351
|
Sharma K, RamachandraRao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008; 118:1645-56. [PMID: 18431508 PMCID: PMC2323186 DOI: 10.1172/jci32691] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 02/20/2008] [Indexed: 12/13/2022] Open
Abstract
Increased albuminuria is associated with obesity and diabetes and is a risk factor for cardiovascular and renal disease. However, the link between early albuminuria and adiposity remains unclear. To determine whether adiponectin, an adipocyte-derived hormone, is a communication signal between adipocytes and the kidney, we performed studies in a cohort of patients at high risk for diabetes and kidney disease as well as in adiponectin-knockout (Ad(-/-)) mice. Albuminuria had a negative correlation with plasma adiponectin in obese patients, and Ad(-/-) mice exhibited increased albuminuria and fusion of podocyte foot processes. In cultured podocytes, adiponectin administration was associated with increased activity of AMPK, and both adiponectin and AMPK activation reduced podocyte permeability to albumin and podocyte dysfunction, as evidenced by zona occludens-1 translocation to the membrane. These effects seemed to be caused by reduction of oxidative stress, as adiponectin and AMPK activation both reduced protein levels of the NADPH oxidase Nox4 in podocytes. Ad(-/-) mice treated with adiponectin exhibited normalization of albuminuria, improvement of podocyte foot process effacement, increased glomerular AMPK activation, and reduced urinary and glomerular markers of oxidant stress. These results suggest that adiponectin is a key regulator of albuminuria, likely acting through the AMPK pathway to modulate oxidant stress in podocytes.
Collapse
Affiliation(s)
- Kumar Sharma
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Satish RamachandraRao
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gang Qiu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hitomi Kataoka Usui
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yanqing Zhu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen R. Dunn
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Raogo Ouedraogo
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kelly Hough
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter McCue
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lawrence Chan
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bonita Falkner
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barry J. Goldstein
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
360
|
Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R. Cardioprotective Effects of Short-Term Caloric Restriction Are Mediated by Adiponectin via Activation of AMP-Activated Protein Kinase. Circulation 2007; 116:2809-17. [DOI: 10.1161/circulationaha.107.725697] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Overeating and obesity are major health problems in developed countries. Caloric restriction (CR) can counteract the deleterious aspects of obesity-related diseases and prolong lifespan. We have demonstrated that short-term CR improves myocardial ischemic tolerance and increases adiponectin levels. Here, we investigated the specific role of adiponectin in CR-induced cardioprotection.
Methods and Results—
Adiponectin antisense transgenic (Ad-AS) mice and wild-type (WT) mice were randomly assigned to a group fed ad libitum and a CR group (90% of caloric intake of ad libitum for 3 weeks, then 65% for 2 weeks). Isolated perfused mouse hearts were subjected to 25 minutes of ischemia, followed by 60 minutes of reperfusion. CR increased serum adiponectin levels by 84% in WT mice. Gel filtration analysis of the oligomeric complex distribution showed that CR produced a marked increase in the high–molecular-weight complex of adiponectin in WT mice; in contrast, CR did not change serum adiponectin levels or their oligomeric pattern in Ad-AS mice. CR improved the recovery of left ventricular function after ischemia/reperfusion and limited infarct size in WT mice; these effects were completely abrogated in Ad-AS mice. CR also increased the phosphorylated form of AMP-activated protein kinase and acetyl-CoA carboxylase in WT but not in Ad-AS mice. Recombinant adiponectin restored CR-induced cardioprotection in Ad-AS mice, and inhibition of AMP-activated protein kinase phosphorylation completely abrogated CR-induced cardioprotection in WT mice.
Conclusion—
The cardioprotective effects of short-term CR are mediated by increased production of adiponectin and the associated activation of AMP-activated protein kinase.
Collapse
Affiliation(s)
- Ken Shinmura
- From the Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan (K. Shinmura, K.T.); Department of Medicinal Information, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (K. Saito, Y.N., T.T.); and Institute of Molecular Cardiology, University of Louisville, Louisville, Ky (R.B.)
| | - Kayoko Tamaki
- From the Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan (K. Shinmura, K.T.); Department of Medicinal Information, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (K. Saito, Y.N., T.T.); and Institute of Molecular Cardiology, University of Louisville, Louisville, Ky (R.B.)
| | - Kiyomi Saito
- From the Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan (K. Shinmura, K.T.); Department of Medicinal Information, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (K. Saito, Y.N., T.T.); and Institute of Molecular Cardiology, University of Louisville, Louisville, Ky (R.B.)
| | - Yasuko Nakano
- From the Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan (K. Shinmura, K.T.); Department of Medicinal Information, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (K. Saito, Y.N., T.T.); and Institute of Molecular Cardiology, University of Louisville, Louisville, Ky (R.B.)
| | - Takashi Tobe
- From the Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan (K. Shinmura, K.T.); Department of Medicinal Information, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (K. Saito, Y.N., T.T.); and Institute of Molecular Cardiology, University of Louisville, Louisville, Ky (R.B.)
| | - Roberto Bolli
- From the Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan (K. Shinmura, K.T.); Department of Medicinal Information, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (K. Saito, Y.N., T.T.); and Institute of Molecular Cardiology, University of Louisville, Louisville, Ky (R.B.)
| |
Collapse
|