351
|
Stella F, Cerasti E, Si B, Jezek K, Treves A. Self-organization of multiple spatial and context memories in the hippocampus. Neurosci Biobehav Rev 2011; 36:1609-25. [PMID: 22192880 DOI: 10.1016/j.neubiorev.2011.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/03/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022]
Abstract
One obstacle to understanding the exact processes unfolding inside the hippocampus is that it is still difficult to clearly define what the hippocampus actually does, at the system level. Associated for a long time with the formation of episodic and semantic memories, and with their temporary storage, the hippocampus is also regarded as a structure involved in spatial navigation. These two independent perspectives on the hippocampus are not necessarily exclusive: proposals have been put forward to make them fit into the same conceptual frame. We review both approaches and argue that three critical developments need consideration: (a) recordings of neuronal activity in rodents, revealing beautiful spatial codes expressed in entorhinal cortex, upstream of the hippocampus; (b) comparative behavioral results suggesting, in an evolutionary perspective, qualitative similarity of function across homologous structures with a distinct internal organization; (c) quantitative measures of information, shifting the focus from who does what to how much each neuronal population expresses each code. These developments take the hippocampus away from philosophical discussions of all-or-none cause-effect relations, and into the quantitative mainstream of modern neural science.
Collapse
|
352
|
Abstract
Neural circuitry is a self-organizing arithmetic device that converts input to output and thereby remodels its computational algorithm to produce more desired output; however, experimental evidence regarding the mechanism by which information is modified and stored while propagating across polysynaptic networks is sparse. We used functional multineuron calcium imaging to monitor the spike outputs from thousands of CA1 neurons in response to the stimulation of two independent sites of the dentate gyrus in rat hippocampal networks ex vivo. Only pyramidal cells were analyzed based on post hoc immunostaining. Some CA1 pyramidal cells were observed to fire action potentials only when both sites were simultaneously stimulated (AND-like neurons), whereas other neurons fired in response to either site of stimulation but not to concurrent stimulation (XOR-like neurons). Both types of neurons were interlaced in the same network and altered their logical operation depending on the timing of paired stimulation. Repetitive paired stimulation for brief periods induced a persistent reorganization of AND and XOR operators, suggesting a flexibility in parallel distributed processing. We simulated these network functions in silico and found that synaptic modification of the CA3 recurrent excitation is pivotal to the shaping of logic plasticity. This work provides new insights into how microscopic synaptic properties are associated with the mesoscopic dynamics of complex microcircuits.
Collapse
|
353
|
Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity. Nat Neurosci 2011; 15:155-61. [PMID: 22101640 PMCID: PMC3245808 DOI: 10.1038/nn.2966] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/23/2011] [Indexed: 11/08/2022]
Abstract
Learning to adapt to a complex and fluctuating environment requires the ability to adjust neural representations of sensory stimuli. Through pattern completion processes, cortical networks can reconstruct familiar patterns from degraded input patterns, while pattern separation processes allow discrimination of even highly overlapping inputs. Here we show that the balance between pattern separation and completion is experience-dependent. Rats given extensive training with overlapping complex odorant mixtures show improved behavioral discrimination ability and enhanced cortical ensemble pattern separation. In contrast, behavioral training to disregard normally detectable differences between overlapping mixtures results in impaired cortical ensemble pattern separation (enhanced pattern completion) and impaired discrimination. This bidirectional effect was not found in the olfactory bulb, and may be due to plasticity within olfactory cortex itself. Thus pattern recognition, and the balance between pattern separation and completion, is highly malleable based on task demands and occurs in concert with changes in perceptual performance.
Collapse
|
354
|
Chadwick MJ, Hassabis D, Maguire EA. Decoding overlapping memories in the medial temporal lobes using high-resolution fMRI. Learn Mem 2011; 18:742-6. [PMID: 22086391 PMCID: PMC3222891 DOI: 10.1101/lm.023671.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate pattern analysis revealed that the hippocampus supported distinct representations of each memory, while neighboring regions did not, demonstrating that the human hippocampus maintains unique pattern-separated memory traces even when memories are highly overlapping. The hippocampus also contained representations of spatial contexts that were shared across different memories, consistent with a specialized role in processing space.
Collapse
Affiliation(s)
- Martin J Chadwick
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | | | | |
Collapse
|
355
|
Gallagher M, Koh MT. Episodic memory on the path to Alzheimer's disease. Curr Opin Neurobiol 2011; 21:929-34. [PMID: 22079495 DOI: 10.1016/j.conb.2011.10.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
This review is focused on specific circuits of the medial temporal lobe that have become better understood in recent years for their computational properties contributing to episodic memory and to memory impairment associated with aging and other risk for AD. The layer II neurons in the entorhinal cortex and their targets in the dentate gyrus and CA3 region of hippocampus comprise a system that rapidly encodes representations that are distinct from prior memories. Frank neuron loss in the entorhinal cortex is specific for AD, and related structural and functional changes across the network comprised of the entorhinal cortex and the dentate/CA3 regions hold promise for predicting progression on the path to AD.
Collapse
Affiliation(s)
- Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
356
|
Memory-guided learning: CA1 and CA3 neuronal ensembles differentially encode the commonalities and differences between situations. J Neurosci 2011; 31:12270-81. [PMID: 21865470 DOI: 10.1523/jneurosci.1671-11.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Memory influences learning, but how neural signals support such transfer are unknown. To investigate these mechanisms, we trained rats to perform a standard spatial memory task in a plus maze and tested how training affected learning and neural coding in two new task variants. A switch task exchanged the start and goal locations in the same environment, whereas, an altered environment task contained unfamiliar local and distal cues. Learning was facilitated in both variants compared with the acquisition of the standard task. In the switch task, performance was largely maintained, and was accompanied by immediate and stable place-field remapping. Place-field maps in CA1 were anticorrelated in the standard and switch sessions, and the anticorrelation covaried with switch performance. Simultaneously, CA3 maps were uncorrelated overall in the standard and switch, though many CA3 cells had fields in shifted locations in the same maze arms. In the altered environment, performance was initially impaired, and place fields changed dynamically. CA1 fields were initially unstable, and their stabilization correlated with improving performance. Most CA3 cells, however, stopped firing on the maze in the altered environment, even as the same cells maintained prominent fields in standard sessions recorded before and after. CA1 and CA3 place fields thus revealed different coding dynamics that correlated with both learning and memory performance. Together, CA1 and CA3 ensembles represented the similarities and differences between new and familiar situations through concurrent rate and place remapping.
Collapse
|
357
|
Rolls ET, Treves A. The neuronal encoding of information in the brain. Prog Neurobiol 2011; 95:448-90. [PMID: 21907758 DOI: 10.1016/j.pneurobio.2011.08.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/03/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022]
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
| | | |
Collapse
|
358
|
Abstract
In this issue of Neuron, MacDonald et al. describe hippocampal "time cells" that fire during specific delay periods as rats performed a memory task. Converging results in monkeys suggest that the hippocampus encodes episodes by signaling events in time.
Collapse
Affiliation(s)
- Matthew L Shapiro
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
359
|
Passecker J, Hok V, Della-Chiesa A, Chah E, O’Mara SM. Dissociation of dorsal hippocampal regional activation under the influence of stress in freely behaving rats. Front Behav Neurosci 2011; 5:66. [PMID: 22022311 PMCID: PMC3194099 DOI: 10.3389/fnbeh.2011.00066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/26/2011] [Indexed: 11/13/2022] Open
Abstract
Stress has deleterious effects on brain, body, and behavior in humans and animals alike. The present work investigated how 30-min acute photic stress exposure impacts on spatial information processing in the main sub-regions of the dorsal hippocampal formation [CA1, CA3, and dentate gyrus (DG)], a brain structure prominently implicated in memory and spatial representation. Recordings were performed from spatially tuned hippocampal and DG cells in rats while animals foraged in a square arena for food. The stress procedure induced a decrease in firing frequencies in CA1 and CA3 place cells while sparing locational characteristics. In contrast to the CA1-CA3 network, acute stress failed to induce major changes in the DG neuronal population. These data demonstrate a clear dissociation of the effects of stress on the main hippocampal sub-regions. Our findings further support the notion of decreased hippocampal excitability arising from behavioral stress in areas CA1 and CA3, but not in DG.
Collapse
Affiliation(s)
- Johannes Passecker
- Trinity College Institute of Neuroscience, Trinity College DublinDublin, Republic of Ireland
| | - Vincent Hok
- Trinity College Institute of Neuroscience, Trinity College DublinDublin, Republic of Ireland
| | - Andrea Della-Chiesa
- Trinity College Institute of Neuroscience, Trinity College DublinDublin, Republic of Ireland
| | - Ehsan Chah
- Trinity College Institute of Neuroscience, Trinity College DublinDublin, Republic of Ireland
- Trinity Centre for Bioengineering, Trinity College DublinDublin, Republic of Ireland
| | - Shane M. O’Mara
- Trinity College Institute of Neuroscience, Trinity College DublinDublin, Republic of Ireland
| |
Collapse
|
360
|
Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci 2011; 34:526-35. [DOI: 10.1016/j.tins.2011.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/13/2011] [Accepted: 07/25/2011] [Indexed: 12/20/2022]
|
361
|
Monaco JD, Knierim JJ, Zhang K. Sensory feedback, error correction, and remapping in a multiple oscillator model of place-cell activity. Front Comput Neurosci 2011; 5:39. [PMID: 21994494 PMCID: PMC3182374 DOI: 10.3389/fncom.2011.00039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/07/2011] [Indexed: 11/13/2022] Open
Abstract
Mammals navigate by integrating self-motion signals ("path integration") and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid-cells demonstrate a phase relationship with the local theta (6-10 Hz) rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of "partial remapping" responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments.
Collapse
Affiliation(s)
- Joseph D Monaco
- Krieger Mind/Brain Institute, Johns Hopkins University Baltimore, MD, USA
| | | | | |
Collapse
|
362
|
Jezek K, Henriksen EJ, Treves A, Moser EI, Moser MB. Theta-paced flickering between place-cell maps in the hippocampus. Nature 2011; 478:246-9. [DOI: 10.1038/nature10439] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 08/10/2011] [Indexed: 11/09/2022]
|
363
|
Ripples make waves: binding structured activity and plasticity in hippocampal networks. Neural Plast 2011; 2011:960389. [PMID: 21961073 PMCID: PMC3180853 DOI: 10.1155/2011/960389] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/14/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR) oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.
Collapse
|
364
|
Associative memory storage and retrieval: involvement of theta oscillations in hippocampal information processing. Neural Plast 2011; 2011:683961. [PMID: 21961072 PMCID: PMC3180781 DOI: 10.1155/2011/683961] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/25/2011] [Accepted: 07/09/2011] [Indexed: 12/26/2022] Open
Abstract
Theta oscillations are thought to play a critical role in neuronal information processing, especially in the hippocampal region, where their presence is particularly salient. A detailed description of theta dynamics in this region has revealed not only a consortium of layer-specific theta dipoles, but also within-layer differences in the expression of theta. This complex and articulated arrangement of current flows is reflected in the way neuronal firing is modulated in time. Several models have proposed that these different theta modulators flexibly coordinate hippocampal regions, to support associative memory formation and retrieval. Here, we summarily review different approaches related to this issue and we describe a mechanism, based on experimental and simulation results, for memory retrieval in CA3 involving theta modulation.
Collapse
|
365
|
Penner MR, Mizumori SJY. Neural systems analysis of decision making during goal-directed navigation. Prog Neurobiol 2011; 96:96-135. [PMID: 21964237 DOI: 10.1016/j.pneurobio.2011.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/06/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors.
Collapse
Affiliation(s)
- Marsha R Penner
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, United States
| | | |
Collapse
|
366
|
Cheng S, Frank LM. The structure of networks that produce the transformation from grid cells to place cells. Neuroscience 2011; 197:293-306. [PMID: 21963867 DOI: 10.1016/j.neuroscience.2011.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 01/18/2023]
Abstract
Since grid cells were discovered in the medial entorhinal cortex, several models have been proposed for the transformation from periodic grids to the punctate place fields of hippocampal place cells. These prior studies have each focused primarily on a particular model structure. By contrast, the goal of this study is to understand the general nature of the solutions that generate the grids-to-places transformation, and to exploit this insight to solve problems that were previously unsolved. First, we derive a family of feedforward networks that generate the grids-to-places transformations. These networks have in common an inverse relationship between the synaptic weights and a grid property that we call the normalized offset. Second, we analyze the solutions of prior models in terms of this novel measure and found to our surprise that almost all prior models yield solutions that can be described by this family of networks. The one exception is a model that is unrealistically sensitive to noise. Third, with this insight into the structure of the solutions, we then construct explicitly solutions for the grids-to-places transformation with multiple spatial maps, that is, with place fields in arbitrary locations either within the same (multiple place fields) or in different (global remapping) enclosures. These multiple maps are possible because the weights are learned or assigned in such a way that a group of weights contributes to spatial specificity in one context but remains spatially unstructured in another context. Fourth, we find parameters such that global remapping solutions can be found by synaptic learning in spiking neurons, despite previous suggestions that this might not be possible. In conclusion, our results demonstrate the power of understanding the structure of the solutions and suggest that we may have identified the structure that is common to all robust solutions of the grids-to-places transformation.
Collapse
Affiliation(s)
- S Cheng
- Sloan-Swartz Center for Theoretical Neurobiology, W.M. Keck Center for Integrative Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143-0444, USA.
| | | |
Collapse
|
367
|
Poucet B, Hok V, Sargolini F, Save E. Stability and variability of place cell activity during behavior: functional implications for dynamic coding of spatial information. ACTA ACUST UNITED AC 2011; 106:62-71. [PMID: 21930204 DOI: 10.1016/j.jphysparis.2011.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/25/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022]
Abstract
In addition to their discharge strongly related to a rat's location in the environment, hippocampal place cells have recently been discovered to carry other more subtle signals. For instance, place cells exhibit overdispersion, i.e., a tendency to have highly variable firing rates across successive passes in the firing field, which may reflect the processing of different classes of cues. In addition, the place cell population tends to fire synchronously during specific phases of place navigation, presumably signaling the animal's arrival at the goal location, or to be reactivated during either sleep or wakefulness following exposure to a new environment, a process thought to be important for memory consolidation. Although these various phenomena are expressed at different timescales, it is very likely that they can occur at the same time during an animal's exposure to a spatial environment. The advantage of such simultaneous processing is that it permits the organism both to be aware of its own location in the environment, and to attend to other environmental features and to store multiple experiences. However its pitfall is that it may result in noisy signals that are difficult to decipher by output structures. Therefore the question is asked of how the information carried by each process can be disentangled. We provide some examples from recent research work showing that this problem is far from being trivial and we propose an explanatory framework in which place cell activity at different timescales could be viewed as a series of dynamic attractors nested within each other.
Collapse
Affiliation(s)
- B Poucet
- Laboratory of Neurobiology and Cognition, CNRS - Université de Provence, Marseille, France.
| | | | | | | |
Collapse
|
368
|
A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011; 12:585-601. [PMID: 21897434 DOI: 10.1038/nrn3085] [Citation(s) in RCA: 685] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampal formation has been implicated in a growing number of disorders, from Alzheimer's disease and cognitive ageing to schizophrenia and depression. How can the hippocampal formation, a complex circuit that spans the temporal lobes, be involved in a range of such phenotypically diverse and mechanistically distinct disorders? Recent neuroimaging findings indicate that these disorders differentially target distinct subregions of the hippocampal circuit. In addition, some disorders are associated with hippocampal hypometabolism, whereas others show evidence of hypermetabolism. Interpreted in the context of the functional and molecular organization of the hippocampal circuit, these observations give rise to a unified pathophysiological framework of hippocampal dysfunction.
Collapse
|
369
|
Schmidt B, Marrone DF, Markus EJ. Disambiguating the similar: the dentate gyrus and pattern separation. Behav Brain Res 2011; 226:56-65. [PMID: 21907247 DOI: 10.1016/j.bbr.2011.08.039] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 12/22/2022]
Abstract
The human hippocampus supports the formation of episodic memory without confusing new memories with old ones. To accomplish this, the brain must disambiguate memories (i.e., accentuate the differences between experiences). There is convergent evidence linking pattern separation to the dentate gyrus. Damage to the dentate gyrus reduces an organism's ability to differentiate between similar objects. The dentate gyrus has tenfold more principle cells than its cortical input, allowing for a divergence in information flow. Dentate gyrus granule neurons also show a very different pattern of representing the environment than "classic" place cells in CA1 and CA3, or grid cells in the entorhinal cortex. More recently immediate early genes have been used to "timestamp" activity of individual cells throughout the dentate gyrus. These data indicate that the dentate gyrus robustly differentiates similar situations. The degree of differentiation is non-linear, with even small changes in input inducing a near maximal response in the dentate. Furthermore this differentiation occurs throughout the dentate gyrus longitudinal (dorsal-ventral) axis. Conversely, the data point to a divergence in information processing between the dentate gyrus suprapyramidal and infrapyramidal blades possibly related to differences in organization within these regions. The accumulated evidence from different approaches converges to support a role for the dentate gyrus in pattern separation. There are however inconsistencies that may require incorporation of neurogenesis and hippocampal microcircuits into the currents models. They also suggest different roles for the dentate gyrus suprapyramidal and infrapyramidal blades, and the responsiveness of CA3 to dentate input.
Collapse
|
370
|
Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping. J Neurosci 2011; 31:9414-25. [PMID: 21697391 DOI: 10.1523/jneurosci.1433-11.2011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal place fields, the local regions of activity recorded from place cells in exploring rodents, can undergo large changes in relative location during remapping. This process would appear to require some form of modulated global input. Grid-cell responses recorded from layer II of medial entorhinal cortex in rats have been observed to realign concurrently with hippocampal remapping, making them a candidate input source. However, this realignment occurs coherently across colocalized ensembles of grid cells (Fyhn et al., 2007). The hypothesized entorhinal contribution to remapping depends on whether this coherence extends to all grid cells, which is currently unknown. We study whether dividing grid cells into small numbers of independently realigning modules can both account for this localized coherence and allow for hippocampal remapping. To do this, we construct a model in which place-cell responses arise from network competition mediated by global inhibition. We show that these simulated responses approximate the sparsity and spatial specificity of hippocampal activity while fully representing a virtual environment without learning. Place-field locations and the set of active place cells in one environment can be independently rearranged by changes to the underlying grid-cell inputs. We introduce new measures of remapping to assess the effectiveness of grid-cell modularity and to compare shift realignments with other geometric transformations of grid-cell responses. Complete hippocampal remapping is possible with a small number of shifting grid modules, indicating that entorhinal realignment may be able to generate place-field randomization despite substantial coherence.
Collapse
|
371
|
A stable hippocampal representation of a space requires its direct experience. Proc Natl Acad Sci U S A 2011; 108:14654-8. [PMID: 21852575 DOI: 10.1073/pnas.1105445108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans and other mammals, the hippocampus is critical for episodic memory, the autobiographical record of events, including where and when they happen. When one records from hippocampal pyramidal neurons in awake, behaving rodents, their most obvious firing correlate is the animal's position within a particular environment, earning them the name "place cells." When an animal explores a novel environment, its pyramidal neurons form their spatial receptive fields over a matter of minutes and are generally stable thereafter. This experience-dependent stabilization of place fields is therefore an attractive candidate neural correlate of the formation of hippocampal memory. However, precisely how the animal's experience of a context translates into stable place fields remains largely unclear. For instance, we still do not know whether observation of a space is sufficient to generate a stable hippocampal representation of that space because the animal must physically visit a spot to demonstrate which cells fire there. We circumvented this problem by comparing the relative stability of place fields of directly experienced space from merely observed space following blockade of NMDA receptors, which preferentially destabilizes newly generated place fields. This allowed us to determine whether place cells stably represent parts of the environment the animal sees, but does not actually occupy. We found that the formation of stable place fields clearly requires direct experience with a space. This suggests that place cells are part of an autobiographical record of events and their spatial context, consistent with providing the "where" information in episodic memory.
Collapse
|
372
|
Osan R, Tort ABL, Amaral OB. A mismatch-based model for memory reconsolidation and extinction in attractor networks. PLoS One 2011; 6:e23113. [PMID: 21826231 PMCID: PMC3149635 DOI: 10.1371/journal.pone.0023113] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/06/2011] [Indexed: 11/23/2022] Open
Abstract
The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation.
Collapse
Affiliation(s)
- Remus Osan
- Center for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Center for Biodynamics, Boston University, Boston, Massachusetts, United States of America
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Rio Grande do Norte, Brazil
| | - Olavo B. Amaral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
373
|
Yassa MA, Stark CEL. Pattern separation in the hippocampus. Trends Neurosci 2011; 34:515-25. [PMID: 21788086 DOI: 10.1016/j.tins.2011.06.006] [Citation(s) in RCA: 939] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 12/27/2022]
Abstract
The ability to discriminate among similar experiences is a crucial feature of episodic memory. This ability has long been hypothesized to require the hippocampus, and computational models suggest that it is dependent on pattern separation. However, empirical data for the role of the hippocampus in pattern separation have not been available until recently. This review summarizes data from electrophysiological recordings, lesion studies, immediate-early gene imaging, transgenic mouse models, as well as human functional neuroimaging, that provide convergent evidence for the involvement of particular hippocampal subfields in this key process. We discuss the impact of aging and adult neurogenesis on pattern separation, and also highlight several challenges to linking across species and approaches, and suggest future directions for investigation.
Collapse
Affiliation(s)
- Michael A Yassa
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
374
|
Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 2011; 70:109-20. [PMID: 21482360 PMCID: PMC3221010 DOI: 10.1016/j.neuron.2011.03.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2011] [Indexed: 11/23/2022]
Abstract
For each environment a rodent has explored, its hippocampus contains a map consisting of a unique subset of neurons, called place cells, that have spatially tuned spiking there, with the remaining neurons being essentially silent. Using whole-cell recording in freely moving rats exploring a novel maze, we observed differences in intrinsic cellular properties and input-based subthreshold membrane potential levels underlying this division into place and silent cells. Compared to silent cells, place cells had lower spike thresholds and peaked versus flat subthreshold membrane potentials as a function of animal location. Both differences were evident from the beginning of exploration. Additionally, future place cells exhibited higher burst propensity before exploration. Thus, internal settings appear to predetermine which cells will represent the next novel environment encountered. Furthermore, place cells fired spatially tuned bursts with large, putatively calcium-mediated depolarizations that could trigger plasticity and stabilize the new map for long-term storage. Our results provide new insight into hippocampal memory formation.
Collapse
|
375
|
Rosi S. Neuroinflammation and the plasticity-related immediate-early gene Arc. Brain Behav Immun 2011; 25 Suppl 1:S39-49. [PMID: 21320587 PMCID: PMC3098296 DOI: 10.1016/j.bbi.2011.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 12/01/2022] Open
Abstract
Neurons exist within a microenvironment that significantly influences their function and survival. While there are many environmental factors that can potentially impact neuronal function, activation of the innate immune system (microglia) is an important element common to many neurological and pathological conditions associated with memory loss. Learning and memory processes rely on the ability of neurons to alter their transcriptional programs in response to synaptic input. Recent advances in cell-based imaging of plasticity-related immediate-early gene (IEG) expression have provided a tool to investigate plasticity-related changes across multiple brain regions. The activity-regulated, cytoskeleton-associated IEG Arc is a regulator of protein synthesis-dependent forms of synaptic plasticity, which are essential for memory formation. Visualisation of Arc provides cellular level resolution for the mapping of neuronal networks. Chronic activation of the innate immune system alters Arc activity patterns, and this may be a mechanism by which it induces the cognitive dysfunction frequently associated with neuroinflammatory conditions. This review discusses the use of Arc expression during activation of the innate immune system as a valid marker of altered plasticity and a predictor of cognitive dysfunction.
Collapse
Affiliation(s)
- Susanna Rosi
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA 94110, USA.
| |
Collapse
|
376
|
Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc Natl Acad Sci U S A 2011; 108:8873-8. [PMID: 21555581 DOI: 10.1073/pnas.1101567108] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Converging data from rodents and humans have demonstrated an age-related decline in pattern separation abilities (the ability to discriminate among similar experiences). Several studies have proposed the dentate and CA3 subfields of the hippocampus as the potential locus of this change. Specifically, these studies identified rigidity in place cell remapping in similar environments in the CA3. We used high-resolution fMRI to examine activity profiles in the dentate gyrus and CA3 in young and older adults as stimulus similarity was incrementally varied. We report evidence for "representational rigidity" in older adults' dentate/CA3 that is linked to behavioral discrimination deficits. Using ultrahigh-resolution diffusion imaging, we quantified both the integrity of the perforant path as well as dentate/CA3 dendritic changes and found that both were correlated with dentate/CA3 functional rigidity. These results highlight structural and functional alterations in the hippocampal network that predict age-related changes in memory function and present potential targets for intervention.
Collapse
|
377
|
Early onset of age-related changes on neural processing in rats. Physiol Behav 2011; 103:134-43. [DOI: 10.1016/j.physbeh.2011.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 02/08/2011] [Accepted: 02/14/2011] [Indexed: 01/06/2023]
|
378
|
Duncan K, Ketz N, Inati SJ, Davachi L. Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus 2011; 22:389-98. [PMID: 21484934 DOI: 10.1002/hipo.20933] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 11/10/2022]
Abstract
The hippocampus is proposed to switch between memory encoding and retrieval by continually computing the overlap between what is expected and what is encountered. Central to this hypothesis is that area CA1 performs this calculation. However, empirical evidence for this is lacking. To test the theoretical role of area CA1 in match/mismatch detection, we had subjects study complex stimuli and then, during high-resolution fMRI scanning, make memory judgments about probes that either matched or mismatched expectations. More than any other hippocampal subfield, area CA1 displayed responses consistent with a match/mismatch detector. Specifically, the responses in area CA1 tracked the total number of changes present in the probe. Additionally, area CA1 was sensitive to both behaviorally relevant and irrelevant changes, a key feature of an automatic comparator. These results are consistent with, and provide the first evidence in humans for, the theoretically important role of area CA1 as a match/mismatch detector.
Collapse
Affiliation(s)
- Katherine Duncan
- Department of Psychology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
379
|
Mueller SG, Laxer KD, Scanlon C, Garcia P, McMullen WJ, Loring DW, Meador KJ, Weiner MW. Different structural correlates for verbal memory impairment in temporal lobe epilepsy with and without mesial temporal lobe sclerosis. Hum Brain Mapp 2011; 33:489-99. [PMID: 21438080 DOI: 10.1002/hbm.21226] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Memory impairment is one of the most prominent cognitive deficits in temporal lobe epilepsy (TLE). The overall goal of this study was to explore the contribution of cortical and hippocampal (subfield) damage to impairment of auditory immediate recall (AIMrecall), auditory delayed recall (ADMrecall), and auditory delayed recognition (ADMrecog) of the Wechsler Memory Scale III (WMS-III) in TLE with (TLE-MTS) and without hippocampal sclerosis (TLE-no). It was hypothesized that volume loss in different subfields determines memory impairment in TLE-MTS and temporal neocortical thinning in TLE-no. METHODS T1 whole brain and T2-weighted hippocampal magnetic resonance imaging and WMS-III were acquired in 22 controls, 18 TLE-MTS, and 25 TLE-no. Hippocampal subfields were determined on the T2 image. Free surfer was used to obtain cortical thickness averages of temporal, frontal, and parietal cortical regions of interest (ROI). MANOVA and stepwise regression analysis were used to identify hippocampal subfields and cortical ROI significantly contributing to AIMrecall, ADMrecall, and ADMrecog. RESULTS In TLE-MTS, AIMrecall was associated with cornu ammonis 3 (CA3) and dentate (CA3&DG) and pars opercularis, ADMrecall with CA1 and pars triangularis, and ADMrecog with CA1. In TLE-no, AIMrecall was associated with CA3&DG and fusiform gyrus (FUSI), and ADMrecall and ADMrecog were associated with FUSI. CONCLUSION The study provided the evidence for different structural correlates of the verbal memory impairment in TLE-MTS and TLE-no. In TLE-MTS, the memory impairment was mainly associated by subfield-specific hippocampal and inferior frontal cortical damage. In TLE-no, the impairment was associated by mesial-temporal cortical and to a lesser degree hippocampal damage.
Collapse
Affiliation(s)
- Susanne G Mueller
- Department of Radiology, Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Burke SN, Maurer AP, Nematollahi S, Uprety AR, Wallace JL, Barnes CA. The influence of objects on place field expression and size in distal hippocampal CA1. Hippocampus 2011; 21:783-801. [PMID: 21365714 DOI: 10.1002/hipo.20929] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2010] [Indexed: 11/09/2022]
Abstract
The perirhinal and lateral entorhinal cortices send prominent projections to the portion of the hippocampal CA1 subfield closest to the subiculum, but relatively little is known regarding the contributions of these cortical areas to hippocampal activity patterns. The anatomical connections of the lateral entorhinal and perirhinal cortices, as well as lesion data, suggest that these brain regions may contribute to the perception of complex stimuli such as objects. The current experiments investigated the degree to which three-dimensional objects affect place field size and activity within the distal region (closest to the subiculum) of CA1. The activity of CA1 pyramidal cells was monitored as rats traversed a circular track that contained no objects in some conditions and three-dimensional objects in other conditions. In the area of CA1 that receives direct lateral entorhinal input, three factors differentiated the objects-on-track conditions from the no-object conditions: more pyramidal cells expressed place fields when objects were present, adding or removing objects from the environment led to partial remapping in CA1, and the size of place fields decreased when objects were present. In addition, a proportion of place fields remapped under conditions in which the object locations were shuffled, which suggests that at least some of the CA1 neurons' firing patterns were sensitive to a particular object in a particular location. Together, these data suggest that the activity characteristics of neurons in the areas of CA1 receiving direct input from the perirhinal and lateral entorhinal cortices are modulated by non-spatial sensory input such as three-dimensional objects. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Sara N Burke
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, USA
| | | | | | | | | | | |
Collapse
|
381
|
Abstract
The "place fields" of hippocampal pyramidal neurons are not static. For example, upon a contextual change in the environment, place fields may "remap" within typical timescales of ~ 1 min. A few studies have shown more rapid dynamics in hippocampal activity, linked to internal processes, such as switches between spatial reference frames or changes within the theta cycle. However, little is known about rapid hippocampal place field dynamics in response to external, sensory stimuli. Here, we studied this question in big brown bats, echolocating mammals in which we can readily measure rapid changes in sensory dynamics (sonar signals), as well as rapid behavioral switches between distal and proximal exploratory modes. First, we show that place field size was modulated by the availability of sensory information, on a timescale of ~ 300 ms: Bat hippocampal place fields were smallest immediately after an echolocation call, but place fields "diffused" with the passage of time after the call, when echo information was no longer arriving. Second, we show rapid modulation of hippocampal place fields as the animal switched between two exploratory modes. Third, we compared place fields and spatial view fields of individual neurons and found that place tuning was much more pronounced than spatial view tuning. In addition, dynamic fluctuations in spatial view tuning were stronger than fluctuations in place tuning. Taken together, these results suggest that spatial representation in mammalian hippocampus can be very rapidly modulated by external sensory and behavioral events.
Collapse
Affiliation(s)
- Nachum Ulanovsky
- Department of Psychology and Institute for Systems Research, University of Maryland, College Park, Maryland, USA.
| | | |
Collapse
|
382
|
Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 2011; 14:147-53. [PMID: 21270783 PMCID: PMC3215304 DOI: 10.1038/nn.2732] [Citation(s) in RCA: 532] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hippocampus is required for the encoding, consolidation and retrieval of event memories. Although the neural mechanisms that underlie these processes are only partially understood, a series of recent papers point to awake memory replay as a potential contributor to both consolidation and retrieval. Replay is the sequential reactivation of hippocampal place cells that represent previously experienced behavioral trajectories and occurs frequently in the awake state, particularly during periods of relative immobility. Awake replay may reflect trajectories through either the current environment or previously visited environments that are spatially remote. The repetition of learned sequences on a compressed time scale is well suited to promote memory consolidation in distributed circuits beyond the hippocampus, suggesting that consolidation occurs in both the awake and sleeping animal. Moreover, sensory information can influence the content of awake replay, suggesting a role for awake replay in memory retrieval.
Collapse
Affiliation(s)
- Margaret F Carr
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
383
|
Place, space, and taste: Combining context and spatial information in a hippocampal navigation system. Hippocampus 2011; 22:442-54. [DOI: 10.1002/hipo.20911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 02/03/2023]
|
384
|
Involvement of the trisynaptic hippocampal pathway in generating neural representations of object–place associations (an analytical review). ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11055-011-9388-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
385
|
Schwindel CD, McNaughton BL. Hippocampal–cortical interactions and the dynamics of memory trace reactivation. PROGRESS IN BRAIN RESEARCH 2011; 193:163-77. [DOI: 10.1016/b978-0-444-53839-0.00011-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
386
|
Leibold C. What autoassociative network models may tell us about the neurobiology of memory. NETWORK (BRISTOL, ENGLAND) 2011; 22:231-250. [PMID: 22149681 DOI: 10.3109/0954898x.2011.638694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Christian Leibold
- Biology II, Ludwig-Maximilians University Munich, Grosshaderner Strasse 2, LMU Biocenter, Planegg, Germany
| |
Collapse
|
387
|
Lacy JW, Yassa MA, Stark SM, Muftuler LT, Stark CE. Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity. Learn Mem 2011; 18:15-8. [PMID: 21164173 PMCID: PMC3023966 DOI: 10.1101/lm.1971111] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/10/2010] [Indexed: 11/25/2022]
Abstract
Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while monitoring CA1 and CA3/dentate for separation and completion-like signals using high-resolution fMRI. In the CA1, activity varied in a graded fashion in response to increases in the change in input. In contrast, the CA3/dentate showed a stepwise transfer function that was highly sensitive to small changes in input.
Collapse
Affiliation(s)
- Joyce W. Lacy
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
| | - Shauna M. Stark
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
| | - L. Tugan Muftuler
- Department of Radiological Sciences, Center for Functional Onco Imaging, University of California, Irvine, California 92697, USA
| | - Craig E.L. Stark
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
388
|
Carr VA, Viskontas IV, Engel SA, Knowlton BJ. Neural activity in the hippocampus and perirhinal cortex during encoding is associated with the durability of episodic memory. J Cogn Neurosci 2010; 22:2652-62. [PMID: 19925190 DOI: 10.1162/jocn.2009.21381] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Studies examining medial temporal lobe (MTL) involvement in memory formation typically assess memory performance after a single, short delay. Thus, the relationship between MTL encoding activity and memory durability over time remains poorly characterized. To explore this relationship, we scanned participants using high-resolution functional imaging of the MTL as they encoded object pairs; using the remember/know paradigm, we then assessed memory performance for studied items both 10 min and 1 week later. Encoding trials were classified as either subsequently recollected across both delays, transiently recollected (i.e., recollected at 10 min but not after 1 week), consistently familiar, or consistently forgotten. Activity in perirhinal cortex (PRC) and a hippocampal subfield comprising the dentate gyrus and CA fields 2 and 3 reflected successful encoding only when items were recollected consistently across both delays. Furthermore, in PRC, encoding activity for items that later were consistently recollected was significantly greater than that for transiently recollected and consistently familiar items. Parahippocampal cortex, in contrast, showed a subsequent memory effect during encoding of items that were recollected after 10 min, regardless of whether they also were recollected after 1 week. These data suggest that MTL subfields contribute uniquely to the formation of memories that endure over time, and highlight a role for PRC in supporting subsequent durable episodic recollection.
Collapse
|
389
|
Henriksen EJ, Colgin LL, Barnes CA, Witter MP, Moser MB, Moser EI. Spatial representation along the proximodistal axis of CA1. Neuron 2010; 68:127-37. [PMID: 20920796 DOI: 10.1016/j.neuron.2010.08.042] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2010] [Indexed: 11/17/2022]
Abstract
CA1 cells receive direct input from space-responsive cells in medial entorhinal cortex (MEC), such as grid cells, as well as more nonspatial cells in lateral entorhinal cortex (LEC). Because MEC projects preferentially to the proximal part of the CA1, bordering CA2, whereas LEC innervates only the distal part, bordering subiculum, we asked if spatial tuning is graded along the transverse axis of CA1. Tetrodes were implanted along the entire proximodistal axis of dorsal CA1 in rats. Data were recorded in cylinders large enough to elicit firing at more than one location in many neurons. Distal CA1 cells showed more dispersed firing and had a larger number of firing fields than proximal cells. Phase-locking of spikes to MEC theta oscillations was weaker in distal CA1 than in proximal CA1. The findings suggest that spatial firing in CA1 is organized transversally, with the strongest spatial modulation occurring in the MEC-associated proximal part.
Collapse
Affiliation(s)
- Espen J Henriksen
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
390
|
Derdikman D, Moser EI. A manifold of spatial maps in the brain. Trends Cogn Sci 2010; 14:561-9. [PMID: 20951631 DOI: 10.1016/j.tics.2010.09.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 11/15/2022]
Abstract
Two neural systems are known to encode self-location in the brain: Place cells in the hippocampus encode unique locations in unique environments, whereas grid cells, border cells and head-direction cells in the parahippocampal cortex provide a universal metric for mapping positions and directions in all environments. These systems have traditionally been studied in very simple environments; however, natural environments are compartmentalized, nested and variable in time. Recent studies indicate that hippocampal and entorhinal spatial maps reflect this complexity. The maps fragment into interconnected, rapidly changing and tightly coordinated submaps. Plurality, fast dynamics and dynamic grouping are optimal for a brain system thought to exploit large pools of stored information to guide behavior on a second-by-second time frame in the animal's natural habitat.
Collapse
Affiliation(s)
- Dori Derdikman
- Kavli Institute for Systems Neuroscience and the Centre for the Biology of Memory, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway.
| | | |
Collapse
|
391
|
Ranganath C. A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 2010; 20:1263-90. [DOI: 10.1002/hipo.20852] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
392
|
Experience-dependent development of coordinated hippocampal spatial activity representing the similarity of related locations. J Neurosci 2010; 30:11586-604. [PMID: 20810880 DOI: 10.1523/jneurosci.0926-10.2010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To learn we must identify and remember experiences uniquely but also generalize across experiences to extract common features. Hippocampal place cells can show similar firing patterns across locations, but the functional significance of this repetitive activity and the role of experience and learning in generating it are not understood. We therefore examined rat hippocampal place cell activity in the context of spatial tasks with multiple similar spatial trajectories. We found that, in environments with repeating elements, about half of the recorded place cells showed path-equivalent firing, where individual neurons are active in multiple similar locations. In contrast, place cells from animals performing a similar task in an environment with fewer similar elements were less likely to fire in a path-equivalent manner. Moreover, in the environment with multiple repeating elements, path equivalence developed with experience in the task, and increased path equivalence was associated with increased moment-by-moment correlations between pairs of path-equivalent neurons. As a result, correlated firing among path-equivalent neurons increased with experience. These findings suggest that coordinated hippocampal ensembles can encode generalizations across locations. Thus, path-equivalent ensembles are well suited to encode similarities among repeating elements, providing a framework for associating specific behaviors with multiple locations, while neurons without this repetitive structure maintain a distinct population code.
Collapse
|
393
|
Alme C, Buzzetti R, Marrone D, Leutgeb J, Chawla M, Schaner M, Bohanick J, Khoboko T, Leutgeb S, Moser E, Moser MB, McNaughton B, Barnes C. Hippocampal granule cells opt for early retirement. Hippocampus 2010; 20:1109-23. [DOI: 10.1002/hipo.20810] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
394
|
Hanson JE, Madison DV. Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy. BMC Neurosci 2010; 11:96. [PMID: 20704756 PMCID: PMC2931521 DOI: 10.1186/1471-2202-11-96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 08/13/2010] [Indexed: 12/14/2022] Open
Abstract
Background Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity). Results To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties. Conclusions Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
395
|
Gallagher M, Bakker A, Yassa MA, Stark CEL. Bridging neurocognitive aging and disease modification: targeting functional mechanisms of memory impairment. Curr Alzheimer Res 2010; 7:197-9. [PMID: 20088811 DOI: 10.2174/156720510791050867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/24/2009] [Indexed: 11/22/2022]
Abstract
Risk for Alzheimer's disease escalates dramatically with increasing age in the later decades of life. It is widely recognized that a preclinical condition in which memory loss is greater than would be expected for a person's age, referred to as amnestic mild cognitive impairment, may offer the best opportunity for intervention to treat symptoms and modify disease progression. Here we discuss a basis for age-related memory impairment, first discovered in animal models and recently isolated in the medial temporal lobe system of man, that offers a novel entry point for restoring memory function with the possible benefit in slowing progression to Alzheimer's disease.
Collapse
Affiliation(s)
- M Gallagher
- Department of Psychological and Brain Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
396
|
Schimanski LA, Barnes CA. Neural Protein Synthesis during Aging: Effects on Plasticity and Memory. Front Aging Neurosci 2010; 2. [PMID: 20802800 PMCID: PMC2928699 DOI: 10.3389/fnagi.2010.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/15/2010] [Indexed: 12/13/2022] Open
Abstract
During aging, many experience a decline in cognitive function that includes memory loss. The encoding of long-term memories depends on new protein synthesis, and this is also reduced during aging. Thus, it is possible that changes in the regulation of protein synthesis contribute to the memory impairments observed in older animals. Several lines of evidence support this hypothesis. For instance, protein synthesis is required for a longer period following learning to establish long-term memory in aged rodents. Also, under some conditions, synaptic activity or pharmacological activation can induce de novo protein synthesis and lasting changes in synaptic transmission in aged, but not young, rodents; the opposite results can be observed in other conditions. These changes in plasticity likely play a role in manifesting the altered place field properties observed in awake and behaving aged rats. The collective evidence suggests a link between memory loss and the regulation of protein synthesis in senescence. In fact, pharmaceuticals that target the signaling pathways required for induction of protein synthesis have improved memory, synaptic plasticity, and place cell properties in aged animals. We suggest that a better understanding of the mechanisms that lead to different protein expression patterns in the neural circuits that change as a function of age will enable the development of more effective therapeutic treatments for memory loss.
Collapse
Affiliation(s)
- Lesley A Schimanski
- Evelyn F. McKnight Brain Institute and Division of Neural Systems, Memory and Aging, Arizona Research Laboratories, University of Arizona Tucson, AZ, USA
| | | |
Collapse
|
397
|
Villasana L, Pfankuch T, Raber J. Isoform-dependent effects of apoE on doublecortin-positive cells and microtubule-associated protein 2 immunoreactivity following (137)Cs irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:421-426. [PMID: 20458592 DOI: 10.1007/s00411-010-0290-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
Previously we found apoE isoform-dependent effects of (137)Cs irradiation on cognitive function of female mice 3 months following irradiation. Alterations in the number of immature neurons and in the levels of the dendritic marker microtubule-associated protein 2 (MAP-2) might contribute to the cognitive changes following irradiation. Therefore, in the present study we determined if, following (137)Cs irradiation, there are apoE isoform-dependent effects on loss of doublecortin-positive neuroprogenitor cells or MAP-2 immumonoreactivity. In the dentate gyrus, CA1 and CA3 regions of the hippocampus, enthorhinal and sensorimotor cortex, and central and basolateral nuclei of the amygdala of apoE3 female mice, MAP-2 immunoreactivity increased 3 months following (137)Cs irradiation. In addition, at 8 h following irradiation, the number of doublecortin-positive cells was higher in apoE3 than apoE2 or apoE4 mice. Together, these data indicate that brains of apoE3 mice respond differently to (137)Cs irradiation than those of apoE2 or apoE4 mice.
Collapse
Affiliation(s)
- Laura Villasana
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
398
|
Grid cells in pre- and parasubiculum. Nat Neurosci 2010; 13:987-94. [PMID: 20657591 DOI: 10.1038/nn.2602] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/25/2010] [Indexed: 01/23/2023]
Abstract
Allocentric space is mapped by a widespread brain circuit of functionally specialized cell types located in interconnected subregions of the hippocampal-parahippocampal cortices. Little is known about the neural architectures required to express this variety of firing patterns. In rats, we found that one of the cell types, the grid cell, was abundant not only in medial entorhinal cortex (MEC), where it was first reported, but also in pre- and parasubiculum. The proportion of grid cells in pre- and parasubiculum was comparable to deep layers of MEC. The symmetry of the grid pattern and its relationship to the theta rhythm were weaker, especially in presubiculum. Pre- and parasubicular grid cells intermingled with head-direction cells and border cells, as in deep MEC layers. The characterization of a common pool of space-responsive cells in architecturally diverse subdivisions of parahippocampal cortex constrains the range of mechanisms that might give rise to their unique functional discharge phenotypes.
Collapse
|
399
|
The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat Neurosci 2010; 13:995-1002. [PMID: 20639874 PMCID: PMC2923061 DOI: 10.1038/nn.2599] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/21/2010] [Indexed: 01/04/2023]
Abstract
The hippocampus is a key brain circuit for spatial memory, and the spatially-selective spiking of hippocampal neuronal assemblies is thought to provide a mnemonic representation of space. Here we show that remembering newly-learnt goal locations requires the NMDA receptor-dependent stabilization and enhanced reactivation of goal-related hippocampal assemblies. During spatial learning, place-related firing patterns in the CA1, but not CA3, region of the rat hippocampus were reorganized to represent new goal locations. Such reorganization did not occur when goals were marked by visual cues. The stabilization and successful retrieval of these newly-acquired CA1 representations for behaviorally-relevant places was NMDAR-dependent and necessary for subsequent memory retention performance. Goal-related assembly patterns associated with sharp wave/ripple network oscillations, during both learning and subsequent rest periods, predicted memory performance. Together, these results suggest that reorganization and reactivation of assembly firing patterns in the hippocampus represent the formation and expression of new spatial memory traces.
Collapse
|
400
|
Kim J, Lee I. Hippocampus is necessary for spatial discrimination using distal cue-configuration. Hippocampus 2010; 21:609-21. [PMID: 20623761 DOI: 10.1002/hipo.20784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 11/07/2022]
Abstract
The role of the hippocampus in processing contextual cues has been well recognized. Contextual manipulation often involves transferring animals between different rooms. Because of vague definition of context in such a paradigm, however, it has been difficult to study the role of the hippocampus parametrically in contextual information processing. We designed a novel task in which a different context can be parametrically defined by the spatial configuration of distal cues. In this task, rats were trained to associate two different configurations of distal cue-sets (standard contexts) with different food-well locations at the end of a radial arm. Experiment 1 tested the role of the dorsal hippocampus in retrieving well-learned associations between standard contexts and rewarding food-well locations by comparing rats with neurotoxic lesions in the dorsal hippocampus with controls. We found that the hippocampal-lesioned rats were unable to retrieve the context-place paired associations learned before surgery. To further test the role of the hippocampus in generalizing altered context, in Experiment 2, rats were trained in a task in which modified versions of the standard contexts (ambiguous contexts) were presented, intermixed with the standard contexts. Rats were able to process the ambiguous contexts immediately by using their similarities to the standard contexts, whereas muscimol inactivation of the dorsal hippocampus in the same animals reversibly deprived such capability. The results suggest that rats can effectively associate discrete spatial locations with spatial configuration of distal cues. More important, rats can generalize or orthogonalize modified contextual environments using learned contextual representation of the environment.
Collapse
Affiliation(s)
- Jangjin Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Daehak-dong, Gwanak-gu, Korea
| | | |
Collapse
|