351
|
Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, de Cabo R. The road ahead for health and lifespan interventions. Ageing Res Rev 2020; 59:101037. [PMID: 32109604 DOI: 10.1016/j.arr.2020.101037] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Aging is a modifiable risk factor for most chronic diseases and an inevitable process in humans. The development of pharmacological interventions aimed at delaying or preventing the onset of chronic conditions and other age-related diseases has been at the forefront of the aging field. Preclinical findings have demonstrated that species, sex and strain confer significant heterogeneity on reaching the desired health- and lifespan-promoting pharmacological responses in model organisms. Translating the safety and efficacy of these interventions to humans and the lack of reliable biomarkers that serve as predictors of health outcomes remain a challenge. Here, we will survey current pharmacological interventions that promote lifespan extension and/or increased healthspan in animals and humans, and review the various anti-aging interventions selected for inclusion in the NIA's Interventions Testing Program as well as the ClinicalTrials.gov database that target aging or age-related diseases in humans.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Cardiovascular and Metabolic Diseases Group, Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - David Hauser
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, IMDEA Food, CEI, UAM/CSIC, Madrid, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| |
Collapse
|
352
|
Jiang YH, Jiang LY, Wang YC, Ma DF, Li X. Quercetin Attenuates Atherosclerosis via Modulating Oxidized LDL-Induced Endothelial Cellular Senescence. Front Pharmacol 2020; 11:512. [PMID: 32410992 PMCID: PMC7198817 DOI: 10.3389/fphar.2020.00512] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/31/2020] [Indexed: 01/20/2023] Open
Abstract
Background and Aims Endothelial senescence is an important risk factor leading to atherosclerosis. The mechanism of quercetin against endothelial senescence is worth exploring. Methods Quercetin (20 mg/kg/d) was administered to ApoE-/- mice intragastrically to evaluate the effectiveness of quercetin on atherosclerotic lesion in vivo. In vitro, human aortic endothelial cells (HAECs) were used to assess the effect of quercetin on cellular senescence induced by oxidized low-density lipoprotein (ox-LDL). Transcriptome microarray and quantitative RT-PCR was conducted to study the pharmacological targets of quercetin. Results ApoE-/- mice demonstrated obvious lipid deposition in arterial lumina, high level of serum sIcam-1 and IL-6, and high density of Vcam-1 and lower density of Sirt1 in aorta. Quercetin administration decreased lipid deposition in arterial lumina, serum sIcam-1, and IL-6 and Vcam-1 in aorta, while increased the density of Sirt1 in aorta of ApoE-/- mice. In vitro, quercetin (0.3, 1, or 3 μmol/L) decreased the expression of senescence-associated β-galactosidase and improved cell morphology of HAECs. And quercetin decreased the cellular apoptosis and increased mitochondrial membrane potential (ΔΨm) in dose-dependent manner, and decreased ROS generation simultaneously. Transcriptome microarray suggested 254 differentially expressed (DE) mRNAs (110 mRNAs were upregulated and 144 mRNAs were downregulated) in HAECs after quercetin treatment (fold change > 1.5, P < 0 .05, Que vs Ox-LDL). GO and KEGG analysis indicated nitrogen metabolism, ECM-receptor interaction, complement, and coagulation cascades, p53 and mTOR signaling pathway were involved in the pharmacological mechanisms of quercetin against ox-LDL. Conclusions Quercetin alleviated atherosclerotic lesion both in vivo and in vitro.
Collapse
Affiliation(s)
- Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Yu Jiang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Cheng Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Du-Fang Ma
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
353
|
Vitamin C Treatment Rescues Prelamin A-Induced Premature Senescence of Subchondral Bone Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:3150716. [PMID: 32322277 PMCID: PMC7157810 DOI: 10.1155/2020/3150716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is a predominant risk factor for many chronic conditions. Stem cell dysfunction plays a pivotal role in the aging process. Prelamin A, an abnormal processed form of the nuclear lamina protein lamin A, has been reported to trigger premature senescence. However, the mechanism driving stem cell dysfunction is still unclear. In this study, we found that while passaging subchondral bone mesenchymal stem cells (SCB-MSCs) in vitro, prelamin A accumulation occurred concomitantly with an increase in senescence-associated β-galactosidase (SA-β-Gal) expression. Unlike their counterparts, SCB-MSCs with prelamin A overexpression (MSC/PLA) demonstrated decreased proliferation, osteogenesis, and adipogenesis but increased production of inflammatory factors. In a hind-limb ischemia model, MSC/PLA also exhibited compromised therapy effect. Further investigation showed that exogenous prelamin A triggered abnormal nuclear morphology, DNA and shelterin complex damage, cell cycle retardation, and eventually cell senescence. Changes in gene expression profile were also verified by microarray assay. Interestingly, we found that ascorbic acid or vitamin C (VC) treatment could inhibit prelamin A expression in MSC/PLA and partially reverse the premature aging in MSC/PLA, with reduced secretion of inflammatory factors and cell cycle arrest and resistance to apoptosis. Importantly, after VC treatment, MSC/PLA showed enhanced therapy effect in the hind-limb ischemia model. In conclusion, prelamin A can accelerate SCB-MSC premature senescence by inducing DNA damage. VC can be a potential therapeutic reagent for prelamin A-induced aging defects in MSCs.
Collapse
|
354
|
Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing Senescent Cell Burden in Aging and Disease. Trends Mol Med 2020; 26:630-638. [PMID: 32589933 DOI: 10.1016/j.molmed.2020.03.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Cellular senescence is a primary aging process and tumor suppressive mechanism characterized by irreversible growth arrest, apoptosis resistance, production of a senescence-associated secretory phenotype (SASP), mitochondrial dysfunction, and alterations in DNA and chromatin. In preclinical aging models, accumulation of senescent cells is associated with multiple chronic diseases and disorders, geriatric syndromes, multimorbidity, and accelerated aging phenotypes. In animals, genetic and pharmacologic reduction of senescent cell burden results in the prevention, delay, and/or alleviation of a variety of aging-related diseases and sequelae. Early clinical trials have thus far focused on safety and target engagement of senolytic agents that clear senescent cells. We hypothesize that these pharmacologic interventions may have transformative effects on geriatric medicine.
Collapse
Affiliation(s)
- Robert J Pignolo
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA.
| | - João F Passos
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - Tamara Tchkonia
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| | - James L Kirkland
- Mayo Clinic Departments of Medicine, Physiology and Biomedical Engineering, and the Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
355
|
Heterochronic parabiosis regulates the extent of cellular senescence in multiple tissues. GeroScience 2020; 42:951-961. [PMID: 32285290 DOI: 10.1007/s11357-020-00185-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
An increase in the burden of senescent cells in tissues with age contributes to driving aging and the onset of age-related diseases. Genetic and pharmacologic elimination of senescent cells extends both health span and life span in mouse models. Heterochronic parabiosis in mice has been used to identify bloodborne, circulating pro- and anti-geronic factors able to drive or slow aging, respectively. However, whether factors in the circulation also regulate senescence is unknown. Here, we measured the expression of senescence and senescence-associated secretory phenotype (SASP) markers in multiple tissues from 4- to 18-month-old male mice that were either isochronically or heterochronically paired for 2 months. In heterochronic parabionts, the age-dependent increase in senescence and SASP marker expression was reduced in old mice exposed to a young environment, while senescence markers were concurrently increased in young heterochronic parabionts. These findings were supported by geropathology analysis using the Geropathology Grading Platform that showed a trend toward reduced hepatic lesions in old heterochronic parabionts. In summary, these results demonstrate that senescence is regulated in part by circulating geronic factors and suggest that one of the possible mediators of the rejuvenating effects with heterochronic parabiosis is through the reduction of the senescent cell burden.
Collapse
|
356
|
Kiss T, Nyúl-Tóth Á, Balasubramanian P, Tarantini S, Ahire C, DelFavero J, Yabluchanskiy A, Csipo T, Farkas E, Wiley G, Garman L, Csiszar A, Ungvari Z. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. GeroScience 2020; 42:429-444. [PMID: 32236824 PMCID: PMC7205992 DOI: 10.1007/s11357-020-00177-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/01/2020] [Indexed: 01/21/2023] Open
Abstract
Age-related phenotypic changes of cerebromicrovascular endothelial cells lead to dysregulation of cerebral blood flow and blood-brain barrier disruption, promoting the pathogenesis of vascular cognitive impairment (VCI). In recent years, endothelial cell senescence has emerged as a potential mechanism contributing to microvascular pathologies opening the avenue to the therapeutic exploitation of senolytic drugs in preclinical studies. However, difficulties with the detection of senescent endothelial cells in wild type mouse models of aging hinder the assessment of the efficiency of senolytic treatments. To detect senescent endothelial cells in the aging mouse brain, we analyzed 4233 cells in fractions enriched for cerebromicrovascular endothelial cells and other cells associated with the neurovascular unit obtained from young (3-month-old) and aged (28-month-old) C57BL/6 mice. We define 13 transcriptomic cell types by deep, single-cell RNA sequencing. We match transcriptomic signatures of cellular senescence to endothelial cells identified on the basis of their gene expression profile. Our study demonstrates that with advanced aging, there is an increased ratio of senescent endothelial cells (~ 10%) in the mouse cerebral microcirculation. We propose that our single-cell RNA sequencing-based method can be adapted to study the effect of aging on senescence in various brain cell types as well as to evaluate the efficiency of various senolytic regimens in multiple tissues.
Collapse
Affiliation(s)
- Tamas Kiss
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Priya Balasubramanian
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Jordan DelFavero
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cardiology, International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Graham Wiley
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lori Garman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Anna Csiszar
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics, International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Zoltan Ungvari
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
357
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
358
|
Qu A, Wu X, Li S, Sun M, Xu L, Kuang H, Xu C. An NIR-Responsive DNA-Mediated Nanotetrahedron Enhances the Clearance of Senescent Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000184. [PMID: 32100405 DOI: 10.1002/adma.202000184] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Senescence is a state of stable cell cycle arrest that can escape apoptosis and lead to aging and numerous age-related diseases. In this study, an upconversion-nanoparticle (UCNP)-centered Au20 -Au30 nanoparticles tetrahedron (UAuTe) is prepared by DNA hybridization, which can selectively accelerate the clearance of senescent cells. When the beta-2-microglobulin antibody (anti-B2MG) on the Au NPs recognizes senescent cells, the application of near-infrared (NIR) light induces the disassembly of the UAuTe by breaking the boronic ester linkage. Subsequently, the Granzyme B exposed on the UCNPs induces apoptosis in senescent cells, which can then be tracked by changes in fluorescence. It is found that, as compared to single Granzyme B, the UAuTe can not only control the Granzyme B delivery by NIR-responsivity, but also synergistically target and activate the Granzyme B in the senescent cell without the need of perforin. Moreover, this tool is applied successfully in vivo; the results demonstrate that the NIR-responsive tetrahedron can restore renal function, tissue homeostasis, fur density, and athletic ability in a mouse model of senescence after 30 d of treatment. The NIR-induced tetrahedron provides a practical strategy for clinical diagnosis and therapy, particularly for aging and age-related diseases.
Collapse
Affiliation(s)
- Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
359
|
Yabluchanskiy A, Tarantini S, Balasubramanian P, Kiss T, Csipo T, Fülöp GA, Lipecz A, Ahire C, DelFavero J, Nyul-Toth A, Sonntag WE, Schwartzman ML, Campisi J, Csiszar A, Ungvari Z. Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiation-induced impairment of neurovascular coupling responses protecting cognitive function in mice. GeroScience 2020; 42:409-428. [PMID: 31960269 PMCID: PMC7205933 DOI: 10.1007/s11357-020-00154-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Whole brain irradiation (WBI, also known as whole brain radiation therapy or WBRT) is a mainstream therapy for patients with identifiable brain metastases and as a prophylaxis for microscopic malignancies. WBI accelerates brain aging, causing progressive cognitive dysfunction in ~ 50% of surviving patients, thus compromising quality of life. The mechanisms responsible for this WBI side effect remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that WBI induces astrocyte senescence, which contributes to impaired astrocytic neurovascular coupling (NVC) responses and the genesis of cognitive decline. To achieve this goal, we used transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells. We subjected these mice to a clinically relevant protocol of fractionated WBI (5 Gy twice weekly for 4 weeks). WBI-treated and control mice were tested for spatial memory performance (radial arm water maze), astrocyte-dependent NVC responses (whisker-stimulation-induced increases in cerebral blood flow, assessed by laser speckle contrast imaging), NVC-related gene expression, astrocytic release of eicosanoid gliotransmitters and the presence of senescent astrocytes (by flow cytometry, immunohistochemistry and gene expression profiling) at 6 months post-irradiation. WBI induced senescence in astrocytes, which associated with NVC dysfunction and impaired performance on cognitive tasks. To establish a causal relationship between WBI-induced senescence and NVC dysfunction, senescent cells were depleted from WBI-treated animals (at 3 months post-WBI) by genetic (ganciclovir treatment) or pharmacological (treatment with the BCL-2/BCL-xL inhibitor ABT263/Navitoclax, a known senolytic drug) means. In WBI-treated mice, both treatments effectively eliminated senescent astrocytes, rescued NVC responses, and improved cognitive performance. Our findings suggest that the use of senolytic drugs can be a promising strategy for preventing the cognitive impairment associated with WBI.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/ Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor A Fülöp
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/ Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | | | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA
- Buck Institute for Research on Aging, Novato, CA, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
360
|
Hughes MJ, McGettrick HM, Sapey E. Shared mechanisms of multimorbidity in COPD, atherosclerosis and type-2 diabetes: the neutrophil as a potential inflammatory target. Eur Respir Rev 2020; 29:190102. [PMID: 32198215 PMCID: PMC9488696 DOI: 10.1183/16000617.0102-2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022] Open
Abstract
Multimorbidity is increasingly common and current healthcare strategies are not always aligned to treat this complex burden of disease. COPD, type-2 diabetes mellitus (T2D) and cardiovascular disease, especially atherosclerosis, occur more frequently together than expected, even when risk factors such as smoking, obesity, inactivity and poverty are considered. This supports the possibility of unifying mechanisms that contribute to the pathogenesis or progression of each condition.Neutrophilic inflammation is causally associated with COPD, and increasingly recognised in the pathogenesis of atherosclerosis and T2D, potentially forming an aetiological link between conditions. This link might reflect an overspill of inflammation from one affected organ into the systemic circulation, exposing all organs to an increased milieu of proinflammatory cytokines. Additionally, increasing evidence supports the involvement of other processes in chronic disease pathogenesis, such as cellular senescence or changes in cellular phenotypes.This review explores the current scientific evidence for inflammation, cellular ageing and cellular processes, such as reactive oxygen species production and phenotypic changes in the pathogenesis of COPD, T2D and atherosclerosis; highlighting common mechanisms shared across these diseases. We identify emerging therapeutic approaches that target these areas, but also where more work is still required to improve our understanding of the underlying cellular biology in a multimorbid disease setting.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
361
|
Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA. Therapy-Induced Senescence: An "Old" Friend Becomes the Enemy. Cancers (Basel) 2020; 12:cancers12040822. [PMID: 32235364 PMCID: PMC7226427 DOI: 10.3390/cancers12040822] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
For the past two decades, cellular senescence has been recognized as a central component of the tumor cell response to chemotherapy and radiation. Traditionally, this form of senescence, termed Therapy-Induced Senescence (TIS), was linked to extensive nuclear damage precipitated by classical genotoxic chemotherapy. However, a number of other forms of therapy have also been shown to induce senescence in tumor cells independently of direct genomic damage. This review attempts to provide a comprehensive summary of both conventional and targeted anticancer therapeutics that have been shown to induce senescence in vitro and in vivo. Still, the utility of promoting senescence as a therapeutic endpoint remains under debate. Since senescence represents a durable form of growth arrest, it might be argued that senescence is a desirable outcome of cancer therapy. However, accumulating evidence suggesting that cells have the capacity to escape from TIS would support an alternative conclusion, that senescence provides an avenue whereby tumor cells can evade the potentially lethal action of anticancer drugs, allowing the cells to enter a temporary state of dormancy that eventually facilitates disease recurrence, often in a more aggressive state. Furthermore, TIS is now strongly connected to tumor cell remodeling, potentially to tumor dormancy, acquiring more ominous malignant phenotypes and accounts for several untoward adverse effects of cancer therapy. Here, we argue that senescence represents a barrier to effective anticancer treatment, and discuss the emerging efforts to identify and exploit agents with senolytic properties as a strategy for elimination of the persistent residual surviving tumor cell population, with the goal of mitigating the tumor-promoting influence of the senescent cells and to thereby reduce the likelihood of cancer relapse.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Valerie J. Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Enas Alwohoush
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Jomana Bakeer
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Sarah Darwish
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Correspondence:
| |
Collapse
|
362
|
Graves SI, Baker DJ. Implicating endothelial cell senescence to dysfunction in the ageing and diseased brain. Basic Clin Pharmacol Toxicol 2020; 127:102-110. [PMID: 32162446 DOI: 10.1111/bcpt.13403] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Abstract
Cerebrovascular endothelial cells (CECs) are integral components of both the blood-brain barrier (BBB) and the neurovascular unit (NVU). As the primary cell type of the BBB, CECs are responsible for the tight regulation of molecular transport between the brain parenchyma and the periphery. Additionally, CECs are essential in neurovascular coupling where they help regulate cerebral blood flow in response to regional increases in cellular demand in the NVU. CEC dysfunction occurs during both normative ageing and in cerebrovascular disease, which leads to increased BBB permeability and neurovascular uncoupling. This MiniReview compiles what is known about the molecular changes underlying CEC dysfunction, many of which are reminiscent of cells that have become senescent. In general, cellular senescence is defined as an irreversible growth arrest characterized by the acquisition of a pro-inflammatory secretory phenotype in response to DNA damage or other cellular stresses. We discuss evidence for endothelial cell senescence in ageing and cardiovascular disease, and how CEC senescence may contribute to age-related cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sara I Graves
- Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Darren J Baker
- Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota.,Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
363
|
Wang M, Monticone RE, McGraw KR. Proinflammation, profibrosis, and arterial aging. Aging Med (Milton) 2020; 3:159-168. [PMID: 33103036 PMCID: PMC7574637 DOI: 10.1002/agm2.12099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a major risk factor for quintessential cardiovascular diseases, which are closely related to arterial proinflammation. The age-related alterations of the amount, distribution, and properties of the collagen fibers, such as cross-links and degradation in the arterial wall, are the major sequelae of proinflammation. In the aging arterial wall, collagen types I, II, and III are predominant, and are mainly produced by stiffened vascular smooth muscle cells (VSMCs) governed by proinflammatory signaling, leading to profibrosis. Profibrosis is regulated by an increase in the proinflammatory molecules angiotensin II, milk fat globule-EGF-VIII, and transforming growth factor-beta 1 (TGF-β1) signaling and a decrease in the vasorin signaling cascade. The release of these proinflammatory factors triggers the activation of matrix metalloproteinase type II (MMP-2) and activates profibrogenic TGF-β1 signaling, contributing to profibrosis. The age-associated increase in activated MMP-2 cleaves latent TGF-β and subsequently increases TGF-β1 activity leading to collagen deposition in the arterial wall. Furthermore, a blockade of the proinflammatory signaling pathway alleviates the fibrogenic signaling, reduces profibrosis, and prevents arterial stiffening with aging. Thus, age-associated proinflammatory-profibrosis coupling is the underlying molecular mechanism of arterial stiffening with advancing age.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| | - Robert E Monticone
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| | - Kimberly R McGraw
- Laboratory of Cardiovascular Science National Institute on Aging National Institutes of Health Baltimore Maryland
| |
Collapse
|
364
|
Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J 2020; 287:2418-2427. [PMID: 32112672 PMCID: PMC7302972 DOI: 10.1111/febs.15264] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate with aging and at etiological sites of multiple diseases, including those accounting for most morbidity, mortality, and health costs. Senescent cells do not replicate, can release factors that cause tissue dysfunction, and yet remain viable. The discovery of senolytic drugs, agents that selectively eliminate senescent cells, created a new route for alleviating age‐related dysfunction and diseases. As anticipated for agents targeting fundamental aging mechanisms that are ‘root cause’ contributors to multiple disorders, potential applications of senolytics are protean. We review the discovery of senolytics, strategies for translation into clinical application, and promising early signals from clinical trials.
Collapse
Affiliation(s)
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
365
|
Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells 2020; 9:cells9030671. [PMID: 32164335 PMCID: PMC7140645 DOI: 10.3390/cells9030671] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics-drugs that selectively remove senescent cells by inducing their apoptosis-are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan.
Collapse
|
366
|
Barroso-Vilares M, Macedo JC, Reis M, Warren JD, Compton D, Logarinho E. Small-molecule inhibition of aging-associated chromosomal instability delays cellular senescence. EMBO Rep 2020; 21:e49248. [PMID: 32134180 PMCID: PMC7202060 DOI: 10.15252/embr.201949248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Chromosomal instability (CIN) refers to the rate at which cells are unable to properly segregate whole chromosomes, leading to aneuploidy. Besides its prevalence in cancer cells and postulated implications in promoting tumorigenesis, studies in aneuploidy‐prone mouse models uncovered an unanticipated link between CIN and aging. Using young to old‐aged human dermal fibroblasts, we observed a dysfunction of the mitotic machinery arising with age that mildly perturbs chromosome segregation fidelity and contributes to the generation of fully senescent cells. Here, we investigated mitotic mechanisms that contribute to age‐associated CIN. We found that elderly cells have an increased number of stable kinetochore–microtubule (k‐MT) attachments and decreased efficiency in the correction of improper k‐MT interactions. Chromosome mis‐segregation rates in old‐aged cells decreased upon both genetic and small‐molecule enhancement of MT‐depolymerizing kinesin‐13 activity. Notably, restored chromosome segregation accuracy inhibited the phenotypes of cellular senescence. Therefore, we provide mechanistic insight into age‐associated CIN and disclose a strategy for the use of a small‐molecule to inhibit age‐associated CIN and to delay the cellular hallmarks of aging.
Collapse
Affiliation(s)
- Monika Barroso-Vilares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Aging and Aneuploidy Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa doutoral em Biologia Molecular e Celular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Joana C Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Aging and Aneuploidy Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Marta Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Aging and Aneuploidy Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jessica D Warren
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Duane Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elsa Logarinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Aging and Aneuploidy Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
367
|
Ungvari Z, Tarantini S, Sorond F, Merkely B, Csiszar A. Mechanisms of Vascular Aging, A Geroscience Perspective: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:931-941. [PMID: 32130929 PMCID: PMC8559983 DOI: 10.1016/j.jacc.2019.11.061] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Age-related pathological alterations of the vasculature have a critical role in morbidity and mortality of older adults. In epidemiological studies, age is the single most important cardiovascular risk factor that dwarfs the impact of traditional risk factors. To develop novel therapeutic interventions for prevention of age-related vascular pathologies, it is crucial to understand the cellular and molecular mechanisms of vascular aging. In this review, shared molecular mechanisms of aging are considered in terms of their contribution to the pathogenesis of macrovascular and microvascular diseases associated with old age. The role of cellular senescence in development of vascular aging phenotypes is highlighted, and potential interventions to prevent senescence and to eliminate senescent cells for prevention of vascular pathologies are presented. The evidence supporting a role for interorgan communication and circulating progeronic and antigeronic factors in vascular aging is discussed.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
368
|
Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, Kublickiene K, Stenvinkel P. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin Chim Acta 2020; 505:108-118. [PMID: 32097628 DOI: 10.1016/j.cca.2020.02.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
Under normal physiological conditions, free radical generation and antioxidant defences are balanced, and reactive oxygen species (ROS) usually act as secondary messengers in a plethora of biological processes. However, when this balance is impaired, oxidative stress develops due to imbalanced redox homeostasis resulting in cellular damage. Oxidative stress is now recognized as a trigger of cellular senescence, which is associated with multiple chronic 'burden of lifestyle' diseases, including atherosclerosis, type-2 diabetes, chronic kidney disease and vascular calcification; all of which possess signs of early vascular ageing. Nuclear factor erythroid 2-related factor 2 (Nrf2), termed the master regulator of antioxidant responses, is a transcription factor found to be frequently dysregulated in conditions characterized by oxidative stress and inflammation. Recent evidence suggests that activation of Nrf2 may be beneficial in protecting against vascular senescence and calcification. Both natural and synthetic Nrf2 agonists have been introduced as promising drug classes in different phases of clinical trials. However, overexpression of the Nrf2 pathway has also been linked to tumorigenesis, which highlights the requirement for further understanding of pathways involving Nrf2 activity, especially in the context of cellular senescence and vascular calcification. Therefore, comprehensive translational pre-clinical and clinical studies addressing the targeting capabilities of Nrf2 agonists are urgently required. The present review discusses the impact of Nrf2 in senescence and calcification in early vascular ageing, with focus on the potential clinical implications of Nrf2 agonists and non-pharmacological Nrf2 therapeutics.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Sarah Buchanan
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Julia Steinmetz
- Rheumatology Unit, Dep. of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Shno Alsalhi
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden; Research Center, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region, Iraq
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|
369
|
Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, Urata R, Matoba S, Hirata KI, Emoto N. Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun 2020; 11:481. [PMID: 31980643 PMCID: PMC6981212 DOI: 10.1038/s41467-020-14387-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Vascular senescence is thought to play a crucial role in an ageing-associated decline of organ functions; however, whether vascular senescence is causally implicated in age-related disease remains unclear. Here we show that endothelial cell (EC) senescence induces metabolic disorders through the senescence-associated secretory phenotype. Senescence-messaging secretomes from senescent ECs induced a senescence-like state and reduced insulin receptor substrate-1 in adipocytes, which thereby impaired insulin signaling. We generated EC-specific progeroid mice that overexpressed the dominant negative form of telomeric repeat-binding factor 2 under the control of the Tie2 promoter. EC-specific progeria impaired systemic metabolic health in mice in association with adipose tissue dysfunction even while consuming normal chow. Notably, shared circulation with EC-specific progeroid mice by parabiosis sufficiently transmitted the metabolic disorders into wild-type recipient mice. Our data provides direct evidence that EC senescence impairs systemic metabolic health, and thus establishes EC senescence as a bona fide risk for age-related metabolic disease.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta, 10430, Indonesia
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.
| | - Dhite Bayu Nugroho
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Donytra Arby Wardhana
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Sakiko Honda
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ryota Urata
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| |
Collapse
|
370
|
Cavalcante MB, Saccon TD, Nunes ADC, Kirkland JL, Tchkonia T, Schneider A, Masternak MM. Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. Aging (Albany NY) 2020; 12:2711-2722. [PMID: 31955151 PMCID: PMC7041753 DOI: 10.18632/aging.102772] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
The uterine fibrosis contributes to gestational outcomes. Collagen deposition in the uterus is related to uterine aging. Senolytic therapies are an option for reducing health complications related to aging. We investigated effects of aging and the senolytic drug combination of dasatinib plus quercetin (D+Q) on uterine fibrosis. Forty mice, 20 young females (03-months) and 20 old females (18-months), were analyzed. Young (Y) and old (O) animals were divided into groups of 10 mice, with one treatment (T) group (YT and OT) and another control © group (YC and OC). Comparative analysis of Pi3k/Akt1/mTor and p53 gene expression and related microRNAs (miR34a, miR34b, miR34c, miR146a, miR449a, miR21a, miR126a, and miR181b) among groups was performed to test effects of age and treatment on collagen deposition pathways. Aging promoted downregulation of the Pi3k/Akt1/mTor signaling pathway (P = 0.005, P = 0.031, and P = 0.028, respectively) as well as a reduction in expression of miR34c (P = 0.029), miR126a (P = 0.009), and miR181b (P = 0.007). D+Q treatment increased p53 gene expression (P = 0.041) and decreased miR34a (P = 0.016). Our results demonstrate a role for the Pi3k/Akt1/mTor signaling pathway in uterine aging and suggest for the first time a possible anti-fibrotic effect in the uterus of D+Q senolytic therapy.
Collapse
Affiliation(s)
- Marcelo B Cavalcante
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Faculdade de Medicina, Universidade de Fortaleza, Fortaleza 60811-905, CE, Brazil
| | - Tatiana D Saccon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
371
|
Alique M, Sánchez-López E, Bodega G, Giannarelli C, Carracedo J, Ramírez R. Hypoxia-Inducible Factor-1α: The Master Regulator of Endothelial Cell Senescence in Vascular Aging. Cells 2020; 9:cells9010195. [PMID: 31941032 PMCID: PMC7016968 DOI: 10.3390/cells9010195] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is one of the hottest topics in biomedical research. Advances in research and medicine have helped to preserve human health, leading to an extension of life expectancy. However, the extension of life is an irreversible process that is accompanied by the development of aging-related conditions such as weakness, slower metabolism, and stiffness of vessels. It also debated that aging can be considered an actual disease with aging-derived comorbidities, including cancer or cardiovascular disease. Currently, cardiovascular disorders, including atherosclerosis, are considered as premature aging and represent the first causes of death in developed countries, accounting for 31% of annual deaths globally. Emerging evidence has identified hypoxia-inducible factor-1α as a critical transcription factor with an essential role in aging-related pathology, in particular, regulating cellular senescence associated with cardiovascular aging. In this review, we will focus on the regulation of senescence mediated by hypoxia-inducible factor-1α in age-related pathologies, with particular emphasis on the crosstalk between endothelial and vascular cells in age-associated atherosclerotic lesions. More specifically, we will focus on the characteristics and mechanisms by which cells within the vascular wall, including endothelial and vascular cells, achieve a senescent phenotype.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Elsa Sánchez-López
- Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92037, USA;
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| | - Chiara Giannarelli
- Cardiovascular Research Center, Institute for Genomics and Multiscale Biology, New York, NY 10029, USA;
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (M.A.); (J.C.); Tel.: +34-91-885-6436 (M.A.); +34-91-394-5005 (J.C.)
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
| |
Collapse
|
372
|
Shimizu I, Minamino T. Cellular Senescence in Arterial Diseases. J Lipid Atheroscler 2020; 9:79-91. [PMID: 32821723 PMCID: PMC7379072 DOI: 10.12997/jla.2020.9.1.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-proliferation potency is limited, as cells cannot proceed through the cell cycle continually. Instead, they eventually show an irreversible arrest of proliferation, commonly referred to as cellular senescence. Following the initial discovery of this phenomenon by Hayflick et al., studies have indicated that cells are also destined to undergo aging. In addition to the irreversible termination of proliferation, senescent cells are characterized by a flattened and enlarged morphology. Senescent cells become pro-inflammatory and contribute to the initiation and maintenance of sustained chronic sterile inflammation. Aging is associated with the accumulation of senescent cells in the cardiovascular system, and in general these cells are considered to be pathogenic because they mediate vascular remodeling. Recently, genetic and pharmacological approaches have enabled researchers to eliminate senescent cells both in vitro and in vivo. The term “senolysis” is now used to refer to the depletion of senescent cells, and evidence indicates that senolysis contributes to the reversal of age-related pathogenic phenotypes without the risk of tumorigenesis. The concept of senolysis has opened new avenues in research on aging, and senolysis may be a promising therapeutic approach for combating age-related disorders, including arterial diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
373
|
Tang X, Li PH, Chen HZ. Cardiomyocyte Senescence and Cellular Communications Within Myocardial Microenvironments. Front Endocrinol (Lausanne) 2020; 11:280. [PMID: 32508749 PMCID: PMC7253644 DOI: 10.3389/fendo.2020.00280] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular diseases have become the leading cause of human death. Aging is an independent risk factor for cardiovascular diseases. Cardiac aging is associated with maladaptation of cellular metabolism, dysfunction (or senescence) of cardiomyocytes, a decrease in angiogenesis, and an increase in tissue scarring (fibrosis). These events eventually lead to cardiac remodeling and failure. Senescent cardiomyocytes show the hallmarks of DNA damage, endoplasmic reticulum stress, mitochondria dysfunction, contractile dysfunction, hypertrophic growth, and senescence-associated secreting phenotype (SASP). Metabolism within cardiomyocytes is essential not only to fuel the pump function of the heart but also to maintain the functional homeostasis and participate in the senescence of cardiomyocytes. The senescence of cardiomyocyte is also regulated by the non-myocytes (endothelial cells, fibroblasts, and immune cells) in the local microenvironment. On the other hand, the senescent cardiomyocytes alter their phenotypes and subsequently affect the non-myocytes in the local microenvironment and contribute to cardiac aging and pathological remodeling. In this review, we first summarized the hallmarks of the senescence of cardiomyocytes. Then, we discussed the metabolic switch within senescent cardiomyocytes and provided a discussion of the cellular communications between dysfunctional cardiomyocytes and non-myocytes in the local microenvironment. We also addressed the functions of metabolic regulators within non-myocytes in modulating myocardial microenvironment. Finally, we pointed out some interesting and important questions that are needed to be addressed by further studies.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqiang Tang ;
| | - Pei-Heng Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
374
|
|
375
|
Nakagami H. Cellular senescence and senescence‐associated T cells as a potential therapeutic target. Geriatr Gerontol Int 2019; 20:97-100. [DOI: 10.1111/ggi.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and MedicineOsaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
376
|
Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat Commun 2019; 10:5495. [PMID: 31792199 PMCID: PMC6889273 DOI: 10.1038/s41467-019-13192-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
A causal factor in mammalian aging is the accumulation of senescent cells (SnCs). SnCs cause chronic inflammation, and removing SnCs decelerates aging in mice. Despite their importance, turnover rates of SnCs are unknown, and their connection to aging dynamics is unclear. Here we use longitudinal SnC measurements and induction experiments to show that SnCs turn over rapidly in young mice, with a half-life of days, but slow their own removal rate to a half-life of weeks in old mice. This leads to a critical-slowing-down that generates persistent SnC fluctuations. We further demonstrate that a mathematical model, in which death occurs when fluctuating SnCs cross a threshold, quantitatively recapitulates the Gompertz law of mortality in mice and humans. The model can go beyond SnCs to explain the effects of lifespan-modulating interventions in Drosophila and C. elegans, including scaling of survival-curves and rapid effects of dietary shifts on mortality. One of the underlying causes of aging is the accumulation of senescent cells, but their turnover rates and dynamics during ageing are unknown. Here the authors measure and model senescent cell production and removal and explore implications for mortality.
Collapse
|
377
|
Paez‐Ribes M, González‐Gualda E, Doherty GJ, Muñoz‐Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med 2019; 11:e10234. [PMID: 31746100 PMCID: PMC6895604 DOI: 10.15252/emmm.201810234] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Organismal ageing is a complex process driving progressive impairment of functionality and regenerative potential of tissues. Cellular senescence is a state of stable cell cycle arrest occurring in response to damage and stress and is considered a hallmark of ageing. Senescent cells accumulate in multiple organs during ageing, contribute to tissue dysfunction and give rise to pathological manifestations. Senescence is therefore a defining feature of a variety of human age-related disorders, including cancer, and targeted elimination of these cells has recently emerged as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration. In addition, in vivo identification of senescent cells has significant potential for early diagnosis of multiple pathologies. Here, we review existing senolytics, small molecules and drug delivery tools used in preclinical therapeutic strategies involving cellular senescence, as well as probes to trace senescent cells. We also review the clinical research landscape in senescence and discuss how identifying and targeting cellular senescence might positively affect pathological and ageing processes.
Collapse
Affiliation(s)
- Marta Paez‐Ribes
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Estela González‐Gualda
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Gary J Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Daniel Muñoz‐Espín
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
378
|
Lipecz A, Miller L, Kovacs I, Czakó C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A, Conley S. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience 2019; 41:813-845. [PMID: 31797238 PMCID: PMC6925092 DOI: 10.1007/s11357-019-00138-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Aging of the microcirculatory network plays a central role in the pathogenesis of a wide range of age-related diseases, from heart failure to Alzheimer's disease. In the eye, changes in the choroid and choroidal microcirculation (choriocapillaris) also occur with age, and these changes can play a critical role in the pathogenesis of age-related macular degeneration (AMD). In order to develop novel treatments for amelioration of choriocapillaris aging and prevention of AMD, it is essential to understand the cellular and functional changes that occur in the choroid and choriocapillaris during aging. In this review, recent advances in in vivo analysis of choroidal structure and function in AMD patients and patients at risk for AMD are discussed. The pathophysiological roles of fundamental cellular and molecular mechanisms of aging including oxidative stress, mitochondrial dysfunction, and impaired resistance to molecular stressors in the choriocapillaris are also considered in terms of their contribution to the pathogenesis of AMD. The pathogenic roles of cardiovascular risk factors that exacerbate microvascular aging processes, such as smoking, hypertension, and obesity as they relate to AMD and choroid and choriocapillaris changes in patients with these cardiovascular risk factors, are also discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay AMD by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lauren Miller
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA
| | - Illes Kovacs
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
| | - Cecília Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Baffi
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
379
|
Ungvari Z, Tarantini S, Nyúl-Tóth Á, Kiss T, Yabluchanskiy A, Csipo T, Balasubramanian P, Lipecz A, Benyo Z, Csiszar A. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: from increased cellular senescence to the pathogenesis of age-related vascular diseases. GeroScience 2019; 41:727-738. [PMID: 31655958 PMCID: PMC6925097 DOI: 10.1007/s11357-019-00107-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
Aging is associated with increased oxidative stress in vascular endothelial and smooth muscle cells, which contribute to the development of a wide range of diseases affecting the circulatory system in older adults. There is growing evidence that in addition to increased production of reactive oxygen species (ROS), aging critically impairs pathways determining cellular resilience to oxidative stressors. In young organisms, the evolutionarily conserved nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated antioxidant response pathway maintains cellular reduction-oxidation homeostasis and promotes a youthful cellular phenotype by regulating the transcription of an array of cytoprotective (antioxidant, pro-survival, anti-inflammatory and macromolecular damage repair) genes. A critical mechanism by which increased ROS production and Nrf2 dysfunction promote vascular aging and exacerbate pathogenesis of age-related vascular diseases is induction of cellular senescence, an evolutionarily conserved cellular stress response mechanism. Senescent cells cease dividing and undergo distinctive phenotypic alterations, contributing to impairment of angiogenic processes, chronic sterile inflammation, remodeling of the extracellular matrix, and barrier dysfunction. Herein, we review mechanisms contributing to dysregulation of Nrf2-driven cytoprotective responses in the aged vasculature and discuss the multifaceted role of Nrf2 dysfunction in the genesis of age-related pathologies affecting the circulatory system, including its role in induction of cellular senescence. Therapeutic strategies that restore Nrf2 signaling and improve vascular resilience in aging are explored to reduce cardiovascular mortality and morbidity in older adults.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Kalman Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Benyo
- Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
380
|
Giovos G, Yavropoulou MP, Yovos JG. The role of cellular senescence in diabetes mellitus and osteoporosis: molecular pathways and potential interventions. Hormones (Athens) 2019; 18:339-351. [PMID: 31701490 DOI: 10.1007/s42000-019-00132-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The improving effectiveness of health care leads inevitably to a rapid increase in the elderly population worldwide. At advanced ages, however, people experience chronic disabilities, which significantly increase the social and economic burden while curtailing survival, independence, and quality of life of the aging population. As aging is a multifactorial process, apart from genetic predisposition, other environmental factors, such as chronic sterile inflammation and cellular senescence, contribute as crucial participants and have been targeted to reverse their deleterious effects on tissue homeostasis and functional integrity. Cellular senescence refers to the essentially irreversible inhibition of cellular proliferation when cells are subjected to extrinsic or endogenous stress. Although the process of cellular senescence has long been known, recent evidence demonstrated that it characterizes many aging phenotypes and that elimination of senescent cells at the tissue level can improve age-related tissue dysfunction. These observations have renewed scientific interest in possible therapeutic interventions. Two major chronic diseases associated with aging that impose an enormous burden on global health systems are type 2 diabetes and osteoporosis. This review presents current data on (i) the underlying molecular mechanisms of cellular senescence, (ii) its relationship to these two endocrine diseases that are today prevalent worldwide, and (iii) future prospects of targeted intervention with the aim of simultaneously improving the progression and prognosis of these serious problems of aging.
Collapse
Affiliation(s)
- Georgios Giovos
- Clinical Research Fellow in Endocrinology, Wisdem Centre, University Hospitals Coventry & Warwickshire, Coventry, UK
| | - Maria P Yavropoulou
- Endocrinology Unit, 1st Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, UOA, LAIKO General Hospital, 17 Agiou Thoma Str., 11527, Athens, Greece.
| | - John G Yovos
- Professor Emeritus in Internal Medicine and Endocrinology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
381
|
Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019; 56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been registered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sarcopenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates, without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is implicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby inflammaging is common and most probably the causative mechanism driving their pathogenesis.
Collapse
Affiliation(s)
- Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.; Adelson School of Medicine, Ariel University, Ariel, Israel..
| | - Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
382
|
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2019; 101:78-86. [PMID: 31791693 DOI: 10.1016/j.semcdb.2019.10.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.
Collapse
Affiliation(s)
- Xuetao Sun
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada
| | - Blessing Nkennor
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Department of Biological Sciences, University of Toronto Scarborough, Canada
| | - Olya Mastikhina
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Kayla Soon
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Sara S Nunes
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
383
|
Russo GL, Spagnuolo C, Russo M, Tedesco I, Moccia S, Cervellera C. Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochem Pharmacol 2019; 173:113719. [PMID: 31759977 DOI: 10.1016/j.bcp.2019.113719] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
Abstract
Aging became a priority in medicine due to the rapid increase of elderly population and age-related diseases in the Western countries. Nine hallmarks have been identified based on their alteration during aging and their capacity to increase longevity. The pathways and the molecular mechanisms to improve lifespan and healthspan are controlled by behavioral, pharmacologic and dietary factors, which remain largely unknown. Among them, naturally occurring compounds, such as polyphenols, are considered potential antiaging agents, because of their ability to modulate some of the evolutionarily conserved hallmarks of aging, including oxidative damage, inflammation, cell senescence, and autophagy. Initially, these compounds gained researchers' attention due to their ability to extend the lifespan of simple model organisms. More recently, some of them have been proposed as senolytic agents to protect against age-related disorders, such as cancer, cardiovascular and neurodegenerative diseases. The intent of this review is to present the most validated molecular mechanisms regulating ageing and longevity and critically analyze how selected polyphenols, namely resveratrol, quercetin, curcumin and catechins, can interfere with these mechanisms.
Collapse
Affiliation(s)
- Gian Luigi Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy.
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Maria Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Idolo Tedesco
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Carmen Cervellera
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| |
Collapse
|
384
|
Abstract
Ageing appears to be a nearly universal feature of life, ranging from unicellular microorganisms to humans. Longevity depends on the maintenance of cellular functionality, and an organism's ability to respond to stress has been linked to functional maintenance and longevity. Stress response pathways might indeed become therapeutic targets of therapies aimed at extending the healthy lifespan. Various progeroid syndromes have been linked to genome instability, indicating an important causal role of DNA damage accumulation in the ageing process and the development of age-related pathologies. Recently, non-cell-autonomous mechanisms including the systemic consequences of cellular senescence have been implicated in regulating organismal ageing. We discuss here the role of cellular and systemic mechanisms of ageing and their role in ageing-associated diseases.
Collapse
Affiliation(s)
- Paulo F L da Silva
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
385
|
Del Rey MJ, Valín Á, Usategui A, Ergueta S, Martín E, Municio C, Cañete JD, Blanco FJ, Criado G, Pablos JL. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun Ageing 2019; 16:29. [PMID: 31708994 PMCID: PMC6833299 DOI: 10.1186/s12979-019-0169-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Accumulation of senescent cells has been associated with pro-inflammatory effects with deleterious consequences in different human diseases. The purpose of this study was to analyze cell senescence in human synovial tissues (ST), and its impact on the pro-inflammatory function of synovial fibroblasts (SF). RESULTS The expression of the senescence marker p16INK4a (p16) was analyzed by immunohistochemistry in rheumatoid arthritis (RA), osteoarthritis (OA), and normal ST from variably aged donors. The proportion of p16(+) senescent cells in normal ST from older donors was higher than from younger ones. Although older RA and OA ST showed proportions of senescent cells similar to older normal ST, senescence was increased in younger RA ST compared to age-matched normal ST. The percentage of senescent SA-β-gal(+) SF after 14 days in culture positively correlated with donor's age. Initial exposure to H2O2 or TNFα enhanced SF senescence and increased mRNA expression of IL6, CXCL8, CCL2 and MMP3 and proteins secretion. Senescent SF show a heightened IL6, CXCL8 and MMP3 mRNA and IL-6 and IL-8 protein expression response upon further challenge with TNFα. Treatment of senescent SF with the senolytic drug fenofibrate normalized IL6, CXCL8 and CCL2 mRNA expression. CONCLUSIONS Accumulation of senescent cells in ST increases in normal aging and prematurely in RA patients. Senescence of cultured SF is accelerated upon exposure to TNFα or oxidative stress and may contribute to the pathogenesis of synovitis by increasing the production of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Manuel J. Del Rey
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Álvaro Valín
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alicia Usategui
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Ergueta
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Eduardo Martín
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Cristina Municio
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan D. Cañete
- Unitat d’Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona and Institut d’Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - Francisco J. Blanco
- Laboratorio de Investigación Osteoarticular y del Envejecimiento, Instituto de Investigación Biomédica de A Coruña, INIBIC, A Coruña, Spain
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - José L. Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, 28041 Madrid, Spain
| |
Collapse
|
386
|
Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Res Rev 2019; 55:100941. [PMID: 31408714 DOI: 10.1016/j.arr.2019.100941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Senotherapy is an antiageing strategy. It refers to selective killing of senescent cells by senolytic agents, strengthening the activity of immune cells that eliminate senescent cells or alleviating the secretory phenotype (SASP) of senescent cells. As senescent cells accumulate with age and are considered to be at the root of age-related disorders, senotherapy seems to be very promising in improving healthspan. Genetic approaches, which allowed to selectively induce death of senescent cells in transgenic mice, provided proof-of-concept evidence that elimination of senescent cells can be a therapeutic approach for treating many age-related diseases. Translating these results into humans is based on searching for synthetic and natural compounds, which are able to exert such beneficial effects. The major challenge in the field is to show efficacy, safety and tolerability of senotherapy in humans. The question is how these therapeutics can influence senescence of non-dividing post-mitotic cells. Another issue concerns senescence of cancer cells induced during therapy as there is a risk of resumption of senescent cell division that could terminate in cancer renewal. Thus, development of an effective senotherapeutic strategy is also an urgent issue in cancer treatment. Different aspects, both beneficial and potentially detrimental, will be discussed in this review.
Collapse
|
387
|
Kim SR, Jiang K, Ogrodnik M, Chen X, Zhu XY, Lohmeier H, Ahmed L, Tang H, Tchkonia T, Hickson LJ, Kirkland JL, Lerman LO. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl Res 2019; 213:112-123. [PMID: 31356770 PMCID: PMC6783353 DOI: 10.1016/j.trsl.2019.07.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Abstract
Obesity and dyslipidemia can be associated with cellular senescence, and may impair kidney function. However, whether senescence contributes to renal dysfunction in these conditions remains unclear. Quercetin is an abundant dietary flavonoid that selectively clears inhibiting PI3K/AKT and p53/p21/serpines and inducing apoptosis. We hypothesized that high-fat-diet-induced obesity causes renal senescence, which would be mitigated by quercetin. C57BL/6J mice fed either standard chow or high-fat diets (HFDs) were treated with quercetin (50 mg/kg) or vehicle 5-days biweekly via oral gavage for 10 weeks. Subsequently, renal function was studied in vivo using magnetic resonance imaging, and renal senescence and histology were evaluated ex vivo. Mice fed with a HFD developed obesity and hypercholesterolemia, whereas renal size remained unchanged. Murine obesity impaired renal function and cortical oxygenation, and induced glomerulomegaly. Renal markers of senescence (eg, expression of p16, p19, and p53) and its secretory phenotype were upregulated in the obese hypercholesterolemic compared to lean mice in renal tubular cells, but attenuated in quercetin-treated murine kidneys, as was renal fibrosis. Quercetin treatment also increased renal cortical oxygenation and decreased plasma creatinine levels in obese mice, whereas body weight and cholesterol levels were unaltered. Therefore, murine obesity and dyslipidemia induce renal tissue senescence and impairs kidney function, which is alleviated by chronic senolytic treatment. These findings implicate senescence in loss of kidney function in murine dyslipidemia and obesity, and support further studies of senolytic therapy in obesity.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Mikolaj Ogrodnik
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Xiaojun Chen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hannah Lohmeier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Leena Ahmed
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
388
|
Piccirillo F, Carpenito M, Verolino G, Chello C, Nusca A, Lusini M, Spadaccio C, Nappi F, Di Sciascio G, Nenna A. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mech Ageing Dev 2019; 184:111161. [PMID: 31647940 DOI: 10.1016/j.mad.2019.111161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
Aging results in functional and structural changes in the cardiovascular system, translating into a progressive increase of mechanical vessel stiffness, due to a combination of changes in micro-RNA expression patterns, autophagy, arterial calcification, smooth muscle cell migration and proliferation. The two pivotal mechanisms of aging-related endothelial dysfunction are oxidative stress and inflammation, even in the absence of clinical disease. A comprehensive understanding of the aging process is emerging as a primary concern in literature, as vascular aging has recently become a target for prevention and treatment of cardiovascular disease. Change of life-style, diet, antioxidant regimens, anti-inflammatory treatments, senolytic drugs counteract the pro-aging pathways or target senescent cells modulating their detrimental effects. Such therapies aim to reduce the ineluctable burden of age and contrast aging-associated cardiovascular dysfunction. This narrative review intends to summarize the macrovascular and microvascular changes related with aging, as a better understanding of the pathways leading to arterial aging may contribute to design new mechanism-based therapeutic approaches to attenuate the features of vascular senescence and its clinical impact on the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | - Camilla Chello
- Dermatology, Università "La Sapienza" di Roma, Rome, Italy
| | | | - Mario Lusini
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Francesco Nappi
- Cardiac surgery, Centre Cardiologique du Nord de Saint Denis, Paris, France
| | | | - Antonio Nenna
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
389
|
Galvis D, Walsh D, Harries LW, Latorre E, Rankin J. A dynamical systems model for the measurement of cellular senescence. J R Soc Interface 2019; 16:20190311. [PMID: 31594522 PMCID: PMC6833332 DOI: 10.1098/rsif.2019.0311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Senescent cells provide a good in vitro model to study ageing. However, cultures of ‘senescent’ cells consist of a mix of cell subtypes (proliferative, senescent, growth-arrested and apoptotic). Determining the proportion of senescent cells is crucial for studying ageing and developing new anti-degenerative therapies. Commonly used markers such as doubling population, senescence-associated β-galactosidase, Ki-67, γH2AX and TUNEL assays capture diverse and overlapping cellular populations and are not purely specific to senescence. A newly developed dynamical systems model follows the transition of an initial culture to senescence tracking population doubling, and the proportion of cells in proliferating, growth-arrested, apoptotic and senescent states. Our model provides a parsimonious description of transitions between these states accruing towards a predominantly senescent population. Using a genetic algorithm, these model parameters are well constrained by an in vitro human primary fibroblast dataset recording five markers at 16 time points. The computational model accurately fits to the data and translates these joint markers into the first complete description of the proportion of cells in different states over the lifetime. The high temporal resolution of the dataset demonstrates the efficacy of strategies for reconstructing the trajectory towards replicative senescence with a minimal number of experimental recordings.
Collapse
Affiliation(s)
- Daniel Galvis
- Living Systems Institute, University of Exeter, Exeter, UK.,Translational Research Exchange at Exeter, University of Exeter, Exeter, UK
| | - Darren Walsh
- Institute of Biomedical and Clinical Science, University of Exeter, Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Science, University of Exeter, Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Eva Latorre
- Institute of Biomedical and Clinical Science, University of Exeter, Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK.,Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - James Rankin
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, UK.,EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QJ, UK
| |
Collapse
|
390
|
Palmer AK, Gustafson B, Kirkland JL, Smith U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 2019; 62:1835-1841. [PMID: 31451866 PMCID: PMC6731336 DOI: 10.1007/s00125-019-4934-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Ageing and diabetes lead to similar organ dysfunction that is driven by parallel molecular mechanisms, one of which is cellular senescence. The abundance of senescent cells in various tissues increases with age, obesity and diabetes. Senescent cells have been directly implicated in the generation of insulin resistance. Recently, drugs that preferentially target senescent cells, known as senolytics, have been described and recently entered clinical trials. In this review, we explore the biological links between ageing and diabetes, specifically focusing on cellular senescence. We summarise the current data on cellular senescence in key target tissues associated with the development and clinical phenotypes of type 2 diabetes and discuss the therapeutic potential of targeting cellular senescence in diabetes.
Collapse
Affiliation(s)
- Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Birgit Gustafson
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital and University of Gothenburg, 413 45, Gothenburg, Sweden
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 1st St SW, Rochester, MN, USA.
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital and University of Gothenburg, 413 45, Gothenburg, Sweden.
| |
Collapse
|
391
|
Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 2019; 127:26-36. [PMID: 31128290 PMCID: PMC6708726 DOI: 10.1016/j.bone.2019.05.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a highly plastic tissue that remarkably adapts to diverse stimuli including exercise, injury, disuse, and, as discussed here, aging. Humans achieve peak skeletal muscle mass and strength in mid-life and then experience a progressive decline of up to 50% by the ninth decade. The loss of muscle mass and function with aging is a phenomenon termed sarcopenia. It is evidenced by the loss and atrophy of muscle fibers and the concomitant accretion of fat and fibrous tissue. Sarcopenia has been recognized as a key driver of limitations in physical function and mobility, but is perhaps less appreciated for its role in age-related metabolic dysfunction and loss of organismal resilience. Similar to other tissues, muscle is prone to multiple forms of age-related molecular and cellular damage, including disrupted protein turnover, impaired regenerative capacity, cellular senescence, and mitochondrial dysfunction. The objective of this review is to highlight the clinical consequences of skeletal muscle aging, and provide insights into potential biological mechanisms. In light of population aging, strategies to improve muscle health in older adults promise to have a profound public health impact.
Collapse
Affiliation(s)
- Zaira Aversa
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Xu Zhang
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States of America
| | - Ian Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States of America
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
392
|
Abstract
Aging of the vasculature plays a central role in morbidity and mortality of older people. To develop novel treatments for amelioration of unsuccessful vascular aging and prevention of age-related vascular pathologies, it is essential to understand the cellular and functional changes that occur in the vasculature during aging. In this review, the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including oxidative stress, mitochondrial dysfunction, impaired resistance to molecular stressors, chronic low-grade inflammation, genomic instability, cellular senescence, epigenetic alterations, loss of protein homeostasis, deregulated nutrient sensing, and stem cell dysfunction in the vascular system are considered in terms of their contribution to the pathogenesis of both microvascular and macrovascular diseases associated with old age. The importance of progeronic and antigeronic circulating factors in relation to development of vascular aging phenotypes are discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Zoltan Ungvari
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
- Department of Pulmonology, Semmelweis University of Medicine, Budapest, Hungary (Z.U.)
| | - Stefano Tarantini
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City (A.J.D.)
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, UT (A.J.D.)
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies (V.G.), University of Texas Health Science Center at San Antonio
- Department of Physiology (V.G.), University of Texas Health Science Center at San Antonio
| | - Anna Csiszar
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
| |
Collapse
|
393
|
Rivera-Torres J, San José E. Src Tyrosine Kinase Inhibitors: New Perspectives on Their Immune, Antiviral, and Senotherapeutic Potential. Front Pharmacol 2019; 10:1011. [PMID: 31619990 PMCID: PMC6759511 DOI: 10.3389/fphar.2019.01011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
Deregulated activity of the Src tyrosine kinases leads to malignant transformation. Since the FDA approval of the tyrosine kinase inhibitor, imatinib, in 2001 for the treatment of chronic myeloid leukemia (CML), the number of these inhibitors together with Src tyrosine kinase inhibitors (STKIs) has increased notably due to their beneficial effects. Dasatinib, a second-generation STKI inhibitor widely studied, proved high efficiency in CML patients resistant to imatinib. In the last decade STKIs have also been implicated and showed therapeutic potential for the treatment of diverse pathologies other than cancer. In this regard, we review the properties of STKIs, dasatinib in particular, including its immunomodulatory role. Similarly, the potential benefits, adverse effects, and safety concerns of these inhibitors regarding viral infections are considered. Moreover, since life expectancy has increased in the last decades accompanied by age-related morbidity, the reduction of undesirable effects associated to aging has become a powerful therapeutic target. Here, we comment on the ability of STKIs to alleviate age-associated physical dysfunction and their potential impact in the clinic.
Collapse
Affiliation(s)
- José Rivera-Torres
- Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid. Madrid, Spain
| | - Esther San José
- Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid. Madrid, Spain
| |
Collapse
|
394
|
Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47:446-456. [PMID: 31542391 PMCID: PMC6796530 DOI: 10.1016/j.ebiom.2019.08.069] [Citation(s) in RCA: 811] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
Background Senescent cells, which can release factors that cause inflammation and dysfunction, the senescence-associated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. Methods In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68·7 ± 3·1 years old; 2 female; BMI:33·9 ± 2·3 kg/m2; eGFR:27·0 ± 2·1 mL/min/1·73m2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. Findings D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16INK4A-and p21CIP1-expressing cells, cells with senescence-associated β-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16INK4A+ and p21CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and −12. Interpretation “Hit-and-run” treatment with senolytics, which in the case of D + Q have elimination half-lives <11 h, significantly decreases senescent cell burden in humans. Fund NIH and Foundations. ClinicalTrials.gov Identifier: NCT02848131. Senescence, Frailty, and Mesenchymal Stem Cell Functionality in Chronic Kidney Disease: Effect of Senolytic Agents.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, United States of America; Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Larissa G P Langhi Prata
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Shane A Bobart
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Tamara K Evans
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Medicine Clinical Trials Unit, Department of Medicine, Mayo Clinic, United States of America
| | - Nino Giorgadze
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Shahrukh K Hashmi
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Hematology, Department of Medicine, Mayo Clinic, United States of America
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Michael D Jensen
- Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America
| | - Qingyi Jia
- Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic, United States of America
| | - Sundeep Khosla
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America
| | - Daniel M Koerber
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Anthony B Lagnado
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology and Biomedical Engineering, Mayo Clinic, United States of America
| | - Donna K Lawson
- Division of Hospital Medicine, Department of Medicine, Mayo Clinic, United States of America
| | - Nathan K LeBrasseur
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology, Mayo Clinic, United States of America; Department of Physical Medicine and Rehabilitation, Mayo Clinic, United States of America
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Kathleen M McDonald
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Office of Research Regulatory Support, Mayo Clinic, United States of America
| | | | - João F Passos
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology and Biomedical Engineering, Mayo Clinic, United States of America
| | - Robert J Pignolo
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, United States of America; Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America; Division of Hospital Medicine, Department of Medicine, Mayo Clinic, United States of America; Department of Physiology, Mayo Clinic, United States of America
| | - Tamar Pirtskhalava
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Kalli K Schaefer
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Stella G Victorelli
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology and Biomedical Engineering, Mayo Clinic, United States of America
| | - Tammie L Volkman
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Medicine Clinical Trials Unit, Department of Medicine, Mayo Clinic, United States of America
| | - Ailing Xue
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Mark A Wentworth
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Office of Research Regulatory Support, Mayo Clinic, United States of America
| | - Erin O Wissler Gerdes
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Medicine Clinical Trials Unit, Department of Medicine, Mayo Clinic, United States of America
| | - Yi Zhu
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Tamara Tchkonia
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America.
| | - James L Kirkland
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, United States of America; Division of Hospital Medicine, Department of Medicine, Mayo Clinic, United States of America; Division of General Internal Medicine, Department of Medicine, Mayo Clinic, United States of America.
| |
Collapse
|
395
|
Suvakov S, Cubro H, White WM, Butler Tobah YS, Weissgerber TL, Jordan KL, Zhu XY, Woollard JR, Chebib FT, Milic NM, Grande JP, Xu M, Tchkonia T, Kirkland JL, Lerman LO, Garovic VD. Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biol Sex Differ 2019; 10:49. [PMID: 31521202 PMCID: PMC6744626 DOI: 10.1186/s13293-019-0263-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/28/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Preeclampsia is a pregnancy-specific hypertensive disorder characterized by impaired angiogenesis. We postulate that senescence of mesenchymal stem cells (MSC), multipotent cells with pro-angiogenic activities, is one of the mechanisms by which systemic inflammation exerts inhibitory effects on angiogenesis in preeclampsia. METHODS MSC were isolated from abdominal fat tissue explants removed during medically indicated C-sections from women with preeclampsia (PE-MSC, n = 10) and those with normotensive pregnancies (NP-MSC, n = 12). Sections of the frozen subcutaneous adipose tissue were assessed for inflammation by staining for tumor necrosis factor (TNF)-alpha and monocyte chemoattractant protein (MCP)-1. Viability, proliferation, and migration were compared between PE-MSC vs. NP-MSC. Apoptosis and angiogenesis were assayed before and after treatment with a senolytic agent (1 μM dasatinib) using the IncuCyte S3 Live-Cell Analysis System. Similarly, staining for senescence-associated beta galactosidase (SABG) and qPCR for gene expression of senescence markers, p16 and p21, as well as senescence-associated secretory phenotype (SASP) components, IL-6, IL-8, MCP-1, and PAI-1, were studied before and after treatment with dasatinib and compared between PE and NP. RESULTS After in vitro exposure to TNF-alpha, MSC demonstrated upregulation of SASP components, including interleukins-6 and -8 and MCP-1. Staining of the subcutaneous adipose tissue sections revealed a greater inflammatory response in preeclampsia, based on the higher levels of both TNF-alpha and MCP-1 compared to normotensive pregnancies (p < 0.001 and 0.024, respectively). MSC isolated from PE demonstrated a lower percentage of live MSC cells (p = 0.012), lower proliferation (p = 0.005), and higher migration (p = 0.023). At baseline, PE-MSC demonstrated a senescent phenotype, reflected by more abundant staining for SABG (p < 0.001), upregulation of senescence markers and SASP components, as well as lower angiogenic potential (p < 0.001), compared to NP-MSC. Treatment with dasatinib increased significantly the number of apoptotic PE-MSC compared to NP-MSC (0.011 vs. 0.093) and decreased the gene expression of p16 and six SASP components. The mechanistic link between senescence and impaired angiogenesis in PE was confirmed by improved angiogenic potential of PE-MSC (p < 0.001) after dasatinib treatment. CONCLUSIONS Our data suggest that MSC senescence exerts inhibitory effects on angiogenesis in preeclampsia. Senolytic agents may offer the opportunity for mechanism-based therapies.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hajrunisa Cubro
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Wendy M White
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Yvonne S Butler Tobah
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Tracey L Weissgerber
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiang Y Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - John R Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Natasa M Milic
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Department of Medical Statistics and Informatics, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- Kogod Center of Aging, Mayo Clinic, Rochester, MN, USA
| | | | - James L Kirkland
- Kogod Center of Aging, Mayo Clinic, Rochester, MN, USA.,Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
396
|
Justice JN, Gregory H, Tchkonia T, LeBrasseur NK, Kirkland JL, Kritchevsky SB, Nicklas BJ. Cellular Senescence Biomarker p16INK4a+ Cell Burden in Thigh Adipose is Associated With Poor Physical Function in Older Women. J Gerontol A Biol Sci Med Sci 2019; 73:939-945. [PMID: 28658942 DOI: 10.1093/gerona/glx134] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background Ample evidence implicates cellular senescence as a contributor to frailty and functional decline in rodents, but considerable effort remains to translate these findings to human aging. Methods We quantified senescence biomarker p16INK4a-expressing cells in thigh adipose tissue obtained from older women previously enrolled in a 5-month resistance training intervention, with or without caloric restriction (RT ± CR, n = 11 baseline, 8 pre-post-intervention pairs). Women in this subsample were older (72.9 ± 3.4 y) and overweight/obese (body mass index: 30.6 ± 2.4 kg/m2). p16INK4a+ cells were identified from 12 to 20 random visual fields/sample at 20× magnification (immunohistochemical, nuclear staining) and were present in all adipose samples. Results Cross-sectional associations were observed between p16INK4a+ cell burden and physical function, including grip strength (r = -0.74), 400-m walk time (r = 0.74), 4-m gait speed (r = -0.73), and self-perceived mobility (r = -0.78) (p ≤ .05). These relationships remained significant after independent adjustments for age and adiposity (p ≤ .05). p16INK4a+ cell abundance was lower following the intervention (pre: 5.47 ± 3.4%, post: 2.17 ± 1.1% count p16INK4a+ cells, p ≤ .05). Conclusions These results provide proof-of-concept that p16INK4a+ cells in thigh adipose are associated with physical function, and may be sensitive to change with RT ± CR in overweight/obese older women.
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), Winston-Salem, North Carolina
| | - Heather Gregory
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), Winston-Salem, North Carolina
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | | | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), Winston-Salem, North Carolina
| | - Barbara J Nicklas
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), Winston-Salem, North Carolina
| |
Collapse
|
397
|
Raj V, Charles S, Ramasamy M, Goenka L, Kamatchi M, George M, Arockiaraj J, Dhandapani VE, Narayanasamy A, Mala K. Cell cycle arrest in peripheral blood mononuclear cells: A non-invasive method for diagnosis of coronary artery disease. Process Biochem 2019; 84:153-160. [DOI: 10.1016/j.procbio.2019.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
398
|
Novais EJ, Diekman BO, Shapiro IM, Risbud MV. p16 Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biol 2019; 82:54-70. [PMID: 30811968 PMCID: PMC6708504 DOI: 10.1016/j.matbio.2019.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration is an important contributor to chronic low back and neck pain. Although many environmental and genetic factors are known to contribute to disc degeneration, age is still the most significant risk factor. Recent studies have shown that senescence may play a role in age-related disc degeneration and matrix catabolism in humans and mouse models. Clearance of p16Ink4a-positive senescent cells reduces the degenerative phenotype in many age-associated diseases. Whether p16Ink4a plays a functional role in intervertebral disc degeneration and senescence is unknown. We first characterized the senescence status of discs in young and old mice. Quantitative histology, gene expression and a novel p16tdTom reporter mice showed an increase in p16Ink4a, p21 and IL-6, with a decrease in Ki67 with aging. Accordingly, we studied the spinal-phenotype of 18-month-old mice with conditional deletion of p16Ink4a in the disc driven by Acan-CreERT2 (cKO). The analyses of discs of cKO and age-matched control mice showed little change in cell morphology and tissue architecture. The cKO mice exhibited changes in functional attributes of aggrecan as well as in collagen composition of the intervertebral disc. While cKO discs exhibited a small decrease in TUNEL positive cells, lineage tracing experiments using ZsGreen reporter indicated that the overall changes in cell fate or numbers were minimal. The cKO mice maintained expression of NP-cell phenotypic markers CA3, Krt19 and GLUT-1. Moreover, in cKO discs, levels of p19Arf and RB were higher without alterations in Ki67, γH2AX, CDK4 and Lipofuscin deposition. Interestingly, the cKO discs showed lower levels of SASP markers, IL-1β, IL-6, MCP1 and TGF-β1. These results show that while, p16Ink4a is dispensable for induction and maintenance of senescence, conditional loss of p16Ink4a reduces apoptosis, limits the SASP phenotype and alters matrix homeostasis of disc cells.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; North Carolina State University, Raleigh, NC, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, USA; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
399
|
Sharma R, Padwad Y. In search of nutritional anti-aging targets: TOR inhibitors, SASP modulators, and BCL-2 family suppressors. Nutrition 2019; 65:33-38. [DOI: 10.1016/j.nut.2019.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
|
400
|
Brinkley TE, Berger M, Callahan KE, Fieo RA, Jennings LA, Morris JK, Wilkins HM, Kritchevsky SB. Workshop on Synergies Between Alzheimer's Research and Clinical Gerontology and Geriatrics: Current Status and Future Directions. J Gerontol A Biol Sci Med Sci 2019; 73:1229-1237. [PMID: 29982466 PMCID: PMC6454460 DOI: 10.1093/gerona/gly041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Age is the strongest risk factor for physical disability and Alzheimer's disease (AD) and related dementias. As such, other aging-related risk factors are also shared by these two health conditions. However, clinical geriatrics and gerontology research has included cognition and depression in models of physical disability, with less attention to the pathophysiology of neurodegenerative disease. Similarly, AD research generally incorporates limited, if any, measures of physical function and mobility, and therefore often fails to consider the relevance of functional limitations in neurodegeneration. Accumulating evidence suggests that common pathways lead to physical disability and cognitive impairment, which jointly contribute to the aging phenotype. Collaborations between researchers focusing on the brain or body will be critical to developing, refining, and testing research paradigms emerging from a better understanding of the aging process and the interacting pathways contributing to both physical and cognitive disability. The National Institute of Aging sponsored a workshop to bring together the Claude D. Pepper Older Americans Independence Center and AD Center programs to explore areas of synergies between the research concerns of the two programs. This article summarizes the proceedings of the workshop and presents key gaps and research priorities at the intersection of AD and clinical aging research identified by the workshop participants.
Collapse
Affiliation(s)
- Tina E Brinkley
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Miles Berger
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Kathryn E Callahan
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Robert A Fieo
- Department of Geriatric Research, University of Florida, Gainesville
| | - Lee A Jennings
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Jill K Morris
- Department of Neurology, Alzheimer's Disease Center, University of Kansas
| | - Heather M Wilkins
- Department of Neurology, Alzheimer's Disease Center, University of Kansas
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|