351
|
Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 2011; 120 Suppl 1:S109-29. [PMID: 21177774 PMCID: PMC3145386 DOI: 10.1093/toxsci/kfq372] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/01/2010] [Indexed: 01/28/2023] Open
Abstract
It has long been recognized that the physical form of materials can mediate their toxicity--the health impacts of asbestiform materials, industrial aerosols, and ambient particulate matter are prime examples. Yet over the past 20 years, toxicology research has suggested complex and previously unrecognized associations between material physicochemistry at the nanoscale and biological interactions. With the rapid rise of the field of nanotechnology and the design and production of increasingly complex nanoscale materials, it has become ever more important to understand how the physical form and chemical composition of these materials interact synergistically to determine toxicity. As a result, a new field of research has emerged--nanotoxicology. Research within this field is highlighting the importance of material physicochemical properties in how dose is understood, how materials are characterized in a manner that enables quantitative data interpretation and comparison, and how materials move within, interact with, and are transformed by biological systems. Yet many of the substances that are the focus of current nanotoxicology studies are relatively simple materials that are at the vanguard of a new era of complex materials. Over the next 50 years, there will be a need to understand the toxicology of increasingly sophisticated materials that exhibit novel, dynamic and multifaceted functionality. If the toxicology community is to meet the challenge of ensuring the safe use of this new generation of substances, it will need to move beyond "nano" toxicology and toward a new toxicology of sophisticated materials. Here, we present a brief overview of the current state of the science on the toxicology of nanoscale materials and focus on three emerging toxicology-based challenges presented by sophisticated materials that will become increasingly important over the next 50 years: identifying relevant materials for study, physicochemical characterization, and biointeractions.
Collapse
Affiliation(s)
- Andrew D. Maynard
- Risk Science Center, University of Michigan School of Public Health, Ann Arbor Michigan 48019
| | - David B. Warheit
- DuPont Haskell Laboratory for Health and Environmental Sciences, Newark, Delaware 19714-0050
| | - Martin A. Philbert
- Toxicology Program, University of Michigan School of Public Health, Ann Arbor, Michigan 48019
| |
Collapse
|
352
|
Yacobi NR, Fazllolahi F, Kim YH, Sipos A, Borok Z, Kim KJ, Crandall ED. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:65-78. [PMID: 25568662 PMCID: PMC4283834 DOI: 10.1007/s11869-010-0098-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Studies on the health effects of air-pollution particles suggest that injury may result from inhalation of airborne ultrafine particles (<100 nm in diameter). Engineered nanomaterials (<100 nm in at least one dimension) may also be harmful if inhaled. Nanomaterials deposited on the respiratory epithelial tract are thought to cross the air-blood barrier, especially via the expansive alveolar region, into the systemic circulation to reach end organs (e.g., myocardium, liver, pancreas, kidney, and spleen). Since ambient ultrafine particles are difficult to track, studies of defined engineered nanomaterials have been used to obtain valuable information on how nanomaterials interact with and traffic across the air-blood barrier of mammalian lungs. Since specific mechanistic information on how nanomaterials interact with the lung is difficult to obtain using in vivo or ex vivo lungs due to their complex anatomy, in vitro alveolar epithelial models have been of considerable value in determining nanomaterial-lung interactions. In this review, we provide information on mechanisms underlying lung alveolar epithelial injury caused by various nanomaterials and on nanomaterial trafficking across alveolar epithelium that may lead to end-organ injury.
Collapse
Affiliation(s)
- Nazanin R. Yacobi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Farnoosh Fazllolahi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arnold Sipos
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA 90033, USA. Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, IRD 620, 2020 Zonal Avenue, Los Angeles, CA 90033, USA. Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
353
|
Scown TM, van Aerle R, Tyler CR. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 2011; 40:653-70. [PMID: 20662713 DOI: 10.3109/10408444.2010.494174] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanotechnology is a rapidly growing industry of global economic importance, exploiting the novel characteristics of materials manufactured at the nanoscale. The properties of engineered nanoparticles (ENPs) that make them useful in a wide range of industrial applications, however, have led to concerns regarding their potential impact on human and environmental health. The aquatic environment is particularly at risk of exposure to ENPs, as it acts as a sink for most environmental contaminants. This paper critically evaluates what is currently known about sources and discharge of ENPs to the aquatic environment and how the physicochemical characteristics of ENPs affect their fate and behaviour and thus availability for uptake into aquatic organisms, and assesses reported toxicological effects. Having reviewed the ecotoxicological information, the conclusion is that whilst there are data indicating some nanoparticles have the potential to induce harm in exposed aquatic organisms, there is insufficient evidence for harm, for known/modelled environmental concentrations for almost all ENPs considered. This conclusion, however, must be balanced by the fact that there are significant gaps in our understanding on the fate and behaviour of ENPs in the aquatic environment. Greater confidence in the assessments on ENP impacts in aquatic systems to enable effective comparisons across studies urgently requires more standardised approaches for ENP hazard identification, and critically, more thorough characterisations on the exposed particles. There is also an urgent need for the advancement of tools and techniques that can accurately quantify and visualise uptake of nanoparticles into biological tissues.
Collapse
Affiliation(s)
- T M Scown
- Ecotoxicology and Aquatic Biology Research Group, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom
| | | | | |
Collapse
|
354
|
Møller P, Mikkelsen L, Vesterdal LK, Folkmann JK, Forchhammer L, Roursgaard M, Danielsen PH, Loft S. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol 2011; 41:339-68. [PMID: 21345153 DOI: 10.3109/10408444.2010.533152] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development and use of nanoparticles have alerted toxicologists and regulators to issues of safety testing. By analogy with ambient air particles, it can be expected that small doses are associated with a small increase in risk of cardiovascular diseases, possibly through oxidative stress and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60), single-walled carbon nanotubes, ambient air particles, and diesel exhaust particles. Exposure to ambient air particles is associated with accelerated progression of atherosclerosis and vasomotor dysfunction in both healthy and susceptible animal models and humans at risk of developing cardiovascular diseases. The vasomotor dysfunction includes increased vasoconstriction as well as reduced endothelium-dependent vasodilatation; endothelium-independent vasodilatation is often unaffected indicating mainly endothelial dysfunction. Pulmonary exposure to TiO(2), carbon black, and engineered nanoparticles generate vasomotor dysfunction; the effect size is similar to that generated by combustion-derived particles, although the effect could depend on the exposure period and the administered dose, route, and mode. The relative risk associated with exposure to nanoparticles may be small compared to some traditional risk factors for cardiovascular diseases, but superimposed on these and possible exposure to large parts of the population it is a significant public health concern. Overall, assessment of vasomotor dysfunction and progression of atherosclerosis are promising tools for understanding the effects of particulate matter.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
355
|
Gavello D, Vandael DHF, Cesa R, Premoselli F, Marcantoni A, Cesano F, Scarano D, Fubini B, Carbone E, Fenoglio I, Carabelli V. Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes. Nanotoxicology 2011; 6:47-60. [DOI: 10.3109/17435390.2011.553294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
356
|
Hubbs AF, Mercer RR, Benkovic SA, Harkema JACK, Sriram K, Schwegler-Berry D, Goravanahally MP, Nurkiewicz TR, Castranova V, Sargent LM. Nanotoxicology--a pathologist's perspective. Toxicol Pathol 2011; 39:301-24. [PMID: 21422259 PMCID: PMC9808592 DOI: 10.1177/0192623310390705] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in chemistry and engineering have created a new technology, nanotechnology, involving the tiniest known manufactured products. These products have a rapidly increasing market share and appear poised to revolutionize engineering, cosmetics, and medicine. Unfortunately, nanotoxicology, the study of nanoparticulate health effects, lags behind advances in nanotechnology. Over the past decade, existing literature on ultrafine particles and respirable durable fibers has been supplemented by studies of first-generation nanotechnology products. These studies suggest that nanosizing increases the toxicity of many particulates. First, as size decreases, surface area increases, thereby speeding up dissolution of soluble particulates and exposing more of the reactive surface of durable but reactive particulates. Second, nanosizing facilitates movement of particulates across cellular and intracellular barriers. Third, nanosizing allows particulates to interact with, and sometimes even hybridize with, subcellular structures, including in some cases microtubules and DNA. Finally, nanosizing of some particulates, increases pathologic and physiologic responses, including inflammation, fibrosis, allergic responses, genotoxicity, and carcinogenicity, and may alter cardiovascular and lymphatic function. Knowing how the size and physiochemical properties of nanoparticulates affect bioactivity is important in assuring that the exciting new products of nanotechnology are used safely. This review provides an introduction to the pathology and toxicology of nanoparticulates.
Collapse
Affiliation(s)
- Ann F. Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Stanley A. Benkovic
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - JACK Harkema
- Michigan State University, East Lansing, Michigan, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Madhusudan P. Goravanahally
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Timothy R. Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Linda M. Sargent
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
357
|
Chao MW, Kozlosky J, Po IP, Strickland PO, Svoboda KKH, Cooper K, Laumbach R, Gordon MK. Diesel exhaust particle exposure causes redistribution of endothelial tube VE-cadherin. Toxicology 2011; 279:73-84. [PMID: 20887764 PMCID: PMC3003746 DOI: 10.1016/j.tox.2010.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/07/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022]
Abstract
Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24h. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - John Kozlosky
- Environmental Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Iris P. Po
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Pamela Ohman Strickland
- Family Medicine and Biostatistics, UMDNJ, Robert Wood Johnson Medical School, School of Public Health, Piscataway, NJ 08854
| | - Kathy K. H. Svoboda
- Biomedical Science, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, TX 75246
| | - Keith Cooper
- Biochemistry and Microbiology, Cook Campus, Rutgers University, New Brunswick, NJ 08901
| | - Robert Laumbach
- Environmental and Occupational Medicine, UMDNJ, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Marion K. Gordon
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
358
|
Krug HF, Wick P. Nanotoxicology: An Interdisciplinary Challenge. Angew Chem Int Ed Engl 2011; 50:1260-78. [DOI: 10.1002/anie.201001037] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/10/2010] [Indexed: 11/11/2022]
|
359
|
|
360
|
Stark WJ. Nanoparticles in Biological Systems. Angew Chem Int Ed Engl 2011; 50:1242-58. [DOI: 10.1002/anie.200906684] [Citation(s) in RCA: 429] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/23/2010] [Indexed: 12/12/2022]
|
361
|
Shrey K, Suchit A, Deepika D, Shruti K, Vibha R. Air pollutants: the key stages in the pathway towards the development of cardiovascular disorders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:1-9. [PMID: 21787663 DOI: 10.1016/j.etap.2010.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/22/2010] [Accepted: 09/01/2010] [Indexed: 05/25/2023]
Abstract
Air pollution has been one of the significant risks to human health. Various studies indicate that ambient particulate matter in air pollution is most strongly allied to increased morbidity and mortality due to their link with cardiovascular adverse events. The mechanisms leading to these harmful effects on the cardiovascular system have not been defined clearly but several hypotheses have been proposed that elucidate the direct and indirect effects of air pollution. Adverse cardiovascular events such as thrombosis, vascular dysfunction, atherosclerosis, myocardial infarction and disturbance in cardiac autonomic control are thought to be linked with air pollution. Recently, an association has also been found between cardiac hypertrophy and air pollution. The present review focuses on highlighting the implications of air pollution in deteriorating cardiac health.
Collapse
Affiliation(s)
- Kohli Shrey
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | | | | | | | | |
Collapse
|
362
|
Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:593-632. [PMID: 22008094 DOI: 10.1080/10937404.2011.615113] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
With the development of nanotechnology, nanomaterials are being widely used in many industries as well as in medicine and pharmacology. Despite the many proposed advantages of nanomaterials, increasing concerns have been expressed on their potential adverse human health effects. In recent years, application of nanotechnology in medicine has been defined as nanomedicine. Techniques in nanomedicine make it possible to deliver therapeutic agents into targeted specific cells, cellular compartments, tissues, and organs by using nanoparticulate carriers. Because nanoparticles possess different physicochemical properties than their fine-sized analogues due to their extremely small size and large surface area, they need to be evaluated separately for toxicity and adverse health effects. In addition, in the field of nanomedicine, intravenous and subcutaneous injections of nanoparticulate carriers deliver exogenous nanoparticles directly into the human body without passing through the normal absorption process. These nanoparticulate carriers themselves may be responsible for toxicity and interaction with biological macromolecules within the human body. Second, insoluble nanoparticulate carriers may accumulate in human tissues or organs. Therefore, it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. Toxicological studies for biosafety evaluation of these nanomaterials will be important for the continuous development of nanomedical science. This review summarizes the current knowledge on toxicology of nanomaterials, particularly on those used in nanomedicine.
Collapse
Affiliation(s)
- Jinshun Zhao
- Public Health Department of Medical School, Ningbo University, Ningbo, Zhejiang, P. R. China
| | | |
Collapse
|
363
|
Simkó M, Mattsson MO. Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 2010; 7:42. [PMID: 21176150 PMCID: PMC3016300 DOI: 10.1186/1743-8977-7-42] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/21/2010] [Indexed: 11/28/2022] Open
Abstract
There are certain concerns regarding the safety for the environment and human health from the use of engineered nanoparticles (ENPs) which leads to unintended exposures, as opposed to the use of ENPs for medical purposes. This review focuses on the unintended human exposure of ENPs. In particular, possible effects in the brain are discussed and an attempt to assess risks is performed. Animal experiments have shown that investigated ENPs (metallic nanoparticles, quantum dots, carbon nanotubes) can translocate to the brain from different entry points (skin, blood, respiratory pathways). After inhalation or instillation into parts of the respiratory tract a very small fraction of the inhaled or instilled ENPs reaches the blood and subsequently secondary organs, including the CNS, at a low translocation rate. Experimental in vivo and in vitro studies have shown that several types of ENPs can have various biological effects in the nervous system. Some of these effects could also imply that ENPs can cause hazards, both acutely and in the long term. The relevance of these data for risk assessment is far from clear. There are at present very few data on exposure of the general public to either acute high dose exposure or on chronic exposure to low levels of air-borne ENPs. It is furthermore unlikely that acute high dose exposures would occur. The risk from such exposures for damaging CNS effects is thus probably very low, irrespective of any biological hazard associated with ENPs. The situation is more complicated regarding chronic exposures, at low doses. The long term accumulation of ENPs can not be excluded. However, we do not have exposure data for the general public regarding ENPs. Although translocation to the brain via respiratory organs and the circulation appears to be very low, there remains a possibility that chronic exposures, and/or biopersistent ENPs, can influence processes within the brain that are triggering or aggravating pathological processes. In general, the present state of knowledge is unsatisfactory for a proper risk assessment in this area. Crucial deficits include lack of exposure data, the absence of a proper dose concept, and that studies often fail in adequate description of the investigated ENPs.
Collapse
Affiliation(s)
- Myrtill Simkó
- Austrian Academy of Sciences, Institute of Technology Assessment, Vienna, Austria.
| | | |
Collapse
|
364
|
Osmond MJ, McCall MJ. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 2010; 4:15-41. [PMID: 20795900 DOI: 10.3109/17435390903502028] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sunscreens containing metal oxide nanoparticles appear transparent on the skin and provide excellent protection against sunburn caused by UV radiation. While it is likely that nanoparticles remain on the surface of the skin of healthy adult humans, and thus are considered safe for use in sunscreens, there has been no comprehensive assessment of the impact on human health from exposure to the metal oxide nanoparticles destined for use in sunscreens, either in the workplace during the manufacturing process, in long-term use across a range of skin conditions, or upon release into the broader environment, either accidentally or consequent of normal sunscreen use. In this review, we focus on zinc oxide nanoparticles destined for use in modern sunscreens, and discuss the potential for human exposure and the health hazard at each stage of their manufacture and use. We highlight where there is a need for further research.
Collapse
Affiliation(s)
- Megan J Osmond
- CSIRO Future Manufacturing Flagship, North Ryde, NSW 2113, Australia.
| | | |
Collapse
|
365
|
Gosens I, Post JA, de la Fonteyne LJJ, Jansen EHJM, Geus JW, Cassee FR, de Jong WH. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol 2010; 7:37. [PMID: 21126342 PMCID: PMC3014867 DOI: 10.1186/1743-8977-7-37] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. RESULTS Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. CONCLUSION Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity.
Collapse
Affiliation(s)
- Ilse Gosens
- Centre for Environmental Health Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
366
|
Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 2010; 28:1300-3. [PMID: 21057497 PMCID: PMC3058321 DOI: 10.1038/nbt.1696] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/05/2010] [Indexed: 12/19/2022]
Abstract
Nano-size particles show promise for pulmonary drug delivery, yet their behavior after deposition in the lung remains poorly understood. In this study, a series of near-infrared (NIR) fluorescent nanoparticles were systematically varied in chemical composition, shape, size and surface charge, and their biodistribution and elimination were quantified in rat models after lung instillation. We demonstrate that nanoparticles with hydrodynamic diameter (HD) less than ≈34 nm and a noncationic surface charge translocate rapidly from the lung to mediastinal lymph nodes. Nanoparticles of HD < 6 nm can traffic rapidly from the lungs to lymph nodes and the bloodstream, and then be subsequently cleared by the kidneys. We discuss the importance of these findings for drug delivery, air pollution and carcinogenesis.
Collapse
Affiliation(s)
- Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Yoshitomo Ashitate
- Division of Hematology/Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Jeong Heon Lee
- Division of Hematology/Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Soon Hee Kim
- Division of Hematology/Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Aya Matsui
- Division of Hematology/Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Numpon Insin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Moungi G. Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Manuela Semmler-Behnke
- Institute of Lung Biology and Disease, Helmholtz Center München - German Research Center for Environmental Health, Neuherberg/Munich 85764, Germany
| | - John V. Frangioni
- Division of Hematology/Oncology, Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115
| |
Collapse
|
367
|
McGuinnes C, Duffin R, Brown S, L. Mills N, Megson IL, MacNee W, Johnston S, Lu SL, Tran L, Li R, Wang X, Newby DE, Donaldson K. Surface Derivatization State of Polystyrene Latex Nanoparticles Determines both Their Potency and Their Mechanism of Causing Human Platelet Aggregation In Vitro. Toxicol Sci 2010; 119:359-68. [DOI: 10.1093/toxsci/kfq349] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
368
|
Tsou TC, Yeh SC, Tsai FY, Lin HJ, Cheng TJ, Chao HR, Tai LA. Zinc oxide particles induce inflammatory responses in vascular endothelial cells via NF-κB signaling. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:182-8. [PMID: 20674161 DOI: 10.1016/j.jhazmat.2010.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/03/2010] [Accepted: 07/03/2010] [Indexed: 05/25/2023]
Abstract
This study investigated inflammatory effects of zinc oxide (ZnO) particles on vascular endothelial cells. The effects of 50 and 100-nm ZnO particles on human umbilical vein endothelial cells (HUVECs) were characterized by assaying cytotoxicity, cell proliferation, and glutathione levels. A marked drop in survival rate was observed when ZnO concentration was increased to 45 μg/ml. ZnO concentrations of ≤3 μg/ml resulted in increased cell proliferation, while those of ≤45 μg/ml caused dose-dependent increases in oxidized glutathione levels. Treatments with ZnO concentrations ≤45 μg/ml were performed to determine the expression of intercellular adhesion molecule-1 (ICAM-1) protein, an indicator of vascular endothelium inflammation, revealing that ZnO particles induced a dose-dependent increase in ICAM-1 expression and marked increases in NF-κB reporter activity. Overexpression of IκBα completely inhibited ZnO-induced ICAM-1 expression, suggesting NF-κB plays a pivotal role in regulation of ZnO-induced inflammation in HUVECs. Additionally, TNF-α, a typical inflammatory cytokine, induced ICAM-1 expression in an NF-κB-dependent manner, and ZnO synergistically enhanced TNF-α-induced ICAM-1 expression. Both 50 and 100-nm ZnO particles agglomerated to similar size distributions. This study reveals an important role for ZnO in modulating inflammatory responses of vascular endothelial cells via NF-κB signaling, which could have important implications for treatments of vascular disease.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
369
|
Pulmonary exposure to carbon black nanoparticles and vascular effects. Part Fibre Toxicol 2010; 7:33. [PMID: 21054825 PMCID: PMC2991279 DOI: 10.1186/1743-8977-7-33] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Exposure to small size particulates is regarded as a risk factor for cardiovascular diseases. METHODS We exposed young and aged apolipoprotein E knockout mice (apoE-/-) to carbon black (Printex 90, 14 nm) by intratracheal instillation, with different dosing and timing, and measured vasomotor function, progression of atherosclerotic plaques, and VCAM-1, ICAM-1, and 3-nitrotyrosine in blood vessels. The mRNA expression of VCAM-1, ICAM-1, HO-1, and MCP-1 was examined in lung tissue. RESULTS Young apoE-/- mice exposed to two consecutive 0.5 mg/kg doses of carbon black exhibited lower acetylcholine-induced vasorelaxation in aorta segments mounted in myographs, whereas single doses of 0.05-2.7 mg/kg produced no such effects. The phenylephrine-dependent vasocontraction response was shifted toward a lower responsiveness in the mice exposed once to a low dose for 24 hours. No effects were seen on the progression of atherosclerotic plaques in the aged apoE-/- mice or on the expression of VCAM-1 and ICAM-1 and the presence of 3-nitrotyrosine in the vascular tissue of either young or aged apoE-/- mice. The expression of MCP-1 mRNA was increased in the lungs of young apoE-/- mice exposed to 0.9-2.7 mg/kg carbon black for 24 hours and of aged apoE-/- mice exposed to two consecutive 0.5 mg/kg doses of carbon black seven and five weeks prior to sacrifice. CONCLUSION Exposure to nano-sized carbon black particles is associated with modest vasomotor impairment, which is associated neither with nitrosative stress nor with any obvious increases in the expression of cell adhesion proteins on endothelial cells or in plaque progression. Evidence of pulmonary inflammation was observed, but only in animals exposed to higher doses.
Collapse
|
370
|
Anjali CH, Sudheer Khan S, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N. Formulation of water-dispersible nanopermethrin for larvicidal applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1932-1936. [PMID: 20833431 DOI: 10.1016/j.ecoenv.2010.08.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 05/21/2023]
Abstract
The formulation of water dispersible nanopermethrin was investigated for its larvicidal property. Nanopermethrin was prepared using solvent evaporation of oil in water microemulsion, which was obtained by mixing an organic and aqueous phase. The mean particle size of nanodispersion in water was 151 ± 27 nm. X-ray diffraction (XRD) of nanopermethrin showed it was amorphous. Larvicidal studies were carried out against Culex quinquefasciatus and the results were compared with bulk permethrin. The LC(50) of nanopermethrin to Cx. quinquefasciatus was 0.117 mg/L. The LC(50) of bulk permethrin to Cx. quinquefasciatus was 0.715 mg/L. Nanopermethrin may be a good choice as a potent and selective larvicide for Cx. quinquefasciatus.
Collapse
Affiliation(s)
- C H Anjali
- Nanobio-medicine Research Group, School of Bio Sciences & Technology, VIT University, Vellore, India
| | | | | | | | | | | |
Collapse
|
371
|
Abbott LC, Maynard AD. Exposure assessment approaches for engineered nanomaterials. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2010; 30:1634-1644. [PMID: 20626687 DOI: 10.1111/j.1539-6924.2010.01446.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Products based on nanotechnology are rapidly emerging in the marketplace, sometimes with little notice to consumers of their nanotechnology pedigree. This wide variety of nanotechnology products will result (in some cases) in unintentional human exposure to purposely engineered nanoscale materials via the dermal, inhalation, ingestion, and ocular pathways. Occupational, consumer, and environmental exposure to the nanomaterials should be characterized during the entire product lifecycle-manufacture, use, and disposal. Monitoring the fate and transport of engineered nanomaterials is complicated by the lack of detection techniques and the lack of a defined set of standardized metrics to be consistently measured. New exposure metrics may be required for engineered nanomaterials, but progress is possible by building on existing tools. An exposure metric matrix could organize existing data by relating likely exposure pathways (dermal, inhalation, ocular, ingestion) with existing measurements of important characteristics of nanoscale materials (particle number, mass, size distribution, charge). Nanomaterial characteristics not commonly measured, but shown to initiate a biological response during toxicity testing, signal a need for further research, such as the pressing need to develop monitoring devices capable of measuring those aspects of engineered nanomaterials that result in biological responses in humans. Modeling the behavior of nanoparticles may require new types of exposure models that individually track particles through the environment while keeping track of the particle shape, surface area, and other surface characteristics as the nanoparticles are transformed or become reactive. Lifecycle analysis could also be used to develop conceptual models of exposure from engineered nanomaterials.
Collapse
Affiliation(s)
- Linda C Abbott
- U.S. Department of Agriculture, Office of Risk Assessment and Cost-Benefit Analysis, Washington, DC 20250-3811, USA.
| | | |
Collapse
|
372
|
Rivera Gil P, Oberdörster G, Elder A, Puntes V, Parak WJ. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS NANO 2010; 4:5527-31. [PMID: 20973573 DOI: 10.1021/nn1025687] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanotoxicology is still a new discipline. In this Perspective, both its origins and its future trends are discussed. In particular, we note several issues we consider important for publications in this field.
Collapse
Affiliation(s)
- Pilar Rivera Gil
- Fachbereich Physik and WZMW, Philipps Universität Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
373
|
Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol 2010; 59:251-7. [PMID: 20955749 DOI: 10.1016/j.yrtph.2010.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to evaluate the oxidative stress and anti-oxidant status in rat serum following intra-tracheal instillation of multi wall carbon nanotubes (MWCNT). The lungs of rats were intra-tracheally instilled with (single dose of) Phosphate-buffered saline (PBS)+1% of Tween 80 (Solvent Control) or MWCNT or carbonyl Iron (negative control) or quartz particles (positive control) at a dose of 0.2, 1 and 5 mg/kg body weight. Following exposure, the blood samples were collected at 1, 7, 30 and 90 days of post instillation of nanoparticles and different parameters were estimated to assess the oxidative stress induced by the instillation of MWCNT. Exposure of MWCNT to rats produced a significant (p<0.05) dose dependent reduction of blood total anti-oxidant capacity, glutathione, superoxide dismutase, catalase activity and increased lipid peroxidation product, (Malondialdehyde) levels than PBS+1% Tween 80 control group. This reduction in the total anti-oxidant capacity in nanotubes exposed rats indicates the reduction in anti-oxidant deference mechanisms due to the instillation of MWCNT. These results indicate that, exposure of multi wall carbon nanotubes induces oxidative stress by reducing the total anti-oxidant capacity in rats. The findings suggest possible occupational health hazard in chronic exposures.
Collapse
|
374
|
Szyszkowicz M, Willey JB, Grafstein E, Rowe BH, Colman I. Air pollution and emergency department visits for suicide attempts in vancouver, Canada. ENVIRONMENTAL HEALTH INSIGHTS 2010; 4:79-86. [PMID: 21079694 PMCID: PMC2978939 DOI: 10.4137/ehi.s5662] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Comorbidity of depression, heart disease, and migraine has been observed in clinical practice, while ambient air pollution has been identified among different risk factors for these health conditions. Suicide attempts and ideations as the result of depression may be linked to air pollution exposure. Therefore the effects of ambient air pollution on emergency department (ED) visits for suicide attempts were investigated. METHODS Emergency visit data were collected in a hospital in Vancouver, Canada. The generalized linear mixed models technique was applied in the analysis of these data. A natural hierarchical structure of the data was used to define the clusters, with days nested in a 3-level structure (day of week, month, year). Poisson models were fitted to the clustered counts of ED visits with a single air pollutant, temperature and relative humidity. In addition, the case-crossover methodology was used with the same data for comparison. The analysis was performed by gender (all, males, females) and month (all: January-December, warm: April-September, cold: October-March). RESULTS Both hierarchical and case-crossover methods confirmed positive and statistically significant associations among carbon monoxide (CO), nitrogen dioxide (NO(2)), sulphur dioxide (SO(2)), and particulate matter (PM(10)) for all suicide attempts in the cold period. The largest increase was observed for males in the cold period for a 1-day lagged exposure to NO(2), with an excess risk of 23.9% (95% CI: 7.8, 42.4) and odds ratio of 1.21 (95% CI: 1.03, 1.41). In warm months the associations were not statistically significant, and the highest positive value was obtained for ozone lagged by 1 day. CONCLUSION The results indicate a potential association between air pollution and emergency department visits for suicide attempts.
Collapse
Affiliation(s)
| | - Jeff B. Willey
- Air Quality Assessment Section, Health Canada, Ottawa, ON, Canada
| | - Eric Grafstein
- Department of Emergency Medicine, Providence Health Care and St. Paul’s Hospital, Vancouver, BC, Canada
| | - Brian H. Rowe
- Department of Emergency Medicine, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Ian Colman
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
375
|
Shinohara N, Nakazato T, Tamura M, Endoh S, Fukui H, Morimoto Y, Myojo T, Shimada M, Yamamoto K, Tao H, Yoshida Y, Nakanishi J. Clearance Kinetics of Fullerene C60 Nanoparticles from Rat Lungs after Intratracheal C60 Instillation and Inhalation C60 Exposure. Toxicol Sci 2010; 118:564-73. [DOI: 10.1093/toxsci/kfq288] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
376
|
Zuin S, Micheletti C, Critto A, Pojana G, Johnston H, Stone V, Tran L, Marcomini A. Weight of evidence approach for the relative hazard ranking of nanomaterials. Nanotoxicology 2010; 5:445-58. [PMID: 20863167 DOI: 10.3109/17435390.2010.512986] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In assessing hazard for human health posed by newly engineered nanomaterials (ENM), approaches such as Weight of Evidence (WOE) and expert judgment are required to develop conclusions about the hazard of ENM. This is because all factors affecting hazard are not currently well defined and are often subject to different interpretation. Here we report the application of a WOE procedure to assess the potential of ENM to cause harm for human health, by integrating and combining physicochemical properties of NM and toxicity data obtained within the EU-funded Particle Risk project. The procedure was applied to carbon black (CB), single-walled carbon nanotubes (SWNT), C60 fullerene and quantum dots (QD) ENM tested during the Particle Risk project. The results show that some of the investigated ENM present a relatively higher hazardousness level on the basis of the integration of their physicochemical properties and toxicological effects, and that their hazard may be ranked as follow: QD >> C60 > SWNT > CB. This case study shows the utility of WOE approach to obtain a hazard ranking of ENM.
Collapse
Affiliation(s)
- Stefano Zuin
- Venice Research Consortium, c/o VEGA - Venice Gateway for Science and Technology, Venice, Italy
| | | | | | | | | | | | | | | |
Collapse
|
377
|
Danielsen PH, Loft S, Jacobsen NR, Jensen KA, Autrup H, Ravanat JL, Wallin H, Møller P. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter. Toxicol Sci 2010; 118:574-85. [PMID: 20864625 DOI: 10.1093/toxsci/kfq290] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric or intratracheal exposure in terms of oxidative stress, inflammation, genotoxicity, and DNA repair after 24 h in liver and lung tissue of rats. Rats were exposed to WSPM from high or low oxygen combustion and ambient PM collected in areas with and without many operating wood stoves or carbon black (CB) at the dose of 0.64 mg/kg body weight. The levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine, 1,N(6)-etheno-2'-deoxyadenosine, and 1-N(2)-etheno-2'-deoxyguanosine (εdG) were significantly increased with 23% (95% confidence interval [CI]: 0.1-45%), 54% (95% CI:18-90%), and 73% (95% CI: 31-134%) in the liver of rats exposed orally to CB, respectively. Rats orally exposed to PM from the wood stove area and low oxygen combustion WSPM (LOWS) had 35% (95% CI: 0.1-71%) and 45% (95% CI: 10-82%) increased levels of εdG in the liver, respectively. No significant differences were observed for bulky DNA adducts. Increased gene expression of proinflammatory cytokines, heme oxygenase-1, and oxoguanine DNA glycosylase 1 was observed in the liver following intragastric exposure and in the lung following instillation in particular of LOWS. Exposure to LOWS also increased the proportion of neutrophils in BAL fluid. These results indicate that WSPM and CB exert the strongest effect in terms of oxidative stress-induced response, inflammation, and genotoxicity in the organ closest to the port of entry.
Collapse
Affiliation(s)
- Pernille Høgh Danielsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, DK-1014 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
378
|
Li JJ, Muralikrishnan S, Ng CT, Yung LYL, Bay BH. Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood) 2010; 235:1025-33. [DOI: 10.1258/ebm.2010.010021] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent decades, advances in nanotechnology engineering have given rise to the rapid development of many novel applications in the biomedical field. However, studies into the health and safety of these nanomaterials are still lacking. The main concerns are the adverse effects to health caused by acute or chronic exposure to nanoparticles (NPs), especially in the workplace environment. The lung is one of the main routes of entry for NPs into the body and, hence, a likely site for accumulation of NPs. Once NPs enter the interstitial air spaces and are quickly taken up by alveolar cells, they are likely to induce toxic effects. In this review, we highlight the different aspects of lung toxicity resulting from NP exposure, such as generation of oxidative stress, DNA damage and inflammation leading to fibrosis and pneumoconiosis, and the underlying mechanisms causing pulmonary toxicity.
Collapse
Affiliation(s)
- Jasmine Jia'en Li
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore117597
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Sindu Muralikrishnan
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng-Teng Ng
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore117597
| |
Collapse
|
379
|
|
380
|
Wang YF, Tsai PJ, Chen CW, Chen DR, Hsu DJ. Using a modified electrical aerosol detector to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6767-6774. [PMID: 20704279 DOI: 10.1021/es1010175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The present study was set out to characterize nanoparticle exposures in three selected workplaces of the packaging, warehouse, and pelletizing in a carbon black manufacturing plant using a newly developed modified electrical aerosol detector (MEAD). For confirmation purposes, the MEAD results were compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS). We found that workplace background nanoparticle concentrations were mainly coming from the outdoor environment. Size distributions of nanoparticles for the three selected process areas during the work hours were consistently in the form of bimodel. Unlike nanoparticles of the second mode (simply contributed by the process emissions), particles of the first mode could be also contributed by the forklift exhaust or fugitive emissions of heaters. The percents of nanoparticles deposited on the alveolar (A) region were much higher than the other two regions of the head airway (H), tracheobronchial (TB) for all selected workplaces in both number and surface area concentrations. However, significant differences were found in percents of nanoparticles deposited on each of the three regions while different exposure metrics were adopted. Both NSAM and MEAD obtained quite comparable results. No significant difference can be found between the results obtained from SMPS and MEAD after being normalized. Considering the MEAD is less expensive, less bulky, and easy to use, our results further support the suitability of using MEAD in the field for nanoparticle exposure assessments.
Collapse
Affiliation(s)
- Ying-Fang Wang
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | | | | | | | | |
Collapse
|
381
|
Cheng JC, Fox RO. Kinetic Modeling of Nanoprecipitation using CFD Coupled with a Population Balance. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100558n] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janine Chungyin Cheng
- Dept. of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
| | - Rodney O. Fox
- Dept. of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
382
|
Schleh C, Erpenbeck VJ, Winkler C, Lauenstein HD, Nassimi M, Braun A, Krug N, Hohlfeld JM. Allergen particle binding by human primary bronchial epithelial cells is modulated by surfactant protein D. Respir Res 2010; 11:83. [PMID: 20569420 PMCID: PMC2898774 DOI: 10.1186/1465-9921-11-83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 06/22/2010] [Indexed: 12/25/2022] Open
Abstract
Background Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. Our previous work demonstrated that SP-D increases the uptake of SPP by alveolar macrophages. In the present study, we investigated the uptake of SPP in human primary epithelial cells and the potential modulation by SP-D. The patho-physiological consequence was evaluated by measurement of pro-inflammatory mediators. Methods SPP were isolated from timothy grass and subsequently fluorescently labelled. Human primary bronchial epithelial cells were incubated with SPP or polystyrene particles (PP) in the presence and absence of surfactant protein D. In addition, different sizes and surface charges of the PP were studied. Particle uptake was evaluated by flow cytometry and confocal microscopy. Soluble mediators were measured by enzyme linked immunosorbent assay or bead array. Results SPP were taken up by primary epithelial cells in a dose dependent manner. This uptake was coincided with secretion of Interleukin (IL)-8. SP-D increased the fraction of bronchial epithelial cells that bound SPP but not the fraction of cells that internalized SPP. SPP-induced secretion of IL-8 was further increased by SP-D. PP were bound and internalized by epithelial cells but this was not modulated by SP-D. Conclusions Epithelial cells bind and internalize SPP and PP which leads to increased IL-8 secretion. SP-D promotes attachment of SPP to epithelial cells and may thus be involved in the inflammatory response to inhaled allergen.
Collapse
Affiliation(s)
- Carsten Schleh
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
383
|
Albanese A, Sykes EA, Chan WCW. Rough around the edges: the inflammatory response of microglial cells to spiky nanoparticles. ACS NANO 2010; 4:2490-2493. [PMID: 20496953 DOI: 10.1021/nn100776z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The versatility of nanoparticle design has established nanotechnology as a potential "one-stop solution" to many biological and medical applications. The capacity to control nanoparticle size, shape, and surface chemistry has enabled their use as imaging contrast agents or carriers for drugs and other compounds. However, concerns of nanoparticle toxicity have surfaced that could limit their clinical translation. In order to overcome this challenge, researchers are starting to characterize how particle properties influence their interactions with biological systems. By identifying the specific nanoparticle parameters responsible for toxicity, it may be possible to engineer safer and nontoxic nanoparticles.
Collapse
Affiliation(s)
- Alexandre Albanese
- Department of Chemical Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 3G9, Canada
| | | | | |
Collapse
|
384
|
|
385
|
Air pollution and daily emergency department visits for depression. Int J Occup Med Environ Health 2010; 22:355-62. [PMID: 20197262 DOI: 10.2478/v10001-009-0031-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To investigate the potential correlation between ambient air pollution exposure and emergency department (ED) visits for depression. MATERIALS AND METHODS A hierarchical clusters design was used to study 27 047 ED visits for depression in six cities in Canada. The data used in the analysis contain the dates of visits, daily numbers of diagnosed visits, and daily mean concentrations of air pollutants as well as the meteorological factors. The generalized linear mixed models technique was applied to data analysis. Poisson models were fitted to the clustered counts of ED visits with a single air pollutant, temperature and relative humidity. RESULTS Statistically significant positive correlations were observed between the number of ED visits for depression and the air concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2) and particulate matter (PM10). The percentage increase in daily ED visits was 15.5% (95% CI: 8.0-23.5) for CO per 0.8 ppm and 20.0% (95% CI: 13.3-27.2) for NO2 per 20.1 ppb, for same day exposure in the warm weather period (April-September). For PM10, the largest increase, 7.2% (95% CI: 3.0-11.6) per 19.4 ug/m3, was observed for the cold weather period (October-March). CONCLUSIONS The results support the hypothesis that ED visits for depressive disorder correlate with ambient air pollution, and that a large majority of this pollution results from combustion of fossil fuels (e.g. in motor vehicles).
Collapse
|
386
|
Abstract
This review is presented as a common foundation for scientists interested in nanoparticles, their origin,activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of "nano," while raising awareness of nanomaterials' toxicity among scientists and manufacturers handling them.We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders. There ticuloendothelial system, in particular, actively neutralizes and eliminates foreign matter in the body,including viruses and nonbiological particles. Particles originating from human activities have existed for millennia, e.g., smoke from combustion and lint from garments, but the recent development of industry and combustion-based engine transportation has profoundly increased an thropogenic particulate pollution. Significantly, technological advancement has also changed the character of particulate pollution, increasing the proportion of nanometer-sized particles--"nanoparticles"--and expanding the variety of chemical compositions. Recent epidemiological studies have shown a strong correlation between particulate air pollution levels, respiratory and cardiovascular diseases, various cancers, and mortality. Adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape,agglomeration state, and electromagnetic properties. Animal and human studies show that inhaled nanoparticles are less efficiently removed than larger particles by the macrophage clearance mechanisms in the lungs, causing lung damage, and that nanoparticles can translocate through the circulatory, lymphatic, and nervous systems to many tissues and organs, including the brain. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function.Examples of toxic effects include tissue inflammation, and altered cellular redox balance toward oxidation, causing abnormal function or cell death. The manipulation of matter at the scale of atoms,"nanotechnology," is creating many new materials with characteristics not always easily predicted from current knowledge. Within the nearly limitless diversity of these materials, some happen to be toxic to biological systems, others are relatively benign, while others confer health benefits. Some of these materials have desirable characteristics for industrial applications, as nanostructured materials often exhibit beneficial properties, from UV absorbance in sunscreen to oil-less lubrication of motors.A rational science-based approach is needed to minimize harm caused by these materials, while supporting continued study and appropriate industrial development. As current knowledge of the toxicology of "bulk" materials may not suffice in reliably predicting toxic forms of nanoparticles,ongoing and expanded study of "nanotoxicity" will be necessary. For nanotechnologies with clearly associated health risks, intelligent design of materials and devices is needed to derive the benefits of these new technologies while limiting adverse health impacts. Human exposure to toxic nanoparticles can be reduced through identifying creation-exposure pathways of toxins, a study that may someday soon unravel the mysteries of diseases such as Parkinson's and Alzheimer's. Reduction in fossil fuel combustion would have a large impact on global human exposure to nanoparticles, as would limiting deforestation and desertification.While nanotoxicity is a relatively new concept to science, this review reveals the result of life's long history of evolution in the presence of nanoparticles, and how the human body, in particular, has adapted to defend itself against nanoparticulate intruders.
Collapse
|
387
|
Palko HA, Fung JY, Louie AY. Positron emission tomography: A novel technique for investigating the biodistribution and transport of nanoparticles. Inhal Toxicol 2010; 22:657-88. [DOI: 10.3109/08958371003713745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
388
|
Berntsen P, Park CY, Rothen-Rutishauser B, Tsuda A, Sager TM, Molina RM, Donaghey TC, Alencar AM, Kasahara DI, Ericsson T, Millet EJ, Swenson J, Tschumperlin DJ, Butler JP, Brain JD, Fredberg JJ, Gehr P, Zhou EH. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J R Soc Interface 2010; 7 Suppl 3:S331-40. [PMID: 20356875 DOI: 10.1098/rsif.2010.0068.focus] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Collapse
Affiliation(s)
- P Berntsen
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Roursgaard M, Poulsen SS, Poulsen LK, Hammer M, Jensen KA, Utsunomiya S, Ewing RC, Balic-Zunic T, Nielsen GD, Larsen ST. Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound. Hum Exp Toxicol 2010; 29:915-33. [PMID: 20237177 DOI: 10.1177/0960327110363329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An increasing number of engineered particles, including nanoparticles, are being manufactured, increasing the need for simple low-dose toxicological screening methods. This study aimed to investigate the kinetics of biomarkers related to acute and sub-chronic particle-induced lung inflammation of quartz. Mice were intratracheal instilled with 50 µg of microsized or nanosized quartz. Acute inflammation was assessed 1, 2, 4, 8, 16 or 48 hours post exposure, whereas sub-chronic inflammation was investigated 3 months after exposure. Markers of acute inflammation in the bronchoalveolar lavage fluid (BALF) were neutrophils (PMN), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, macrophage inflammatory protein-2 (MIP-2), keratinocyte derived chemokine (KC) and total protein, which were all close to maximum 16 hours post instillation. No major differences were seen in the time-response profiles of nano- and micro-sized particles. The potency of the two samples cannot be compared; during the milling process, a substantial part of the quartz was converted to amorphous silica and contaminated with corundum. For screening, BALF PMN, either TNF-α or IL-1β at 16 hours post instillation may be useful. At 3 months post instillation, KC, PMN and macrophages were elevated. Histology showed no interstitial inflammation three months post instillation. For screening of sub-chronic effects, KC, PMN, macrophages and histopathology is considered sufficient.
Collapse
Affiliation(s)
- Martin Roursgaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Elder A, Vidyasagar S, DeLouise L. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:434-50. [PMID: 20049809 DOI: 10.1002/wnan.44] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diversity of nanomaterials in terms of size, shape, and surface chemistry poses a challenge to those who are trying to characterize the human health and environmental risks associated with incidental and unintentional exposures. There are numerous products that are already commercially available that contain solid metal and metal oxide nanoparticles, either embedded in a matrix or in solution. Exposure assessments for these products are often incomplete or difficult due to technological challenges associated with detection and quantitation of nanoparticles in gaseous or liquid carriers. The main focus of recent research has been on hazard identification. However, risk is a product of hazard and exposure, and one significant knowledge gap is that of the target organ dose following in vivo exposures. In order to reach target organs, nanoparticles must first breach the protective barriers of the respiratory tract, gastrointestinal tract, or skin. The fate of those nanoparticles that reach physiological barriers is in large part determined by the properties of the particles and the barriers themselves. This article reviews the physiological properties of the lung, gut, and skin epithelia, the physicochemical properties of metal and metal oxide nanoparticles that are likely to affect their ability to breach epithelial barriers, and what is known about their fate following in vivo exposures.
Collapse
Affiliation(s)
- Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.
| | | | | |
Collapse
|
392
|
Madl AK, Pinkerton KE. Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol 2010; 39:629-58. [PMID: 19743943 DOI: 10.1080/10408440903133788] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered nanoscale materials provide tremendous promise for technological advancements; however, concerns have been raised about whether research of the possible health risks of these nanomaterials is keeping pace with products going to market. Research on nanomaterials, including carbon nanotubes, semiconductor crystals, and other ultrafine particles (i.e., titanium dioxide, quantum dots, iridium) will be examined to illustrate what is currently known or unknown about how particle characteristics (e.g., size, agglomeration, morphology, solubility, surface chemistry) and exposure/dose metrics (e.g., mass, size, surface area) influence the biological fate and toxicity of inhaled nanosized particles. The fact that nanosized particles (1) have a potentially high efficiency for deposition; (2) target both the upper and lower regions of the respiratory tract; (3) are retained in the lungs for a long period of time, and (4) induce more oxidative stress and cause greater inflammatory effects than their fine-sized equivalents suggest a need to study the impact of these particles on the body. Achieving a better understanding of the dynamics at play between particle physicochemistry, transport patterns, and cellular responses in the lungs and other organs will provide a future basis for establishing predictive measures of toxicity or biocompatibility and a framework for assessing potential human health risks.
Collapse
Affiliation(s)
- Amy K Madl
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, USA.
| | | |
Collapse
|
393
|
Nemmar A, Al-Salam S, Zia S, Dhanasekaran S, Shudadevi M, Ali BH. Time-course effects of systemically administered diesel exhaust particles in rats. Toxicol Lett 2010; 194:58-65. [PMID: 20144906 DOI: 10.1016/j.toxlet.2010.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 01/23/2023]
Abstract
Nanosized fraction of particulate air pollution has been reported to translocate from the airways into the bloodstream and act on different organs. However, the direct effect of these translocated particles is not well understood. In this study, we determined the time-course (6 h, 18 h, 48 h and 168 h) effects of the systemic administration of 0.02 mg/kg diesel exhaust particles (DEP) on systolic blood pressure (SBP), systemic inflammation, oxidative status, and morphological alterations in lungs, heart, liver and kidneys in Wistar rats. SBP was significantly decreased at 6 h (P < 0.05) but no significant effects have been observed at later time points. The leukocyte numbers were increased at 6 h (P < 0.05) and 18 h (P < 0.05). However, the platelet numbers were significantly decreased (P < 0.05) 6 h following the systemic administration of DEP. The IL-6 concentrations in plasma was increased at 6 h (P < 0.05) and 18 h (P < 0.05). Similarly, superoxide dismutase activity was significantly increased at 6 (P = 0.01) and 18 h (P < 0.05) following DEP exposure. The direct addition of DEP (0.1-1 microg/ml) to untreated rat blood significantly induced in vitro platelet aggregation in a dose-dependent fashion. The activation of intravascular coagulation was confirmed by a dose-dependent shortening of activated partial thromboplastin time and the prothrombin time following in vitro exposure to DEP (0.25-1 microg/ml). Histological analysis revealed the presence of DEP in the lungs, heart, liver and kidneys. However, the morphological changes were only observed in the lungs, where the presence of infiltration of inflammatory cells was observed as early as 6 h, increased at 18 h, and decreased in intensity at 48 h and at 168 h. We conclude that the direct systemic administration of DEP caused acute effect on SBP (6 h) and systemic inflammation and oxidative stress mainly at 6 h and 18 h. Despite the presence of DEP in lungs, heart, liver and kidneys, the histopathological changes were only seen in the lung which suggests that, at the dose and time-points investigated, DEP cause inflammation and have a predilection for pulmonary tissue.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
394
|
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 2010; 21 Suppl 1:55-60. [PMID: 19558234 DOI: 10.1080/08958370902942517] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Currently, translocation of inhaled insoluble nanoparticles (NP) across membranes like the air-blood barrier into secondary target organs (STOs) is debated. Of key interest are the involved biological mechanisms and NP parameters that determine the efficiency of translocation. We performed NP inhalation studies with rats to derive quantitative biodistribution data on the translocation of NP from lungs to blood circulation and STOs. The inhaled NP were chain aggregates (and agglomerates) of either iridium or carbon, with primary particle sizes of 2-4 nm (Ir) and 5-10 nm (C) and aggregate sizes (mean mobility diameters) between 20 and 80 nm. The carbon aggregates contained a small fraction ( < 1%) of Ir primary particles. The insoluble aggregates were radiolabeled with (192)Ir. During 1 h of inhalation, rats were intubated and ventilated to avoid extrathoracic NP deposition and to optimize deep lung NP deposition. After 24 h, (192)Ir fractions in the range between 0.001 and 0.01 were found in liver, spleen, kidneys, heart, and brain, and an even higher fraction (between 0.01 and 0.05) in the remaining carcass consisting of soft tissue and bone. The fractions of (192)Ir carried with the carbon NP retained in STOs, the skeleton, and soft tissue were significantly lower than with NP made from pure Ir. Furthermore, there was significantly less translocation and accumulation with 80-nm than with 20-nm NP aggregates of Ir. These studies show that both NP characteristics--the material and the size of the chain-type aggregates--determine translocation and accumulation in STOs, skeleton, and soft tissue.
Collapse
|
395
|
Schmid O, Möller W, Semmler-Behnke M, Ferron GA, Karg E, Lipka J, Schulz H, Kreyling WG, Stoeger T. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 2010; 14 Suppl 1:67-73. [PMID: 19604063 DOI: 10.1080/13547500902965617] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Both epidemiological and toxicological studies indicate that inhalation and subsequent deposition of airborne particles into the lungs have adverse health effects. Recently, the ultrafine particle (UfP) fraction (diameter < 100 nm) has received particular attention, as their small size may lead to more toxic properties. In this study we summarize the current knowledge on the dosimetry of inhaled particles (including UfPs) with a focus on recent data on translocation of UfPs into secondary target organs (such as brain and heart) suggesting that the lifetime dose of ambient UfPs in secondary target organs is about 10(11) particles. Furthermore, we highlight the main pathways of particle induced toxicity and the reasons for the potentially higher toxicity of UfPs. Finally, we discuss recent evidence indicating that (BET) surface area is the single most relevant dose metric for the toxicity of UfPs, which has important implications for regulatory measures on the toxicity of ambient and engineered particles.
Collapse
Affiliation(s)
- O Schmid
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Lung Biology and Disease, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 2010; 7:2. [PMID: 20205860 PMCID: PMC2826283 DOI: 10.1186/1743-8977-7-2] [Citation(s) in RCA: 425] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/20/2010] [Indexed: 11/21/2022] Open
Abstract
Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones.The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles.We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures.
Collapse
Affiliation(s)
- Marianne Geiser
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Wolfgang G Kreyling
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease and Focus-Network Nanoparticles and Health, Helmholtz Center Munich, Munich, Germany
- German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg/Munich, Germany
| |
Collapse
|
397
|
Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, Liu H, Wang H, Hong F. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 2010; 31:99-105. [DOI: 10.1016/j.biomaterials.2009.09.028] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022]
|
398
|
Abstract
Nanotechnology, nanomedicine and nanotoxicology are complementary disciplines aimed at the betterment of human life. However, concerns have been expressed about risks posed by engineered nanomaterials (ENMs), their potential to cause undesirable effects, contaminate the environment and adversely affect susceptible parts of the population. Information about toxicity and biokinetics of nano-enabled products combined with the knowledge of unintentional human and environmental exposure or intentional delivery for medicinal purposes will be necessary to determine real or perceived risks of nanomaterials. Yet, results of toxicological studies using only extraordinarily high experimental doses have to be interpreted with caution. Key concepts of nanotoxicology are addressed, including significance of dose, dose rate, and biokinetics, which are exemplified by specific findings of ENM toxicity, and by discussing the importance of detailed physico-chemical characterization of nanoparticles, specifically surface properties. Thorough evaluation of desirable versus adverse effects is required for safe applications of ENMs, and major challenges lie ahead to answer key questions of nanotoxicology. Foremost are assessment of human and environmental exposure, and biokinetics or pharmacokinetics, identification of potential hazards, and biopersistence in cells and subcellular structures to perform meaningful risk assessments. A specific example of multiwalled carbon nanotubes (MWCNT) illustrates the difficulty of extrapolating toxicological results. MWCNT were found to cause asbestos-like effects of the mesothelium following intracavitary injection of high doses in rodents. The important question of whether inhaled MWCNT will translocate to sensitive mesothelial sites has not been answered yet. Even without being able to perform a quantitative risk assessment for ENMs, due to the lack of sufficient data on exposure, biokinetics and organ toxicity, until we know better it should be made mandatory to prevent exposure by appropriate precautionary measures/regulations and practicing best industrial hygiene to avoid future horror scenarios from environmental or occupational exposures. Similarly, safety assessment for medical applications as key contribution of nanotoxicology to nanomedicine relies heavily on nano-specific toxicological concepts and findings and on a multidisciplinary collaborative approach involving material scientists, physicians and toxicologists.
Collapse
Affiliation(s)
- G Oberdörster
- Department of Environmental Medicine, University of Rochester, 601 Elmwood Avenue, Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
399
|
Scuri M, Chen BT, Castranova V, Reynolds JS, Johnson VJ, Samsell L, Walton C, Piedimonte G. Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1353-1369. [PMID: 20818535 PMCID: PMC3655524 DOI: 10.1080/15287394.2010.497436] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension <100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m(3); 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma.
Collapse
Affiliation(s)
- Mario Scuri
- Department of Pediatrics, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
400
|
Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 2010; 267:172-7. [DOI: 10.1016/j.tox.2009.11.012] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 01/22/2023]
|