351
|
Schinkmann KA, Kim TA, Avraham S. Glutamate-stimulated activation of DNA synthesis via mitogen-activated protein kinase in primary astrocytes: involvement of protein kinase C and related adhesion focal tyrosine kinase. J Neurochem 2000; 74:1931-40. [PMID: 10800936 DOI: 10.1046/j.1471-4159.2000.0741931.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the CNS. Although its role in neurons has been studied extensively, little is known about its function in astrocytes. We studied the effects of glutamate on signaling pathways in primary astrocytes. We found that the tyrosine kinase related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated in response to glutamate in a time- and dose-dependent manner. This phosphorylation was pertussis toxin (PTX) sensitive and could be attenuated by the depletion of Ca2+ from intracellular stores. RAFTK tyrosine phosphorylation was mediated primarily by class I/II metabotropic glutamate receptors and depends on protein kinase C (PKC) activation. Glutamate treatment of primary astrocytes also results in a significant increase in the activity of the mitogen-activated protein kinases [extracellular signal-related kinases 1/2 (ERK1/2)]. Like RAFTK phosphorylation, ERK1/2 activation is PTX sensitive and can be attenuated by the depletion of intracellular Ca2+ and by PKC inhibition, suggesting that RAFTK might mediate the glutamate-dependent activation of ERK1/2. Furthermore, we demonstrated that glutamate stimulation of primary astrocytes leads to a significant increase in DNA synthesis. Glutamate-stimulated DNA synthesis is PTX sensitive and can be inhibited by the MAP kinase kinase inhibitor PD98059, suggesting that in primary astrocytes, glutamate might signal via RAFTK and MAP kinase to promote DNA synthesis and cell proliferation.
Collapse
Affiliation(s)
- K A Schinkmann
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
352
|
Law BK, Norgaard P, Moses HL. Farnesyltransferase inhibitor induces rapid growth arrest and blocks p70s6k activation by multiple stimuli. J Biol Chem 2000; 275:10796-801. [PMID: 10753872 DOI: 10.1074/jbc.275.15.10796] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that the peptidomimetic farnesyltransferase inhibitor L-744,832 (FTI) inhibits p70s6k activation and cell growth in a mouse keratinocyte cell line but only at concentrations of FTI significantly higher than those required for the inhibition of Ras farnesylation. Here we show that the rapid kinetics of FTI inhibition of DNA synthesis (within 1.5 h) in both normal and v-K-Ras transformed keratinocytes matches the rapid kinetics of p70s6k inhibition observed previously. It is further shown that FTI inhibits p70s6k activation in response to serum, phorbol myristate acetate, and increased amino acid levels. The phosphatase inhibitor calyculin A partially reverses the FTI-induced dephosphorylation of p70s6k, suggesting that FTI may act upstream of a protein phosphatase. A rapamycin-resistant mutant of p70s6k is shown to be resistant to FTI-induced dephosphorylation of the major rapamycin-sensitive phosphorylation site of p70s6k, Thr(389). Together, these data demonstrate that FTI rapidly inhibits DNA synthesis irrespective of the presence of v-K-Ras and that FTI inhibits p70s6k activation in response to multiple stimuli. Because the FTI L-744,832 mimics many of the effects of rapamycin, this FTI may prove effective against tumors that exhibit inappropriate activation of the mTOR/p70s6k pathway.
Collapse
Affiliation(s)
- B K Law
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
353
|
Harris VK, Coticchia CM, Kagan BL, Ahmad S, Wellstein A, Riegel AT. Induction of the angiogenic modulator fibroblast growth factor-binding protein by epidermal growth factor is mediated through both MEK/ERK and p38 signal transduction pathways. J Biol Chem 2000; 275:10802-11. [PMID: 10753873 DOI: 10.1074/jbc.275.15.10802] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fibroblast growth factor-binding protein (FGF-BP) is a secreted protein that binds and activates fibroblast growth factors (FGF-1 and FGF-2) and induces angiogenesis in some human cancers. FGF-BP is expressed at high levels in squamous cell carcinoma (SCC) cell lines and tumor samples and has been shown to be rate-limiting for the growth of SCC tumors in vivo. In this study, we examine the regulation of FGF-BP by epidermal growth factor (EGF) and the signal transduction mechanisms that mediate this effect. We found that EGF treatment of the ME-180 SCC cell line caused a rapid induction of FGF-BP gene expression. This induction was mediated transcriptionally through the AP-1 (c-Fos/JunD) and CCAAT/enhancer-binding protein elements as well as through an E-box repressor site in the proximal regulatory region of the FGF-BP promoter. Pharmacological inhibition of protein kinase C and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) completely blocked EGF induction of FGF-BP mRNA, whereas inhibition of phosphatidylinositol 3-kinase had no effect. Additionally, both EGF- and anisomycin-induced FGF-BP mRNA was abrogated by inhibition of p38 mitogen-activated protein kinase, demonstrating a role for p38 in the regulation of FGF-BP. Co-transfection of the FGF-BP promoter with dominant negative forms of MEK2, extracellular signal-regulated kinase 2, and p38 significantly decreased the level of EGF induction, whereas expression of a dominant negative c-Jun N-terminal kinase mutant or expression of c-Jun N-terminal kinase inhibitory protein had no effect. Similarly, activation of the p38 pathway by overexpression of wild-type p38 or MKK6 enhanced FGF-BP transcription. These results demonstrate that EGF induction of FGF-BP occurs selectively through dual activation of the stress-activated p38 and the MEK/extracellular signal-regulated kinase mitogen-activated protein kinase pathways, which ultimately leads to activation of the promoter through AP-1 and CCAAT/enhancer-binding protein sites.
Collapse
Affiliation(s)
- V K Harris
- Department of Oncology, Vincent T. Lombardi Cancer Center, Georgetown University, Washington, D.C. 20007, USA
| | | | | | | | | | | |
Collapse
|
354
|
Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J Neurosci 2000. [PMID: 10704499 DOI: 10.1523/jneurosci.20-06-02238.2000] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor, inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor. Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate phosphorylation of the MAP kinases extracellular signal-regulated kinases ERK1 and ERK2. The MAP kinase activation was sustained, because ERK1 and ERK2 were phosphorylated in PC12-E2 cells and primary hippocampal neurons even after 24 hr of cultivation on NCAM-expressing fibroblasts. Based on these results, we propose a model of NCAM signaling involving two pathways: NCAM-Ras-MAP kinase and NCAM-FGF receptor-PLCgamma-PKC, and we propose that PKC serves as the link between the two pathways activating Raf and thereby creating the sustained activity of the MAP kinases necessary for neuronal differentiation.
Collapse
|
355
|
Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood 2000. [DOI: 10.1182/blood.v95.7.2407] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPolymorphonuclear leukocyte (PMNL) phagocytosis mediated by FcγRII proceeds in concert with activation of the mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase ERK2. We hypothesized that myosin light chain kinase (MLCK) could be phosphorylated and activated by ERK, thereby linking the MAP kinase pathway to the activation of cytoskeletal components required for pseudopod formation. To explore this potential linkage, PMNLs were challenged with antibody-coated erythrocytes (EIgG). Peak MLCK activity, 3-fold increased over controls, occurred at 4 to 6 minutes, corresponding with the peak rate of target ingestion and ERK2 activity. The MLCK inhibitor ML-7 (10 μmol/L) inhibited both phagocytosis and MLCK activity to basal values, thereby providing further support for the linkage between the functional response and the requirement for MLCK activation. The MAPK kinase (MEK) inhibitor PD098059 inhibited phagocytosis, MLCK activity, and ERK2 activity by 80% to 90%. To directly link ERK activation to MLCK activation, ERK2 was immunoprecipitated from PMNLs after EIgG ingestion. The isolated ERK2 was incubated with PMNL cytosol as a source of unactivated MLCK and with MLCK substrate; under these conditions ERK2 activated MLCK, resulting in phosphorylation of the MLCK substrate or of the myosin light chain itself. Because MLCK activates myosin, we evaluated the effect of directly inhibiting myosin adenosine triphosphatase using 2,3-butanedione monoxime (BDM) and found that phagocytosis was inhibited by more than 90% but MLCK activity remained unaffected. These results are consistent with the interpretation that MEK activates ERK, ERK2 then activates MLCK, and MLCK activates myosin. MLCK activation is a critical step in the cytoskeletal changes resulting in pseudopod formation.
Collapse
|
356
|
Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood 2000. [DOI: 10.1182/blood.v95.7.2407.007k02_2407_2412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear leukocyte (PMNL) phagocytosis mediated by FcγRII proceeds in concert with activation of the mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase ERK2. We hypothesized that myosin light chain kinase (MLCK) could be phosphorylated and activated by ERK, thereby linking the MAP kinase pathway to the activation of cytoskeletal components required for pseudopod formation. To explore this potential linkage, PMNLs were challenged with antibody-coated erythrocytes (EIgG). Peak MLCK activity, 3-fold increased over controls, occurred at 4 to 6 minutes, corresponding with the peak rate of target ingestion and ERK2 activity. The MLCK inhibitor ML-7 (10 μmol/L) inhibited both phagocytosis and MLCK activity to basal values, thereby providing further support for the linkage between the functional response and the requirement for MLCK activation. The MAPK kinase (MEK) inhibitor PD098059 inhibited phagocytosis, MLCK activity, and ERK2 activity by 80% to 90%. To directly link ERK activation to MLCK activation, ERK2 was immunoprecipitated from PMNLs after EIgG ingestion. The isolated ERK2 was incubated with PMNL cytosol as a source of unactivated MLCK and with MLCK substrate; under these conditions ERK2 activated MLCK, resulting in phosphorylation of the MLCK substrate or of the myosin light chain itself. Because MLCK activates myosin, we evaluated the effect of directly inhibiting myosin adenosine triphosphatase using 2,3-butanedione monoxime (BDM) and found that phagocytosis was inhibited by more than 90% but MLCK activity remained unaffected. These results are consistent with the interpretation that MEK activates ERK, ERK2 then activates MLCK, and MLCK activates myosin. MLCK activation is a critical step in the cytoskeletal changes resulting in pseudopod formation.
Collapse
|
357
|
Johnson JR, Chu AK, Sato-Bigbee C. Possible role of CREB in the stimulation of oligodendrocyte precursor cell proliferation by neurotrophin-3. J Neurochem 2000; 74:1409-17. [PMID: 10737596 DOI: 10.1046/j.1471-4159.2000.0741409.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously shown that the transcription factor CREB (cyclic AMP-response element binding protein) could be a mediator of neuronal signals that, coupled to different signal transduction pathways, may play different regulatory roles at specific stages of oligodendrocyte (OLG) development. We have found before that in committed OLGs, CREB activation by phosphorylation can be triggered by beta-adrenergic stimulation and appears to play a role in the induction of OLG differentiation by cyclic AMP. In contrast, in OLG precursor cells, CREB phosphorylation is stimulated by neuroligands that increase calcium levels by a process that involves a mitogen-activated protein kinase (MAPK)/protein kinase C (PKC) pathway. This observation suggested that at this early developmental stage, CREB could play a role in regulating cell proliferation. In support of this hypothesis, we have now found that a rapid and dramatic stimulation of CREB phosphorylation is one of the earliest events that precedes the increase in cell proliferation that is observed when OLG precursors are treated with neurotrophin-3 (NT-3). Experiments in which CREB phosphorylation was investigated in the presence of different kinase inhibitors indicated that the activation of this transcription factor in the presence of NT-3 is mediated by the concerted action of MAPK- and PKC-dependent signal transduction pathways. Moreover, our present results also showed that down-regulation of CREB expression in the OLG precursors abolished the increase in DNA synthesis that is observed when the cultures are treated with NT-3. Thus, these results support the idea that in immature OLG precursors, CREB plays an important role in transducing signals which, like NT-3, may regulate cell proliferation.
Collapse
Affiliation(s)
- J R Johnson
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298-0614, USA
| | | | | |
Collapse
|
358
|
Stewart S, Guan KL. The dominant negative Ras mutant, N17Ras, can inhibit signaling independently of blocking Ras activation. J Biol Chem 2000; 275:8854-62. [PMID: 10722731 DOI: 10.1074/jbc.275.12.8854] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras plays an important role in a variety of cellular functions, including growth, differentiation, and oncogenic transformation. For instance, Ras participates in the activation of Raf, which phosphorylates and activates mitogen-activated protein kinase kinase (MEK), which then phosphorylates and activates extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase. Activation of MAP kinase appears to be essential for propagating a wide variety of extracellular signals from the plasma membrane to the nucleus. N17Ras, a GDP-bound dominant negative mutant, is used widely as an interfering mutant to assess Ras function in vivo. Surprisingly, we observed that expression of N17Ras inhibited the activity and phosphorylation of Elk-1, a physiological substrate of MAP kinases, in response to phorbol myristate acetate. The activity and phosphorylation of the MAP kinase hemagglutinin epitope (HA)-ERK1 were not affected by N17Ras in response to the same stimulus. Additionally, expression of N17Ras, but not L61S186Ras, a GTP-bound interfering mutant, inhibited MEK-induced Elk-1 phosphorylation, suggesting that inhibition of Elk-1 may be unique to GDP-bound Ras mutants. Finally, we observed that V12Ras-induced focus formation in NIH3T3 cells is inhibited by coexpression of GDP-bound Ras mutants, such as N17, A15, and N17N69. Therefore, N17Ras and V12 Ras may be codominant with respect to Elk-1 activation and cellular transformation. These results indicate that N17Ras appears to have at least two distinguishable functions: interference with endogenous Ras activation and inhibition of Elk-1 and transfomation. Furthermore, our data imply the possibility that GDP-bound Ras, like N17Ras, may have a direct role in signal transduction.
Collapse
Affiliation(s)
- S Stewart
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
359
|
Abe K, Saito H. The p44/42 mitogen-activated protein kinase cascade is involved in the induction and maintenance of astrocyte stellation mediated by protein kinase C. Neurosci Res 2000; 36:251-7. [PMID: 10683529 DOI: 10.1016/s0168-0102(99)00134-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mitogen-activated protein kinase (MAPK) is known to be involved in the differentiation of various types of cells. To understand the role of p44/42 MAPK (ERK1/2) in astrocyte differentiation, we investigated the effects of U0126 and PD98059, specific inhibitors of the MAPK-activating enzyme MEK, on astrocyte morphology in culture. Cultured rat cortical astrocytes exhibited flattened, polygonal morphology in the absence of stimulation, but differentiated into process-bearing stellate cells in response to the membrane-permeable cyclic AMP analog dibutyryl cyclic AMP (dBcAMP) or the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA). dBcAMP-induced astrocyte stellation was not affected by MEK inhibitors, while PMA-induced astrocyte stellation was significantly blocked by U0126 (0.1-10 microM) and PD98059 (10-30 microM). Western blot analysis with an antibody specific for phosphorylated ERK1/2 revealed that PMA, but not dBcAMP, induced phosphorylation of ERK1/2 in a time- and concentration-dependent manner. The PMA-induced astrocyte stellation and ERK1/2 phosphorylation were blocked by specific PKC inhibitors, GF-109203X (0.01-1 microM) and calphostin C (1 microM). In addition, when U0126 or PD98059 was added after treatment with PMA, stellate astrocytes returned to polygonal. These results suggest that the MEK/ERK cascade is involved in the induction and maintenance of astrocyte stellation mediated by PKC, but not by cyclic AMP signaling.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
360
|
Lenz G, Gottfried C, Luo Z, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT. P(2Y) purinoceptor subtypes recruit different mek activators in astrocytes. Br J Pharmacol 2000; 129:927-36. [PMID: 10696092 PMCID: PMC1571921 DOI: 10.1038/sj.bjp.0703138] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Revised: 12/03/1999] [Accepted: 12/07/1999] [Indexed: 11/09/2022] Open
Abstract
Extracellular ATP can function as a glial trophic factor as well as a neuronal transmitter. In astrocytes, mitogenic signalling by ATP is mediated by metabotropic P(2Y) receptors that are linked to the extracellular signal regulated protein kinase (Erk) cascade, but the types of P(2Y) receptors expressed in astrocytes have not been defined and it is not known whether all P(2Y) receptor subtypes are coupled to Erk by identical or distinct signalling pathways. We found that the P(2Y) receptor agonists ATP, ADP, UTP and 2-methylthioATP (2MeSATP) activated Erk and its upstream activator MAP/Erk kinase (Mek). cRaf-1, the first kinase in the Erk cascade, was activated by 2MeSATP, ADP and UTP but, surprisingly, cRaf-1 was not stimulated by ATP. Furthermore, ATP did not activate B-Raf, the major isoform of Raf in the brain, nor other Mek activators such as Mek kinase 1 (MekK1) and MekK2/3. Reverse transcriptase-polymerase chain reaction (RT - PCR) studies using primer pairs for cloned rat P(2Y) receptors revealed that rat cortical astrocytes express P(2Y(1)), a receptor subtype stimulated by ATP and ADP and their 2MeS analogues, as well as P(2Y(2)) and P(2Y(4)), subtypes in rats for which ATP and UTP are equipotent. Transcripts for P(2Y(6)), a pyrimidine-preferring receptor, were not detected. ATP did not increase cyclic AMP levels, suggesting that P(2Y(11)), an ATP-preferring receptor, is not expressed or is not linked to adenylyl cyclase in rat cortical astrocytes. These signal transduction and RT - PCR experiments reveal differences in the activation of cRaf-1 by P(2Y) receptor agonists that are inconsistent with properties of the P(2Y(1)), P(2Y(2)) and P(2Y(4)) receptors shown to be expressed in astrocytes, i.e. ATP=UTP; ATP=2MeSATP, ADP. This suggests that the properties of the native P(2Y) receptors coupled to the Erk cascade differ from the recombinant P(2Y) receptors or that astrocytes express novel purine-preferring and pyrimidine-preferring receptors coupled to the ERK cascade.
Collapse
Affiliation(s)
- Guido Lenz
- Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmem Gottfried
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Zhijun Luo
- Diabetes Unit Medical Services, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Joseph Avruch
- Diabetes Unit Medical Services, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Richard Rodnight
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wie-Jia Nie
- Research Service, Veterans Affairs Medical Center, Miami, Florida, U.S.A
| | - Yuan Kang
- Research Service, Veterans Affairs Medical Center, Miami, Florida, U.S.A
| | - Joseph T Neary
- Research Service, Veterans Affairs Medical Center, Miami, Florida, U.S.A
- Department of Pathology, University of Miami, School of Medicine, Miami, Florida, U.S.A
- Department of Biochemistry & Molecular Biology, University of Miami, School of Medicine, Miami, Florida, U.S.A
| |
Collapse
|
361
|
Shi ZQ, Yu DH, Park M, Marshall M, Feng GS. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol 2000; 20:1526-36. [PMID: 10669730 PMCID: PMC85329 DOI: 10.1128/mcb.20.5.1526-1536.2000] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that activation of extracellular signal-regulated kinase (Erk) by epidermal growth factor (EGF) treatment was significantly decreased in mouse fibroblast cells expressing a mutant Shp-2 molecule lacking 65 amino acids in the SH2-N domain, Shp-2(Delta46-110). To address the molecular mechanism for the positive role of Shp-2 in mediating Erk induction, we evaluated the activation of signaling components upstream of Erk in Shp-2 mutant cells. EGF-stimulated Ras, Raf, and Mek activation was significantly attenuated in Shp-2 mutant cells, suggesting that Shp-2 acts to promote Ras activation or to suppress the down-regulation of activated Ras. Biochemical analyses indicate that upon EGF stimulation, Shp-2 is recruited into a multiprotein complex assembled on the Gab1 docking molecule and that Shp-2 seems to exert its biological function by specifically dephosphorylating an unidentified molecule of 90 kDa in the complex. The mutant Shp-2(Delta46-110) molecule failed to participate in the Gab1-organized complex for dephosphorylation of p90, correlating with a defective activation of the Ras-Raf-Mek-Erk cascade in EGF-treated Shp-2 mutant cells. Evidence is also presented that Shp-2 does not appear to modulate the signal relay from EGF receptor to Ras through the Shc, Grb2, and Sos proteins. These results begin to elucidate the mechanism of Shp-2 function downstream of a receptor tyrosine kinase to promote the activation of the Ras-Erk pathway, with potential therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Z Q Shi
- Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine and Walther Cancer Institute, Indianapolis, Indiana 46202-5254, USA
| | | | | | | | | |
Collapse
|
362
|
Kumar V, Pandey P, Sabatini D, Kumar M, Majumder PK, Bharti A, Carmichael G, Kufe D, Kharbanda S. Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation. EMBO J 2000; 19:1087-97. [PMID: 10698949 PMCID: PMC305647 DOI: 10.1093/emboj/19.5.1087] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hormones and growth factors induce protein translation in part by phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). The rapamycin and FK506-binding protein (FKBP)-target 1 (RAFT1, also known as FRAP) is a mammalian homolog of the Saccharomyces cerevisiae target of rapamycin proteins (mTOR) that regulates 4E-BP1. However, the molecular mechanisms involved in growth factor-initiated phosphorylation of 4E-BP1 are not well understood. Here we demonstrate that protein kinase Cdelta (PKCdelta) associates with RAFT1 and that PKCdelta is required for the phosphorylation and inactivation of 4E-BP1. PKCdelta-mediated phosphorylation of 4E-BP1 is wortmannin resistant but rapamycin sensitive. As shown for serum, phosphorylation of 4E-BP1 by PKCdelta inhibits the interaction between 4E-BP1 and eIF4E and stimulates cap-dependent translation. Moreover, a dominant-negative mutant of PKCdelta inhibits serum-induced phosphorylation of 4E-BP1. These findings demonstrate that PKCdelta associates with RAFT1 and thereby regulates phosphorylation of 4E-BP1 and cap-dependent initiation of protein translation.
Collapse
Affiliation(s)
- V Kumar
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Flint AP, Abayasekara DR, Wheeler-Jones CP, Riley PR, Kaluz S, Kaluzova M, Sheldrick EL, Fisher PA. Acute effects of interferon on estrogen receptor function do not involve the extracellular signal-regulated kinases p42mapk and p44mapk. J Interferon Cytokine Res 2000; 20:225-33. [PMID: 10714559 DOI: 10.1089/107999000312649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to type I interferons (IFN) increased estrogen receptor (ER) ligand binding and induced protein kinase C (PKC) translocation within 30 min but had no effect on net incorporation of [32P] into ER in Madin Darby bovine kidney (MDBK) cells. Ligand binding was also increased within 30 min by phorbol ester and the protein phosphatase inhibitor okadaic acid. Mitogen-activated protein (MAP) kinase phosphorylation was initially inhibited between 2 and 30 min and subsequently activated between 30 and 60 min after treatment with IFN. The activatory response was blocked by the PKC inhibitor Ro 31-8220. Following transient transfection with an ERE-CAT reporter construct, IFN increased CAT expression after 6 h but decreased ER ligand binding, transcriptional activity and phosphorylation after 48 h, probably as a result of decreased ER concentrations. The results rule out rapid activation of ER ligand binding through phosphorylation at Ser118 by MAP kinase because (1) the increase in ligand binding preceded activation of MAP kinase, and (2) IFN had no short-term effect on [32P]incorporation or ER transcriptional activity. The rapid effect of IFN on ER ligand binding is postulated to reflect phosphorylation of the receptor at Tyr537 by p56lck, a member of the Src family of PKC-activated tyrosine kinases.
Collapse
Affiliation(s)
- A P Flint
- School of Biological Sciences, University of Nottingham, Sutton Bonington, UK.
| | | | | | | | | | | | | | | |
Collapse
|
364
|
Efimova T, Eckert RL. Regulation of human involucrin promoter activity by novel protein kinase C isoforms. J Biol Chem 2000; 275:1601-7. [PMID: 10636851 DOI: 10.1074/jbc.275.3.1601] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human involucrin (hINV) mRNA level and promoter activity increase when keratinocytes are treated with the differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). This response is mediated via a p38 mitogen-activated protein kinase-dependent pathway that targets activator protein 1 (Efimova, T., LaCelle, P. T. , Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395). In the present study we examine the role of various PKC isoforms in this regulation. Transfection of expression plasmids encoding the novel PKC isoforms delta, epsilon, and eta increase hINV promoter activity. In contrast, neither conventional PKC isoforms (alpha, beta, and gamma) nor the atypical isoform (zeta) regulate promoter activity. Consistent with these observations, promoter activity is inhibited by the PKCdelta-selective inhibitor, rottlerin, but not by Go-6976, an inhibitor of conventional PKC isoforms, and novel PKC isoform-dependent promoter activation is inhibited by dominant-negative PKCdelta. This regulation appears to be physiologically important, as transfection of keratinocytes with PKCdelta, -epsilon, or -eta increases expression of the endogenous hINV gene. Synergistic promoter activation (>/=100-fold) is observed when PKCepsilon- or -eta-transfected cells are treated with TPA. In contrast, the PKCdelta-dependent response is more complex as either activation or inhibition is observed, depending upon PKCdelta concentration.
Collapse
Affiliation(s)
- T Efimova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
365
|
Zhuang S, Hirai SI, Ohno S. Hyperosmolality induces activation of cPKC and nPKC, a requirement for ERK1/2 activation in NIH/3T3 cells. Am J Physiol Cell Physiol 2000; 278:C102-9. [PMID: 10644517 DOI: 10.1152/ajpcell.2000.278.1.c102] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) has been reported to be associated with the activation of extracellular signal-regulated kinase (ERK) by hyperosmolality. However, it is unclear whether hyperosmolality induces PKC activation and which PKC isoforms are involved in ERK activation. In this study, we demonstrate that NaCl increases total PKC activity and induces PKCalpha, PKCdelta, and PKCepsilon translocation from the cytosol to the membrane in NIH/3T3 cells, suggesting that hyperosmotic stress activates conventional PKC (cPKC) and novel PKC (nPKC). Further studies show that NaCl-inducible ERK1 and ERK2 (ERK1/2) activation is a consequence of cPKC and nPKC activation, because either downregulation with 12-O-tetradecanoylphorbol 13-acetate or selective inhibition of cPKC and nPKC by GF-109203X and rottlerin largely inhibited the stimulation of ERK1/2 phosphorylation by NaCl. In addition, we show that NaCl increases diacylglycerol (DAG) levels and that a phospholipase C (PLC) inhibitor, U-73122, inhibits NaCl-induced ERK1/2 phosphorylation. These results, together, suggest that a hyperosmotic NaCl-induced signaling pathway that leads to activation of ERK1/2 may sequentially involve PLC activation, DAG release, and cPKC and nPKC activation.
Collapse
Affiliation(s)
- S Zhuang
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-Ku, Yokohama 236, Japan
| | | | | |
Collapse
|
366
|
Delmotte MH, Tahayato A, Formstecher P, Lefebvre P. Serine 157, a retinoic acid receptor alpha residue phosphorylated by protein kinase C in vitro, is involved in RXR.RARalpha heterodimerization and transcriptional activity. J Biol Chem 1999; 274:38225-31. [PMID: 10608897 DOI: 10.1074/jbc.274.53.38225] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid (RA) regulation of cellular proliferation and differentiation is mediated, at least in part, through two related nuclear receptors, RAR and RXR. RA-induced modulation of gene expression leads generally to cellular differentiation, whereas stimulation of the protein kinase C (PKC) signaling pathway is associated with cellular proliferation. Pursuant to our discovery that prolonged activation of PKCs induced a strong decrease in RA responsiveness of a retinoid-inducible reporter gene, we have further investigated the connections between these two signaling pathways. We demonstrate that PKC isoforms alpha and gamma are able to phosphorylate human RARalpha (hRARalpha) in vitro on a single serine residue located in the extended DNA binding domain (T box). The introduction of a negative charge at this position (serine 157) strongly decreased hRARalpha transcriptional activity, whereas a similar mutation at other PKC consensus phosphorylation sites had no effect. The effect on transcriptional activation was correlated with a decrease in the capacity of hRARalpha to heterodimerize with hRXRalpha. Thus hRARalpha is a direct target for PKCalpha and gamma, which may control retinoid receptor transcriptional activities during cellular proliferation and differentiation.
Collapse
Affiliation(s)
- M H Delmotte
- INSERM Unité 459, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | | | | | | |
Collapse
|
367
|
Raeder EMB, Mansfield PJ, Hinkovska-Galcheva V, Shayman JA, Boxer LA. Syk Activation Initiates Downstream Signaling Events During Human Polymorphonuclear Leukocyte Phagocytosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
We investigated the requirement for Syk activation to initiate downstream signaling events during polymorphonuclear leukocyte (PMN) phagocytosis of Ab-coated erythrocytes (EIgG). When PMN were challenged with EIgG, Syk phosphorylation increased in a time-dependent manner, paralleling the response of PMN phagocytosis. Pretreatment of PMN with piceatannol, a Syk-selective inhibitor, blocked EIgG phagocytosis and Syk phosphorylation. We found that piceatannol inhibited protein kinase Cδ (PKCδ) and Raf-1 translocation from cytosol to plasma membrane by >90%. Extracellular signal-regulated protein kinase-1 and -2 (ERK1 and ERK2) phosphorylation was similarly blocked. We also investigated phosphatidylinositide 3-kinase (PI 3-kinase) activity and Syk phosphorylation using piceatannol, wortmannin, and LY294002, inhibitors of PI 3-kinase. The phosphorylation of Syk preceded the activation of PI 3-kinase. Both wortmannin and piceatannol inhibited PI 3-kinase, but only piceatannol inhibited Syk. In contrast to piceatannol, wortmannin did not inhibit PKCδ and Raf-1 translocation. To elucidate signaling downstream of Syk activation, we assessed whether the cell-permeable diacylglycerol analogue didecanoylglycerol could normalize PMN phagocytosis, PKCδ and Raf-1 translocation, and ERK1 and ERK2 phosphorylation inhibited by piceatannol. The addition of didecanoylglycerol to the Syk-inhibited phagocytosing PMN normalized all three without a concomitant effect on PI 3-kinase activity and Syk phosphorylation. We conclude that Syk activation following Fcγ receptor engagement initiates downstream signaling events leading to mitogen-activated protein kinase activation independent of PI 3-kinase activation.
Collapse
Affiliation(s)
| | | | | | - James A. Shayman
- †Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
368
|
Band CJ, Mounier C, Posner BI. Epidermal growth factor and insulin-induced deoxyribonucleic acid synthesis in primary rat hepatocytes is phosphatidylinositol 3-kinase dependent and dissociated from protooncogene induction. Endocrinology 1999; 140:5626-34. [PMID: 10579326 DOI: 10.1210/endo.140.12.7188] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mitogenic response to insulin and epidermal growth factor (EGF) was studied in subconfluent and confluent cultures of primary rat hepatocytes. In subconfluent cultures, wortmannin, LY294002, and rapamycin reversed insulin- and EGF-induced [3H]thymidine incorporation into DNA. The mitogen-activated protein kinase (MAPK) kinase 1 (MEK1) inhibitor PD98059 was without significant effect on either insulin- or EGF-induced [3H]thymidine incorporation. Insulin treatment did not alter levels of messenger RNAs (mRNAs) for c-fos, c-jun, and c-myc. EGF induced an increase in c-myc, but not c-fos or c-jun, mRNA levels in subconfluent hepatocyte cultures. This increase in c-myc mRNA was abolished by PD98059. In confluent cells that could not be induced to synthesize DNA, EGF treatment also promoted an increase in c-myc mRNA to levels seen in subconfluent cultures. This increase was also abrogated by PD98059. These data indicate that in primary rat hepatocyte cultures, 1) the phosphoinositol 3-kinase pathway, perhaps through p70s6k activation, regulates DNA synthesis in response to insulin and EGF; 2) the MAPKpathway is not involved in insulin- and EGF-induced DNA synthesis; and 3) p44/42 MAPKs are involved the induction of c-myc mRNA levels, although this induction is not required for DNA synthesis. These studies define two distinct signal transduction pathways that independently mediate growth-related responses in a physiologically relevant, normal cell system.
Collapse
Affiliation(s)
- C J Band
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
369
|
Li L, Lorenzo PS, Bogi K, Blumberg PM, Yuspa SH. Protein kinase Cdelta targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol Cell Biol 1999; 19:8547-58. [PMID: 10567579 PMCID: PMC84974 DOI: 10.1128/mcb.19.12.8547] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1999] [Accepted: 08/19/1999] [Indexed: 11/20/2022] Open
Abstract
Inactivation of protein kinase Cdelta (PKCdelta) is associated with resistance to terminal cell death in epidermal tumor cells, suggesting that activation of PKCdelta in normal epidermis may be a component of a cell death pathway. To test this hypothesis, we constructed an adenovirus vector carrying an epitope-tagged PKCdelta under a cytomegalovirus promoter to overexpress PKCdelta in normal and neoplastic keratinocytes. While PKCdelta overexpression was detected by immunoblotting in keratinocytes, the expression level of other PKC isozymes, including PKCalpha, PKCepsilon, PKCzeta, and PKCeta, did not change. Calcium-independent PKC-specific kinase activity increased after infection of keratinocytes with the PKCdelta adenovirus. Activation of PKCdelta by 12-O-tetradecanoylphorbol-13-acetate (TPA) at a nanomolar concentration was lethal to normal and neoplastic mouse and human keratinocytes overexpressing PKCdelta. Lethality was inhibited by PKC selective inhibitors, GF109203X and Ro-32-0432. TPA-induced cell death was apoptotic as evidenced by morphological criteria, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay, DNA fragmentation, and increased caspase activity. Subcellular fractionation indicated that PKCdelta translocated to a mitochondrial enriched fraction after TPA activation, and this finding was confirmed by confocal microscopy of cells expressing a transfected PKCdelta-green fluorescent protein fusion protein. Furthermore, activation of PKCdelta in keratinocytes altered mitochondrial membrane potential, as indicated by rhodamine-123 fluorescence. Mitochondrial inhibitors, rotenone and antimycin A, reduced TPA-induced cell death in PKCdelta-overexpressing keratinocytes. These results indicate that PKCdelta can initiate a death pathway in keratinocytes that involves direct interaction with mitochondria and alterations of mitochondrial function.
Collapse
Affiliation(s)
- L Li
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, Division of Basic Science, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
370
|
Hornia A, Lu Z, Sukezane T, Zhong M, Joseph T, Frankel P, Foster DA. Antagonistic effects of protein kinase C alpha and delta on both transformation and phospholipase D activity mediated by the epidermal growth factor receptor. Mol Cell Biol 1999; 19:7672-80. [PMID: 10523655 PMCID: PMC84804 DOI: 10.1128/mcb.19.11.7672] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Downregulation of protein kinase C delta (PKC delta) by treatment with the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) transforms cells that overexpress the non-receptor class tyrosine kinase c-Src (Z. Lu et al., Mol. Cell. Biol. 17:3418-3428, 1997). We extended these studies to cells overexpressing a receptor class tyrosine kinase, the epidermal growth factor (EGF) receptor (EGFR cells); like c-Src, the EGF receptor is overexpressed in several human tumors. In contrast with expectations, downregulation of PKC isoforms with TPA did not transform the EGFR cells; however, treatment with EGF did transform these cells. Since TPA downregulates all phorbol ester-responsive PKC isoforms, we examined the effects of PKC delta- and PKC alpha-specific inhibitors and the expression of dominant negative mutants for both PKC delta and alpha. Consistent with a tumor-suppressing function for PKC delta, the PKC delta-specific inhibitor rottlerin and a dominant negative PKC delta mutant transformed the EGFR cells in the absence of EGF. In contrast, the PKC alpha-specific inhibitor Go6976 and expression of a dominant negative PKC alpha mutant blocked the transformed phenotype induced by both EGF and PKC delta inhibition. Interestingly, both rottlerin and EGF induced substantial increases in phospholipase D (PLD) activity, which is commonly elevated in response to mitogenic stimuli. The elevation of PLD activity in response to inhibiting PKC delta, like transformation, was dependent upon PKC alpha and restricted to the EGFR cells. These data demonstrate that PKC isoforms alpha and delta have antagonistic effects on both transformation and PLD activity and further support a tumor suppressor role for PKC delta that may be mediated by suppression of tyrosine kinase-dependent increases in PLD activity.
Collapse
Affiliation(s)
- A Hornia
- Department of Biological Sciences, Hunter College of The City University of New York, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
371
|
Kontny E, Ziółkowska M, Ryzewska A, Maśliński W. Protein kinase c-dependent pathway is critical for the production of pro-inflammatory cytokines (TNF-alpha, IL-1beta, IL-6). Cytokine 1999; 11:839-48. [PMID: 10547271 DOI: 10.1006/cyto.1998.0496] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The authors hypothesized that certain PKC isoforms play an important role in the induction of pro-inflammatory cytokine (TNF-alpha, IL-1beta, IL-6) synthesis. To test this hypothesis, the cytosol-to-membrane translocation of select PKC isoforms with tested cytokine production in human monocytes cultured in vitro was correlated. It is reported that in monocytes treated with phorbol ester (PMA), translocation of PKC isoforms alpha, betaII, delta and epsilon precede cytokine synthesis. Moreover, specific inhibition of PKC translocation that occurs in the presence of Calphostin C is reflected in downstream events: lack of MAP kinases phosphorylation, loss of DNA binding ability by AP-1 transcription factor, and the reduction of pro-inflammatory cytokine synthesis. Thus, the cytosol-to-membrane translocation of PKC isoforms alpha, betaII, delta and epsilon with the subsequent activation of: (1) MAP kinases; and (2) AP-1 transcription factor, may represent critical steps in the induction of signalling cascade leading to TNF-alpha, IL-1beta, IL-6 synthesis in human monocytes.
Collapse
Affiliation(s)
- E Kontny
- Department of Pathophysiology and Immunology, Institute of Rheumatology, Spartanska 1, Warsaw, 02-637, Poland
| | | | | | | |
Collapse
|
372
|
Montessuit C, Thorburn A. Activation of Ras by phorbol esters in cardiac myocytes. Role of guanine nucleotide exchange factors. FEBS Lett 1999; 460:57-60. [PMID: 10571061 DOI: 10.1016/s0014-5793(99)01223-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relationship between protein kinase C (PKC) activation and Ras function was investigated in cardiac cells. Ras function was required for ERK activation by phorbol esters in cardiac myocytes, but not in cardiac fibroblasts. Accordingly, treatment with phorbol esters resulted in GTP loading of Ras in cardiac myocytes, but not fibroblasts. Ras activation by phorbol esters was abolished by a PKC specific inhibitor, but was insensitive to tyrosine kinase inhibitors. Ras activation was mediated by stimulation of guanine nucleotide exchange. These results suggest the existence of a novel pathway for Ras activation, specific to cardiac myocytes, with implications for myocardial hypertrophy.
Collapse
Affiliation(s)
- C Montessuit
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City 84112-5550, USA
| | | |
Collapse
|
373
|
Okuda H, Hirai S, Takaki Y, Kamada M, Baba M, Sakai N, Kishida T, Kaneko S, Yao M, Ohno S, Shuin T. Direct interaction of the beta-domain of VHL tumor suppressor protein with the regulatory domain of atypical PKC isotypes. Biochem Biophys Res Commun 1999; 263:491-7. [PMID: 10491320 DOI: 10.1006/bbrc.1999.1347] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VHL tumor suppressor protein contains two domains, alpha and beta. The alpha-domain is involved in the formation of a large protein complex suggested to be involved in ubiquitin-mediated protein degradation. However, the role of the beta-domain, which may recognize the target proteins for protein degradation, remains unknown. Here we report that the beta-domain interacts directly with atypical PKC isotypes, PKCzeta and PKClambda. Further, the regulatory domain of aPKC is sufficient for this direct protein-protein interaction. Since aPKC isotypes have been implicated in the regulation of cell growth and apoptosis, these results suggest that aPKC isotypes are potential direct target of the VHL beta-domain.
Collapse
Affiliation(s)
- H Okuda
- Department of Urology, Kochi Medical School, Kochi, 783-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Dorman CM, Johnson SE. Activated Raf inhibits avian myogenesis through a MAPK-dependent mechanism. Oncogene 1999; 18:5167-76. [PMID: 10498866 DOI: 10.1038/sj.onc.1202907] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic overexpression of the oncogenic form of Ras is a potent inhibitor of skeletal myogenesis. However, the intracellular signaling pathways that mediate the repressive actions of Ras on myogenic differentiation have yet to be identified. We examined the role of Raf-mediated signaling as a modulator of avian myogenesis. Raf overexpression elicited pronounced effects on both myoblasts and mature myocytes. Most notably, the embryonic chick myoblasts overexpressing a constitutively active form of Raf (RCAS-Raf CAAX or RCAS-Raf BXB) fail to form the large multinucleated myofibers characteristic of myogenic cultures. While residual myofibers were apparent in the RCAS-Raf BXB and RCAS-Raf CAAX infected cultures, these fibers had an atrophic phenotype. The altered morphology is not a result of reinitiation of the myonuclei cell cycle nor is it due to apoptosis. Furthermore, the mononucleated myoblasts misexpressing Raf BXB are differentiation-defective due to overt MAPK activity. Supplementation of the culture media with the MAPK kinase (MEK) inhibitor, PD98059, caused a reversal of the phenotype and allowed the formation of multinucleated myofibers at levels comparable to controls. Our results indicate that the Raf/MEK/MAPK axis is intact in chick myoblasts and that persistent activation of this signaling cascade is inhibitory to myogenesis.
Collapse
Affiliation(s)
- C M Dorman
- Department of Poultry Science, the Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | | |
Collapse
|
375
|
Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM, Gutmann DH. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem 1999; 274:25842-8. [PMID: 10464325 DOI: 10.1074/jbc.274.36.25842] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) activation provides cell type-specific signals important for cellular differentiation, proliferation, and survival. Cyclic AMP (cAMP) has divergent effects on MAPK activity depending on whether signaling is through Ras/Raf-1 or Rap1/B-raf. We found that central nervous system-derived neurons, but not astrocytes, express B-raf. In neurons, cAMP activated MAPK in a Rap1/B-raf-dependent manner, while in astrocytes, cAMP decreased MAPK activity. Inhibition of MAPK in neurons decreased neuronal growth factor-mediated survival, and activation of MAPK by cAMP analogues rescued neurons from death. Furthermore, constitutive expression of B-raf in astrocytoma cells increased MAPK activation, as seen in neurons, and enhanced proliferation. These data provide the first experimental evidence that B-raf is the molecular switch which dominantly permits differential cAMP-dependent regulation of MAPK in neurons versus astrocytes, with important implications for both survival and proliferation.
Collapse
Affiliation(s)
- L L Dugan
- Department of Neurology and Center for the Study of Nervous System Injury, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
376
|
Gendron L, Laflamme L, Rivard N, Asselin C, Payet MD, Gallo-Payet N. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol Endocrinol 1999; 13:1615-26. [PMID: 10478850 DOI: 10.1210/mend.13.9.0344] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.
Collapse
Affiliation(s)
- L Gendron
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
377
|
Chiloeches A, Paterson HF, Marais R, Clerk A, Marshall CJ, Sugden PH. Regulation of Ras.GTP loading and Ras-Raf association in neonatal rat ventricular myocytes by G protein-coupled receptor agonists and phorbol ester. Activation of the extracellular signal-regulated kinase cascade by phorbol ester is mediated by Ras. J Biol Chem 1999; 274:19762-70. [PMID: 10391918 DOI: 10.1074/jbc.274.28.19762] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.
Collapse
Affiliation(s)
- A Chiloeches
- National Heart and Lung Institute Division (Cardiac Medicine), Imperial College School of Medicine, London SW3 6LY, United Kingdom
| | | | | | | | | | | |
Collapse
|
378
|
A Requirement for K+-Channel Activity in Growth Factor–Mediated Extracellular Signal-Regulated Kinase Activation in Human Myeloblastic Leukemia ML-1 Cells. Blood 1999. [DOI: 10.1182/blood.v94.1.139.413k11_139_145] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated K+ channels have been shown to be required for proliferation of various types of cells. Much evidence indicates that K+-channel activity is required for G1 progression of the cell cycle in different cell backgrounds, suggesting that K+-channel activity is required for early-stage cell proliferation in these cells. However, little is known about the molecular mechanisms that underlie this phenomenon. We have shown in human myeloblastic leukemia ML-1 cells that K+ channels are activated by epidermal growth factor (EGF), whereas serum starvation deprivation suppressed their activity. In addition, voltage-gated K+ channels are required for G1/S-phase transition of the cell cycle. We report here that suppression of K+ channels prevented the activation of extracellular signal-regulated protein kinase 2 (ERK-2) in response to EGF and serum. However, blockade of K+ channels did not prevent ERK-2 activation induced by 12-O-tetradecanoyl-phorbol 13-acetate (TPA). Elimination of extracellular Ca2+ did not alter either ERK-2 activation or the effect of K+-channel blockade on ERK-2 activation. Our data demonstrate that the K+ channel is a part of the EGF-mediated mitogenic signal-transduction process and is required for initiation of the EGF-mediated mitogen-activated protein kinase (MAPK) pathways. Our findings may thus explain why an increase in K+-channel activity is associated with cell proliferation in many types of cells, including ML-1 cells.
Collapse
|
379
|
Seternes OM, Johansen B, Moens U. A dominant role for the Raf-MEK pathway in forskolin, 12-O-tetradecanoyl-phorbol acetate, and platelet-derived growth factor-induced CREB (cAMP-responsive element-binding protein) activation, uncoupled from serine 133 phosphorylation in NIH 3T3 cells. Mol Endocrinol 1999; 13:1071-83. [PMID: 10406459 DOI: 10.1210/mend.13.7.0293] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study we describe that platelet-derived growth factor (PDGF), 12-O-tetradecanoyl-phorbol-acetate (TPA), and forskolin induced CREB (cAMP-responsive element-binding protein) Ser-133 phosphorylation with comparable magnitude and kinetics in NIH 3T3 cells. While forskolin was the most potent activator of CREB, TPA or PDGF modestly increased CREB activity. The role of protein kinase C, protein kinase A, and the Raf-MEK kinase pathway in the activation and Ser-133 phosphorylation of CREB by these three stimuli was investigated. We found that inhibition of the Raf-MEK kinase pathway efficiently blocks transcriptional activation of CREB by all three stimuli. This dominant involvement of Raf-MEK in CREB transcriptional activation seems to be uncoupled from CREB Ser-133 phosphorylation. We further demonstrate that although inhibition of Raf-MEK represses forskolin-induced CREB activation, forskolin by itself failed to activate ERK1/2 and Elk-1 mediated transcription. These results suggest that a basal level of Raf-MEK activity is necessary for both PDGF- and forskolin-induced CREB activation, independent of CREB Ser-133 phosphorylation.
Collapse
Affiliation(s)
- O M Seternes
- Department of Gene Biology, Institute of Medical Biology, University of Tromsø, Norway
| | | | | |
Collapse
|
380
|
Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J Neurosci 1999. [PMID: 10341225 DOI: 10.1523/jneurosci.19-11-04211.1999] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of ATP/P2Y purinergic receptors stimulates proliferation of astrocytes, but the mitogenic signaling pathway linked to these G-protein-coupled receptors is unknown. We have investigated the role of extracellular signal-regulated protein kinase (ERK) in P2Y receptor-stimulated mitogenic signaling as well as the pathway that couples P2Y receptors to ERK. Downregulation of protein kinase C (PKC) in primary cultures of rat cerebral cortical astrocytes greatly reduced the ability of extracellular ATP to stimulate ERK. Because occupancy of P2Y receptors also leads to inositol phosphate formation, calcium mobilization, and PKC activation, we explored the possibility that signaling from P2Y receptors to ERK is mediated by a phosphatidylinositol-specific phospholipase C (PI-PLC)/calcium pathway. However, neither inhibition of PI-PLC nor chelation of calcium significantly reduced ATP-stimulated ERK activity. Moreover, a preferential inhibitor of calcium-dependent PKC isoforms, Gö 6976, was significantly less effective in blocking ATP-stimulated ERK activity than GF102903X, an inhibitor of both calcium-dependent and -independent PKC isoforms. Furthermore, ATP stimulated a rapid translocation of PKCdelta, a calcium-independent PKC isoform, but not PKCgamma, a calcium-dependent PKC isoform. ATP also stimulated a rapid increase in choline, and inhibition of phosphatidylcholine hydrolysis blocked ATP-evoked ERK activation. These results indicate that P2Y receptors in astrocytes are coupled independently to PI-PLC/calcium and ERK pathways and suggest that signaling from P2Y receptors to ERK involves a calcium-independent PKC isoform and hydrolysis of phosphatidylcholine by phospholipase D. In addition, we found that inhibition of ERK activation blocked extracellular ATP-stimulated DNA synthesis, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y receptors.
Collapse
|
381
|
Abstract
MAP kinases help to mediate diverse processes ranging from transcription of protooncogenes to programmed cell death. More than a dozen mammalian MAP kinase family members have been discovered and include, among others, the well studied ERKs and several stress-sensitive enzymes. MAP kinases lie within protein kinase cascades. Each cascade consists of no fewer than three enzymes that are activated in series. Cascades convey information to effectors, coordinates incoming information from other signaling pathways, amplify signals, and allow for a variety of response patterns. Subcellular localization of enzymes in the cascades is an important aspect of their mechanisms of action and contributes to cell-type and ligand-specific responses. Recent findings on these properties of MAP kinase cascades are the major focus of this review.
Collapse
Affiliation(s)
- M H Cobb
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX 75235-9041, USA
| |
Collapse
|
382
|
Corbit KC, Foster DA, Rosner MR. Protein kinase Cdelta mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol Cell Biol 1999; 19:4209-18. [PMID: 10330161 PMCID: PMC104380 DOI: 10.1128/mcb.19.6.4209] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cdelta (PKCdelta), whereas ERK activation in response to the mitogenic EGF is independent of PKCdelta. Antisense PKCdelta oligonucleotides or the PKCdelta-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCdelta functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCdelta also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCdelta in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCdelta requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCdelta in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCdelta contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling.
Collapse
Affiliation(s)
- K C Corbit
- Department of Pharmacological and Physiological Sciences and The Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
383
|
Miranti CK, Ohno S, Brugge JS. Protein kinase C regulates integrin-induced activation of the extracellular regulated kinase pathway upstream of Shc. J Biol Chem 1999; 274:10571-81. [PMID: 10187852 DOI: 10.1074/jbc.274.15.10571] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.
Collapse
Affiliation(s)
- C K Miranti
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
384
|
Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999; 18:2221-30. [PMID: 10327068 DOI: 10.1038/sj.onc.1202527] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
KDR/FIk-1 tyrosine kinase, one of the two VEGF receptors induces mitogenesis and differentiation of vascular endothelial cells. We have previously reported that a major target molecule of KDR/Flk-1 kinase is PLC-gamma, and that VEGF induces activation of MAP kinase, mainly mediated by protein kinase C (PKC) in the NIH3T3 cells overexpressing KDR/FIk-1 (Takahashi and Shibuya, 1997). However, the signal transduction initiated from VEGF in endothelial cells remains to be elucidated. In primary sinusoidal endothelial cells which showed strictly VEGF-dependent growth, we found that VEGF stimulated the activation of Raf-1-MEK-MAP kinase cascade. To our surprise, an important regulator, Ras was not efficiently activated to a significant level in response to VEGF. Consistent with this, dominant-negative Ras did not block the VEGF-induced phosphorylation of MAP kinase. On the other hand, PKC-specific inhibitors severely reduced VEGF-dependent phosphorylation of MEK, activation of MAP kinase and subsequent DNA synthesis. A potent PI3 kinase inhibitor, Wortmannin, could not inhibit either of them. These results suggest that in primary endothelial cells, VEGF-induced activation of Raf-MEK-MAP kinase and DNA synthesis are mainly mediated by PKC-dependent pathway, much more than by Ras-dependent or PI3 kinase-dependent pathway.
Collapse
Affiliation(s)
- T Takahashi
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan
| | | | | |
Collapse
|
385
|
Stempka L, Schnölzer M, Radke S, Rincke G, Marks F, Gschwendt M. Requirements of protein kinase cdelta for catalytic function. Role of glutamic acid 500 and autophosphorylation on serine 643. J Biol Chem 1999; 274:8886-92. [PMID: 10085132 DOI: 10.1074/jbc.274.13.8886] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported that, in contrast to protein kinase C (PKC)alpha and betaII, PKCdelta does not require phosphorylation of a specific threonine (Thr505) in the activation loop for catalytic competence (Stempka et al. (1997) J. Biol. Chem. 272, 6805-6811). Here, we show that the acidic residue glutamic acid 500 (Glu500) in the activation loop is important for the catalytic function of PKCdelta. A Glu500 to valine mutant shows 76 and 73% reduced kinase activity toward autophosphorylation and substrate phosphorylation, respectively. With regard to thermal stability and inhibition by the inhibitors Gö6976 and Gö6983 the mutant does not differ from the wild type, indicating that the general conformation of the molecule is not altered by the site-directed mutagenesis. Thus, Glu500 in the activation loop of PKCdelta might take over at least part of the role of the phosphate groups on Thr497 and Thr500 of PKCalpha and betaII, respectively. Accordingly, PKCdelta exhibits kinase activity and is able to autophosphorylate probably without posttranslational modification. Autophosphorylation of PKCdelta in vitro occurs on Ser643, as demonstrated by matrix-assisted laser desorption ionization mass spectrometry of tryptic peptides of autophosphorylated PKCdelta wild type and mutants. A peptide containing this site is phosphorylated also in vivo, i.e. in recombinant PKCdelta purified from baculovirus-infected insect cells. A Ser643 to alanine mutation indicates that autophosphorylation of Ser643 is not essential for the kinase activity of PKCdelta. Probably additional (auto)phosphorylation site(s) exist that have not yet been identified.
Collapse
Affiliation(s)
- L Stempka
- German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
386
|
Montessuit C, Thorburn A. Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J Biol Chem 1999; 274:9006-12. [PMID: 10085148 DOI: 10.1074/jbc.274.13.9006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myocardial hypertrophy is associated with increased basal glucose metabolism. Basal glucose transport into cardiac myocytes is mediated by the GLUT1 isoform of glucose transporters, whereas the GLUT4 isoform is responsible for regulatable glucose transport. Treatment of neonatal cardiac myocytes with the hypertrophic agonist 12-O-tetradecanoylphorbol-13-acetate or phenylephrine increased expression of Glut1 mRNA relative to Glut4 mRNA. To study the transcriptional regulation of GLUT1 expression, myocytes were transfected with luciferase reporter constructs under the control of the Glut1 promoter. Stimulation of the cells with 12-O-tetradecanoylphorbol-13-acetate or phenylephrine induced transcription from the Glut1 promoter, which was inhibited by cotransfection with the mitogen-activated protein kinase phosphatases CL100 and MKP-3. Cotransfection of the myocytes with constitutively active versions of Ras and MEK1 or an estrogen-inducible version of Raf1 also stimulated transcription from the Glut1 promoter. Hypertrophic induction of the Glut1 promoter was also partially sensitive to inhibition of the phosphatidylinositol 3-kinase pathway and was strongly inhibited by cotransfection with dominant-negative Ras. Thus, Ras activation and pathways downstream of Ras mediate induction of the Glut1 promoter during myocardial hypertrophy.
Collapse
Affiliation(s)
- C Montessuit
- Department of Oncological Sciences, Program in Human Molecular Biology and Genetics, Departments of Oncological Sciences, Human Genetics, and Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
387
|
Suzuki E, Nagata D, Kakoki M, Hayakawa H, Goto A, Omata M, Hirata Y. Molecular mechanisms of endothelin-1-induced cell-cycle progression: involvement of extracellular signal-regulated kinase, protein kinase C, and phosphatidylinositol 3-kinase at distinct points. Circ Res 1999; 84:611-9. [PMID: 10082482 DOI: 10.1161/01.res.84.5.611] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although it is well established that endothelin-1 (ET-1) has not only vasoconstrictive effects but also mitogenic effects, which seem to be implicated in vascular remodeling, little is known about the molecular mechanisms by which ET-1 induces cell-cycle progression. In this study, we examined the effects of ET-1 on the cell-cycle regulatory machinery, including cyclins, cyclin-dependent kinase (cdk), and cdk inhibitors in NIH3T3 cells. ET-1 increased cyclin D1 protein (5.1+/-1.9-fold increase, 8 hours after stimulation, P<0.05), cdk4 kinase activity (2.8+/-0. 5-fold increase, 12 hours after stimulation, P<0.01), and cdk2 kinase activity (2.1+/-0.4-fold increase, 16 hours after stimulation, P<0.05) in a time- and dose-dependent manner. ET-1-induced increase in cyclin D1 protein, and cdk4 kinase activity was not significantly inhibited by an inhibitor of the mitogen-activated protein kinase kinase 1/2, PD98059, nor by the protein kinase C inhibitor calphostin C, whereas ET-1-induced upregulation of cyclin D1 protein and cdk4 kinase activity was significantly inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002. In contrast, ET-1-induced activation of cdk2 kinase was significantly inhibited by PD98059, calphostin C, and LY294002. ET-1 increased 3H-thymidine uptake in a time-dependent fashion (0 hours, 4216+/-264 cpm per well; 8 hours, 5025+/-197 cpm per well; 16 hours, 9239+/-79 cpm per well, P<0.001 versus 0 hours). ET-1-induced increase in 3H-thymidine uptake was significantly inhibited by PD98059, calphostin C, and LY294002. These results suggest that ET-1-induced cell-cycle progression is, at least in part, mediated by the extracellular signal-regulated kinase, protein kinase C, and phosphatidylinositol 3-kinase and that those pathways may be involved in the progression of the cell cycle at distinct points.
Collapse
Affiliation(s)
- E Suzuki
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
388
|
McDonald OB, Chen WJ, Ellis B, Hoffman C, Overton L, Rink M, Smith A, Marshall CJ, Wood ER. A scintillation proximity assay for the Raf/MEK/ERK kinase cascade: high-throughput screening and identification of selective enzyme inhibitors. Anal Biochem 1999; 268:318-29. [PMID: 10075822 DOI: 10.1006/abio.1998.3030] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a quantitative scintillation proximity assay (SPA) that reproduces the Raf/MEK/ERK signal transduction pathway. The components of this assay include human cRaf1, MEK1, and ERK2 and a biotinylated peptide substrate for ERK2. cRaf1 was expressed as a his-tagged protein in insect cells in an active form. MEK1 and ERK2 were expressed in Escherichia coli as glutathione S-transferase (GST)-fusion proteins in their inactive forms. ERK2 was removed from the GST portion of the fusion protein by cleavage with thrombin protease. When the purified components are incubated together, cRaf-1 phosphorylates and activates MEK1, MEK1 phosphorylates and activates ERK2, and ERK2 phosphorylates the peptide, biotin-AAATGPLSPGPFA. Phosphorylation of the peptide using [gamma-33P]ATP is detected following binding to streptavidin-coated SPA beads. The assay detects inhibitors of cRaf1, MEK1, or ERK2, and has been used to screen large numbers of compounds. The specific target of inhibition was subsequently identified with secondary assays described herein.
Collapse
Affiliation(s)
- O B McDonald
- Division of Biochemistry, GlaxoWellcome Inc., Research Triangle Park, North Carolina, 27709-13398, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Rusciano D, Lorenzoni P, Burger MM. Regulation of c-met expression in B16 murine melanoma cells by melanocyte stimulating hormone. J Cell Sci 1999; 112 ( Pt 5):623-30. [PMID: 9973597 DOI: 10.1242/jcs.112.5.623] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B16 murine melanoma cells selected in vivo for enhanced liver metastatic ability (B16-LS9) show on the one hand an increased expression and constitutive activation of the proto-oncogene c-met (the receptor for hepatocyte growth factor/scatter factor), and on the other hand a more differentiated phenotype, when compared to the parental cell line, B16-F1. Following this observation, we have tried to establish whether there is a direct relationship between differentiation and c-met expression in B16 melanoma cells. Treatment of these cells with differentiating agents indicated that c-met expression was strongly induced by melanocyte stimulating hormone, while retinoic acid had almost no influence. c-met induction was triggered by engagement of the melanocortin receptor, cAMP elevation and PKA/PKC(α) activation, as respectively shown by the effects of ACTH, cAMP elevating agents and specific PK inhibitors. Regulation of c-met expression via the melanocortin receptor and cAMP raises the intriguing possibility that autocrine and/or paracrine mechanisms acting in vivo on this circuit might influence (through c-met expression and activation) the metastatic behavior of these tumor cells, which we have shown to be dependent on their c-met expression.
Collapse
Affiliation(s)
- D Rusciano
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland.
| | | | | |
Collapse
|
390
|
Monick MM, Carter AB, Gudmundsson G, Mallampalli R, Powers LS, Hunninghake GW. A Phosphatidylcholine-Specific Phospholipase C Regulates Activation of p42/44 Mitogen-Activated Protein Kinases in Lipopolysaccharide-Stimulated Human Alveolar Macrophages. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
This study uses human alveolar macrophages to determine whether activation of a phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) is linked to activation of the p42/44 (ERK) kinases by LPS. LPS-induced ERK kinase activation was inhibited by tricyclodecan-9-yl xanthogenate (D609), a relatively specific inhibitor of PC-PLC. LPS also increased amounts of diacylglycerol (DAG), and this increase in DAG was inhibited by D609. LPS induction of DAG was, at least in part, derived from PC hydrolysis. Ceramide was also increased in LPS-treated alveolar macrophages, and this increase in ceramide was inhibited by D609. Addition of exogenous C2 ceramide or bacterial-derived sphingomyelinase to alveolar macrophages increased ERK kinase activity. LPS also activated PKC ζ, and this activation was inhibited by D609. LPS-activated PKC ζ phosphorylated MAP kinase kinase, the kinase directly upstream of the ERK kinases. LPS-induced cytokine production (RNA and protein) was also inhibited by D609. As an aggregate, these studies support the hypothesis that one way by which LPS activates the ERK kinases is via activation of PC-PLC and that activation of a PC-PLC is an important component of macrophage activation by LPS.
Collapse
Affiliation(s)
- Martha M. Monick
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Aaron Brent Carter
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Gunnar Gudmundsson
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Rama Mallampalli
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Linda S. Powers
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| | - Gary W. Hunninghake
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242
| |
Collapse
|
391
|
Ozaki I, Tani E, Ikemoto H, Kitagawa H, Fujikawa H. Activation of stress-activated protein kinase/c-Jun NH2-terminal kinase and p38 kinase in calphostin C-induced apoptosis requires caspase-3-like proteases but is dispensable for cell death. J Biol Chem 1999; 274:5310-7. [PMID: 10026138 DOI: 10.1074/jbc.274.9.5310] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis was induced in human glioma cell lines by exposure to 100 nM calphostin C, a specific inhibitor of protein kinase C. Calphostin C-induced apoptosis was associated with synchronous down-regulation of Bcl-2 and Bcl-xL as well as activation of caspase-3 but not caspase-1. The exposure to calphostin C led to activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) and p38 kinase and concurrent inhibition of extracellular signal-regulated kinase (ERK). Upstream of ERK, Shc was shown to be activated, but its downstream Raf1 and ERK were inhibited. The pretreatment with acetyl-Tyr-Val-Ala-Asp-aldehyde, a relatively selective inhibitor of caspase-3, or benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk), a broad spectrum caspase inhibitor, similarly inhibited calphostin C-induced activation of SAPK/JNK and p38 kinase as well as apoptotic nuclear damages (chromatin condensation and DNA fragmentation) and cell shrinkage, suggesting that caspase-3 functions upstream of SAPK/JNK and p38 kinase, but did not block calphostin C-induced surface blebbing and cell death. On the other hand, the inhibition of SAPK/JNK by transfection of dominant negative SAPK/JNK and that of p38 kinase by SB203580 induced similar effects on the calphostin C-induced apoptotic phenotypes and cell death as did z-VAD.fmk and acetyl-Tyr-Val-Ala-Asp-aldehyde, but the calphostin C-induced PARP cleavage was not changed, suggesting that SAPK/JNK and p38 kinase are involved in the DNA fragmentation pathway downstream of caspase-3. The present findings suggest, therefore, that the activation of SAPK/JNK and p38 kinase is dispensable for calphostin C-mediated and z-VAD.fmk-resistant cell death.
Collapse
Affiliation(s)
- I Ozaki
- Molecular Biology Research Laboratory, Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | |
Collapse
|
392
|
Schenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:1-24. [PMID: 10076047 DOI: 10.1016/s0167-4889(98)00178-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells can react to environmental changes by transduction of extracellular signals, to produce intracellular responses. Membrane-impermeable signal molecules are recognized by receptors, which are localized on the plasma membrane of the cell. Binding of a ligand can result in the stimulation of an intrinsic enzymatic activity of its receptor or the modulation of a transducing protein. The modulation of one or more intracellular transducing proteins can finally lead to the activation or inhibition of a so-called 'effector protein'. In many instances, this also results in altered gene expression. Phosphorylation by protein kinases is one of the most common and important regulatory mechanisms in signal transmission. This review discusses the non-channel transmembrane receptors and their downstream signaling, with special focus on the role of protein kinases.
Collapse
Affiliation(s)
- P W Schenk
- Section of Cell Biology, Institute of Molecular Plant Sciences, Leiden University, P.O. Box 9505, 2300 RA, Leiden, Netherlands
| | | |
Collapse
|
393
|
Dieckgraefe BK, Weems DM. Epithelial injury induces egr-1 and fos expression by a pathway involving protein kinase C and ERK. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G322-30. [PMID: 9950805 DOI: 10.1152/ajpgi.1999.276.2.g322] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The signaling pathways activated in response to gastrointestinal injury remain poorly understood. Previous work has implicated the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase as a mediator of wound-signal transduction and a possible regulator of epithelial restitution. Monolayer injury resulted in rapid activation of p42 and p44 ERK. Injury-induced ERK activation was blocked by protein kinase C inhibition or by disruption of the cell cytoskeleton. Significant increases in Fos and early growth response (Egr)-1 mRNA levels were stimulated by injury, peaking by 20 min. ERK activation and the induction of Egr-1 mRNA were inhibited in a dose-dependent fashion with PD-98059. Fos mRNA expression was partially blocked by PD-98059. Western blot analysis demonstrated strong expression and nuclear localization of Fos and Egr after wounding. Electrophoretic mobility shift assays demonstrated that nuclear extracts contained a protein that specifically bound double-stranded oligonucleotides containing the Egr consensus binding element. Gel supershift assays demonstrated that the protein-DNA complexes were recognized by anti-Egr antibody. Inhibition of injury-induced ERK activation by PD-98059 or direct interference with Egr by expression of a dominant negative mutant led to significantly reduced in vitro monolayer restitution.
Collapse
Affiliation(s)
- B K Dieckgraefe
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
394
|
Abstract
The protein kinase C (PKC) family consists of 11 isoenzymes that, due to structural and enzymatic differences, can be subdivided into three groups: The Ca(2+)-dependent, diacylglycerol (DAG)-activated cPKCs (conventional PKCs: alpha, beta 1, beta 2, gamma); the Ca(2+)-independent, DAG-activated nPKCs (novel PKCs: delta, epsilon, eta, theta, mu), and the Ca(2+)-dependent, DAG non-responsive aPKCs (atypical PKCs: zeta, lambda/iota). PKC mu is a novel PKC, but with some special structural and enzymatic properties.
Collapse
Affiliation(s)
- M Gschwendt
- German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
395
|
Nicke B, Tseng MJ, Fenrich M, Logsdon CD. Adenovirus-mediated gene transfer of RasN17 inhibits specific CCK actions on pancreatic acinar cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G499-506. [PMID: 9950825 DOI: 10.1152/ajpgi.1999.276.2.g499] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CCK stimulates pleiotrophic responses in pancreatic acinar cells; however, the intracellular signaling pathways involved are not well understood. To evaluate the role of the ras gene product in CCK actions, a strategy involving in vitro adenoviral-mediated gene delivery of a dominant-negative mutant Ras (RasN17) was utilized. Isolated acini were infected with various titers of either a control adenovirus or an adenoviral construct expressing RasN17 for 24 h before being treated with CCK. Titer-dependent expression of RasN17 in the acini was confirmed by Western blotting. Infection with control adenovirus [10(6)-10(9) plaque-forming units/mg acinar protein (multiplicity of infection of approximately 1-1,000)] had no effect on CCK stimulation of acinar cell amylase release, extracellular-regulated kinase (ERK) or c-Jun kinase (JNK) kinases, or DNA synthesis. In contrast, infection with adenovirus bearing rasN17 increased basal amylase release, inhibited CCK-mediated JNK activation, had no effect on CCK activation of ERK, and inhibited DNA synthesis. These data demonstrate important roles for Ras in specific actions of CCK on pancreatic acinar function.
Collapse
Affiliation(s)
- B Nicke
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | |
Collapse
|
396
|
Berts A, Zhong H, Minneman KP. No role for Ca++ or protein kinase C in alpha-1A adrenergic receptor activation of mitogen-activated protein kinase pathways in transfected PC12 cells. Mol Pharmacol 1999; 55:296-303. [PMID: 9927621 DOI: 10.1124/mol.55.2.296] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We studied the role of Ca++ and protein kinase C (PKC) in alpha-1A adrenergic receptor (AR)-mediated activation of mitogen-activated protein kinase pathways in PC12 cells. In PC12 cells stably transfected with the human alpha-1A AR, norepinephrine (NE) strongly activated both extracellular signal regulated kinases (ERKs) and c-jun-NH2-terminal kinases (JNK). Ten nanomolar thapsigargin (TG) increased cytoplasmic Ca++ at least as much as NE but did not activate ERKs or JNK. Higher concentrations of TG caused a small activation of ERKs but not JNK. Emptying [Ca++]i stores by pretreatment with TG prevented the NE-stimulated increase in [Ca++]i but not ERK or JNK activation. The Ca++ chelator bis(2-aminophenoxy)ethane-N-N-N'-N'-tetraacetate (BAPTA) dose dependently abolished NE-stimulated Ca++ responses but not ERK or JNK activation. NE increased tyrosine phosphorylation of Pyk2, and this response was neither blocked by BAPTA nor mimicked by TG. The phorbol ester tumor promoting agent (TPA) caused a dose-dependent activation of ERKs that was potentiated by 10 nM TG. TPA caused only a small activation of JNK relative to that caused by NE, which was not affected by TG. The potent PKC inhibitor bisindolylmaleimide I dose dependently inhibited ERK and JNK activation by TPA, but not NE. ATP and UTP activated similar mitogen-activated protein kinase responses through endogenous P2Y2 receptors, and these responses were not blocked by BAPTA or bisindolylmaleimide I, suggesting that these results may be generalizable to other Gq/11-coupled receptors. The results suggest that Ca++ release and PKC activation are neither necessary nor sufficient for alpha-1A AR-mediated activation of mitogenic responses in PC12 cells.
Collapse
Affiliation(s)
- A Berts
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
397
|
Sphingosine Blocks Human Polymorphonuclear Leukocyte Phagocytosis Through Inhibition of Mitogen-Activated Protein Kinase Activation. Blood 1999. [DOI: 10.1182/blood.v93.2.686.402k27_686_693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we investigated the mechanism by which sphingosine and its analogues, dihydrosphingosine and phytosphingosine, inhibit polymorphonuclear leukocyte (PMN) phagocytosis of IgG-opsonized erythrocytes (EIgG) and inhibit ERK1 and ERK2 phosphorylation. We used antibodies that recognized the phosphorylated forms of ERK1 (p44) and ERK2 (p42) (extracellular signal-regulated protein kinases 1 and 2). Sphingoid bases inhibited ERK1 and ERK2 activation and phagocytosis of EIgG in a concentration-dependent manner. Incubation with glycine, N,N′-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-bis[(acetyloxy)methyl]ester (BAPTA,AM), an intracellular chelator of calcium, failed to block either phagocytosis or ERK1 and ERK2 phosphorylation, consistent with the absence of a role for a calcium-dependent protein kinase C (PKC) in ERK1 and ERK2 phosphorylations. Western blotting demonstrated that sphingosine inhibited the translocation of Raf-1 and PKCδ from PMN cytosol to the plasma membrane during phagocytosis. These data are consistent with the interpretation that sphingosine regulates ERK1 and ERK2 phosphorylation through inhibition of PKCδ, and this in turn leads to inhibition of Raf-1 translocation to the plasma membrane. Consistent with this interpretation, the sphingosine-mediated inhibition of phagocytosis, ERK2 activation, and PKCδ translocation to the plasma membrane could be abrogated with a cell-permeable diacylglycerol analog. The increase in the diacylglycerol mass correlated with the translocation of PKCδ and Raf-1 to the plasma membrane by 3 minutes after the initiation of phagocytosis. Additionally, the diacylglycerol analog enhanced phagocytosis by initiating activation of PKCδ and its translocation to the plasma membrane. Because PMN generate sufficient levels of sphingosine by 30 minutes during phagocytosis of EIgG to inhibit phagocytosis, it appears that sphingosine can serve as an endogenous regulator of EIgG-mediated phagocytosis by downregulating ERK activation.
Collapse
|
398
|
Sphingosine Blocks Human Polymorphonuclear Leukocyte Phagocytosis Through Inhibition of Mitogen-Activated Protein Kinase Activation. Blood 1999. [DOI: 10.1182/blood.v93.2.686] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn the present study, we investigated the mechanism by which sphingosine and its analogues, dihydrosphingosine and phytosphingosine, inhibit polymorphonuclear leukocyte (PMN) phagocytosis of IgG-opsonized erythrocytes (EIgG) and inhibit ERK1 and ERK2 phosphorylation. We used antibodies that recognized the phosphorylated forms of ERK1 (p44) and ERK2 (p42) (extracellular signal-regulated protein kinases 1 and 2). Sphingoid bases inhibited ERK1 and ERK2 activation and phagocytosis of EIgG in a concentration-dependent manner. Incubation with glycine, N,N′-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-bis[(acetyloxy)methyl]ester (BAPTA,AM), an intracellular chelator of calcium, failed to block either phagocytosis or ERK1 and ERK2 phosphorylation, consistent with the absence of a role for a calcium-dependent protein kinase C (PKC) in ERK1 and ERK2 phosphorylations. Western blotting demonstrated that sphingosine inhibited the translocation of Raf-1 and PKCδ from PMN cytosol to the plasma membrane during phagocytosis. These data are consistent with the interpretation that sphingosine regulates ERK1 and ERK2 phosphorylation through inhibition of PKCδ, and this in turn leads to inhibition of Raf-1 translocation to the plasma membrane. Consistent with this interpretation, the sphingosine-mediated inhibition of phagocytosis, ERK2 activation, and PKCδ translocation to the plasma membrane could be abrogated with a cell-permeable diacylglycerol analog. The increase in the diacylglycerol mass correlated with the translocation of PKCδ and Raf-1 to the plasma membrane by 3 minutes after the initiation of phagocytosis. Additionally, the diacylglycerol analog enhanced phagocytosis by initiating activation of PKCδ and its translocation to the plasma membrane. Because PMN generate sufficient levels of sphingosine by 30 minutes during phagocytosis of EIgG to inhibit phagocytosis, it appears that sphingosine can serve as an endogenous regulator of EIgG-mediated phagocytosis by downregulating ERK activation.
Collapse
|
399
|
Egea J, Espinet C, Comella JX. Calcium influx activates extracellular-regulated kinase/mitogen-activated protein kinase pathway through a calmodulin-sensitive mechanism in PC12 cells. J Biol Chem 1999; 274:75-85. [PMID: 9867813 DOI: 10.1074/jbc.274.1.75] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence suggests that membrane depolarization is able to promote neuronal survival through a sustained, although moderate, increase in the intracellular calcium. We have used the PC12 cell line to study the possible intracellular pathways that can be activated by calcium influx. Previously, we observed that membrane depolarization-induced calcium influx was able to activate the extracellular-regulated kinase (ERK)/mitogen-activated protein kinase pathway and most of this activation was calmodulin-dependent. We demonstrated that a part of the ERK activation is due to the phosphorylation of the epidermal growth factor receptor. Here, we show that both the epidermal growth factor receptor phosphorylation and the Shc-Grb2-Ras activation are not calmodulin-modulated. Moreover, dominant negative mutant Ha-ras (Asn-17) prevents the activation on ERKs by membrane depolarization, suggesting that Ras and calmodulin are both necessaries to activate ERKs by membrane depolarization. We failed to observe any significant induction and/or modulation of the A-Raf, B-Raf or c-Raf-1 kinase activities, thus suggesting the existence of a MEK kinase different from the classical Raf kinases that directly or indirectly can be modulated by Ca2+/calmodulin.
Collapse
Affiliation(s)
- J Egea
- Grup de Neurobiologia Molecular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | | | | |
Collapse
|
400
|
Moos PJ, Muskardin DT, Fitzpatrick FA. Effect of Taxol and Taxotere on Gene Expression in Macrophages: Induction of the Prostaglandin H Synthase-2 Isoenzyme. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Induction of genes encoding cytokines or other, unidentified proteins may contribute to the pharmacological effects of taxol. We hypothesized that prostaglandin H synthase-2 (PGHS-2) was one of the unidentified genes induced by taxol. Taxol alone or taxol plus IFN-γ increased PGE2 formation, PGHS-2 protein expression, and PGHS-2 mRNA expression in RAW 264.7 murine macrophages. The kinetics for mRNA induction, protein expression, and catalysis were self-consistent. A selective inhibitor of PGHS-2 blocked PGE2 formation by cells incubated with taxol; a selective inhibitor of PGHS-1 had no effect. A glucocorticoid blocked the induction of mRNA, the expression of PGHS-2 protein, and the formation of PGE2. Neither taxol alone nor taxol plus IFN-γ altered the expression of the PGHS-1 isoenzyme in RAW 264.7 cells. Taxotere, an analogue that stabilizes microtubules as potently as taxol, did not alter the expression of PGHS-2, implying that its induction in RAW 264.7 murine macrophages did not originate from microtubule stabilization. Taxol and taxotere each induced PGHS-2 expression in human monocytes suspended in 10% human serum. However, human monocytes suspended in 10% bovine serum responded only to LPS, not to taxol or taxotere, implying that they act independently of the LPS-mimetic process that is prominent in mice. Taxol induced PGHS-2 in human and murine monocytes via a p38 mitogen-associated protein kinase pathway. The inclusion of PGHS-2 among the early response genes induced in leukocytes may be relevant to the beneficial and adverse effects encountered during taxol administration.
Collapse
Affiliation(s)
- Philip J. Moos
- *Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84108; and
| | - D. T. Muskardin
- †Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - F. A. Fitzpatrick
- *Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84108; and
| |
Collapse
|