351
|
Grandaubert J, Balesdent MH, Rouxel T. [Transposable elements reshaping genomes and favouring the evolutionary and adaptive potential of fungal phytopathogens]. Biol Aujourdhui 2014; 207:277-290. [PMID: 24594576 DOI: 10.1051/jbio/2013026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 06/03/2023]
Abstract
Phytopathogenic fungi are a major threat for global food security and show an extreme plasticity in pathogenicity behaviours. They often have a high adaptive potential allowing them to rapidly counteract the control methods used by men in agrosystems. In this paper, we evaluate the link between genome plasticity and adaptive potential using genomics and comparative genomics approaches. Our model is the evolutionary series Leptosphaeria maculans-Leptosphaeria biglobosa, encompassing five distinct entities, whose conspecificity or heterospecificity status is unclear, and which all are pathogens of cruciferous plants. They however differ by their host range and pathogenicity. Compared to other species of the species complex, the species best adapted to oilseed rape, L. maculans "brassicae", causing important losses in the crop, has a genome that was submitted to a recent and massive burst of transposition by a few families of transposable elements (TEs). Whether the genome invasion contributed to speciation is still unclear to-date but there is a coincidence between this burst of TEs and divergence between two species. This TE burst contributed to diversification of effector proteins and thus to generation of novel pathogenic specificities. In addition, the location of effector genes within genome regions enriched in TEs has direct consequences on adaptation to plant resistance and favours a multiplicity of mutation events allowing "breakdown" of resistance. These data are substantiated by other examples in the literature showing that fungi tend to have a "two-speed" genome, in which a plastic compartment enriched in TE host genes is involved in pathogenicity and adaptation to host.
Collapse
|
352
|
García-Guzmán G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. THE NEW PHYTOLOGIST 2014; 201:1106-1120. [PMID: 24171899 DOI: 10.1111/nph.12562] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/19/2013] [Indexed: 05/26/2023]
Abstract
Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens.
Collapse
Affiliation(s)
| | - Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, México
| |
Collapse
|
353
|
Abstract
Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- INRA, Interactions Arbres/Microorganismes, UMR 1136, Champenoux, France
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
354
|
Removing PCR for the elimination of undesired DNA fragments cycle by cycle. Sci Rep 2014; 3:2303. [PMID: 23892515 PMCID: PMC3725479 DOI: 10.1038/srep02303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/11/2013] [Indexed: 01/21/2023] Open
Abstract
A novel removing polymerase chain reaction (R-PCR) technique was developed, which can eliminate undesired genes, cycle by cycle, with efficiencies of 60.9% (cDNAs), 73.6% (genomic DNAs), and ~ 100% (four DNA fragments were tested). Major components of the R-PCR include drivers, a thermostable restriction enzyme - ApeKI, and a poly(dA) adapter with mismatched restriction enzyme recognition sites. Drivers were generated from the undesired genes. In each cycle of R-PCR, drivers anneal to complementary sequences and allow extension by Taq DNA polymerase. Thus, ApeKI restriction sites in the undesired genes are recovered, and adapters of these undesired DNA fragments are removed. Using R-PCR, we isolated maize upregulated defense-responsive genes and Blumeria graminis specialized genes, including key pathogenesis-related effectors. Our results show that after the R-PCR reaction, most undesired genes, including very abundant genes, became undetectable. The R-PCR is an easy and cost-efficient method to eliminate undesired genes and clone desired genes.
Collapse
|
355
|
Abstract
All species continuously evolve to adapt to changing environments. The genetic variation that fosters such adaptation is caused by a plethora of mechanisms, including meiotic recombination that generates novel allelic combinations in the progeny of two parental lineages. However, a considerable number of eukaryotic species, including many fungi, do not have an apparent sexual cycle and are consequently thought to be limited in their evolutionary potential. As such organisms are expected to have reduced capability to eliminate deleterious mutations, they are often considered as evolutionary dead ends. However, inspired by recent reports we argue that such organisms can be as persistent as organisms with conventional sexual cycles through the use of other mechanisms, such as genomic rearrangements, to foster adaptation.
Collapse
Affiliation(s)
- Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
356
|
van der Burgt A, Karimi Jashni M, Bahkali AH, de Wit PJGM. Pseudogenization in pathogenic fungi with different host plants and lifestyles might reflect their evolutionary past. MOLECULAR PLANT PATHOLOGY 2014; 15:133-44. [PMID: 24393451 PMCID: PMC6638865 DOI: 10.1111/mpp.12072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pseudogenes are genes with significant homology to functional genes, but contain disruptive mutations (DMs) leading to the production of non- or partially functional proteins. Little is known about pseudogenization in pathogenic fungi with different lifestyles. Here, we report the identification of DMs causing pseudogenes in the genomes of the fungal plant pathogens Botrytis cinerea, Cladosporium fulvum, Dothistroma septosporum, Mycosphaerella fijiensis, Verticillium dahliae and Zymoseptoria tritici. In these fungi, we identified 1740 gene models containing 2795 DMs obtained by an alignment-based gene prediction method. The contribution of sequencing errors to DMs was minimized by analyses of resequenced genomes to obtain a refined dataset of 924 gene models containing 1666 true DMs. The frequency of pseudogenes varied from 1% to 5% in the gene catalogues of these fungi, being the highest in the asexually reproducing fungus C. fulvum (4.9%), followed by D. septosporum (2.4%) and V. dahliae (2.1%). The majority of pseudogenes do not represent recent gene duplications, but members of multi-gene families and unitary genes. In general, there was no bias for pseudogenization of specific genes in the six fungi. Single exceptions were those encoding secreted proteins, including proteases, which appeared more frequently pseudogenized in C. fulvum than in D. septosporum. Most pseudogenes present in these two phylogenetically closely related fungi are not shared, suggesting that they are related to adaptation to a different host (tomato versus pine) and lifestyle (biotroph versus hemibiotroph).
Collapse
Affiliation(s)
- Ate van der Burgt
- Laboratory of Phytopathology, Wageningen University and Research Centre, PO Box 16, 6700 AA, Wageningen, the Netherlands; Applied Bioinformatics, Plant Research International, Wageningen University and Research Centre, PO Box 16, 6700 AA, Wageningen, the Netherlands
| | | | | | | |
Collapse
|
357
|
Vela-Corcía D, Bellón-Gómez D, López-Ruiz F, Torés JA, Pérez-García A. The Podosphaera fusca TUB2 gene, a molecular “Swiss Army knife” with multiple applications in powdery mildew research. Fungal Biol 2014; 118:228-41. [DOI: 10.1016/j.funbio.2013.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
358
|
Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, Vienne DM, Rodríguez de la Vega RC, Branco S, Giraud T. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol 2014; 23:753-73. [DOI: 10.1111/mec.12631] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Pierre Gladieux
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
- Department of Plant and Microbial Biology University of California Berkeley CA 94720‐3102 USA
| | - Jeanne Ropars
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Hélène Badouin
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Antoine Branca
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Gabriela Aguileta
- Center for Genomic Regulation (CRG) Dr, Aiguader 88 Barcelona 08003 Spain
- Universitat Pompeu Fabra (UPF) Barcelona 08003 Spain
| | - Damien M. Vienne
- Center for Genomic Regulation (CRG) Dr, Aiguader 88 Barcelona 08003 Spain
- Universitat Pompeu Fabra (UPF) Barcelona 08003 Spain
- Laboratoire de Biométrie et Biologie Evolutive Université Lyon 1 CNRS UMR5558 Villeurbanne 69622 France
| | - Ricardo C. Rodríguez de la Vega
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| | - Sara Branco
- Department of Plant and Microbial Biology University of California Berkeley CA 94720‐3102 USA
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution UMR8079 University of Paris‐Sud Orsay 91405 France
- Ecologie, Systématique et Evolution CNRS UMR8079 Orsay 91405 France
| |
Collapse
|
359
|
Collemare J, Griffiths S, Iida Y, Karimi Jashni M, Battaglia E, Cox RJ, de Wit PJGM. Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum. PLoS One 2014; 9:e85877. [PMID: 24465762 PMCID: PMC3895014 DOI: 10.1371/journal.pone.0085877] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/03/2013] [Indexed: 01/07/2023] Open
Abstract
Cladosporium fulvum is a biotrophic fungal pathogen that causes leaf mould of tomato. Analysis of its genome suggested a high potential for production of secondary metabolites (SM), which might be harmful to plants and animals. Here, we have analysed in detail the predicted SM gene clusters of C. fulvum employing phylogenetic and comparative genomic approaches. Expression of the SM core genes was measured by RT-qrtPCR and produced SMs were determined by LC-MS and NMR analyses. The genome of C. fulvum contains six gene clusters that are conserved in other fungal species, which have undergone rearrangements and gene losses associated with the presence of transposable elements. Although being a biotroph, C. fulvum has the potential to produce elsinochrome and cercosporin toxins. However, the corresponding core genes are not expressed during infection of tomato. Only two core genes, PKS6 and NPS9, show high expression in planta, but both are significantly down regulated during colonization of the mesophyll tissue. In vitro SM profiling detected only one major compound that was identified as cladofulvin. PKS6 is likely involved in the production of this pigment because it is the only core gene significantly expressed under these conditions. Cladofulvin does not cause necrosis on Solanaceae plants and does not show any antimicrobial activity. In contrast to other biotrophic fungi that have a reduced SM production capacity, our studies on C. fulvum suggest that down-regulation of SM biosynthetic pathways might represent another mechanism associated with a biotrophic lifestyle.
Collapse
Affiliation(s)
- Jérôme Collemare
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen, The Netherlands
- * E-mail:
| | - Scott Griffiths
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yuichiro Iida
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- National Institute of Vegetable and Tea Science, Tsu, Japan
| | - Mansoor Karimi Jashni
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, Tarbiat Modares University, Tehran, Iran
| | - Evy Battaglia
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Russell J. Cox
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Pierre J. G. M. de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen, The Netherlands
| |
Collapse
|
360
|
Profile of Paul Schulze-Lefert. Proc Natl Acad Sci U S A 2014; 111:570-2. [DOI: 10.1073/pnas.1321631111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
361
|
Abstract
Gene transfer has been identified as a prevalent and pervasive phenomenon and an important source of genomic innovation in bacteria. The role of gene transfer in microbial eukaryotes seems to be of a reduced magnitude but in some cases can drive important evolutionary innovations, such as new functions that underpin the colonization of different niches. The aim of this review is to summarize published cases that support the hypothesis that horizontal gene transfer (HGT) has played a role in the evolution of phytopathogenic traits in fungi and oomycetes. Our survey of the literature identifies 46 proposed cases of transfer of genes that have a putative or experimentally demonstrable phytopathogenic function. When considering the life-cycle steps through which a pathogen must progress, the majority of the HGTs identified are associated with invading, degrading, and manipulating the host. Taken together, these data suggest HGT has played a role in shaping how fungi and oomycetes colonize plant hosts.
Collapse
Affiliation(s)
- Darren Soanes
- Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom;
| | | |
Collapse
|
362
|
Abstract
To confer resistance against pathogens and pests in plants, typically dominant resistance genes are deployed. However, because resistance is based on recognition of a single pathogen-derived molecular pattern, these narrow-spectrum genes are usually readily overcome. Disease arises from a compatible interaction between plant and pathogen. Hence, altering a plant gene that critically facilitates compatibility could provide a more broad-spectrum and durable type of resistance. Here, such susceptibility (S) genes are reviewed with a focus on the mechanisms underlying loss of compatibility. We distinguish three groups of S genes acting during different stages of infection: early pathogen establishment, modulation of host defenses, and pathogen sustenance. The many examples reviewed here show that S genes have the potential to be used in resistance breeding. However, because S genes have a function other than being a compatibility factor for the pathogen, the side effects caused by their mutation demands a one-by-one assessment of their usefulness for application.
Collapse
|
363
|
Weiberg A, Wang M, Bellinger M, Jin H. Small RNAs: a new paradigm in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:495-516. [PMID: 25090478 DOI: 10.1146/annurev-phyto-102313-045933] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A never-ending arms race drives coevolution between pathogens and hosts. In plants, pathogen attacks invoke multiple layers of host immune responses. Many pathogens deliver effector proteins into host cells to suppress host immunity, and many plants have evolved resistance proteins to recognize effectors and trigger robust resistance. Here, we discuss findings on noncoding small RNAs (sRNAs) from plants and pathogens, which regulate host immunity and pathogen virulence. Recent discoveries have unveiled the role of noncoding sRNAs from eukaryotic pathogens and bacteria in pathogenicity in both plant and animal hosts. The discovery of fungal sRNAs that are delivered into host cells to suppress plant immunity added sRNAs to the list of pathogen effectors. Similar to protein effector genes, many of these sRNAs are generated from transposable element (TE) regions, which are likely to contribute to rapidly evolving virulence and host adaptation. We also discuss RNA silencing that occurs between organisms.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | | | | | | |
Collapse
|
364
|
Cristancho MA, Botero-Rozo DO, Giraldo W, Tabima J, Riaño-Pachón DM, Escobar C, Rozo Y, Rivera LF, Durán A, Restrepo S, Eilam T, Anikster Y, Gaitán AL. Annotation of a hybrid partial genome of the coffee rust (Hemileia vastatrix) contributes to the gene repertoire catalog of the Pucciniales. FRONTIERS IN PLANT SCIENCE 2014; 5:594. [PMID: 25400655 PMCID: PMC4215621 DOI: 10.3389/fpls.2014.00594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/11/2014] [Indexed: 05/20/2023]
Abstract
Coffee leaf rust caused by the fungus Hemileia vastatrix is the most damaging disease to coffee worldwide. The pathogen has recently appeared in multiple outbreaks in coffee producing countries resulting in significant yield losses and increases in costs related to its control. New races/isolates are constantly emerging as evidenced by the presence of the fungus in plants that were previously resistant. Genomic studies are opening new avenues for the study of the evolution of pathogens, the detailed description of plant-pathogen interactions and the development of molecular techniques for the identification of individual isolates. For this purpose we sequenced 8 different H. vastatrix isolates using NGS technologies and gathered partial genome assemblies due to the large repetitive content in the coffee rust hybrid genome; 74.4% of the assembled contigs harbor repetitive sequences. A hybrid assembly of 333 Mb was built based on the 8 isolates; this assembly was used for subsequent analyses. Analysis of the conserved gene space showed that the hybrid H. vastatrix genome, though highly fragmented, had a satisfactory level of completion with 91.94% of core protein-coding orthologous genes present. RNA-Seq from urediniospores was used to guide the de novo annotation of the H. vastatrix gene complement. In total, 14,445 genes organized in 3921 families were uncovered; a considerable proportion of the predicted proteins (73.8%) were homologous to other Pucciniales species genomes. Several gene families related to the fungal lifestyle were identified, particularly 483 predicted secreted proteins that represent candidate effector genes and will provide interesting hints to decipher virulence in the coffee rust fungus. The genome sequence of Hva will serve as a template to understand the molecular mechanisms used by this fungus to attack the coffee plant, to study the diversity of this species and for the development of molecular markers to distinguish races/isolates.
Collapse
Affiliation(s)
- Marco A. Cristancho
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
- *Correspondence: Marco A. Cristancho, Department of Plant Pathology, National Center for Coffee Research – CENICAFÉ, Km 4 vía a Manizales, Chinchiná 2427, Colombia e-mail:
| | - David Octavio Botero-Rozo
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
- Departamento de Ciencias Biológicas, Universidad de los AndesBogotá, Colombia
| | - William Giraldo
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Javier Tabima
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
- Departamento de Ciencias Biológicas, Universidad de los AndesBogotá, Colombia
| | | | - Carolina Escobar
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Yomara Rozo
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Luis F. Rivera
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Andrés Durán
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| | - Silvia Restrepo
- Departamento de Ciencias Biológicas, Universidad de los AndesBogotá, Colombia
| | - Tamar Eilam
- Institute for Cereal Crops Improvement, Tel Aviv UniversityTel Aviv, Israel
| | - Yehoshua Anikster
- Institute for Cereal Crops Improvement, Tel Aviv UniversityTel Aviv, Israel
| | - Alvaro L. Gaitán
- Plant Pathology, National Center for Coffee Research – CENICAFÉChinchiná, Colombia
| |
Collapse
|
365
|
Saunders DGO, Win J, Kamoun S, Raffaele S. Two-dimensional data binning for the analysis of genome architecture in filamentous plant pathogens and other eukaryotes. Methods Mol Biol 2014; 1127:29-51. [PMID: 24643550 DOI: 10.1007/978-1-62703-986-4_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genome architecture often reflects an organism's lifestyle and can therefore provide insights into gene function, regulation, and adaptation. In several lineages of plant pathogenic fungi and oomycetes, characteristic repeat-rich and gene-sparse regions harbor pathogenicity-related genes such as effectors. In these pathogens, analysis of genome architecture has assisted the mining for novel candidate effector genes and investigations into patterns of gene regulation and evolution at the whole genome level. Here we describe a two-dimensional data binning method in R with a heatmap-style graphical output to facilitate analysis and visualization of whole genome architecture. The method is flexible, combining whole genome architecture heatmaps with scatter plots of the genomic environment of selected gene sets. This enables analysis of specific values associated with genes such as gene expression and sequence polymorphisms, according to genome architecture. This method enables the investigation of whole genome architecture and reveals local properties of genomic neighborhoods in a clear and concise manner.
Collapse
|
366
|
Muthuswamy A, Eapen SJ. Research on Plant Pathogenic Fungi in the Genomics Era: From Sequence Analysis to Systems Biology. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
367
|
Stam R, Mantelin S, McLellan H, Thilliez G. The role of effectors in nonhost resistance to filamentous plant pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:582. [PMID: 25426123 PMCID: PMC4224059 DOI: 10.3389/fpls.2014.00582] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops.
Collapse
Affiliation(s)
- Remco Stam
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- *Correspondence: Remco Stam, Division of Plant Sciences, University of Dundee – The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK e-mail:
| | - Sophie Mantelin
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
| | - Gaëtan Thilliez
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
368
|
Fernandez J, Marroquin-Guzman M, Wilson RA. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:155-74. [PMID: 24848414 DOI: 10.1146/annurev-phyto-102313-050135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Foliar fungal pathogens challenge global food security, but how they optimize growth and development during infection is understudied. Despite adopting several lifestyles to facilitate nutrient acquisition from colonized cells, little is known about the genetic underpinnings governing pathogen adaption to host-derived nutrients. Homologs of common global and pathway-specific gene regulatory elements are likely to be involved, but their contribution to pathogenicity, and how they are connected to broader genetic networks, is largely unspecified. Here, we focus on carbon and nitrogen metabolism in foliar pathogens and consider what is known, and what is not known, about fungal exploitation of host nutrient and ask how common metabolic regulators have been co-opted to the plant-pathogenic lifestyle as well as how nutrients are utilized to drive infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583; , ,
| | | | | |
Collapse
|
369
|
Pike S, Gao F, Kim MJ, Kim SH, Schachtman DP, Gassmann W. Members of the NPF3 transporter subfamily encode pathogen-inducible nitrate/nitrite transporters in grapevine and Arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:162-70. [PMID: 24259683 DOI: 10.1093/pcp/pct167] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Vitis vinifera, the major grapevine species cultivated for wine production, is very susceptible to Erysiphe necator, the causal agent of powdery mildew (PM). This obligate biotrophic fungal pathogen attacks both leaf and berry, greatly affecting yield and quality. To investigate possible mechanisms of nutrient acquisition by successful biotrophs, we characterized a candidate NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER FAMILY (NPF, formerly NRT1/PTR) member, grapevine NFP3.2, that was up-regulated in E. necator-inoculated susceptible V. vinifera Cabernet Sauvignon leaves, but not in resistant V. aestivalis Norton. Expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements showed that VvNPF3.2 is a low-affinity transporter for both nitrate and nitrite and displays characteristics of NPF members from other plants. We also cloned the Arabidopsis ortholog, AtNPF3.1, and showed that AtNPF3.1 similarly transported nitrate and nitrite with low affinity. With an Arabidopsis triple mutant that is susceptible to E. necator, we found that AtNPF3.1 is up-regulated in the leaves of infected Arabidopsis similarly to VvNPF3.2 in susceptible grapevine leaves. Expression of the reporter β-glucuronidase (GUS) driven by the promoter of VvNPF3.2 or AtNPF3.1 in Arabidopsis indicated that both transporters are expressed in vascular tissue, with expression in major and minor veins, respectively. Interestingly, the promoter of VvNPF3.2 allowed induced expression of GUS in minor veins in PM-infected leaves. Our experiments lay the groundwork for investigating the manipulation of host nutrient distribution by biotrophic pathogens and characterizing physiological variables in the pathogenesis of this difficult to study grapevine disease.
Collapse
Affiliation(s)
- Sharon Pike
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, and Interdisciplinary Plant Group, 1201 E. Rollins Rd., University of Missouri, Columbia, MO 65211-7310, USA
| | | | | | | | | | | |
Collapse
|
370
|
Gijzen M, Ishmael C, Shrestha SD. Epigenetic control of effectors in plant pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:638. [PMID: 25429296 PMCID: PMC4228847 DOI: 10.3389/fpls.2014.00638] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/27/2014] [Indexed: 05/07/2023]
Abstract
Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr) factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in filamentous plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.
Collapse
Affiliation(s)
- Mark Gijzen
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
- *Correspondence: Mark Gijzen, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada e-mail:
| | - Chelsea Ishmael
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Sirjana D. Shrestha
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
371
|
Abstract
Live-cell imaging assisted by fluorescent markers has been fundamental to understanding the focused secretory 'warfare' that occurs between plants and biotrophic pathogens that feed on living plant cells. Pathogens succeed through the spatiotemporal deployment of a remarkably diverse range of effector proteins to control plant defences and cellular processes. Some effectors can be secreted by appressoria even before host penetration, many enter living plant cells where they target diverse subcellular compartments and others move into neighbouring cells to prepare them before invasion. This Review summarizes the latest advances in our understanding of the cell biology of biotrophic interactions between plants and their eukaryotic filamentous pathogens based on in planta analyses of effectors.
Collapse
|
372
|
Li S, Ji R, Dudler R, Yong M, Deng Q, Wang Z, Hu D. Wheat gene TaS3 contributes to powdery mildew susceptibility. PLANT CELL REPORTS 2013; 32:1891-901. [PMID: 24013794 DOI: 10.1007/s00299-013-1501-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 05/16/2023]
Abstract
Identification of TaS3 as a potential susceptibility gene encoding a protein homologous to ULP1 protease in wheat, which may regulate SUMO function facilitating powdery mildew attack. Some plant genes that are required for susceptibilities to certain pathogens are known as susceptibility genes or susceptibility factors, whose loss-of-function mutations can confer the plants resistances. To identify potential susceptibility genes to powdery mildew in wheat, differentially expressed genes in compatible and incompatible interactions between wheat and powdery mildew were examined by the cDNA chip assay. The genes exclusively expressed in the susceptible cultivar were interfered using biolistic transient transformation in wheat epidermal cells. The suppression of gene TaS3 (Triticum aestivum susceptibility) decreased the pathogen penetration by 19%, and its over-expression increased the disease susceptibility. The deduced protein from TaS3 belongs to the putative ubiquitin-like protease 1 peptidase domain family. Subcellular localization studies revealed that its protein was accumulated in the nucleus. Quantitative real-time polymerase chain reaction analysis revealed that TaS3 transcript was significantly induced in the compatible host. This suggests that TaS3 is a potential susceptible gene and its function may be related to regulate SUMO functions.
Collapse
Affiliation(s)
- Shaohui Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
373
|
Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 2013; 110:20117-22. [PMID: 24277808 DOI: 10.1073/pnas.1313452110] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
Collapse
|
374
|
Sperschneider J, Gardiner DM, Taylor JM, Hane JK, Singh KB, Manners JM. A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi. BMC Genomics 2013; 14:807. [PMID: 24252298 PMCID: PMC3914424 DOI: 10.1186/1471-2164-14-807] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms.
Collapse
Affiliation(s)
- Jana Sperschneider
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Centre for Environment and Life Sciences, Perth, Western Australia, Australia.
| | | | | | | | | | | |
Collapse
|
375
|
Zhou P, Silverstein KAT, Gao L, Walton JD, Nallu S, Guhlin J, Young ND. Detecting small plant peptides using SPADA (Small Peptide Alignment Discovery Application). BMC Bioinformatics 2013; 14:335. [PMID: 24256031 PMCID: PMC3924332 DOI: 10.1186/1471-2105-14-335] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/15/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Small peptides encoded as one- or two-exon genes in plants have recently been shown to affect multiple aspects of plant development, reproduction and defense responses. However, popular similarity search tools and gene prediction techniques generally fail to identify most members belonging to this class of genes. This is largely due to the high sequence divergence among family members and the limited availability of experimentally verified small peptides to use as training sets for homology search and ab initio prediction. Consequently, there is an urgent need for both experimental and computational studies in order to further advance the accurate prediction of small peptides. RESULTS We present here a homology-based gene prediction program to accurately predict small peptides at the genome level. Given a high-quality profile alignment, SPADA identifies and annotates nearly all family members in tested genomes with better performance than all general-purpose gene prediction programs surveyed. We find numerous mis-annotations in the current Arabidopsis thaliana and Medicago truncatula genome databases using SPADA, most of which have RNA-Seq expression support. We also show that SPADA works well on other classes of small secreted peptides in plants (e.g., self-incompatibility protein homologues) as well as non-secreted peptides outside the plant kingdom (e.g., the alpha-amanitin toxin gene family in the mushroom, Amanita bisporigera). CONCLUSIONS SPADA is a free software tool that accurately identifies and predicts the gene structure for short peptides with one or two exons. SPADA is able to incorporate information from profile alignments into the model prediction process and makes use of it to score different candidate models. SPADA achieves high sensitivity and specificity in predicting small plant peptides such as the cysteine-rich peptide families. A systematic application of SPADA to other classes of small peptides by research communities will greatly improve the genome annotation of different protein families in public genome databases.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Kevin AT Silverstein
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Liangliang Gao
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Jonathan D Walton
- Department of Plant Biology and U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph Guhlin
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
376
|
Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahrén D. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet 2013; 9:e1003909. [PMID: 24244185 PMCID: PMC3828140 DOI: 10.1371/journal.pgen.1003909] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/09/2013] [Indexed: 01/12/2023] Open
Abstract
Orbiliomycetes is one of the earliest diverging branches of the filamentous ascomycetes. The class contains nematode-trapping fungi that form unique infection structures, called traps, to capture and kill free-living nematodes. The traps have evolved differently along several lineages and include adhesive traps (knobs, nets or branches) and constricting rings. We show, by genome sequencing of the knob-forming species Monacrosporium haptotylum and comparison with the net-forming species Arthrobotrys oligospora, that two genomic mechanisms are likely to have been important for the adaptation to parasitism in these fungi. Firstly, the expansion of protein domain families and the large number of species-specific genes indicated that gene duplication followed by functional diversification had a major role in the evolution of the nematode-trapping fungi. Gene expression indicated that many of these genes are important for pathogenicity. Secondly, gene expression of orthologs between the two fungi during infection indicated that differential regulation was an important mechanism for the evolution of parasitism in nematode-trapping fungi. Many of the highly expressed and highly upregulated M. haptotylum transcripts during the early stages of nematode infection were species-specific and encoded small secreted proteins (SSPs) that were affected by repeat-induced point mutations (RIP). An active RIP mechanism was revealed by lack of repeats, dinucleotide bias in repeats and genes, low proportion of recent gene duplicates, and reduction of recent gene family expansions. The high expression and rapid divergence of SSPs indicate a striking similarity in the infection mechanisms of nematode-trapping fungi and plant and insect pathogens from the crown groups of the filamentous ascomycetes (Pezizomycotina). The patterns of gene family expansions in the nematode-trapping fungi were more similar to plant pathogens than to insect and animal pathogens. The observation of RIP activity in the Orbiliomycetes suggested that this mechanism was present early in the evolution of the filamentous ascomycetes.
Collapse
Affiliation(s)
- Tejashwari Meerupati
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Karl-Magnus Andersson
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Eva Friman
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Dharmendra Kumar
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden
- Department of Genetics and Plant Breeding, N.D. University of Agriculture and Technology, Faizabad, India
| | - Anders Tunlid
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Dag Ahrén
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden
- BILS Bioinformatics Infrastructure for Life Sciences, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| |
Collapse
|
377
|
Affiliation(s)
- Thomas D Otto
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
378
|
Feechan A, Jermakow AM, Ivancevic A, Godfrey D, Pak H, Panstruga R, Dry IB. Host cell entry of powdery mildew is correlated with endosomal transport of antagonistically acting VvPEN1 and VvMLO to the papilla. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1138-50. [PMID: 23819806 DOI: 10.1094/mpmi-04-13-0091-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Challenge by a nonadapted powdery mildew fungal pathogen leads to the formation of a local cell-wall apposition (papilla) beneath the point of attempted penetration. Several plasma membrane (PM) proteins with opposing roles in powdery mildew infection, including Arabidopsis thaliana PENETRATION1 (PEN1) and barley (Hordeum vulgare) MILDEW RESISTANCE LOCUS O (MLO), are localized to the site of powdery mildew attack. PEN1 contributes to penetration resistance to nonadapted powdery mildews, whereas MLO is a susceptibility factor required by adapted powdery mildew pathogens for host cell entry. Our previous studies have demonstrated that the vesicle and endosomal trafficking inhibitors, brefeldin A and wortmannin, have opposite effects on the penetration rates of adapted and nonadapted powdery mildews on grapevine. These findings prompted us to study the pathogen-induced intracellular trafficking of grapevine variants of MLO and PEN1. We first identified grapevine (Vitis vinifera) VvPEN1 and VvMLO orthologs that rescue Arabidopsis Atpen1 and Atmlo2 mlo6 mlo12 null mutants, respectively. By using endomembrane trafficking inhibitors in combination with fluorescence microscopy, we demonstrate that VvMLO3/VvMLO4 and VvPEN1 are co-trafficked together from the PM to the site of powdery mildew challenge. This focal accumulation of VvMLO3/VvMLO4 and VvPEN1 to the site of attack seems to be required for their opposing functions during powdery mildew attack, because their subcellular localization is correlated with the outcome of attempted powdery mildew penetration.
Collapse
|
379
|
Lapin D, Van den Ackerveken G. Susceptibility to plant disease: more than a failure of host immunity. TRENDS IN PLANT SCIENCE 2013; 18:546-54. [PMID: 23790254 DOI: 10.1016/j.tplants.2013.05.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 05/23/2023]
Abstract
Susceptibility to infectious diseases caused by pathogens affects most plants in their natural habitat and leads to yield losses in agriculture. However, plants are not helpless because their immune system can deal with the vast majority of attackers. Nevertheless, adapted pathogens are able to circumvent or avert host immunity making plants susceptible to these uninvited guests. In addition to the failure of the plant immune system, there are other host processes that contribute to plant disease susceptibility. In this review, we discuss recent studies that show the active role played by the host in supporting disease, focusing mainly on biotrophic stages of infection. Plants attract pathogens, enable their entry and accommodation, and facilitate nutrient provision.
Collapse
Affiliation(s)
- Dmitry Lapin
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
380
|
Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar A, Marcet-Houben M, Pöggeler S, Stajich JE, Nowrousian M. The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genet 2013; 9:e1003820. [PMID: 24068976 PMCID: PMC3778014 DOI: 10.1371/journal.pgen.1003820] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022] Open
Abstract
Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. Fungi are a morphologically and physiologically diverse group of organisms with huge impacts on nearly all ecosystems. In recent years, genomes of many fungal species have been sequenced and have greatly improved our understanding of fungal biology. Ascomycetes are the largest fungal group with the highest number of sequenced genomes; however, for the Pezizales, an early-diverging lineage of filamentous ascomycetes, only one genome has been sequence to date, namely that of the black truffle. While truffles are among the most valuable edible fungi, they have a specialized life style as plant symbionts producing belowground fruiting bodies; thus it is difficult to draw conclusions about basal ascomycetes from one truffle genome alone. Therefore, we have sequenced the genome and several transcriptomes of the basal ascomycete Pyronema confluens, which has a saprobic life style typical of many ascomycetes. Comparisons with other fungal genomes showed that P. confluens has two conserved mating type genes, but that the genomic environment of the mating type genes is different from that of higher ascomycetes. We also found that a high number of orphan genes, i.e. genes without homologs in other fungi, are upregulated during sexual development. This is consistent with rapid evolution of sex-associated genes.
Collapse
Affiliation(s)
- Stefanie Traeger
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Florian Altegoer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Freitag
- Center for Genome Research and Biocomputing, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Toni Gabaldon
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Abhishek Kumar
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
381
|
Di Bella JM, Bao Y, Gloor GB, Burton JP, Reid G. High throughput sequencing methods and analysis for microbiome research. J Microbiol Methods 2013; 95:401-14. [PMID: 24029734 DOI: 10.1016/j.mimet.2013.08.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 02/07/2023]
Abstract
High-throughput sequencing technology is rapidly improving in quality, speed and cost. It is therefore becoming more widely used to study whole communities of prokaryotes in many niches. This review discusses these techniques, including nucleic acid extraction from different environments, sample preparation and high-throughput sequencing platforms. We also discuss commonly used and recently developed bioinformatic tools applied to microbiomes, including analyzing amplicon sequences, metagenome shotgun sequences and metatranscriptome sequences. This field is relatively new and rapidly evolving, thus we hope that this review will provide a baseline for understanding these methods of microbiome analyses. Additionally, we seek to stimulate others to solve the many problems that still exist with the sensitivity, specificity and interpretation of high throughput microbiome sequence analysis.
Collapse
Affiliation(s)
- Julia M Di Bella
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
382
|
The genome of Spraguea lophii and the basis of host-microsporidian interactions. PLoS Genet 2013; 9:e1003676. [PMID: 23990793 PMCID: PMC3749934 DOI: 10.1371/journal.pgen.1003676] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle. Microsporidia are unusual intracellular parasites that infect a broad range of animal cells. In comparison to their fungal relatives, microsporidian genomes have shrunk during evolution, encoding as few as 2000 proteins. This minimal molecular repertoire makes them a reduced model system for understanding host-parasite interactions. A number of microsporidian genomes have now been sequenced, but the lack of a system for genetic manipulation makes it difficult to translate these data into a better understanding of microsporidian biology. Here we present a deep sequencing project of Spraguea lophii, a fish-infecting microsporidian that is abundantly available from environmental samples. We use our sequence data combined with germination protocols and complex-mix proteomics to identify proteins released by the cell at the earliest stage of germination, representing potential pathogenicity factors. We profile the RNA expression pattern of germinating cells and identify a set of highly transcribed hypothetical genes. Our study provides new insight into the importance of uncharacterized, lineage-specific and/or fast evolving proteins in microsporidia and provides new leads for the investigation of virulence factors in these enigmatic parasites.
Collapse
|
383
|
Abstract
Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.
Collapse
Affiliation(s)
- David S Hibbett
- Biology Department, Clark University, Worcester, Massachusetts 01610
| | | | | |
Collapse
|
384
|
Host-related metabolic cues affect colonization strategies of a root endophyte. Proc Natl Acad Sci U S A 2013; 110:13965-70. [PMID: 23918389 DOI: 10.1073/pnas.1301653110] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms underpinning broad compatibility in root symbiosis are largely unexplored. The generalist root endophyte Piriformospora indica establishes long-lasting interactions with morphologically and biochemically different hosts, stimulating their growth, alleviating salt stress, and inducing local and systemic resistance to pathogens. Cytological studies and global investigations of fungal transcriptional responses to colonization of barley and Arabidopsis at different symbiotic stages identified host-dependent colonization strategies and host-specifically induced effector candidates. Here, we show that in Arabidopsis, P. indica establishes and maintains biotrophic nutrition within living epidermal cells, whereas in barley the symbiont undergoes a nutritional switch to saprotrophy that is associated with the production of secondary thinner hyphae in dead cortex cells. Consistent with a diversified trophic behavior and with the occurrence of nitrogen deficiency at the onset of saprotrophy in barley, fungal genes encoding hydrolytic enzymes and nutrient transporters were highly induced in this host but not in Arabidopsis. Silencing of the high-affinity ammonium transporter PiAMT1 gene, whose transcripts are accumulating during nitrogen starvation and in barley, resulted in enhanced colonization of this host, whereas it had no effect on the colonization of Arabidopsis. Increased levels of free amino acids and reduced enzymatic activity for the cell-death marker VPE (vacuolar-processing enzyme) in colonized barley roots coincided with an extended biotrophic lifestyle of P. indica upon silencing of PiAMT1. This suggests that PiAmt1 functions as a nitrogen sensor mediating the signal that triggers the in planta activation of the saprotrophic program. Thus, host-related metabolic cues affect the expression of P. indica's alternative lifestyles.
Collapse
|
385
|
Murata H, Ota Y, Yamaguchi M, Yamada A, Katahata S, Otsuka Y, Babasaki K, Neda H. Mobile DNA distributions refine the phylogeny of "matsutake" mushrooms, Tricholoma sect. Caligata. MYCORRHIZA 2013; 23:447-461. [PMID: 23440576 DOI: 10.1007/s00572-013-0487-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
"Matsutake" mushrooms are formed by several species of Tricholoma sect. Caligata distributed across the northern hemisphere. A phylogenetic analysis of matsutake based on virtually neutral mutations in DNA sequences resolved robust relationships among Tricholoma anatolicum, Tricholoma bakamatsutake, Tricholoma magnivelare, Tricholoma matsutake, and Tricholoma sp. from Mexico (=Tricholoma sp. Mex). However, relationships among these matsutake and other species, such as Tricholoma caligatum and Tricholoma fulvocastaneum, were ambiguous. We, therefore, analyzed genomic copy numbers of σ marY1 , marY1, and marY2N retrotransposons by comparing them with the single-copy mobile DNA megB1 using real-time polymerase chain reaction (PCR) to clarify matsutake phylogeny. We also examined types of megB1-associated domains, composed of a number of poly (A) and poly (T) reminiscent of RNA-derived DNA elements among these species. Both datasets resolved two distinct groups, one composed of T. bakamatsutake, T. fulvocastaneum, and T. caligatum that could have diverged earlier and the other comprising T. magnivelare, Tricholoma sp. Mex, T. anatolicum, and T. matsutake that could have evolved later. In the first group, T. caligatum was the closest to the second group, followed by T. fulvocastaneum and T. bakamatsutake. Within the second group, T. magnivelare was clearly differentiated from the other species. The data suggest that matsutake underwent substantial evolution between the first group, mostly composed of Fagaceae symbionts, and the second group, comprised only of Pinaceae symbionts, but diverged little within each groups. Mobile DNA markers could be useful in resolving difficult phylogenies due to, for example, closely spaced speciation events.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Applied Microbiology and Mushroom Sciences, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
386
|
The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet 2013; 45:1092-6. [PMID: 23852167 DOI: 10.1038/ng.2704] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
Abstract
Wheat powdery mildew, Blumeria graminis forma specialis tritici, is a devastating fungal pathogen with a poorly understood evolutionary history. Here we report the draft genome sequence of wheat powdery mildew, the resequencing of three additional isolates from different geographic regions and comparative analyses with the barley powdery mildew genome. Our comparative genomic analyses identified 602 candidate effector genes, with many showing evidence of positive selection. We characterize patterns of genetic diversity and suggest that mildew genomes are mosaics of ancient haplogroups that existed before wheat domestication. The patterns of diversity in modern isolates suggest that there was no pronounced loss of genetic diversity upon formation of the new host bread wheat 10,000 years ago. We conclude that the ready adaptation of B. graminis f.sp. tritici to the new host species was based on a diverse haplotype pool that provided great genetic potential for pathogen variation.
Collapse
|
387
|
Schön M, Töller A, Diezel C, Roth C, Westphal L, Wiermer M, Somssich IE. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:758-67. [PMID: 23617415 DOI: 10.1094/mpmi-11-12-0265-r] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Simultaneous mutation of two WRKY-type transcription factors, WRKY18 and WRKY40, renders otherwise susceptible wild-type Arabidopsis plants resistant towards the biotrophic powdery mildew fungus Golovinomyces orontii. Resistance in wrky18 wrky40 double mutant plants is accompanied by massive transcriptional reprogramming, imbalance in salicylic acid (SA) and jasmonic acid (JA) signaling, altered ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) expression, and accumulation of the phytoalexin camalexin. Genetic analyses identified SA biosynthesis and EDS1 signaling as well as biosynthesis of the indole-glucosinolate 4MI3G as essential components required for loss-of-WRKY18 WRKY40-mediated resistance towards G. orontii. The analysis of wrky18 wrky40 pad3 mutant plants impaired in camalexin biosynthesis revealed an uncoupling of pre- from postinvasive resistance against G. orontii. Comprehensive infection studies demonstrated the specificity of wrky18 wrky40-mediated G. orontii resistance. Interestingly, WRKY18 and WRKY40 act as positive regulators in effector-triggered immunity, as the wrky18 wrky40 double mutant was found to be strongly susceptible towards the bacterial pathogen Pseudomonas syringae DC3000 expressing the effector AvrRPS4 but not against other tested Pseudomonas strains. We hypothesize that G. orontii depends on the function of WRKY18 and WRKY40 to successfully infect Arabidopsis wild-type plants while, in the interaction with P. syringae AvrRPS4, they are required to mediate effector-triggered immunity.
Collapse
Affiliation(s)
- Moritz Schön
- Department of Plant Microbe Interaction, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
388
|
Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP. Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing. PLoS One 2013; 8:e67150. [PMID: 23840606 PMCID: PMC3694141 DOI: 10.1371/journal.pone.0067150] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/14/2013] [Indexed: 12/31/2022] Open
Abstract
Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.
Collapse
Affiliation(s)
- Diana P. Garnica
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Narayana M. Upadhyaya
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Peter N. Dodds
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - John P. Rathjen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
389
|
Hu X, Zhang Y, Xiao G, Zheng P, Xia Y, Zhang X, St Leger RJ, Liu X, Wang C. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5929-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
390
|
Deng H, Shu D, Luo D, Gong T, Sun F, Tan H. Scatter: a novel family of miniature inverted-repeat transposable elements in the fungus Botrytis cinerea. J Basic Microbiol 2013; 53:815-22. [PMID: 23775675 DOI: 10.1002/jobm.201200238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/25/2012] [Indexed: 01/28/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are short non-autonomous DNA transposons that play an important role in genome structure and function. Here, we described a novel family of MITEs, named Scatter, identified from the genomes of three strains of the fungus Botrytis cinerea (T4, B05.10, and TBC-A). Intact Scatter elements are typically an average of 247 bp, and contain 41 bp terminal inverted repeats (TIRs) and 2-bp "TA" target site duplications (TSDs). Based a search against the transposable elements database and GenBank, Scatter is a novel and potentially species-specific family of MITEs. Moderate heterogeneity in sequence and size of individual Scatter copies suggests that Scatter elements were not recently proliferated. Most integrated sites were conserved across all three strains tested and elements inserted at equivalent sites shared high identity at the nucleotide level. This conservation, in combination with the presence of a similar copy number (22-24), in B. cinerea strains tested suggests that Scatter may be a relic of an ancient transposition developed prior to the strain divergence of B. cinerea. Two unique insertion instances were observed, indicating that some copies of Scatter may have remained active following strain divergence of B. cinerea. Because only a few subtle insertion differences among B. cinerea strains were observed, Scatter may play only a minor role in the genetic diversity in B. cinerea species. Most Scatter elements appear to be inserted in potential regulatory regions of adjacent coding regions, highlighting their role in transcriptional regulation. The origin of Scatter remains to be addressed. Scatter is the first well-characterized family of MITEs in B. cinerea.
Collapse
Affiliation(s)
- Hongyuan Deng
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, The Chinese Academy of Sciences, Chengdu, China; University of the Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
391
|
Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, Ver Loren van Themaat E. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc Natl Acad Sci U S A 2013; 110:E2219-28. [PMID: 23696672 PMCID: PMC3683789 DOI: 10.1073/pnas.1306807110] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ~200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production.
Collapse
Affiliation(s)
| | | | - Takaki Maekawa
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Saskia Vernaldi
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Emiel Ver Loren van Themaat
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| |
Collapse
|
392
|
Doehlemann G, Hemetsberger C. Apoplastic immunity and its suppression by filamentous plant pathogens. THE NEW PHYTOLOGIST 2013; 198:1001-1016. [PMID: 23594392 DOI: 10.1111/nph.12277] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens have evolved a variety of strategies to enter plant hosts and cause disease. In particular, biotrophic pathogens, which parasitize living plant tissue, establish sophisticated interactions in which they modulate the plant's metabolism to their own good. The prime decision, whether or not a pathogen can accommodate itself in its host tissue, is made during the initial phase of infection. At this stage, the plant immune system recognizes conserved molecular patterns of the invading microbe, which initiate a set of basal immune responses. Induced plant defense proteins, toxic compounds and antimicrobial proteins encounter a broad arsenal of pathogen-derived virulence factors that aim to disarm host immunity. Crucial regulatory processes and protein-protein interactions take place in the apoplast, that is, intercellular spaces, plant cell walls and defined host-pathogen interfaces which are formed between the plant cytoplasm and the specialized infection structures of many biotrophic pathogens. This article aims to provide an insight into the most important principles and components of apoplastic plant immunity and its modulation by filamentous microbial pathogens.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Christoph Hemetsberger
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| |
Collapse
|
393
|
Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 2013; 55:6-21. [DOI: 10.1016/j.fgb.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
|
394
|
Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RGF, Toyoda H, Kiss L, Bai Y. Detection and quantification of Leveillula taurica growth in pepper leaves. PHYTOPATHOLOGY 2013; 103:623-632. [PMID: 23324047 DOI: 10.1094/phyto-08-12-0198-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Leveillula taurica is an obligate fungal pathogen that causes powdery mildew disease on a broad range of plants, including important crops such as pepper, tomato, eggplant, onion, cotton, and so on. The early stage of this disease is difficult to diagnose and the disease can easily spread unobserved; for example, in pepper and tomato production fields and greenhouses. The objective of this study was to develop a detection and quantification method of L. taurica biomass in pepper leaves with special regard to the early stages of infection. We monitored the development of the disease to time the infection process on the leaf surface as well as inside the pepper leaves. The initial and final steps of the infection taking place on the leaf surface were consecutively observed using a dissecting microscope and a scanning electron microscope. The development of the intercellular mycelium in the mesophyll was followed by light and transmission electron microscopy. A pair of L. taurica-specific primers was designed based on the internal transcribed spacer sequence of L. taurica and used in real-time polymerase chain reaction (PCR) assay to quantify the fungal DNA during infection. The specificity of this assay was confirmed by testing the primer pair with DNA from host plants and also from another powdery mildew species, Oidium neolycopersici, infecting tomato. A standard curve was obtained for absolute quantification of L. taurica biomass. In addition, we tested a relative quantification method by using a plant gene as reference and the obtained results were compared with the visual disease index scoring. The real-time PCR assay for L. taurica provides a valuable tool for detection and quantification of this pathogen in breeding activities as well in plant-microbe interaction studies.
Collapse
Affiliation(s)
- Zheng Zheng
- Wageningen UR Plant Breeding, Wageningen University & Research Center, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R, Surana P, Whigham E, Nettleton D, Bogdanove AJ, Wise RP, Schweizer P, Bindschedler LV, Spanu PD. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:633-42. [PMID: 23441578 DOI: 10.1094/mpmi-01-13-0005-r] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Obligate biotrophic pathogens of plants must circumvent or counteract defenses to guarantee accommodation inside the host. To do so, they secrete a variety of effectors that regulate host immunity and facilitate the establishment of pathogen feeding structures called haustoria. The barley powdery mildew fungus Blumeria graminis f. sp. hordei produces a large number of proteins predicted to be secreted from haustoria. Fifty of these Blumeria effector candidates (BEC) were screened by host-induced gene silencing (HIGS), and eight were identified that contribute to infection. One shows similarity to β-1,3 glucosyltransferases, one to metallo-proteases, and two to microbial secreted ribonucleases; the remainder have no similarity to proteins of known function. Transcript abundance of all eight BEC increases dramatically in the early stages of infection and establishment of haustoria, consistent with a role in that process. Complementation analysis using silencing-insensitive synthetic cDNAs demonstrated that the ribonuclease-like BEC 1011 and 1054 are bona fide effectors that function within the plant cell. BEC1011 specifically interferes with pathogen-induced host cell death. Both are part of a gene superfamily unique to the powdery mildew fungi. Structural modeling was consistent, with BEC1054 adopting a ribonuclease-like fold, a scaffold not previously associated with effector function.
Collapse
Affiliation(s)
- Clara Pliego
- Department of Life Science, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
396
|
Takamatsu S, Matsuda S, Grigaliunaite B. Comprehensive phylogenetic analysis of the genus Golovinomyces (Ascomycota: Erysiphales) reveals close evolutionary relationships with its host plants. Mycologia 2013; 105:1135-52. [PMID: 23709526 DOI: 10.3852/13-046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Erysiphaceae were originally parasitic to trees, and host shift from trees to herbs might have occurred many times independently in the tribes and genera. To investigate the evolutionary relationships between Golovinomyces species and their host plants, we conducted a comprehensive molecular phylogenetic analysis of this genus with 183 nucleotide sequences of ITS and 28S rDNA regions from samples collected worldwide. These sequences were divided into 11 distinct lineages. Ten of these lineages consist in each case of sequences from a single plant family or tribe, which suggests close evolutionary relationships of Golovinomyces species and their host plants. The basal five clades were composed of sequences each from a single tribe of the Asteraceae. This result supports speculation that co-speciation occurred between asteraceous hosts and Golovinomyces in the early evolution stage of this genus. Lineage XI at the most derived position of the tree includes sequences from a wide range of host families and is divided into many species with close genetic affinity. Sequences from the putative G. orontii group were separated into three groups, suggesting that G. orontii is a species complex.
Collapse
Affiliation(s)
- Susumu Takamatsu
- Graduate School of Bioresources, Mie University, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | | | | |
Collapse
|
397
|
Tollenaere C, Laine AL. Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects. J Evol Biol 2013; 26:1716-26. [DOI: 10.1111/jeb.12169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/11/2013] [Accepted: 03/27/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Tollenaere
- Metapopulation Research Group; Department of Biosciences; University of Helsinki; Helsinki Finland
| | - A.-L. Laine
- Metapopulation Research Group; Department of Biosciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
398
|
Delaye L, García-Guzmán G, Heil M. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0240-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
399
|
de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 2013; 23:1271-82. [PMID: 23685541 PMCID: PMC3730101 DOI: 10.1101/gr.152660.112] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sexual recombination drives genetic diversity in eukaryotic genomes and fosters adaptation to novel environmental challenges. Although strictly asexual microorganisms are often considered as evolutionary dead ends, they comprise many devastating plant pathogens. Presently, it remains unknown how such asexual pathogens generate the genetic variation that is required for quick adaptation and evolution in the arms race with their hosts. Here, we show that extensive chromosomal rearrangements in the strictly asexual plant pathogenic fungus Verticillium dahliae establish highly dynamic lineage-specific (LS) genomic regions that act as a source for genetic variation to mediate aggressiveness. We show that such LS regions are greatly enriched for in planta-expressed effector genes encoding secreted proteins that enable host colonization. The LS regions occur at the flanks of chromosomal breakpoints and are enriched for retrotransposons and other repetitive sequence elements. Our results suggest that asexual pathogens may evolve by prompting chromosomal rearrangements, enabling rapid development of novel effector genes. Likely, chromosomal reshuffling can act as a general mechanism for adaptation in asexually propagating organisms.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
400
|
Umemura M, Koyama Y, Takeda I, Hagiwara H, Ikegami T, Koike H, Machida M. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40. PLoS One 2013; 8:e63673. [PMID: 23667655 PMCID: PMC3646829 DOI: 10.1371/journal.pone.0063673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
The development of next-generation sequencing (NGS) technologies has dramatically increased the throughput, speed, and efficiency of genome sequencing. The short read data generated from NGS platforms, such as SOLiD and Illumina, are quite useful for mapping analysis. However, the SOLiD read data with lengths of <60 bp have been considered to be too short for de novo genome sequencing. Here, to investigate whether de novo sequencing of fungal genomes is possible using only SOLiD short read sequence data, we performed de novo assembly of the Aspergillus oryzae RIB40 genome using only SOLiD read data of 50 bp generated from mate-paired libraries with 2.8- or 1.9-kb insert sizes. The assembled scaffolds showed an N50 value of 1.6 Mb, a 22-fold increase than those obtained using only SOLiD short read in other published reports. In addition, almost 99% of the reference genome was accurately aligned by the assembled scaffold fragments in long lengths. The sequences of secondary metabolite biosynthetic genes and clusters, whose products are of considerable interest in fungal studies due to their potential medicinal, agricultural, and cosmetic properties, were also highly reconstructed in the assembled scaffolds. Based on these findings, we concluded that de novo genome sequencing using only SOLiD short reads is feasible and practical for molecular biological study of fungi. We also investigated the effect of filtering low quality data, library insert size, and k-mer size on the assembly performance, and recommend for the assembly use of mild filtered read data where the N50 was not so degraded and the library has an insert size of ∼2.0 kb, and k-mer size 33.
Collapse
Affiliation(s)
- Myco Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Yoshinori Koyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Itaru Takeda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Hiroko Hagiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tsutomu Ikegami
- Information Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideaki Koike
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masayuki Machida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|