351
|
Abstract
Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. Osmotic stress activates several protein kinases including mitogen-activated kinases, which may mediate osmotic homeostasis and/or detoxification responses. A number of phospholipid systems are activated by osmotic stress, generating a diverse array of messenger molecules, some of which may function upstream of the osmotic stress-activated protein kinases. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.
Collapse
Affiliation(s)
- Jian-Kang Zhu
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
352
|
Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. THE PLANT CELL 2002; 14 Suppl:S165-S183. [PMID: 12045276 DOI: 10.1105/tpc.000596.s166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Liming Xiong
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
353
|
Abstract
Abscisic acid (ABA) is a plant hormone that plays important roles during many phases of the plant life cycle, including seed development and dormancy, and in plant responses to various environmental stresses. Because many of these physiological processes are correlated with endogenous ABA levels, the regulation of ABA biosynthesis is a key element facilitating the elucidation of these physiological characteristics. Recent studies on the identification of genes encoding enzymes involved in ABA biosynthesis have revealed details of the main ABA biosynthetic pathway. At the same time, the presence of gene families and their respective organ-specific expression are indicative of the complex mechanisms governing the regulation of ABA biosynthesis in response to plant organ and/or environmental conditions. There have been recent advances in the study of ABA biosynthesis and new insights into the regulation of ABA biosynthesis in relation to physiological phenomena.
Collapse
Affiliation(s)
- Mitsunori Seo
- Dept of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, 192-0397, Tokyo, Japan.
| | | |
Collapse
|
354
|
Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. THE PLANT CELL 2002; 14 Suppl:S165-83. [PMID: 12045276 PMCID: PMC151254 DOI: 10.1105/tpc.000596] [Citation(s) in RCA: 1235] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2001] [Accepted: 02/08/2002] [Indexed: 05/17/2023]
Affiliation(s)
| | | | - Jian-Kang Zhu
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
355
|
Abstract
Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. Osmotic stress activates several protein kinases including mitogen-activated kinases, which may mediate osmotic homeostasis and/or detoxification responses. A number of phospholipid systems are activated by osmotic stress, generating a diverse array of messenger molecules, some of which may function upstream of the osmotic stress-activated protein kinases. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.
Collapse
Affiliation(s)
- Jian-Kang Zhu
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
356
|
Suzuki M, Kao CY, Cocciolone S, McCarty DR. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:409-18. [PMID: 11737778 DOI: 10.1046/j.1365-313x.2001.01165.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The maize Vp1 gene and abi3 gene of Arabidopsis are believed to be orthologs based on similarities of the mutant phenotypes and amino acid sequence conservation. Here we show that expression of VP1 driven by the 35S promoter can partially complement abi3-6, a deletion mutant allele of abi3. The visible phenotype of seed produced from VP1 expression in the abi3 mutant background is nearly indistinguishable from wild type. VP1 fully restores abscisic acid (ABA) sensitivity of abi3 during seed germination and suppresses the early flowering phenotype of abi3. The temporal regulation of C1-beta-glucuronidase (GUS) and chlorophyll a/b binding protein (cab3)-GUS reporter genes in developing seeds of 35S-VP1 lines were similar to wild type. On the other hand, two qualitative differences are observed between the 35S-VP1 line and wild type. The levels of CRC and C1-GUS expression are markedly lower in the seeds of 35S-VP1 lines than in wild type suggesting incomplete complementation of gene activation functions. Similar to ectopic expression of ABI3 (Parcy et al., 1994), ectopic expression of VP1 in vegetative tissue enhances ABA inhibition of root growth. In addition, 35S-VP1 confers strong ABA inducible expression of the normally seed-specific cruciferin C (CRC) gene in leaves. In contrast, ectopic ABA induction of C1-GUS is restricted to a localized region of the root elongation zone. The ABA-dependent C1-GUS expression expanded to a broader area in the root tissues treated with exogenous application of auxin. Interestingly, auxin-induced lateral root formation is completely suppressed by ABA in 35S-VP1 plants but not in wild type. These results indicate VP1 mediates a novel interaction between ABA and auxin signaling that results in developmental arrest and altered patterns of gene expression.
Collapse
Affiliation(s)
- M Suzuki
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
357
|
Sang Y, Zheng S, Li W, Huang B, Wang X. Regulation of plant water loss by manipulating the expression of phospholipase Dalpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:135-44. [PMID: 11722757 DOI: 10.1046/j.1365-313x.2001.01138.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phospholipase D (PLD) has been implicated in various processes, including signal transduction, membrane trafficking, and membrane degradation. Multiple forms of PLD with distinct biochemical properties have been described in the cell. In Arabidopsis, PLDalpha and PLDgamma, but not PLDbeta, were detected in guard cells, and antisense suppression resulted in a specific loss of PLDalpha. The abrogation of PLDalpha rendered plants less sensitive to abscisic acid and impaired stomatal closure induced by water deficits. PLDalpha-depleted plants exhibited accelerated transpirational water loss and a decreased ability to tolerate drought stress. Overexpression of PLDalpha enhanced the leaf's sensitivity to abscisic acid. These findings provide molecular and physiological evidence that PLDalpha plays a crucial role in regulating stomatal movement and plant-water status.
Collapse
Affiliation(s)
- Y Sang
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
358
|
Tan BC, Cline K, McCarty DR. Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:373-82. [PMID: 11576422 DOI: 10.1046/j.1365-313x.2001.01102.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a key regulator of seed dormancy and plant responses to environmental challenges. ABA is synthesized via an oxidative cleavage of 9-cis epoxy-carotenoids, the first committed and key regulatory step in the ABA biosynthetic pathway. Vp14 of maize encodes an epoxy-carotenoid dioxygenase that is soluble when expressed in E. coli. An important goal has been to determine how the soluble VP14 protein is targeted to epoxy-carotenoid substrates that are located in the thylakoid and envelope membranes of chloroplasts and other plastids. Using an in vitro chloroplast import assay, we have shown that VP14 is imported into chloroplasts with cleavage of a short stroma-targeting domain. The mature VP14 exists in two forms, one which is soluble in stroma and the other bound to thylakoid membranes. Analysis of a series of truncated VP14 mutants mapped the membrane targeting signal to the 160 amino acid N-terminal sequence. A putative amphipathic alpha-helix within this region is essential, but not sufficient, for the membrane targeting. Either deletion of or insertion of helix breaking residues into this region abolished the membrane binding, whereas a chimeric protein carrying just the amphipathic region fused with bacterial glutathione S-transferase failed to associate with the thylakoid membrane. The membrane-bound VP14 was partially resistant to chaotropic washes such as 0.1 M Na2CO3 (pH 11.5) and 6 M urea. Unlabelled recombinant VP14 inhibited the tight binding of imported VP14, suggesting that VP14 is associated with specific components of the thylakoid membrane.
Collapse
Affiliation(s)
- B C Tan
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
359
|
Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. THE PLANT CELL 2001; 13:2063-2083. [PMID: 11549764 DOI: 10.1105/tpc.13.9.2063] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.
Collapse
Affiliation(s)
- L Xiong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
360
|
Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. THE PLANT CELL 2001; 13:2063-2083. [PMID: 11549764 DOI: 10.2307/3871428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.
Collapse
Affiliation(s)
- L Xiong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
361
|
Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. THE PLANT CELL 2001; 13:2063-83. [PMID: 11549764 PMCID: PMC139452 DOI: 10.1105/tpc.010101] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 06/18/2001] [Indexed: 05/19/2023]
Abstract
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.
Collapse
Affiliation(s)
- L Xiong
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
362
|
Schwartz SH, Qin X, Zeevaart JA. Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 2001; 276:25208-11. [PMID: 11316814 DOI: 10.1074/jbc.m102146200] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant hormone abscisic acid is derived from the oxidative cleavage of a carotenoid precursor. Enzymes that catalyze this carotenoid cleavage reaction, nine-cis epoxy-carotenoid dioxygenases, have been identified in several plant species. Similar proteins, whose functions are not yet known, are present in diverse organisms. A putative cleavage enzyme from Arabidopsis thaliana contains several highly conserved motifs found in other carotenoid cleavage enzymes. However, the overall homology with known abscisic acid biosynthetic enzymes is low. To determine the biochemical function of this protein, it was expressed in Escherichia coli and used for in vitro assays. The recombinant protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions. In most instances, the enzyme cleaves the substrate symmetrically to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrate. Based upon sequence similarity, orthologs of this gene are present throughout the plant kingdom. A similar protein in beans catalyzes the same reaction in vitro. The characterization of these activities offers the potential to synthesize a variety of interesting, natural products and is the first step in determining the function of this gene family in plants.
Collapse
Affiliation(s)
- S H Schwartz
- Department of Energy--Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
363
|
Milborrow BV. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2001. [PMID: 11432933 DOI: 10.1093/jexbot/52.359.1145] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pathway of biosynthesis of abscisic acid (ABA) can be considered to comprise three stages: (i) early reactions in which small phosphorylated intermediates are assembled as precursors of (ii) intermediate reactions which begin with the formation of the uncyclized C40 carotenoid phytoene and end with the cleavage of 9'-cis-neoxanthin (iii) to form xanthoxal, the C15 skeleton of ABA. The final phase comprising C15 intermediates is not yet completely defined, but the evidence suggests that xanthoxal is first oxidized to xanthoxic acid by a molybdenum-containing aldehyde oxidase and this is defective in the aba3 mutant of Arabidopsis and present in a 1-fold acetone precipitate of bean leaf proteins. This oxidation precludes the involvement of AB-aldehyde as an intermediate. The oxidation of the 4'-hydroxyl group to the ketone and the isomerization of the 1',2'-epoxy group to the 1'-hydroxy-2'-ene may be brought about by one enzyme which is defective in the aba2 mutant and is present in the 3-fold acetone fraction of bean leaves. Isopentenyl diphosphate (IPP) is now known to be derived by the pyruvate-triose (Methyl Erythritol Phosphate, MEP) pathway in chloroplasts. (14C)IPP is incorporated into ABA by washed, intact chloroplasts of spinach leaves, but (14C)mevalonate is not, consequently, all three phases of biosynthesis of ABA occur within chloroplasts. The incorporation of labelled mevalonate into ABA by avocado fruit and orange peel is interpreted as uptake of IPP made in the cytoplasm, where it is the normal precursor of sterols, and incorporated into carotenoids after uptake by a carrier in the chloroplast envelope. An alternative bypass pathway becomes more important in aldehyde oxidase mutants, which may explain why so many wilty mutants have been found with this defect. The C-1 alcohol group is oxidized, possibly by a mono-oxygenase, to give the C-1 carboxyl of ABA. The 2-cis double bond of ABA is essential for its biological activity but it is not known how the relevant trans bond in neoxanthin is isomerized.
Collapse
Affiliation(s)
- B V Milborrow
- School of Biochemistry and Molecular Genetics, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
364
|
Kiefer C, Hessel S, Lampert JM, Vogt K, Lederer MO, Breithaupt DE, von Lintig J. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem 2001; 276:14110-6. [PMID: 11278918 DOI: 10.1074/jbc.m011510200] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, symmetric versus asymmetric cleavage of beta-carotene in the biosynthesis of vitamin A and its derivatives has been controversially discussed. Recently we have been able to identify a cDNA encoding a metazoan beta,beta-carotene-15,15'-dioxygenase from the fruit fly Drosophila melanogaster. This enzyme catalyzes the key step in vitamin A biosynthesis, symmetrically cleaving beta-carotene to give two molecules of retinal. Mutations in the corresponding gene are known to lead to a blind, vitamin A-deficient phenotype. Orthologs of this enzyme have very recently been found also in vertebrates and molecularly characterized. Here we report the identification of a cDNA from mouse encoding a second type of carotene dioxygenase catalyzing exclusively the asymmetric oxidative cleavage of beta-carotene at the 9',10' double bond of beta-carotene and resulting in the formation of beta-apo-10'-carotenal and beta-ionone, a substance known as a floral scent from roses, for example. Besides beta-carotene, lycopene is also oxidatively cleaved by the enzyme. The deduced amino acid sequence shares significant sequence identity with the beta,beta-carotene-15,15'-dioxygenases, and the two enzyme types have several conserved motifs. To establish its occurrence in different vertebrates, we then attempted and succeeded in cloning cDNAs encoding this new type of carotene dioxygenase from human and zebrafish as well. As regards their possible role, the apocarotenals formed by this enzyme may be the precursors for the biosynthesis of retinoic acid or exert unknown physiological effects. Thus, in contrast to Drosophila, in vertebrates both symmetric and asymmetric cleavage pathways exist for carotenes, revealing a greater complexity of carotene metabolism.
Collapse
Affiliation(s)
- C Kiefer
- University of Freiburg, Instiute of Biology I, Animal Physiology and Neurobiology, Hauptstrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
365
|
Redmond TM, Gentleman S, Duncan T, Yu S, Wiggert B, Gantt E, Cunningham FX. Identification, expression, and substrate specificity of a mammalian beta-carotene 15,15'-dioxygenase. J Biol Chem 2001; 276:6560-5. [PMID: 11092891 DOI: 10.1074/jbc.m009030200] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified from mouse the first mammalian beta-carotene 15,15'-dioxygenase (beta-CD), a crucial enzyme in development and metabolism that governs the de novo entry of vitamin A from plant-derived precursors. beta-CD is related to the retinal pigment epithelium-expressed protein RPE65 and belongs to a diverse family that includes the plant 9-cis-epoxycarotenoid dioxygenase and bacterial lignostilbene dioxygenases. beta-CD expression in Escherichia coli cells engineered to produce beta-carotene led to the accumulation of all-trans-retinal at the expense of beta-carotene, confirming that beta-CD catalyzed the central cleavage of this vitamin A precursor. Purified recombinant beta-CD protein cleaves beta-carotene in vitro with a V(max) of 36 pmol of retinal/mg of enzyme/min and a K(m) of 6 microm. Non-provitamin A carotenoids were also cleaved, although with much lower activity. By Northern analysis, a 2.4-kilobase (kb) message was observed in liver, kidney, small intestine, and testis, tissues important in retinoid/carotenoid metabolism. This message encoded a 63-kDa cytosolic protein expressed in these tissues. A shorter transcript of 1.8 kb was found in testis and skin. Developmentally, the 2.4-kb mRNA was abundant at embryonic day 7, with lower expression at embryonic days 11, 13, and 15, suggesting a critical role for this enzyme in gastrulation. Identification of beta-CD in an accessible model organism will create new opportunities to study vitamin A metabolism.
Collapse
Affiliation(s)
- T M Redmond
- Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
366
|
Rai SP, Luthra R, Gupta MM, Kumar S. Pleiotropic morphological and abiotic stress resistance phenotypes of the hyper-abscisic acid producing Abo- mutant in the periwinkle Catharanthus roseus. J Biosci 2001; 26:57-70. [PMID: 11255514 DOI: 10.1007/bf02708981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The pleiotropic properties of a abo abo (Abo-) gamma-ray induced mutant of Catharanthus roseus cv. Nirmal, selected among the M2 generation seeds for ability to germinate at 45 degrees C, are described. The mutant produced seeds possessing tricotyledonous embryos, unlike the typically dicotyledonous embryos present in the wild type Abo+ seeds. In comparison to Abo+ adults, the mutant plants had short stature and lanceolate leaves. The vascular bundles in the leaves and stem were poorly developed. Leaf surfaces were highly trichomatous, epidermal, cortex and mesophyll cells were small sized and a large majority of stomata were closed. Besides high temperature, the mutant was salinity and water-stress tolerant. The abscisic acid (ABA) content in the leaves was about 500-fold higher. The genetic lesion abo responsible for the above pleiotropy was recessive and inherited in Mendelian fashion. The seedlings and adult plants of the mutant accumulated higher proline than Abo+ plants. The phenotypes of abo abo mutants permitted the conclusions that (i) the mutant synthesizes ABA constitutively, (ii) both ABA-dependent and ABA independent pathways for proline and betaine accumulation are functional in the mutant, and (iii) cell division, elongation and differentiation processes in embryo and adult plant stages are affected in the mutant
Collapse
Affiliation(s)
- S P Rai
- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226 015, India
| | | | | | | |
Collapse
|
367
|
Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. PLANT PHYSIOLOGY 2001; 125:1248-57. [PMID: 11244106 PMCID: PMC65605 DOI: 10.1104/pp.125.3.1248] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Revised: 12/21/2000] [Accepted: 12/26/2000] [Indexed: 05/17/2023]
Abstract
The rice (Oryza sativa) retrotransposon Tos17 is one of a few active retrotransposons in plants and its transposition is activated by tissue culture. Here, we present the characterization of viviparous mutants of rice induced by tissue culture to demonstrate the feasibility of the use of retrotransposon Tos17 as an endogenous insertional mutagen and cloning of the tagged gene for forward genetics in unraveling the gene function. Two mutants were shown to be caused by the insertion of Tos17. Osaba1, a strong viviparous mutant with wilty phenotype, displayed low abscisic acid level and almost no further increase in its levels upon drought. The mutant is shown to be impaired in the epoxidation of zeaxanthin. On the other hand, Ostatc, a mutant with weak phenotype, exhibited the pale green phenotype and slight increase in abscisic acid levels upon drought. Deduced amino acids of the causative genes of Osaba1 and Ostatc manifested a significantly high homology with zeaxanthin epoxidase isolated from other plant species and with bacterial Sec-independent translocase TATC protein, respectively. This is the first example of transposon tagging in rice.
Collapse
Affiliation(s)
- G K Agrawal
- Department of Molecular Genetics, National Institute of Agrobiological Resources, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
368
|
Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation invivo. Proc Natl Acad Sci U S A 2001. [PMID: 11158606 PMCID: PMC14720 DOI: 10.1073/pnas.031576398] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual pigments (rhodopsins) are composed of a chromophore (vitamin A derivative) bound to a protein moiety embedded in the retinal membranes. Animals cannot synthesize the visual chromophore de novo but rely on the uptake of carotenoids, from which vitamin A is formed enzymatically by oxidative cleavage. Despite its importance, the enzyme catalyzing the key step in vitamin A formation resisted molecular analyses until recently, when the successful cloning of a cDNA encoding an enzyme with beta,beta-carotene-15,15'-dioxygenase activity from Drosophila was reported. To prove its identity with the key enzyme for vitamin A formation in vivo, we analyzed the blind Drosophila mutant ninaB. In two independent ninaB alleles, we found mutations in the gene encoding the beta,beta-carotene-15,15'-dioxygenase. These mutations lead to a defect in vitamin A formation and are responsible for blindness of these flies.
Collapse
|
369
|
von Lintig J, Dreher A, Kiefer C, Wernet MF, Vogt K. Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation invivo. Proc Natl Acad Sci U S A 2001; 98:1130-5. [PMID: 11158606 PMCID: PMC14720 DOI: 10.1073/pnas.98.3.1130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Accepted: 12/06/2000] [Indexed: 11/18/2022] Open
Abstract
Visual pigments (rhodopsins) are composed of a chromophore (vitamin A derivative) bound to a protein moiety embedded in the retinal membranes. Animals cannot synthesize the visual chromophore de novo but rely on the uptake of carotenoids, from which vitamin A is formed enzymatically by oxidative cleavage. Despite its importance, the enzyme catalyzing the key step in vitamin A formation resisted molecular analyses until recently, when the successful cloning of a cDNA encoding an enzyme with beta,beta-carotene-15,15'-dioxygenase activity from Drosophila was reported. To prove its identity with the key enzyme for vitamin A formation in vivo, we analyzed the blind Drosophila mutant ninaB. In two independent ninaB alleles, we found mutations in the gene encoding the beta,beta-carotene-15,15'-dioxygenase. These mutations lead to a defect in vitamin A formation and are responsible for blindness of these flies.
Collapse
Affiliation(s)
- J von Lintig
- Albert-Ludwig University of Freiburg, Institute for Biology I, Neurobiology and Animal Physiology, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
370
|
Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A 2000; 97:12908-13. [PMID: 11050171 PMCID: PMC18863 DOI: 10.1073/pnas.220426197] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abscisic acid (ABA) is a plant hormone involved in seed development and germination and in responses to various environmental stresses. The last step of ABA biosynthesis involves oxidation of abscisic aldehyde, and aldehyde oxidase (EC ) is thought to catalyze this reaction. An aldehyde oxidase isoform, AOdelta, encoded by AAO3, one of four Arabidopsis aldehyde oxidase genes (AAO1, AAO2, AAO3, and AAO4), is the most likely candidate for the enzyme, because it can efficiently catalyze the oxidation of abscisic aldehyde to ABA. Here, we report the isolation and characterization of an ABA-deficient Arabidopsis mutant that maps at the AAO3 locus. The mutant exhibits a wilty phenotype in rosette leaves, but seed dormancy is not affected. ABA levels were significantly reduced in the mutant leaves, explaining the wilty phenotype in rosettes, whereas the level in the mutant seeds was less reduced. No AOdelta activity could be detected in the rosette leaves of the mutant. Sequence data showed that the mutant contains a G to A substitution in the AAO3 gene. The mutation causes incorrect splicing of the ninth intron of AAO3 mRNA. We thus conclude that the ABA-deficient mutant is impaired in the AAO3 gene and that the gene product, AOdelta, is an aldehyde oxidase that catalyzes the last step of ABA biosynthesis in Arabidopsis, specifically in rosette leaves. Other aldehyde oxidases may be involved in ABA biosynthesis in other organs.
Collapse
Affiliation(s)
- M Seo
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A 2000; 97:12908-12913. [PMID: 11050171 DOI: 10.1073/pnas.22042697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone involved in seed development and germination and in responses to various environmental stresses. The last step of ABA biosynthesis involves oxidation of abscisic aldehyde, and aldehyde oxidase (EC ) is thought to catalyze this reaction. An aldehyde oxidase isoform, AOdelta, encoded by AAO3, one of four Arabidopsis aldehyde oxidase genes (AAO1, AAO2, AAO3, and AAO4), is the most likely candidate for the enzyme, because it can efficiently catalyze the oxidation of abscisic aldehyde to ABA. Here, we report the isolation and characterization of an ABA-deficient Arabidopsis mutant that maps at the AAO3 locus. The mutant exhibits a wilty phenotype in rosette leaves, but seed dormancy is not affected. ABA levels were significantly reduced in the mutant leaves, explaining the wilty phenotype in rosettes, whereas the level in the mutant seeds was less reduced. No AOdelta activity could be detected in the rosette leaves of the mutant. Sequence data showed that the mutant contains a G to A substitution in the AAO3 gene. The mutation causes incorrect splicing of the ninth intron of AAO3 mRNA. We thus conclude that the ABA-deficient mutant is impaired in the AAO3 gene and that the gene product, AOdelta, is an aldehyde oxidase that catalyzes the last step of ABA biosynthesis in Arabidopsis, specifically in rosette leaves. Other aldehyde oxidases may be involved in ABA biosynthesis in other organs.
Collapse
Affiliation(s)
- M Seo
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. PLANT PHYSIOLOGY 2000; 124:1437-48. [PMID: 11080318 PMCID: PMC59240 DOI: 10.1104/pp.124.3.1437] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2000] [Accepted: 07/25/2000] [Indexed: 05/18/2023]
Abstract
The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue.
Collapse
Affiliation(s)
- H Hansen
- BASF Agricultural Center Limburgerhof, D-67114 Limburgerhof, Germany
| | | |
Collapse
|
373
|
Affiliation(s)
- D R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA.
| | | |
Collapse
|
374
|
Chernys JT, Zeevaart JA. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. PLANT PHYSIOLOGY 2000; 124:343-53. [PMID: 10982448 PMCID: PMC59148 DOI: 10.1104/pp.124.1.343] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Accepted: 05/19/2000] [Indexed: 05/18/2023]
Abstract
Avocado (Persea americana Mill. cv Lula) is a climacteric fruit that exhibits a rise in ethylene as the fruit ripens. This rise in ethylene is followed by an increase in abscisic acid (ABA), with the highest level occurring just after the peak in ethylene production. ABA is synthesized from the cleavage of carotenoid precursors. The cleavage of carotenoid precursors produces xanthoxin, which can subsequently be converted into ABA via ABA-aldehyde. Indirect evidence indicates that the cleavage reaction, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED), is the regulatory step in ABA synthesis. Three genes encoding NCED cleavage-like enzymes were cloned from avocado fruit. Two genes, PaNCED1 and PaNCED3, were strongly induced as the fruit ripened. The other gene, PaNCED2, was constitutively expressed during fruit ripening, as well as in leaves. This gene lacks a predicted chloroplast transit peptide. It is therefore unlikely to be involved in ABA biosynthesis. PaNCED1 was induced by water stress, but expression of PaNCED3 was not detectable in dehydrated leaves. Recombinant PaNCED1 and PaNCED3 were capable of in vitro cleavage of 9-cis-xanthophylls into xanthoxin and C(25)-apocarotenoids, but PaNCED2 was not. Taken together, the results indicate that ABA biosynthesis in avocado is regulated at the level of carotenoid cleavage.
Collapse
Affiliation(s)
- J T Chernys
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | |
Collapse
|
375
|
Taylor IB, Burbidge A, Thompson AJ. Control of abscisic acid synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1563-74. [PMID: 11006307 DOI: 10.1093/jexbot/51.350.1563] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The abscisic acid (ABA) biosynthetic pathway involves the formation of a 9-cis-epoxycarotenoid precursor. Oxidative cleavage then results in the formation of xanthoxin, which is subsequently converted to ABA. A number of steps in the pathway may control ABA synthesis, but particular attention has been given to the enzyme involved in the oxidative cleavage reaction, i.e. 9-cis-epoxycarotenoid dioxygenase (NCED). Cloning of a gene encoding this enzyme in maize was first reported in 1997. Mapping and DNA sequencing studies indicated that a wilty tomato mutant was due to a deletion in the gene encoding an enzyme with a very similar amino acid sequence to this maize NCED. The potential use of this gene in altering ABA content will be discussed together with other genes encoding ABA biosynthetic enzymes.
Collapse
Affiliation(s)
- I B Taylor
- Plant Science Division, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| | | | | |
Collapse
|
376
|
Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:363-74. [PMID: 10929129 DOI: 10.1046/j.1365-313x.2000.00789.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tomato mutant notabilis has a wilty phenotype as a result of abscisic acid (ABA) deficiency. The wild-type allele of notabilis, LeNCED1, encodes a putative 9-cis-epoxycarotenoid dioxygenase (NCED) with a potential regulatory role in ABA biosynthesis. We have created transgenic tobacco plants in which expression of the LeNCED1 coding region is under tetracycline-inducible control. When leaf explants from these plants were treated with tetracycline, NCED mRNA was induced and bulk leaf ABA content increased by up to 10-fold. Transgenic tomato plants were also produced containing the LeNCED1 coding region under the control of one of two strong constitutive promoters, either the doubly enhanced CaMV 35S promoter or the chimaeric 'Super-Promoter'. Many of these plants were wilty, suggesting co-suppression of endogenous gene activity; however three transformants displayed a common, heritable phenotype that could be due to enhanced ABA biosynthesis, showing increased guttation and seed dormancy. Progeny from two of these transformants were further characterized, and it was shown that they also exhibited reduced stomatal conductance, increased NCED mRNA and elevated seed ABA content. Progeny of one transformant had significantly higher bulk leaf ABA content compared to the wild type. The increased seed dormancy was reversed by addition of the carotenoid biosynthesis inhibitor norflurazon. These data provide strong evidence that NCED is indeed a key regulatory enzyme in ABA biosynthesis in leaves, and demonstrate for the first time that plant ABA content can be increased through manipulating NCED.
Collapse
Affiliation(s)
- A J Thompson
- Horticulture Research International, Wellesbourne, Warwickshire CV35 9EF, UK.
| | | | | | | | | | | | | | | |
Collapse
|
377
|
Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:481-8. [PMID: 10972874 DOI: 10.1046/j.1365-313x.2000.00812.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Abscisic acid (ABA) is a plant hormone involved in seed development and responses to various environmental stresses. Oxidation of abscisic aldehyde is the last step of ABA biosynthesis and is catalysed by aldehyde oxidase (EC 1.2.3.1). We have reported the occurrence of three isoforms of aldehyde oxidase, AOalpha, AObeta and AOgamma, in Arabidopsis thaliana seedlings, but none oxidized abscisic aldehyde. Here we report a new isoform, AOdelta, found in rosette leaf extracts, which efficiently oxidizes abscisic aldehyde. AO delta was specifically recognized by antibodies raised against a recombinant peptide encoded by AAO3, one of four Arabidopsis aldehyde oxidase genes (AAO1, AAO2, AAO3 and AAO4). Functionally expressed AAO3 protein in the yeast Pichia pastoris showed a substrate preference very similar to that of rosette AOdelta. These results indicate that AOdelta is encoded by AAO3. AOdelta produced in P. pastoris exhibited a very low Km value for abscisic aldehyde (0.51 microM), and the oxidation product was determined by gas chromatography-mass spectrometry to be ABA. Northern analysis showed that AAO3 mRNA is highly expressed in rosette leaves. When the rosette leaves were detached and exposed to dehydration, AAO3 mRNA expression increased rapidly within 3 h of the treatment. These results suggest that AOdelta, the AAO3 gene product, acts as an abscisic aldehyde oxidase in Arabidopsis rosette leaves.
Collapse
Affiliation(s)
- M Seo
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
378
|
Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. PLANT PHYSIOLOGY 2000; 123:553-62. [PMID: 10859185 PMCID: PMC59023 DOI: 10.1104/pp.123.2.553] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/1999] [Accepted: 02/21/2000] [Indexed: 05/17/2023]
Abstract
Four cDNA clones named CPRD (cowpea responsive to dehydration) corresponding to genes that are responsive to dehydration were isolated using differential screening of a cDNA library prepared from 10-h dehydrated drought-tolerant cowpea (Vigna unguiculata) plants. One of the cDNA clones has a homology to 9-cis-epoxycarotenoid dioxygenase (named VuNCED1), which is supposed to be involved in abscisic acid (ABA) biosynthesis. The GST (glutathione S-transferase)-fused protein indicates a 9-cis-epoxycarotenoid dioxygenase activity, which catalyzes the cleavage of 9-cis-epoxycarotenoid. The N-terminal region of the VuNCED1 protein directed the fused sGFP (synthetic green-fluorescent protein) into the plastids of the protoplasts, indicating that the N-terminal sequence acts as a transit peptide. Both the accumulation of ABA and expression of VuNCED1 were strongly induced by drought stress in the 8-d-old cowpea plant, whereas drought stress did not trigger the expression of VuABA1 (accession no. AB030295) gene that encodes zeaxanthin epoxidase. These results indicate that the VuNCED1 cDNA encodes a 9-cis-epoxycarotenoid dioxygenase and that its product has a key role in the synthesis of ABA under drought stress.
Collapse
Affiliation(s)
- S Iuchi
- Laboratory of Plant Molecular Biology, RIKEN Isukuba Institute, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
379
|
Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, Taylor IB. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. PLANT MOLECULAR BIOLOGY 2000; 42:833-45. [PMID: 10890531 DOI: 10.1023/a:1006448428401] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two genes encoding enzymes in the abscisic acid (ABA) biosynthesis pathway, zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED), have previously been cloned by transposon tagging in Nicotiana plumbaginifolia and maize respectively. We demonstrate that antisense down-regulation of the tomato gene LeZEP1 causes accumulation of zeaxanthin in leaves, suggesting that this gene also encodes ZEP. LeNCED1 is known to encode NCED from characterization of a null mutation (notabilis) in tomato. We have used LeZEP1 and LeNCED1 as probes to study gene expression in leaves and roots of whole plants given drought treatments, during light/dark cycles, and during dehydration of detached leaves. During drought stress, NCED mRNA increased in both leaves and roots, whereas ZEP mRNA increased in roots but not leaves. When detached leaves were dehydrated, NCED mRNA responded rapidly to small reductions in water content. Using a detached leaf system with ABA-deficient mutants and ABA feeding, we investigated the possibility that NCED mRNA is regulated by the end product of the pathway, ABA, but found no evidence that this is the case. We also describe strong diurnal expression patterns for both ZEP and NCED, with the two genes displaying distinctly different patterns. ZEP mRNA oscillated with a phase very similar to light-harvesting complex II (LHCII) mRNA, and oscillations continued in a 48 h dark period. NCED mRNA oscillated with a different phase and remained low during a 48 h dark period. Implications for regulation of water stress-induced ABA biosynthesis are discussed.
Collapse
MESH Headings
- Abscisic Acid/biosynthesis
- Abscisic Acid/pharmacology
- Blotting, Northern
- Circadian Rhythm
- DNA, Antisense/genetics
- DNA, Complementary
- Darkness
- Dioxygenases
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/radiation effects
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Light
- Solanum lycopersicum/enzymology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/metabolism
- Oxidoreductases/genetics
- Oxygenases/genetics
- Photosynthetic Reaction Center Complex Proteins/genetics
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Proteins
- Plant Roots/enzymology
- Plant Roots/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transformation, Genetic
- Water/pharmacology
- Xanthophylls
- Zeaxanthins
- beta Carotene/analogs & derivatives
- beta Carotene/metabolism
Collapse
Affiliation(s)
- A J Thompson
- Department of Plant Genetics and Biotechnology, Horticulture Research International, Wellesbourne, Warwickshire, UK.
| | | | | | | | | | | |
Collapse
|
380
|
Walter MH, Fester T, Strack D. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment' and other apocarotenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:571-8. [PMID: 10758508 DOI: 10.1046/j.1365-313x.2000.00708.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants and certain bacteria use a non-mevalonate alternative route for the biosynthesis of many isoprenoids, including carotenoids. This route has been discovered only recently and has been designated the deoxyxylulose phosphate pathway or methylerythritol phosphate (MEP) pathway. We report here that colonisation of roots from wheat, maize, rice and barley by the arbuscular mycorrhizal fungal symbiont Glomus intraradices involves strong induction of transcript levels of two of the pivotal enzymes of the MEP pathway, 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR). This induction is temporarily and spatially correlated with specific and concomitant accumulation of two classes of apocarotenoids, namely glycosylated C13 cyclohexenone derivatives and mycorradicin (C14) conjugates, the latter being a major component of the long-known 'yellow pigment'. A total of six cyclohexenone derivatives were characterised from mycorrhizal wheat and maize roots. Furthermore, the acyclic structure of mycorradicin described previously only from maize has been identified from mycorrhizal wheat roots after alkaline treatment of an 'apocarotenoid complex' of yellow root constituents. We propose a hypothetical scheme for biogenesis of both types of apocarotenoids from a common oxocarotenoid (xanthophyll) precursor. This is the first report demonstrating (i) that the plastidic MEP pathway is active in plant roots and (ii) that it can be induced by a fungus.
Collapse
Affiliation(s)
- M H Walter
- Leibniz-Institut für Pflanzenbiochemie, Abteilung Sekundärstoffwechsel, Weinberg 3, D-06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
381
|
Qin X, Zeevaart JA. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci U S A 1999; 96:15354-61. [PMID: 10611388 PMCID: PMC24823 DOI: 10.1073/pnas.96.26.15354] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/1999] [Indexed: 11/18/2022] Open
Abstract
Abscisic acid (ABA), a cleavage product of carotenoids, is involved in stress responses in plants. A well known response of plants to water stress is accumulation of ABA, which is caused by de novo synthesis. The limiting step of ABA biosynthesis in plants is presumably the cleavage of 9-cis-epoxycarotenoids, the first committed step of ABA biosynthesis. This step generates the C(15) intermediate xanthoxin and C(25)-apocarotenoids. A cDNA, PvNCED1, was cloned from wilted bean (Phaseolus vulgaris L.) leaves. The 2, 398-bp full-length PvNCED1 has an ORF of 615 aa and encodes a 68-kDa protein. The PvNCED1 protein is imported into chloroplasts, where it is associated with the thylakoids. The recombinant protein PvNCED1 catalyzes the cleavage of 9-cis-violaxanthin and 9'-cis-neoxanthin, so that the enzyme is referred to as 9-cis-epoxycarotenoid dioxygenase. When detached bean leaves were water stressed, ABA accumulation was preceded by large increases in PvNCED1 mRNA and protein levels. Conversely, rehydration of stressed leaves caused a rapid decrease in PvNCED1 mRNA, protein, and ABA levels. In bean roots, a similar correlation among PvNCED1 mRNA, protein, and ABA levels was observed. However, the ABA content was much less than in leaves, presumably because of the much smaller carotenoid precursor pool in roots than in leaves. At 7 degrees C, PvNCED1 mRNA and ABA were slowly induced by water stress, but, at 2 degrees C, neither accumulated. The results provide evidence that drought-induced ABA biosynthesis is regulated by the 9-cis-epoxycarotenoid cleavage reaction and that this reaction takes place in the thylakoids, where the carotenoid substrate is located.
Collapse
Affiliation(s)
- X Qin
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
382
|
Abstract
The phytohormone, abscisic acid (ABA) is found in all photosynthetic organisms. The amount of ABA present is determined by the dynamic balance between biosynthesis and degradation: these two processes are influenced by development, environmental factors such as light and water stress, and other growth regulators. ABA is synthesized from a C40 carotenoid precursor and the first enzyme committed specifically to ABA synthesis is a plastid- localized 9-cis-epoxycarotenoid dioxygenase, which cleaves an epoxycarotenoid precursor to form xanthoxin. Subsequently, xanthoxin is converted to ABA by two cytosolic enzymes via abscisic aldehyde, but there appears to be at least one minor alternative pathway. The major catabolic route leads to 8'-hydroxy ABA and phaseic acid formation, catalyzed by the cytochrome P450 enzyme ABA 8'-hydroxylase. In addition, there are alternate catabolic pathways via conjugation, 4'-reduction and 7'-hydroxylation. As a consequence of recent developments, the mechanism by which the concentration of hormonally active ABA is controlled at the cellular, tissue and whole plant level can now be analyzed in detail.
Collapse
Affiliation(s)
- AJ Cutler
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Canada S7N 0W9
| | | |
Collapse
|
383
|
Frey A, Audran C, Marin E, Sotta B, Marion-Poll A. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. PLANT MOLECULAR BIOLOGY 1999; 39:1267-1274. [PMID: 10380812 DOI: 10.1023/a:100614502563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.
Collapse
MESH Headings
- Abscisic Acid/biosynthesis
- Abscisic Acid/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Genes, Plant/physiology
- Genetic Engineering
- Germination
- Homozygote
- Mutation
- Oxidoreductases/genetics
- Plant Leaves/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seeds/genetics
- Seeds/metabolism
- Seeds/physiology
- Temperature
- Time Factors
- Tobacco/genetics
- Tobacco/physiology
- Transgenes/genetics
- Transgenes/physiology
- Water/metabolism
Collapse
Affiliation(s)
- A Frey
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | | | | | |
Collapse
|
384
|
Frey A, Audran C, Marin E, Sotta B, Marion-Poll A. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. PLANT MOLECULAR BIOLOGY 1999; 39:1267-74. [PMID: 10380812 DOI: 10.1023/a:1006145025631] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.
Collapse
MESH Headings
- Abscisic Acid/biosynthesis
- Abscisic Acid/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Genes, Plant/physiology
- Genetic Engineering
- Germination
- Homozygote
- Mutation
- Oxidoreductases/genetics
- Plant Leaves/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seeds/genetics
- Seeds/metabolism
- Seeds/physiology
- Temperature
- Time Factors
- Nicotiana/genetics
- Nicotiana/physiology
- Transgenes/genetics
- Transgenes/physiology
- Water/metabolism
Collapse
Affiliation(s)
- A Frey
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | | | | | |
Collapse
|
385
|
Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:427-31. [PMID: 10205899 DOI: 10.1046/j.1365-313x.1999.00386.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The notabilis (not) mutant of tomato has a wilty phenotype due to a deficiency in the levels of the plant hormone abscisic acid (ABA). The mutant appears to have a defect in a key control step in ABA biosynthesis--the oxidative cleavage of a 9-cis xanthophyll precursor to form the C15 intermediate, xanthoxin. A maize mutant, viviparous 14 (vp14) was recently obtained by transposon mutagenesis. This maize genetic lesion also affects the oxidative cleavage step in ABA synthesis. Degenerate primers for PCR, based on the VP14 predicted amino acid sequence, have been used to provide probes for screening a wilt-related tomato cDNA library. A full-length cDNA clone was identified which is specific to the not gene locus. The ORFs of the tomato cDNA and maize Vp14 are very similar, apart from parts of their N-terminal sequences. The not mutation has been characterized at the DNA level. A specific A/T base pair deletion of the coding sequence has resulted in a frameshift mutation, indicating that not is a null mutant. This observation is discussed in connection with the relatively mild phenotype exhibited by not mutant homozygotes.
Collapse
Affiliation(s)
- A Burbidge
- Plant Science Division, School of Biological Sciences, University of Nottingham, Leicestershire, UK
| | | | | | | | | | | |
Collapse
|
386
|
Zeevaart JA. Abscisic acid metabolism and its regulation. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60488-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
387
|
Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. THE PLANT CELL 1999; 11:57-68. [PMID: 9878632 PMCID: PMC144096 DOI: 10.1105/tpc.11.1.57] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The immutans (im) mutant of Arabidopsis shows a variegated phenotype comprising albino and green somatic sectors. We have cloned the IM gene by transposon tagging and show that even stable null alleles give rise to a variegated phenotype. The gene product has amino acid similarity to the mitochondrial alternative oxidase. We show that the IM protein is synthesized as a precursor polypeptide that is imported into chloroplasts and inserted into the thylakoid membrane. The albino sectors of im plants contain reduced levels of carotenoids and increased levels of the carotenoid precursor phytoene. The data presented here are consistent with a role for the IM protein as a cofactor for carotenoid desaturation. The suggested terminal oxidase function of IM appears to be essential to prevent photooxidative damage during early steps of chloroplast formation. We propose a model in which IM function is linked to phytoene desaturation and, possibly, to the respiratory activity of the chloroplast.
Collapse
Affiliation(s)
- P Carol
- Laboratoire de Génétique Moléculaire des Plantes, Université Joseph Fourier, CNRS UMR 5575, BP 53X, 38041 Grenoble Cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Affiliation(s)
- A Grechkin
- Institute of Biology, Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
389
|
Audran C, Borel C, Frey A, Sotta B, Meyer C, Simonneau T, Marion-Poll A. Expression studies of the zeaxanthin epoxidase gene in nicotiana plumbaginifolia. PLANT PHYSIOLOGY 1998; 118:1021-8. [PMID: 9808747 PMCID: PMC34775 DOI: 10.1104/pp.118.3.1021] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/1998] [Accepted: 08/03/1998] [Indexed: 05/17/2023]
Abstract
Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors.
Collapse
Affiliation(s)
- C Audran
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, Route de St Cyr, 78026 Versailles cedex, France (C.A., A.F., C.M., A.M.-P.)
| | | | | | | | | | | | | |
Collapse
|