folding assembly with quite uniform diameters in the range of 10-20 nm as characterized by dynamic light scattering and transmission electron microscopy. By virtue of the segregation or confinement effect, both SCNPs functionalized with pyrene or TPE group are capable of emitting fluorescence, with pyrene tethered SCNPs exhibiting stronger fluorescence emission reaching the highest quantum yield ≈20%. Moreover, such kind of fluorescent SCNPs manifest low cytotoxicity and good cell imaging performance for Hela cells. The creation of fluorescent SCNPs through covalently attached one quasi-chromophore to the end of one fluorinated zwitterionic random copolymer provides an alternative strategy for preparing polymeric luminescence nanomaterials, promisingly serving as a new type of fluorescent nanoprobes for biological imaging applications.
Collapse
Affiliation(s)
- Yongming Zeng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianchi Xu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weizhi Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianglin Fang
- Center for Materials Analysis, Nanjing University, Nanjing, 210093, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
400
|
Segawa S, Wu J, Kwok RTK, Wong TTW, He X, Tang BZ. Co-aggregation as A Simple Strategy for Preparing Fluorogenic Tetrazine Probes with On-Demand Fluorogen Selection. Angew Chem Int Ed Engl 2024; 63:e202313930. [PMID: 38055202 DOI: 10.1002/anie.202313930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Life science has progressed with applications of fluorescent probes-fluorophores linked to functional units responding to biological events. To meet the varied demands across experiments, simple organic reactions to connect fluorophores and functional units have been developed, enabling the on-demand selection of fluorophore-functional unit combinations. However, organic synthesis requires professional equipment and skills, standing as a daunting task for life scientists. In this study, we present a simple, fast, and convenient strategy for probe preparation: co-aggregation of hydrophobic molecules. We focused on tetrazine-a difficult-to-prepare yet useful functional unit that provides effective bioorthogonal reactivity and strong fluorogenicity. Simply mixing the tetrazine molecules and aggregation-induced emission (AIE) luminogens in water, co-aggregation is induced, and the emission of AIE luminogens is quenched. Subsequent click reaction bioorthogonally turns on the emission, identifying these coaggregates as fluorogenic probes. Thanks to this bioorthogonal fluorogenicity, we established a new time-gated fluorescence bioimaging technique to distinguish overlapping emission signals, enabling multi-organelle imaging with two same-color fluorophores. Our study showcases the potential of this co-aggregation method for the on-demand preparation of fluorescent probes as well as protocols and molecular design principles in this approach, offering an effective solution to evolving needs in life science research.
Collapse
Affiliation(s)
- Shinsuke Segawa
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Jiajie Wu
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Terence T W Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|