351
|
Abrahams GL, Müller P, Hensel M. Functional dissection of SseF, a type III effector protein involved in positioning the salmonella-containing vacuole. Traffic 2006; 7:950-65. [PMID: 16800847 DOI: 10.1111/j.1600-0854.2006.00454.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular replication of Salmonella enterica requires the formation of a unique organelle termed Salmonella-containing vacuole (SCV). The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) has a crucial role in the formation and maintenance of the SCV. The SPI2-T3SS translocates a large number of effector proteins that interfere with host cell functions such as microtubule-dependent transport. We investigated the function of the effector SseF and observed that this protein is required to maintain the SCV in a juxtanuclear position in infected epithelial cells. The formation of juxtanuclear clusters of replicating Salmonella required the recruitment of dynein to the SCV but SseF-deficient strains were highly reduced in dynein recruitment to the SCV. We performed a functional dissection of SseF and defined domains that were important for translocation and the specific effector functions of this protein. Of particular importance was a hydrophobic domain in the C-terminal half that contains three putative transmembrane (TM) helices. Deletion of one of these TM helices ablated the effector functions of SseF. We observed that this domain was essential for the proper intracellular positioning of the SCV to a juxtanuclear, Golgi-associated localization. These data show that SseF, in concert with the effector proteins SifA and SseG mediate the precise positioning of the SCV by differentially modulating the recruitment of microtubule motor proteins to the SCV.
Collapse
Affiliation(s)
- Garth L Abrahams
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
352
|
Gruenberg J, van der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 2006; 7:495-504. [PMID: 16773132 DOI: 10.1038/nrm1959] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several pathogens - bacteria, viruses and parasites - must enter mammalian cells for survival, replication and immune-system evasion. These pathogens generally make use of existing cellular pathways that are designed for nutrient uptake, receptor downregulation and signalling. Because most of these pathways end in lysosomes, an organelle that is capable of killing microorganisms, pathogens have developed remarkable means to avoid interactions with this lytic organelle.
Collapse
Affiliation(s)
- Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland.
| | | |
Collapse
|
353
|
Marsman M, Jordens I, Rocha N, Kuijl C, Janssen L, Neefjes J. A splice variant of RILP induces lysosomal clustering independent of dynein recruitment. Biochem Biophys Res Commun 2006; 344:747-56. [PMID: 16631113 DOI: 10.1016/j.bbrc.2006.03.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 03/26/2006] [Indexed: 10/24/2022]
Abstract
The small GTPase Rab7 controls fusion and transport of late endocytic compartments. A critical mediator is the Rab7 effector RILP that recruits the minus-end dynein-dynactin motor complex to these compartments. We identified a natural occurring splice variant of RILP (RILPsv) lacking only 27 amino acids encoded by exon VII. Both variants bind Rab7, prolong its GTP-bound state, and induce clustering of late endocytic compartments. However, RILPsv does not recruit the dynein-dynactin complex, implicating exon VII in motor recruitment. Clustering might still occur via dimerization, since both RILP and RILPsv are able to form hetero- and homo-dimers. Moreover, both effectors compete for Rab7 binding but with different outcome for dynein-dynactin recruitment and transport. Hence, RILPsv provides an extra dimension to the control of vesicle fusion and transport by the small GTPase Rab7.
Collapse
Affiliation(s)
- Marije Marsman
- Division of Tumor Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | | | | | | | | | | |
Collapse
|
354
|
Saxena S, Bucci C, Weis J, Kruttgen A. The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci 2006; 25:10930-40. [PMID: 16306406 PMCID: PMC6725884 DOI: 10.1523/jneurosci.2029-05.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nerve growth factor (NGF) and its TrkA receptor exert important bioactivities on neuronal cells such as promoting survival and neurite outgrowth. Activated TrkA receptors are not only localized on the cell surface but also in signaling endosomes, and internalized TrkA receptors are important for the mediation of neurite outgrowth. The regulation of the endosomal trafficking of TrkA is so far unknown. Because the endosome-associated GTPase Rab7 coimmunoprecipitated with TrkA, we examined whether the endosomal trafficking of TrkA might be under the control of Rab7. Inhibiting Rab7 by expression of a green fluorescent protein-tagged, dominant-negative Rab7 variant resulted in endosomal accumulation of TrkA and pronounced enhancement of TrkA signaling in response to limited stimulations with NGF, such as increased activation of Erk1/2 (extracellular signal-regulated kinase 1/2), neurite outgrowth, and expression of GAP-43 (growth-associated protein 43). Our studies show that the endosomal GTPase Rab7 controls the endosomal trafficking and neurite outgrowth signaling of TrkA. Because mutations of Rab7 are found in patients suffering from hereditary polyneuropathies, dysfunction of Rab7 might contribute to neurodegenerative conditions by affecting the trafficking of neurotrophins. Moreover, strategies aimed at controlling Rab7 activity might be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Smita Saxena
- Abteilung Neuropathologie, Institut für Pathologie, Universität Bern, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
355
|
Magalhães AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D, Prado MAM, Caughey B. Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 2006; 25:5207-16. [PMID: 15917460 PMCID: PMC6724812 DOI: 10.1523/jneurosci.0653-05.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Invasion of the nervous system and neuronal spread of infection are critical, but poorly understood, steps in the pathogenesis of transmissible spongiform encephalopathies or prion diseases. To characterize pathways for the uptake and intraneuronal trafficking of infectious, protease-resistant prion protein (PrP-res), fluorescent-labeled PrP-res was used to infect a neuronally derived murine cell line (SN56) and adult hamster cortical neurons in primary culture. Concurrent with the establishment of persistent scrapie infection, SN56 cells internalized PrP-res aggregates into vesicles positive for markers for late endosomes and/or lysosomes but not synaptic, early endocytic, or raft-derived vesicles. Internalized PrP-res was then transported along neurites to points of contact with other cells. Similar trafficking was observed with dextran, Alzheimer's Abeta1-42 fibrils and noninfectious recombinant PrP fibrils, suggesting that PrP-res is internalized by a relatively nonspecific pinocytosis or transcytosis mechanism. Hamster cortical neurons were also capable of internalizing and disseminating exogenous PrP-res. Similar trafficking of exogenous PrP-res by cortical neurons cultured from the brains of PrP knock-out mice showed that uptake and neuritic transport did not require the presence of endogenous cellular PrP. These experiments visualize and characterize the initial steps associated with prion infection and transport within neuronal cells.
Collapse
Affiliation(s)
- Ana Cristina Magalhães
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | |
Collapse
|
356
|
Verpoorten N, De Jonghe P, Timmerman V. Disease mechanisms in hereditary sensory and autonomic neuropathies. Neurobiol Dis 2006; 21:247-55. [PMID: 16183296 DOI: 10.1016/j.nbd.2005.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/16/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022] Open
Abstract
Inherited peripheral neuropathies are common monogenically inherited diseases of the peripheral nervous system. In the most common variant, i.e., the hereditary motor and sensory neuropathies, both motor and sensory nerves are affected. In contrast, sensory abnormalities predominate or are exclusively present in hereditary sensory and autonomic neuropathies (HSAN). HSAN are clinically and genetically heterogeneous and are subdivided according to mode of inheritance, age of onset and clinical evolution. In recent years, 6 disease-causing genes have been identified for autosomal dominant and recessive HSAN. However, vesicular transport and axonal trafficking seem important common pathways leading to degeneration of sensory and autonomic neurons. This review discusses the HSAN-related genes and their biological role in the disease mechanisms leading to HSAN.
Collapse
Affiliation(s)
- Nathalie Verpoorten
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | |
Collapse
|
357
|
Abstract
Cargoes are transported intracellularly along cytoskeletal tracks composed of actin or tubulin. Their movement involves the action of molecular motor proteins that generate directed movement along microtubules or actin filaments. The three classes of molecular motors--kinesins, dyneins and myosins--are involved in a multiplicity of biological movements such as mitosis, positioning of organelles, intracellular transports and also vesicular sorting through membrane tubulation and fission and delivery to their target compartment. Intracellular pathogens use this molecular machinery to reach their site of replication, to leave their host or to control the dynamics of membrane exchanges with their replication compartment.
Collapse
Affiliation(s)
- Thomas Henry
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Université Méditerranée, Parc Scientifique de Luminy, Case 906-13288 Marseille Cedex 9, France
| | | | | |
Collapse
|
358
|
Intracellular Voyeurism: Examining the Modulation of Host Cell Activities bySalmonella enterica Serovar Typhimurium. EcoSal Plus 2005; 1. [PMID: 26443522 DOI: 10.1128/ecosalplus.2.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella spp. can infect host cells by gaining entry through phagocytosis or by inducing host cell membrane ruffling that facilitates bacterial uptake. With its wide host range, Salmonella enterica serovar Typhimurium has proven to be an important model organism for studying intracellular bacterial pathogenesis. Upon entry into host cells, serovar Typhimurium typically resides within a membrane-bound compartment termed the Salmonella-containing vacuole (SCV). From the SCV, serovar Typhimurium can inject several effector proteins that subvert many normal host cell systems, including endocytic trafficking, cytoskeletal rearrangements, lipid signaling and distribution, and innate and adaptive host defenses. The study of these intracellular events has been made possible through the use of various imaging techniques, ranging from classic methods of transmission electron microscopy to advanced livecell fluorescence confocal microscopy. In addition, DNA microarrays have now been used to provide a "snapshot" of global gene expression in serovar Typhimurium residing within the infected host cell. This review describes key aspects of Salmonella-induced subversion of host cell activities, providing examples of imaging that have been used to elucidate these events. Serovar Typhimurium engages specific host cell machinery from initial contact with the host cell to replication within the SCV. This continuous interaction with the host cell has likely contributed to the extensive arsenal that serovar Typhimurium now possesses, including two type III secretion systems, a range of ammunition in the form of TTSS effectors, and a complex genetic regulatory network that coordinates the expression of hundreds of virulence factors.
Collapse
|
359
|
Abstract
Phagocytosis, the process by which cells engulf large particles, requires a substantial contribution of membranes. Recent studies have revealed that intracellular compartments, including endocytic organelles and the endoplasmic reticulum (ER), can engage in fusion events with the plasma membrane at the sites of nascent phagosomes. The finding that ER proteins are delivered to phagosomes, where degraded peptides are loaded onto major histocompatibility complex (MHC) class II molecules, has significantly enhanced our understanding of the immune functions associated with these organelles. Although it is well known that pathogens are killed in phagosomes, the contribution of ER proteins to phagosomes has provided a novel pathway for the loading of exogenous peptides onto MHC class I molecules, a process known as cross-presentation. Thus, phagocytosis has evolved from a nutritional function in unicellular organisms to play key roles in both innate and adaptive immunity in vertebrates.
Collapse
Affiliation(s)
- Isabelle Jutras
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Quebec H3C 3J7, Canada.
| | | |
Collapse
|
360
|
Falcón-Pérez JM, Nazarian R, Sabatti C, Dell'Angelica EC. Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J Cell Sci 2005; 118:5243-55. [PMID: 16249233 DOI: 10.1242/jcs.02633] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Late endosomes and lysosomes of mammalian cells in interphase tend to concentrate in the perinuclear region that harbors the microtubule-organizing center. We have previously reported abnormal distribution of these organelles - as judged by reduced percentages of cells displaying pronounced perinuclear accumulation - in mutant fibroblasts lacking BLOC-3 (for ;biogenesis of lysosome-related organelles complex 3'). BLOC-3 is a protein complex that contains the products of the genes mutated in Hermansky-Pudlak syndrome types 1 and 4. Here, we developed a method based on image analysis to estimate the extent of organelle clustering in the perinuclear region of cultured cells. Using this method, we corroborated that the perinuclear clustering of late endocytic organelles containing Lamp1 (for ;lysosome-associated membrane protein 1') is reduced in BLOC-3-deficient murine fibroblasts, and found that it is apparently normal in fibroblasts deficient in BLOC-1 or BLOC-2, which are another two protein complexes associated with Hermansky-Pudlak syndrome. Wild-type and mutant fibroblasts were transfected to express human LAMP1 fused at its cytoplasmic tail to green fluorescence protein (GFP). At low expression levels, LAMP1-GFP was targeted correctly to late endocytic organelles in both wild-type and mutant cells. High levels of LAMP1-GFP overexpression elicited aberrant aggregation of late endocytic organelles, a phenomenon that probably involved formation of anti-parallel dimers of LAMP1-GFP as it was not observed in cells expressing comparable levels of a non-dimerizing mutant variant, LAMP1-mGFP. To test whether BLOC-3 plays a role in the movement of late endocytic organelles, time-lapse fluorescence microscopy experiments were performed using live cells expressing low levels of LAMP1-GFP or LAMP1-mGFP. Although active movement of late endocytic organelles was observed in both wild-type and mutant fibroblasts, quantitative analyses revealed a relatively lower frequency of microtubule-dependent movement events, either towards or away from the perinuclear region, within BLOC-3-deficient cells. By contrast, neither the duration nor the speed of these microtubule-dependent events seemed to be affected by the lack of BLOC-3 function. These results suggest that BLOC-3 function is required, directly or indirectly, for optimal attachment of late endocytic organelles to microtubule-dependent motors.
Collapse
Affiliation(s)
- Juan M Falcón-Pérez
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
361
|
Abstract
Hmunc13 is a cytosolic diacylglycerol (DAG)-binding protein, which is upregulated in renal cortical tubule and mesangial cells by hyperglycemia. In response to DAG activation, hmunc13 translocates to the Golgi. To investigate how this may relate to its function, we used a bacterial two-hybrid screen to look for hmunc13-interacting proteins. Full-length Rab34 was specifically isolated from a human kidney cDNA library. Co-expression of the two proteins confirmed Rab34 as a Golgi-associated protein, which was immunoprecipitated from cell lysates by hmunc13. Glutathione S-transferase fusion proteins of WT, Q111L (GTP bound), and T66N (GDP bound) mutants were created, and their GTP-binding activity verified by radioactive overlay assay. Binding of hmunc13 was observed with Q111L, barely detectable with T66N and enhanced with Rab34WT loaded with GTPgammaS compared with GDP loaded. Deletion of munc homolgy domain (MHD)-2, eliminated the hmunc13/Rab34 interaction. The Q111L mutant localized to the Golgi apparatus, but T66N was cytosolic. Localization of both mutants and Rab34WT was unchanged by DAG activation. The data suggest that DAG activation of hmunc13 causes it to be translocated to the Golgi, where it binds to GTP-bound Rab34 via MHD-2. Because Rab34 is known to regulate intracellular lysosome positioning, we propose that hmunc13 serves as an effector of Rab34, mediating lysosome-Golgi trafficking.
Collapse
Affiliation(s)
- Pam Speight
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
362
|
Brown CL, Maier KC, Stauber T, Ginkel LM, Wordeman L, Vernos I, Schroer TA. Kinesin-2 is a Motor for Late Endosomes and Lysosomes. Traffic 2005; 6:1114-24. [PMID: 16262723 DOI: 10.1111/j.1600-0854.2005.00347.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The bidirectional nature of late endosome/lysosome movement suggests involvement of at least two distinct motors, one minus-end directed and one plus-end directed. Previous work has identified dynein as the minus-end-directed motor for late endosome/lysosome localization and dynamics. Conventional kinesin (kinesin-1) has been implicated in plus-end-directed late endosome/lysosome movement, but other kinesin family members may also be involved. Kinesin-2 is known to drive the movement of pigment granules, a type of lysosomally derived organelle, and was recently found to be associated with purified late endosomes. To determine whether kinesin-2 might also power endosome movement in non-pigmented cells, we overexpressed dominant negative forms of the KIF3A motor subunit and KAP3 accessory subunit and knocked down KAP3 levels using RNAi. We found kinesin-2 to be required for the normal steady-state localization of late endosomes/lysosomes but not early endosomes or recycling endosomes. Despite the abnormal subcellular distribution of late endosomes/lysosomes, the uptake and trafficking of molecules through the conventional endocytic pathway appeared to be unaffected. The slow time-course of inhibition suggests that both kinesin-2 itself and its attachment to membranes do not turn over quickly.
Collapse
Affiliation(s)
- Christa L Brown
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
363
|
Johansson M, Lehto M, Tanhuanpää K, Cover TL, Olkkonen VM. The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Mol Biol Cell 2005; 16:5480-92. [PMID: 16176980 PMCID: PMC1289395 DOI: 10.1091/mbc.e05-03-0189] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ORP1L is a member of the human oxysterol-binding protein (OSBP) family. ORP1L localizes to late endosomes (LEs)/lysosomes, colocalizing with the GTPases Rab7 and Rab9 and lysosome-associated membrane protein-1. We demonstrate that ORP1L interacts physically with Rab7, preferentially with its GTP-bound form, and provide evidence that ORP1L stabilizes GTP-bound Rab7 on LEs/lysosomes. The Rab7-binding determinant is mapped to the ankyrin repeat (ANK) region of ORP1L. The pleckstrin homology domain (PHD) of ORP1L binds phosphoinositides with low affinity and specificity. ORP1L ANK- and ANK+PHD fragments induce perinuclear clustering of LE/lysosomes. This is dependent on an intact microtubule network and a functional dynein/dynactin motor complex. The dominant inhibitory Rab7 mutant T22N reverses the LE clustering, suggesting that the effect is dependent on active Rab7. Transport of fluorescent dextran to LEs is inhibited by overexpression of ORP1L. Overexpression of ORP1L, and in particular the N-terminal fragments of ORP1L, inhibits vacuolation of LE caused by Helicobacter pylori toxin VacA, a process also involving Rab7. The present study demonstrates that ORP1L binds to Rab7, modifies its functional cycle, and can interfere with LE/lysosome organization and endocytic membrane trafficking. This is the first report of a direct connection between the OSBP-related protein family and the Rab GTPases.
Collapse
Affiliation(s)
- Marie Johansson
- Department of Molecular Medicine, National Public Health Institute, FI-00251 Helsinki, Finland
| | | | | | | | | |
Collapse
|
364
|
Colucci AMR, Campana MC, Bellopede M, Bucci C. The Rab-interacting lysosomal protein, a Rab7 and Rab34 effector, is capable of self-interaction. Biochem Biophys Res Commun 2005; 334:128-33. [PMID: 15996637 DOI: 10.1016/j.bbrc.2005.06.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 11/28/2022]
Abstract
Rab-interacting lysosomal protein (RILP) has been identified as an interacting partner of the small GTPases Rab7 and Rab34. Active Rab7 recruits RILP on the late endosomal/lysosomal membrane and RILP then functions as a Rab7 effector controlling transport to degradative compartments. Indeed, RILP induces recruitment of dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Recently, Rab7 and RILP have been found to be key proteins also for the biogenesis of phagolysosomes. Therefore, RILP represents probably an important factor for all endocytic routes to lysosomes. In this study, we show, using the yeast two-hybrid system, that RILP is able to interact with itself. The data obtained with the two-hybrid system were confirmed using co-immunoprecipitation in HeLa cells. The data together indicate that RILP, as already demonstrated for several other Rab effector proteins, is capable of self-association, thus probably forming a homo-dimer.
Collapse
Affiliation(s)
- Anna Maria Rosaria Colucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Via Monteroni, 73100 Lecce, Italy
| | | | | | | |
Collapse
|
365
|
Abstract
Small GTPases of the Rab family control timing of vesicle fusion. Fusion of two vesicles can only occur when they have been brought into close contact. Transport by microtubule- or actin-based motor proteins will facilitate this process in vivo. Ideally, transport and vesicle fusion are linked activities. Active, GTP-bound Rab proteins dock on specific compartments and are therefore perfect candidates to control transport of the different compartments. Recently, a number of Rab proteins were identified that control motor protein recruitment to their specific target membranes. By cycling through inactive and active states, Rab proteins are able to control motor protein-mediated transport and subsequent fusion of intracellular structures in both spatial and timed manners.
Collapse
Affiliation(s)
- Ingrid Jordens
- Department of Tumor Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
366
|
Nakada-Tsukui K, Saito-Nakano Y, Ali V, Nozaki T. A retromerlike complex is a novel Rab7 effector that is involved in the transport of the virulence factor cysteine protease in the enteric protozoan parasite Entamoeba histolytica. Mol Biol Cell 2005; 16:5294-303. [PMID: 16120649 PMCID: PMC1266427 DOI: 10.1091/mbc.e05-04-0283] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vesicular trafficking plays an important role in a virulence mechanism of the enteric protozoan parasite Entamoeba histolytica as secreted and lysosomal cysteine protease (CP) contributes to both cytolysis of tissues and degradation of internalized host cells. Despite the primary importance of intracellular sorting in pathogenesis, the molecular mechanism of CP trafficking remains largely unknown. In this report we demonstrate that transport of CP is regulated through a specific interaction of Rab7A small GTPase (EhRab7A) with the retromerlike complex. The amoebic retromerlike complex composed of Vps26, Vps29, and Vps35 was identified as EhRab7A-binding proteins. The amoebic retromerlike complex specifically bound to GTP-EhRab7A, but not GDP-EhRab7A through the direct binding via the carboxy terminus of EhVps26. In erythrophagocytosis the retromerlike complex was recruited to prephagosomal vacuoles, the unique preparatory vacuole of digestive enzymes, and later to phagosomes. This dynamism was indistinguishable from that of EhRab7A, and consistent with the premise that the retromerlike complex is involved in the retrograde transport of putative hydrolase receptor(s) from preparatory vacuoles and phagosomes to the Golgi apparatus. EhRab7A overexpression caused enlargement of lysosomes and decrease of the cellular CP activity. The reduced CP activity was restored by the coexpression of EhVps26, implying that the EhRab7A-mediated transport of CP to phagosomes is regulated by the retromerlike complex.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | |
Collapse
|
367
|
Sun Y, Büki KG, Ettala O, Vääräniemi JP, Väänänen HK. Possible role of direct Rac1-Rab7 interaction in ruffled border formation of osteoclasts. J Biol Chem 2005; 280:32356-61. [PMID: 16040606 DOI: 10.1074/jbc.m414213200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab7 has been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts, it is involved in formation of the ruffled border, which is a late endosomal-like compartment in the plasma membrane. Here we report a new Rab7-interacting protein, Rac1, another small GTPase protein that binds to the GTP-form of Rab7 as found with a two-hybrid system. We demonstrate further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, partial colocalization is perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments enabling endosomal vesicles to switch tracks and may thus also regulate ruffled border formation in osteoclasts.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anatomy, Institute of Biomedicine, University of Turku, Finland
| | | | | | | | | |
Collapse
|
368
|
Knodler LA, Steele-Mortimer O. The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate Sif extension. Mol Biol Cell 2005; 16:4108-23. [PMID: 15987736 PMCID: PMC1196323 DOI: 10.1091/mbc.e05-04-0367] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
After internalization into mammalian cells, the bacterial pathogen Salmonella enterica resides within a membrane-bound compartment, the Salmonella-containing vacuole (SCV). During its maturation process, the SCV interacts extensively with host cell endocytic compartments, especially late endosomes/lysosomes (LE/Lys) at later stages. These interactions are mediated by the activities of multiple bacterial and host cell proteins. Here, we show that the Salmonella type III effector PipB2 reorganizes LE/Lys compartments in mammalian cells. This activity results in the centrifugal extension of lysosomal glycoprotein-rich membrane tubules, known as Salmonella-induced filaments, away from the SCV along microtubules. Salmonella overexpressing pipB2 induce the peripheral accumulation of LE/Lys compartments, reducing the frequency of LE/Lys tubulation. Furthermore, ectopic expression of pipB2 redistributes LE/Lys, but not other cellular organelles, to the cell periphery. In coexpression studies, PipB2 can overcome the effects of dominant-active Rab7 or Rab34 on LE/Lys positioning. Deletion of a C-terminal pentapeptide motif of PipB2, LFNEF, prevents its peripheral targeting and effect on organelle positioning. The PipB2 homologue PipB does not possess this motif or the same biological activity as PipB2. Therefore, it seems that a divergence in the biological functions of these two effectors can be accounted for by sequence divergence in their C termini.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | |
Collapse
|
369
|
Hölttä-Vuori M, Alpy F, Tanhuanpää K, Jokitalo E, Mutka AL, Ikonen E. MLN64 is involved in actin-mediated dynamics of late endocytic organelles. Mol Biol Cell 2005; 16:3873-86. [PMID: 15930133 PMCID: PMC1182323 DOI: 10.1091/mbc.e04-12-1105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.
Collapse
|
370
|
Abstract
Pathogenic bacteria exploit a wide variety of host cellular processes to adhere to, invade, replicate within and damage host cells. One such process is the eukaryotic secretory pathway, in which proteins and lipids are modified and transported from the endoplasmic reticulum through the Golgi network to the plasma membrane and other cellular destinations. Certain bacteria secrete toxins that utilise this transport pathway to reach their cellular targets. Some intracellular pathogens, including Legionella, Brucella and Chlamydia, engage other steps of the pathway to establish intracellular replicative organelles. Recent work has implicated specific virulence proteins of enterohaemorrhagic Escherichia coli and Salmonella enterica in secretory pathway interactions.
Collapse
Affiliation(s)
- Suzana P Salcedo
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Univ, Parc Scientifique de Luminy, Case 906, 13288 Marseille Cedex 9, France.
| | | |
Collapse
|
371
|
Wu M, Wang T, Loh E, Hong W, Song H. Structural basis for recruitment of RILP by small GTPase Rab7. EMBO J 2005; 24:1491-501. [PMID: 15933719 PMCID: PMC1142575 DOI: 10.1038/sj.emboj.7600643] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 03/09/2005] [Indexed: 11/09/2022] Open
Abstract
Rab7 regulates vesicle traffic from early to late endosomes, and from late endosomes to lysosomes. The crystal structure of Rab7-GTP in complex with the Rab7 binding domain of RILP reveals that Rab7 interacts with RILP specifically via two distinct areas, with the first one involving the switch and interswitch regions and the second one consisting of RabSF1 and RabSF4. Disruption of these interactions by mutations abrogates late endosomal/lysosomal targeting of Rab7 and RILP. The Rab7 binding domain of RILP forms a coiled-coil homodimer with two symmetric surfaces to interact with two separate Rab7-GTP molecules, forming a dyad configuration of Rab7-RILP(2)-Rab7. Mutations that disrupt RILP dimerization also abolish its interactions with Rab7-GTP and late endosomal/lysosomal targeting, suggesting that the dimeric form of RILP is a functional unit. Structural comparison suggests that the combined use of RabSF1 and RabSF4 with the switch regions may be a general mode of action for most Rab proteins in regulating membrane trafficking.
Collapse
Affiliation(s)
- Mousheng Wu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tuanlao Wang
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Eva Loh
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Wanjin Hong
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, Proteos, Singapore
- Laboratory of Membrane Biology, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore. Tel.: +65 6586 9606; Fax: +65 6779 1117; E-mail:
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore. Tel.: +65 6586 9700; Fax: +65 6779 1117; E-mail:
| |
Collapse
|
372
|
Gissen P, Johnson CA, Gentle D, Hurst LD, Doherty AJ, O'Kane CJ, Kelly DA, Maher ER. Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Hum Mol Genet 2005; 14:1261-70. [PMID: 15790593 DOI: 10.1093/hmg/ddi137] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VPS33B protein is a homologue of the yeast class C vacuolar protein sorting protein Vps33p that is involved in the biogenesis and function of vacuoles. Vps33p homologues contain a Sec1 domain and belong to the family of Sec1/Munc18 (SM) proteins that regulate fusion of membrane-bound organelles and interact with other vps proteins and also SNARE proteins that execute membrane fusion in all cells. We demonstrated recently that mutations in VPS33B cause ARC syndrome (MIM 208085), a lethal multisystem disease. In contrast, mutations in other Vps33p homologues result in different phenotypes, e.g. a mutation in Drosophila melanogaster car gene causes the carnation eye colour mutant and inactivation of mouse Vps33a causes buff hypopigmentation phenotype. In mammals two Vps33p homologues (e.g. VPS33A and VPS33B in humans) have been identified. As comparative genome analysis can provide novel insights into gene evolution and function, we performed nucleotide and protein sequence comparisons of Vps33 homologues in different species to define their inter-relationships and evolution. In silico analysis (a) identified two homologues of yeast Vps33p in the worm, fly, zebrafish, rodent and human genomes, (b) suggested that Carnation is an orthologue of VPS33A rather than VPS33B and (c) identified conserved candidate functional domains within VPS33B. We have shown previously that wild-type VPS33B induced perinuclear clustering of late endosomes and lysosomes in human renal cells. Consistent with the predictions of comparative analysis: (a) VPS33B induced significantly more clustering than VPS33A in a renal cell line, (b) a putative fly VPS33B homologue but not Carnation protein also induced clustering and (c) the ability to induce clustering in renal cells was linked to two evolutionary conserved domains within VPS33B. One domain was present in VPS33B but not VPS33A homologues and the other was one of three regions predicted to form a t-SNARE binding site in VPS33B. In contrast, VPS33A induced significantly more clustering of melanosomes in melanoma cells than VPS33B. These investigations are consistent with the hypothesis that there are two functional classes of Vps33p homologues in all multicellular organisms and that the two classes reflect the evolution of organelle/tissue-specific functions.
Collapse
Affiliation(s)
- Paul Gissen
- Section of Medical and Molecular Genetic, University of Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Abstract
Dynactin is a multisubunit protein complex that is required for most, if not all, types of cytoplasmic dynein activity in eukaryotes. Dynactin binds dynein directly and allows the motor to traverse the microtubule lattice over long distances. A single dynactin subunit, p150Glued, is sufficient for both activities, yet dynactin contains several other subunits that are organized into an elaborate structure. It is currently believed that the bulk of the dynactin structure participates in interactions with a wide range of cellular structures, many of which are cargoes of the dynein motor. Genetic studies verify the importance of all elements of dynactin structure to its function. Although dynein can bind some membranous cargoes independently of dynactin, establishment of a fully functional dynein-cargo link appears to depend on dynactin. In this review, I summarize what is presently known about dynactin structure, the cellular structures with which it associates, and the intermolecular interactions that underlie and regulate binding. Although the molecular details of dynactin's interactions with membranous organelles and other molecules are complex, the framework provided here is intended to distill what is presently known and to be of use to dynactin specialists and beginners alike.
Collapse
Affiliation(s)
- Trina A Schroer
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
374
|
Stein MP, Cao C, Tessema M, Feng Y, Romero E, Welford A, Wandinger-Ness A. Interaction and functional analyses of human VPS34/p150 phosphatidylinositol 3-kinase complex with Rab7. Methods Enzymol 2005; 403:628-49. [PMID: 16473626 DOI: 10.1016/s0076-6879(05)03055-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rab7 GTPase is a key regulator of late endocytic membrane transport and autophagy. Rab7 exerts temporal and spatial control over late endocytic membrane transport through interactions with various effector proteins. Among Rab7 effectors, the hVPS34/p150 phosphatidylinositol (PtdIns) 3-kinase complex serves to regulate late endosomal phosphatidylinositol signaling that is important for protein sorting and intraluminal vesicle sequestration. In this chapter, reagents and methods for the characterization of the interactions and regulation of the Rab7/hVPS34/p150 complex are described. Using these methods we demonstrate the requirement for activated Rab7 in the regulation of hVPS34/p150 PtdIns 3-kinase activity on late endosomes in vivo.
Collapse
|
375
|
Wang T, Hong W. Assay and functional properties of Rab34 interaction with RILP in lysosome morphogenesis. Methods Enzymol 2005; 403:675-87. [PMID: 16473629 DOI: 10.1016/s0076-6879(05)03058-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have recently characterized Rab34 as a new member of the Rab GTPase family based on its ability to regulate lysosomal morphology. Rabbit polyclonal antibody raised against recombinant Rab34 reveals that Rab34 is a 29-kDa protein present both in the cytosol and in the Golgi apparatus. A GTP overlay assay shows that a wild-type and GTP-restricted mutant form of recombinant Rab34 bind GTP in vitro. Yeast two-hybrid interaction screens identify Rab7-interacting lysosomal protein (RILP) as a partner of Rab34. Both GST pull-down experiments and direct binding assays in vitro demonstrate that RILP interacts selectively with the wild-type and GTP-restricted but not GDP-restricted form of Rab34. A key residue (K82) of Rab34 is necessary for interaction with RILP. Expression of EGFP-tagged Rab34 wild-type or GTP-restricted forms in mammalian cells results in redistribution of clustered lysosomes to the peri-Golgi region and this property depends on K82, suggesting that Rab34 regulates lysosome distribution via interaction with RILP. These results suggest that RILP is a common effector shared by Rab7 and Rab34. We describe the methods used in our study.
Collapse
|
376
|
Johansson M, Olkkonen VM. Assays for interaction between Rab7 and oxysterol binding protein related protein 1L (ORP1L). Methods Enzymol 2005; 403:743-58. [PMID: 16473636 DOI: 10.1016/s0076-6879(05)03065-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ORP1L belongs to the recently described family of human oxysterol binding protein homologues. We have previously shown that ORP1L localizes to late endosomes. In this chapter we describe methods that have been used to investigate the functional link of ORP1L with the protein machinery regulating late endosomal membrane trafficking. Co-immunoprecipitation, COS cell two-hybrid, and pull-down assays were applied to demonstrate a physical interaction between ORP1L and the late endosomal small GTPase Rab7. With these methods we were able to map the Rab7-binding determinant of ORP1L to the amino-terminal ankyrin repeat region (aa 1-237) and show that the interaction is preferentially with the GTP-bound form of Rab7. Furthermore, we describe approaches based on transient transfection and confocal immunofluorescence microscopy, which were employed to study the effect of this amino-terminal ORP1L fragment on late endosome morphology. The ankyrin repeat fragment induces juxtanuclear clustering of late endosomes, dependent on an intact microtubule network. When it is coexpressed with the dominant inhibitory Rab7 mutant T22N, the clustering is inhibited, suggesting that the effect involves interaction of the fragment with active Rab7.
Collapse
|
377
|
Abstract
Rab7, a member of the Rab family of small G proteins, has been shown to regulate late endocytic traffic and lysosome biogenesis, but the exact roles and the mode of actions of Rab7 are still undetermined. Accumulating evidence suggests that each Rab protein has multiple target proteins and works together with them to coordinate the individual step of vesicle traffic. Rabring7 (Rab7-interacting ring finger protein) is a Rab7 target protein that has been isolated using a CytoTrap system. This protein shows no homology with RILP, which has been reported as another Rab7 target protein. Rabring7 is recruited efficiently to late endosome/lysosome by the GTP-bound form of Rab7. Exogenous expression of Rabring7 not only affects epidermal growth factor degradation but also induces the perinuclear aggregation of lysosomes and the increased acidity in the lysosomes. This chapter describes the procedures for the isolation of Rabring7 with a CytoTrap system, the analysis of the Rab7-Rabring7 interactions, and the properties of Rabring7.
Collapse
|
378
|
Abstract
Rab proteins are master regulators of vesicular membrane traffic of endocytic and exocytic pathways. They basically serve to recruit proteins and lipids required for vesicle formation, docking, and fusion. Each Rab protein is able to recruit one or more effectors, and, through the action of effectors, it drives its specific downstream functions. The Rab interacting lysosomal protein (RILP) is a common effector of Rab7 and Rab34, two Rab proteins implicated in the biogenesis of lysosomes. RILP is recruited onto late endosomal/lysosomal membranes by Rab7-GTP where it induces the recruitment of the dynein-dynactin motor complexes. Therefore, through the timed and selective dynein motor recruitment onto late endosomes and lysosomes, Rab7 and RILP control transport to endocytic degradative compartments. A similar role for Rab7 and RILP has been demonstrated also for phagosomes. Indeed, RILP recruits dynein-dynactin motors on Rab7-GTP-positive phagosomes and the recruitment not only displaces phagosomes centripetally, but also promotes the extension of phagosomal tubules toward late endocytic compartments. RILP is therefore a key protein for the biogenesis of lysosomes and phagolysosomes. This chapter describes how to express wild-type or mutated RILP in mammalian cells, and how to test the effects caused by RILP dysfunction. In particular, we report assays to monitor the interaction between RILP and Rab7, morphology and distribution of endosomes, and to measure degradation of endocytic markers.
Collapse
|
379
|
Mukherjee S, Dong J, Heincelman C, Lenhart M, Welford A, Wandinger-Ness A. Functional analyses and interaction of the XAPC7 proteasome subunit with Rab7. Methods Enzymol 2005; 403:650-63. [PMID: 16473627 DOI: 10.1016/s0076-6879(05)03056-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteasomes have long been known to mediate the degradation of polyubiquitinated proteins in the cytoplasm and the nucleus. Additionally, proteasomes have been identified as participating in cellular degradative pathways involving the endomembrane system. In conjunction with the endoplasmic reticulum, proteasomes serve as a quality control mechanism for disposing of malfolded newly synthesized proteins, while on the endocytic pathway they serve to facilitate the degradation of key signaling and nutrient receptors as well as the destruction of phagocytosed pathogens. Our laboratory has identified a direct interaction between the late endocytic Rab7 GTPase and the alpha-proteasome subunit, XAPC7, thus providing the first molecular link between the endocytic trafficking and cytosolic degradative machineries. In this chapter reagents and methods for studying the regulation and interactions between XAPC7, the 20S proteasome, and Rab7 are described.
Collapse
|
380
|
Abstract
The tumor oncoproteins HRAS, KRAS, and NRAS are the founding members of a larger family of at least 35 related human proteins. Using a somewhat broader definition of sequence similarity reveals a more extended superfamily of more than 170 RAS-related proteins. The RAS superfamily of GTP (guanosine triphosphate) hydrolysis-coupled signal transduction relay proteins can be subclassified into RAS, RHO, RAB, and ARF families, as well as the closely related Galpha family. The members of each family can, in turn, be arranged into evolutionarily conserved branches. These groupings reflect structural, biochemical, and functional conservation. Recent findings have provided insights into the signaling characteristics of representative members of most RAS superfamily branches. The analysis presented here may serve as a guide for predicting the function of numerous uncharacterized superfamily members. Also described are guanosine triphosphatases (GTPases) distinct from members of the RAS superfamily. These related proteins employ GTP binding and GTPase domains in diverse structural contexts, expanding the scope of their function in humans.
Collapse
|
381
|
Abstract
HIV-1 buds from the surface of activated T lymphocytes. In macrophages, however, newly formed HIV-1 particles amass in the lumen of an intracellular compartment. Here, we demonstrate by live-cell imaging techniques, by immunocytochemistry and by immuno-electron microscopy that HIV-1 structural proteins, particularly the internal structural protein Gag, accumulate at membranes of the late endocytic compartment in a variety of cell types and not just in monocyte/macrophage-derived cells. Recent biochemical and genetic studies have implicated components of the mammalian vacuolar protein sorting pathway in retroviral budding. Together with those observations, our study suggests that HIV-1 morphogenesis is thoroughly rooted in the endosomal system.
Collapse
Affiliation(s)
- Sascha Nydegger
- Department of Microbiology and Molecular Genetics, College of Medicine and CALS, 318 Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
382
|
Abstract
Hermansky-Pudlak syndrome defines a group of genetic disorders characterized by defects in organelles of the endosomal-lysosomal system, most notably melanosomes and platelet-dense granules. About a dozen genes have been implicated in the pathogenesis of the disease in humans and mice. Most of these genes encode novel polypeptides that are not conserved in unicellular eukaryotes. Recent studies have revealed that these polypeptides are stable components of at least three distinct, ubiquitously expressed protein complexes, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3. These findings provide a framework for studies on the function of these proteins and the pathogenesis of Hermansky-Pudlak syndrome.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Gonda Center 6357B, Los Angeles, California 90095-7088, USA.
| |
Collapse
|
383
|
Abstract
Regulation of membrane trafficking requires the concerted actions of rab proteins, their effectors and several phosphatidylinositol 3'-kinases. Rab7 is required for late endosomal transport and here we establish that the phosphatidylinositol 3'-kinase hVPS34 and its adaptor protein p150 are rab7 interacting partners. The hVPS34/p150 complex colocalized with rab7 on late endosomes and hVPS34 activity was dependent on nucleotide cycling of rab7. In addition, total cellular phosphatidylinositol 3'-phosphate levels were modulated by rab7 expression, suggesting that rab7 activation impacted kinase cycling to early endosomes. The data identify rab7 as an important regulator of late endosomal hVPS34 function and link rab7 to the regulation of phosphatidylinositol 3'-kinase cycling between early and late endosomes.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Molecular Trafficking Laboratory, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
384
|
Harrison RE, Brumell JH, Khandani A, Bucci C, Scott CC, Jiang X, Finlay BB, Grinstein S. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell 2004; 15:3146-54. [PMID: 15121880 PMCID: PMC452572 DOI: 10.1091/mbc.e04-02-0092] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
After invasion of epithelial cells, Salmonella enterica Typhimurium resides within membrane-bound vacuoles where it survives and replicates. Like endocytic vesicles, the Salmonella-containing vacuoles (SCVs) undergo a maturation process that involves sequential acquisition of Rab5 and Rab7 and displacement toward the microtubule-organizing center. However, SCVs fail to merge with lysosomes and instead develop subsequently into a filamentous network that extends toward the cell periphery. We found that the initial centripetal displacement of the SCV is due to recruitment by Rab7 of Rab7-interacting lysosomal protein (RILP), an effector protein that can simultaneously associate with the dynein motor complex. Unlike the early SCVs, the Salmonella-induced filaments (Sifs) formed later are devoid of RILP and dynein, despite the presence of active Rab7 on their membranes. Kinesin seems to be involved in the elongation of Sifs. SifA, a secreted effector of Salmonella, was found to be at least partly responsible for uncoupling Rab7 from RILP in Sifs and in vitro experiments suggest that SifA may exert this effect by interacting with Rab7. We propose that, by disengaging RILP from Rab7, SifA enables the centrifugal extension of tubules from the Salmonella-containing vacuoles, thereby providing additional protected space for bacterial replication.
Collapse
Affiliation(s)
- Rene E Harrison
- Department of Life Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
385
|
Marsman M, Jordens I, Kuijl C, Janssen L, Neefjes J. Dynein-mediated vesicle transport controls intracellular Salmonella replication. Mol Biol Cell 2004; 15:2954-64. [PMID: 15064357 PMCID: PMC420117 DOI: 10.1091/mbc.e03-08-0614] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Salmonella typhimurium survives and replicates intracellular in a membrane-bound compartment, the Salmonella-containing vacuole (SCV). In HeLa cells, the SCV matures through interactions with the endocytic pathway, but Salmonella avoids fusion with mature lysosomes. The exact mechanism of the inhibition of phagolysosomal fusion is not understood. Rab GTPases control several proteins involved in membrane fusion and vesicular transport. The small GTPase Rab7 regulates the transport of and fusion between late endosomes and lysosomes and associates with the SCV. We show that the Rab7 GTPase cycle is not affected on the SCV. We then manipulated a pathway downstream of the small GTPase Rab7 in HeLa cells infected with Salmonella. Expression of the Rab7 effector RILP induces recruitment of the dynein/dynactin motor complex to the SCV. Subsequently, SCV fuse with lysosomes. As a result, the intracellular replication of Salmonella is inhibited. Activation of dynein-mediated vesicle transport can thus control intracellular survival of Salmonella.
Collapse
Affiliation(s)
- Marije Marsman
- Division of Tumour Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | | | | | | | | |
Collapse
|
386
|
Gissen P, Johnson CA, Morgan NV, Stapelbroek JM, Forshew T, Cooper WN, McKiernan PJ, Klomp LWJ, Morris AAM, Wraith JE, McClean P, Lynch SA, Thompson RJ, Lo B, Quarrell OW, Di Rocco M, Trembath RC, Mandel H, Wali S, Karet FE, Knisely AS, Houwen RHJ, Kelly DA, Maher ER. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet 2004; 36:400-4. [PMID: 15052268 DOI: 10.1038/ng1325] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 02/09/2004] [Indexed: 12/29/2022]
Abstract
ARC syndrome (OMIM 208085) is an autosomal recessive multisystem disorder characterized by neurogenic arthrogryposis multiplex congenita, renal tubular dysfunction and neonatal cholestasis with bile duct hypoplasia and low gamma glutamyl transpeptidase (gGT) activity. Platelet dysfunction is common. Affected infants do not thrive and usually die in the first year of life. To elucidate the molecular basis of ARC, we mapped the disease to a 7-cM interval on 15q26.1 and then identified germline mutations in the gene VPS33B in 14 kindreds with ARC. VPS33B encodes a homolog of the class C yeast vacuolar protein sorting gene, Vps33, that contains a Sec1-like domain important in the regulation of vesicle-to-target SNARE complex formation and subsequent membrane fusion.
Collapse
Affiliation(s)
- Paul Gissen
- Section of Medical and Molecular Genetics, University of Birmingham, and Liver Unit, Birmingham Children's Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Junutula JR, De Maziére AM, Peden AA, Ervin KE, Advani RJ, van Dijk SM, Klumperman J, Scheller RH. Rab14 is involved in membrane trafficking between the Golgi complex and endosomes. Mol Biol Cell 2004; 15:2218-29. [PMID: 15004230 PMCID: PMC404017 DOI: 10.1091/mbc.e03-10-0777] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab GTPases are localized to various intracellular compartments and are known to play important regulatory roles in membrane trafficking. Here, we report the subcellular distribution and function of Rab14. By immunofluorescence and immunoelectron microscopy, both endogenous as well as overexpressed Rab14 were localized to biosynthetic (rough endoplasmic reticulum, Golgi, and trans-Golgi network) and endosomal compartments (early endosomal vacuoles and associated vesicles). Notably overexpression of Rab14Q70L shifted the distribution toward the early endosome associated vesicles, whereas the S25N and N124I mutants induced a shift toward the Golgi region. A similar, although less pronounced, redistribution of the transferrin receptor was also observed in cells overexpressing Rab14 mutants. Impairment of Rab14 function did not however affect transferrin uptake or recycling kinetics. Together, these findings suggest that Rab14 is involved in the biosynthetic/recycling pathway between the Golgi and endosomal compartments.
Collapse
|
388
|
Dong J, Chen W, Welford A, Wandinger-Ness A. The proteasome alpha-subunit XAPC7 interacts specifically with Rab7 and late endosomes. J Biol Chem 2004; 279:21334-42. [PMID: 14998988 DOI: 10.1074/jbc.m401022200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab7 is a key regulatory protein governing early to late endocytic membrane transport. In this study the proteasome alpha-subunit XAPC7 (also known as PSMA7, RC6-1, and HSPC in mammals) was identified to interact specifically with Rab7 and was recruited to multivesicular late endosomes through this interaction. The protein interaction domains were localized to the C terminus of XAPC7 and the N terminus of Rab7. XAPC7 was not found on early or recycling endosomes, but could be recruited to recycling endosomes by expression of a Rab7-(1-174)Rab11-(160-202) chimera, establishing a central role for Rab7 in the membrane recruitment of XAPC7. Although XAPC7 could be shown to associate with membranes bearing ubiquitinated cargo, overexpression had no impact on steady-state ubiquitinated protein levels. Most notably, overexpression of XAPC7 was found to impair late endocytic transport of two different membrane proteins, including EGFR known to be highly dependent on ubiquitination and proteasome activity for proper endocytic sorting and lysosomal transport. Decreased late endocytic transport caused by XAPC7 overexpression was partially rescued by coexpression of wild-type Rab7, suggesting a negative regulatory role for XAPC7. Nevertheless, Rab7 itself was not subject to XAPC7-dependent proteasomal degradation. Together the data establish the first direct molecular link between the endocytic trafficking and cytosolic degradative machineries.
Collapse
Affiliation(s)
- Jianbo Dong
- Molecular Trafficking Laboratory, Department of Pathology, University of New Mexico School of Medicine, 2325 Camino del Salud NE, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
389
|
Guignot J, Caron E, Beuzón C, Bucci C, Kagan J, Roy C, Holden DW. Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. J Cell Sci 2004; 117:1033-45. [PMID: 14970261 DOI: 10.1242/jcs.00949] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Infection of host cells by Salmonella enterica serovar Typhimurium (S. typhimurium) leads to the formation of specialised membrane-bound compartments called Salmonella-containing vacuoles (SCVs). Bacteria remain enclosed by the vacuolar membrane as they divide, and by translocating effector proteins across the vacuolar membrane through the SPI-2 type III secretion system, they interfere with host cell processes in ways that promote bacterial growth. One such effector is SifA, which is required to maintain the integrity of the vacuolar membrane and for the formation in epithelial cells of long tubular structures called Sifs that are connected to SCVs. Unknown effector(s) mediate the assembly of a meshwork of F-actin around SCVs. We report that intracellular bacteria also cause a dramatic accumulation of microtubules around S. typhimurium microcolonies in both epithelial cells and macrophages. Although this process appears to be independent of SPI-2-mediated F-actin assembly, it does require bacterial protein synthesis. In epithelial cells, microtubule accumulation is accompanied by the recruitment of both kinesin and dynein. Inhibition of the activity of either motor prevented both Sif formation and the loss of vacuolar membrane from sifA mutant bacteria. It also resulted in morphologically abnormal vacuoles enclosing wild-type bacteria, and impaired their replication. Our experiments indicate that recruitment of dynein to SCVs is dependent on Rab7 activity. We show that the recently described Rab7 effector RILP is also recruited to SCVs in a Rab7-dependent manner. However, overexpression of RILP did not restore dynein recruitment to SCVs in cells expressing dominant negative Rab7, suggesting that RILP requires a functional Rab7 to be activated at the SCV membrane, or that dynein recruitment is mediated by an effector other than RILP. Together, these experiments indicate that microtubule motors play important roles in regulating vacuolar membrane dynamics during intracellular replication of S. typhimurium.
Collapse
Affiliation(s)
- Julie Guignot
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
390
|
Li Y, Wandinger-Ness A, Goldenring JR, Cover TL. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol Biol Cell 2004; 15:1946-59. [PMID: 14742715 PMCID: PMC379289 DOI: 10.1091/mbc.e03-08-0618] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori VacA is a secreted protein toxin that may contribute to the pathogenesis of peptic ulcer disease and gastric adenocarcinoma. When added to cultured mammalian cells in the presence of weak bases (e.g., ammonium chloride), VacA induces the formation of large cytoplasmic vacuoles. Here, we report a previously unrecognized capacity of VacA to induce clustering and perinuclear redistribution of late endocytic compartments. In contrast to VacA-induced cell vacuolation, VacA-induced clustering and redistribution of late endocytic compartments are not dependent on the presence of weak bases and are not inhibited by bafilomycin A1. VacA mutant toxins defective in the capacity to form anion-selective membrane channels fail to cause clustering and redistribution. VacA-induced clusters of late endocytic compartments undergo transformation into vacuoles after the addition of ammonium chloride. VacA-induced clustering and redistribution of late endocytic compartments occur in cells expressing wild-type or constitutively active Rab7, but not in cells expressing dominant-negative mutant Rab7. In VacA-treated cells containing clustered late endocytic compartments, overexpression of dominant-negative Rab7 causes reversion to a nonclustered distribution. Redistribution of late endocytic compartments to the perinuclear region requires a functional microtubule cytoskeleton, whereas clustering of these compartments and vacuole formation do not. These data provide evidence that clustering of late endocytic compartments is a critical mechanistic step in the process of VacA-induced cell vacuolation. We speculate that VacA-induced alterations in late endocytic membrane traffic contribute to the capacity of H. pylori to persistently colonize the human gastric mucosa.
Collapse
Affiliation(s)
- Yi Li
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
391
|
Wang T, Wong KK, Hong W. A unique region of RILP distinguishes it from its related proteins in its regulation of lysosomal morphology and interaction with Rab7 and Rab34. Mol Biol Cell 2003; 15:815-26. [PMID: 14668488 PMCID: PMC329395 DOI: 10.1091/mbc.e03-06-0413] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab7 and Rab34 are implicated in regulation of lysosomal morphology and they share a common effector referred to as the RILP (Rab-interacting lysosomal protein). Two novel proteins related to RILP were identified and are tentatively referred to as RLP1 and RLP2 (for RILP-like protein 1 and 2, respectively). Overexpression of RILP caused enlarged lysosomes that are positioned more centrally in the cell. However, the morphology and distribution of lysosomes were not affected by overexpression of either RLP1 or RLP2. The molecular basis for the effect of RILP on lysosomes was investigated, leading to the demonstration that a 62-residue region (amino acids 272-333) of RILP is necessary for RILP's role in regulating lysosomal morphology. Remarkably, transferring this 62-residue region unique to RILP into corresponding sites in RLP1 rendered the chimeric protein capable of regulating lysosome morphology. A correlation between the interaction with GTP-bound form of both Rab proteins and the capability of regulating lysosomes was established. These results define a unique region in RILP responsible for its specific role in regulating lysosomal morphology as well as in its interaction with Rab7 and Rab34.
Collapse
Affiliation(s)
- Tuanlao Wang
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | |
Collapse
|
392
|
Abstract
After internalization, endocytic material is actively transported through the cytoplasm, predominantly by microtubule motor proteins. Microtubule-based endocytic transport facilitates sorting of endocytic contents, vesicle fusion and fission, delivery to lysosomes, cytosolic dispersal, as well as nuclear uptake and cytosolic egress of pathogens. Endosomes, like most organelles, move bidirectionally through the cytosol and regulate their cellular location by controlling the activity of motor proteins, and potentially by controlling microtubule and actin polymerization. Control of motor protein activity is manifest by increased microtubule "run lengths", and the binding of motor proteins to organelles can be regulated by motor protein receptors. A mechanistic understanding of how organelles control motor protein activity to allow for endocytic sorting presents an exciting avenue for future research.
Collapse
Affiliation(s)
- John W Murray
- Marion Bessin Liver Research Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 517 Ullmann Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
393
|
Stein MP, Dong J, Wandinger-Ness A. Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev 2003; 55:1421-37. [PMID: 14597139 DOI: 10.1016/j.addr.2003.07.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rab GTPases serve as master regulators of vesicular membrane transport on both the exo- and endocytic pathways. In their active forms, rab proteins serve in cargo selection and as scaffolds for the sequential assembly of effectors requisite for vesicle budding, cytoskeletal transport, and target membrane fusion. Rab protein function is in turn tightly regulated at the level of protein expression, localization, membrane association, and activation. Alterations in the rab GTPases and associated regulatory proteins or effectors have increasingly been implicated in causing human disease. Some diseases such as those resulting in bleeding and pigmentation disorders (Griscelli syndrome), mental retardation, neuropathy (Charcot-Marie-Tooth), kidney disease (tuberous sclerosis), and blindness (choroideremia) arise from direct loss of function mutations of rab GTPases or associated regulatory molecules. In contrast, in a number of cancers (prostate, liver, breast) as well as vascular, lung, and thyroid diseases, the overexpression of select rab GTPases have been tightly correlated with disease pathogenesis. Unique therapeutic opportunities lie ahead in developing strategies that target rab proteins and modulate the endocytic pathway.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Molecular Trafficking Laboratory, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
394
|
Edinger AL, Cinalli RM, Thompson CB. Rab7 Prevents Growth Factor-Independent Survival by Inhibiting Cell-Autonomous Nutrient Transporter Expression. Dev Cell 2003; 5:571-82. [PMID: 14536059 DOI: 10.1016/s1534-5807(03)00291-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth factor withdrawal results in the endocytosis and degradation of transporter proteins for glucose and amino acids. Here, we show that this process is under the active control of the small GTPase Rab7. In the presence of growth factor, Rab7 inhibition had no effect on nutrient transporter expression. In growth factor-deprived cells, however, blocking Rab7 function prevented the clearance of glucose and amino acid transporter proteins from the cell surface. When Rab7 was inhibited, growth factor deprived cells maintained their mitochondrial membrane potential and displayed prolonged, growth factor-independent, nutrient-dependent cell survival. Thus, Rab7 functions as a proapoptotic protein by limiting cell-autonomous nutrient uptake. Consistent with this, dominant-negative Rab7 cooperated with E1A to promote the transformation of p53(-/-) mouse embryonic fibroblasts (MEFs). These results suggest that proteins that limit nutrient transporter expression function to prevent cell-autonomous growth and survival.
Collapse
Affiliation(s)
- Aimee L Edinger
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
395
|
Mizuno K, Kitamura A, Sasaki T. Rabring7, a novel Rab7 target protein with a RING finger motif. Mol Biol Cell 2003; 14:3741-52. [PMID: 12972561 PMCID: PMC196564 DOI: 10.1091/mbc.e02-08-0495] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab7, a member of the Rab family small G proteins, has been shown to regulate intracellular vesicle traffic to late endosome/lysosome and lysosome biogenesis, but the exact roles of Rab7 are still undetermined. Accumulating evidence suggests that each Rab protein has multiple target proteins that function in the exocytic/endocytic pathway. We have isolated a new Rab7 target protein, Rabring7 (Rab7-interacting RING finger protein), using a CytoTrap system. It contains an H2 type RING finger motif at the C termini. Rabring7 shows no homology with RILP, which has been reported as another Rab7 target protein. GST pull-down and coimmunoprecipitation assays demonstrate that Rabring7 specifically binds the GTP-bound form of Rab7 at the N-terminal portion. Rabring7 is found mainly in the cytosol and is recruited efficiently to late endosomes/lysosomes by the GTP-bound form of Rab7 in BHK cells. Overexpression of Rabring7 not only affects epidermal growth factor degradation but also causes the perinuclear aggregation of lysosomes, in which the accumulation of the acidotropic probe LysoTracker is remarkably enhanced. These results suggest that Rabring7 plays crucial roles as a Rab7 target protein in vesicle traffic to late endosome/lysosome and lysosome biogenesis.
Collapse
Affiliation(s)
- Kouichi Mizuno
- Department of Biochemistry, The University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan
| | | | | |
Collapse
|
396
|
Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 2003; 23:6494-506. [PMID: 12944476 PMCID: PMC193691 DOI: 10.1128/mcb.23.18.6494-6506.2003] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent phagosomes must undergo a series of fusion and fission reactions to acquire the microbicidal properties required for the innate immune response. Here we demonstrate that this maturation process involves the GTPase Rab7. Rab7 recruitment to phagosomes was found to precede and to be essential for their fusion with late endosomes and/or lysosomes. Active Rab7 on the phagosomal membrane associates with the effector protein RILP (Rab7-interacting lysosomal protein), which in turn bridges phagosomes with dynein-dynactin, a microtubule-associated motor complex. The motors not only displace phagosomes in the centripetal direction but, strikingly, promote the extension of phagosomal tubules toward late endocytic compartments. Fusion of tubules with these organelles was documented by fluorescence and electron microscopy. Tubule extension and fusion with late endosomes and/or lysosomes were prevented by expression of a truncated form of RILP lacking the dynein-dynactin-recruiting domain. We conclude that full maturation of phagosomes requires the retrograde emission of tubular extensions, which are generated by activation of Rab7, recruitment of RILP, and consequent association of phagosomes with microtubule-associated motors.
Collapse
Affiliation(s)
- Rene E Harrison
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
397
|
Affiliation(s)
- Ueli Suter
- Institute of Cell Biology, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
398
|
Abstract
Protein complexes associated to specific membrane lipids and protein-lipid domains contribute to regulate protein sorting and membrane dynamics in the endocytic pathway. It is also becoming apparent that different lipid territories are distributed along the pathway, and that some lipids segregate into specialised microdomains.
Collapse
Affiliation(s)
- Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 4, Geneva, Switzerland.
| |
Collapse
|
399
|
Nazarian R, Falcón-Pérez JM, Dell'Angelica EC. Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proc Natl Acad Sci U S A 2003; 100:8770-5. [PMID: 12847290 PMCID: PMC166388 DOI: 10.1073/pnas.1532040100] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Indexed: 11/18/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) defines a group of autosomal recessive disorders characterized by deficiencies in lysosome-related organelles such as melanosomes and platelet-dense granules. Several HPS genes encode proteins of unknown function including HPS1, HPS3, and HPS4. Here we have identified and characterized endogenous HPS3 and HPS4 proteins from HeLa cells. Both proteins were found in soluble and membrane-associated forms. Sedimentation-velocity and coimmunoprecipitation experiments revealed that HPS4 but not HPS3 associates with HPS1 in a complex, which we term biogenesis of lysosome-related organelles complex 3 (BLOC-3). Mutant fibroblasts deficient in either HPS1 or HPS4 displayed abnormal localization of lysosomes and late endosomes, which were less concentrated at the juxtanuclear region in mutant cells than in control fibroblasts. The coat-color phenotype of young homozygous double-mutant mice deficient in subunits of BLOC-3 (HPS1) and BLOC-1 (pallidin) was indistinguishable from that of BLOC-1 single mutants. Taken together, these observations suggest that HPS1 and HPS4 are components of a protein complex that regulates the intracellular localization of lysosomes and late endosomes and may function in a BLOC-1-dependent pathway for melanosome biogenesis.
Collapse
Affiliation(s)
- Ramin Nazarian
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
400
|
Poupon V, Stewart A, Gray SR, Piper RC, Luzio JP. The role of mVps18p in clustering, fusion, and intracellular localization of late endocytic organelles. Mol Biol Cell 2003; 14:4015-27. [PMID: 14517315 PMCID: PMC206996 DOI: 10.1091/mbc.e03-01-0040] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Delivery of endocytosed macromolecules to mammalian cell lysosomes occurs by direct fusion of late endosomes with lysosomes, resulting in the formation of hybrid organelles from which lysosomes are reformed. The molecular mechanisms of this fusion are analogous to those of homotypic vacuole fusion in Saccharomyces cerevisiae. We report herein the major roles of the mammalian homolog of yeast Vps18p (mVps18p), a member of the homotypic fusion and vacuole protein sorting complex. When overexpressed, mVps18p caused the clustering of late endosomes/lysosomes and the recruitment of other mammalian homologs of the homotypic fusion and vacuole protein sorting complex, plus Rab7-interacting lysosomal protein. The clusters were surrounded by components of the actin cytoskeleton, including actin, ezrin, and specific unconventional myosins. Overexpression of mVps18p also overcame the effect of wortmannin treatment, which inhibits membrane traffic out of late endocytic organelles and causes their swelling. Reduction of mVps18p by RNA interference caused lysosomes to disperse away from their juxtanuclear location. Thus, mVps18p plays a critical role in endosome/lysosome tethering, fusion, intracellular localization and in the reformation of lysosomes from hybrid organelles.
Collapse
Affiliation(s)
- Viviane Poupon
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, CB2 2XY Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|