351
|
Lamming CED, Augustin L, Blackstad M, Lund TC, Hebbel RP, Verfaillie CM. Spontaneous circulation of myeloid-lymphoid-initiating cells and SCID-repopulating cells in sickle cell crisis. J Clin Invest 2003; 111:811-9. [PMID: 12639987 PMCID: PMC153763 DOI: 10.1172/jci15956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Accepted: 01/28/2003] [Indexed: 11/17/2022] Open
Abstract
The only curative therapy for sickle cell disease (SCD) is allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy approaches for autologous HSC transplantation are being developed. Although earlier engraftment is seen when cells from GCSF-mobilized blood are transplanted than when bone marrow is transplanted, administration of GCSF to patients with SCD can cause significant morbidity. We tested whether primitive hematopoietic progenitors are spontaneously mobilized in the blood of patients with SCD during acute crisis (AC-SCD patients). The frequency of myeloid-lymphoid-initiating cells (ML-ICs) and SCID-repopulating cells (SRCs) was significantly higher in blood from AC-SCD patients than in blood from patients with steady-state SCD or from normal donors. The presence of SRCs in peripheral blood was not associated with detection of long-term culture-initiating cells, consistent with the notion that SRCs are more primitive than long-term culture-initiating cells. As ML-ICs and SRCs were both detected in blood of AC-SCD patients only, these assays may both measure primitive progenitors. The frequency of ML-ICs also correlated with increases in stem cell factor, GCSF, and IL-8 levels in AC-SCD compared with steady-state SCD and normal-donor sera. Because significant numbers of ML-ICs and SRCs are mobilized in the blood without exogenous cytokine treatment during acute crisis of SCD, collection of peripheral blood progenitors during crisis may yield a source of autologous HSCs suitable for ex-vivo correction by gene therapy approaches and subsequent transplantation.
Collapse
Affiliation(s)
- Christopher E D Lamming
- Stem Cell Institute, Division of Gastroenterology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
352
|
Lévesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ. Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31:109-17. [PMID: 12591275 DOI: 10.1016/s0301-472x(02)01028-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Administration of granulocyte colony-stimulating factor (G-CSF) results in the mobilization of hematopoietic progenitor and stem cells from the bone marrow into the peripheral blood. Although the mechanisms leading to the mobilization of primitive hematopoietic cells is not fully understood, it has been noted that the yield of mobilization in humans is correlated to the down-regulation of c-KIT/CD117 expression on mobilized cells. We sought to determine the mechanisms responsible for the reduced expression of c-KIT on mobilized hematopoietic progenitor cells. MATERIALS AND METHODS Mice were mobilized with G-CSF and primitive hematopoietic cells were collected from bone marrow and blood to analyze c-KIT expression. Using cell lines expressing mouse and human c-KIT and a recombinant protein comprising the entire extracellular domain of human c-KIT, we analyzed by flow cytometry and immunoblotting the proteolytic cleavage of c-KIT by proteases released in bone marrow extracellular fluids extracted from mobilized mice. RESULTS Administration of G-CSF into mice results in the reduction of c-KIT expression on primitive hematopoietic cells in bone marrow and peripheral blood. Bone marrow extracellular fluids isolated from G-CSF-mobilized mice contain serine proteases that cleave c-KIT into discrete fragments. Proteases capable of cleaving c-KIT include neutrophil elastase, cathepsin G, proteinase-3 and matrix metalloproteinase-9. CONCLUSIONS In addition to transcriptional controls, exocytosis, and ligand-induced internalization, the direct proteolytic cleavage of c-KIT by neutrophil and macrophage proteases represents a novel pathway to regulate the levels of c-KIT expression at the surface of hematopoietic cells and may be responsible in part for the down-regulation of c-KIT expression on mobilized hematopoietic progenitors in vivo.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Stem Cell Laboratory, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 3000, Australia.
| | | | | | | | | |
Collapse
|
353
|
Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111:187-96. [PMID: 12531874 PMCID: PMC151860 DOI: 10.1172/jci15994] [Citation(s) in RCA: 556] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic progenitor cells (HPCs) normally reside in the bone marrow (BM) but can be mobilized into the peripheral blood (PB) after treatment with GCSF or chemotherapy. In previous studies, we showed that granulocyte precursors accumulate in the BM during mobilization induced by either GCSF or cyclophosphamide (CY), leading to the accumulation of active neutrophil proteases in this tissue. We now report that mobilization of HPCs by GCSF coincides in vivo with the cleavage of the N-terminus of the chemokine receptor CXCR4 on HPCs resident in the BM and mobilized into the PB. This cleavage of CXCR4 on mobilized HPCs results in the loss of chemotaxis in response to the CXCR4 ligand, the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). Furthermore, the concentration of SDF-1 decreased in vivo in the BM of mobilized mice, and this decrease coincided with the accumulation of serine proteases able to directly cleave and inactivate SDF-1. Since both SDF-1 and its receptor, CXCR4, are essential for the homing and retention of HPCs in the BM, the proteolytic degradation of SDF-1, together with that of CXCR4, could represent a critical step leading to the mobilization of HPCs into the PB in response to GCSF or CY.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
354
|
Watanabe T, Suzuya H, Onishi T, Kanai S, Kaneko M, Watanabe H, Nakagawa R, Kawano Y, Takaue Y, Kuroda Y, Talmadge JE. Effect of granulocyte colony-stimulating factor on bone metabolism during peripheral blood stem cell mobilization. Int J Hematol 2003; 77:75-81. [PMID: 12568303 DOI: 10.1007/bf02982606] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been shown to affect the biochemical markers of bone metabolism, including serum bone alkaline phosphatase (BALP), serum osteocalcin, and urine deoxypyridinoline. To determine the association between bone resorption and formation and the G-CSF-induced mobilization of peripheral blood stem cells (PBSC), we examined these markers during mobilization in 19 healthy donors. The average (+/- SEM) serum BALP level before treatment was 81.6 +/- 17.0 IU/dL, and the level increased significantly to 117.7 +/- 15.8 IU/dL on day 5 of G-CSF administration (P < .0001). The urine deoxypyridinoline level before treatment was 12.3 +/- 2.4 nmol/mmol creatinine, and this level also increased significantly to 19.4 +/- 3.0 nmol/mmol creatinine on day 5 of G-CSF administration (P < .0001). In contrast, the average level of serum osteocalcin significantly decreased from 8.07 +/- 2.88 ng/mL to 1.53 +/- 0.18 ng/mL on day 5 (P = .0353). During G-CSF administration, we also studied the serum levels of various cytokines (IL-1beta, osteoclastogenesis inhibitory factor [OCIF], IL-6, tumor necrosis factor alpha, transforming growth factor beta, interferon-gamma, macrophage colony-stimulating factor) related to bone metabolism. Only the kinetics of OCIF were significantly affected. The serum level of OCIF increased immediately after the start of G-CSF administration and remained high during G-CSF administration. These results demonstrate that high-dose G-CSF affects bone metabolism and that OCIF may play a role in bone metabolism. Consistent with the notion that G-CSF affects bone metabolism, a significant correlation was observed between CD34+ cell yield and the increase in urine deoxypyridinoline but not for the changes in serum BALP and osteocalcin levels. This result suggests that bone resorption is either directly or indirectly related to the mobilization of PBSC by G-CSF.
Collapse
Affiliation(s)
- Tsutomu Watanabe
- Department of Pediatrics, University of Tokushima School of Medicine, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, Devine S. Stem cell mobilization. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2003; 2003:419-437. [PMID: 14633793 DOI: 10.1182/asheducation-2003.1.419] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Successful blood and marrow transplant (BMT), both autologous and allogeneic, requires the infusion of a sufficient number of hematopoietic progenitor/stem cells (HPCs) capable of homing to the marrow cavity and regenerating a full array of hematopoietic cell lineages in a timely fashion. At present, the most commonly used surrogate marker for HPCs is the cell surface marker CD34, identified in the clinical laboratory by flow cytometry. Clinical studies have shown that infusion of at least 2 x 10(6) CD34(+) cells/kg recipient body weight results in reliable engraftment as measured by recovery of adequate neutrophil and platelet counts approximately 14 days after transplant. Recruitment of HPCs from the marrow into the blood is termed mobilization, or, more commonly, stem cell mobilization. In Section I, Dr. Tsvee Lapidot and colleagues review the wide range of factors influencing stem cell mobilization. Our current understanding focuses on chemokines, proteolytic enzymes, adhesion molecules, cytokines and stromal cell-stem cell interactions. On the basis of this understanding, new approaches to mobilization have been designed and are now starting to undergo clinical testing. In Section II, Dr. Michele Cottler-Fox describes factors predicting the ability to mobilize the older patient with myeloma. In addition, clinical approaches to improving collection by individualizing the timing of apheresis and adjusting the volume of blood processed to achieve a desired product are discussed. Key to this process is the daily enumeration of blood CD34(+) cells. Newer methods of enumerating and mobilizing autologous blood HPCs are discussed. In Section III, Dr. John DiPersio and colleagues provide data on clinical results of mobilizing allogeneic donors with G-CSF, GM-CSF and the combination of both as relates to the number and type of cells collected by apheresis. Newer methods of stem cell mobilization as well as the relationship of graft composition on immune reconstitution and GVHD are discussed.
Collapse
Affiliation(s)
- Michele H Cottler-Fox
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 77205, USA
| | | | | | | | | | | | | |
Collapse
|
356
|
Taylor JG, Tang DC, Savage SA, Leitman SF, Heller SI, Serjeant GR, Rodgers GP, Chanock SJ. Variants in the VCAM1 gene and risk for symptomatic stroke in sickle cell disease. Blood 2002; 100:4303-9. [PMID: 12393616 DOI: 10.1182/blood-2001-12-0306] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stroke is a major cause of morbidity and mortality in sickle cell (SS) disease. Genetic risk factors have been postulated to contribute to this clinical outcome. The human genome project has substantially increased the catalog of variations in genes, many of which could modify the risk for manifestations of disease outcome in a monogenic disease, namely SS. VCAM1 is a cell adhesion molecule postulated to play a critical role in the pathogenesis of SS disease. We identified a total of 33 single nucleotide polymorphisms (SNPs) by sequencing the entire coding region, 2134 bp upstream of the 5' end of the published cDNA, 217 bp downstream of the 3' end of the cDNA, and selected intronic regions of the VCAM1 locus. Allelic frequencies for selected SNPs were determined in a healthy population. We subsequently analyzed 4 nonsynonymous coding, 2 synonymous coding, and 4 common promoter SNPs in a genetic association study of clinically apparent stroke in SS disease conducted in a cohort derived from a single institution in Jamaica (51 symptomatic cases and 51 matched controls). Of the 10 candidate SNPs analyzed in this pilot study, the variant allele of the nonsynonymous SNP, VCAM1 G1238C, may be associated with protection from stroke (odds ratio [OR] 0.35, 95% confidence interval [CI] 0.15-0.83, P =.04). Further study is required to confirm the importance of this variant in VCAM1 as a clinically useful modifier of outcome in SS disease.
Collapse
Affiliation(s)
- James G Taylor
- Section on Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Gaithersburg, MD 20877, USA
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13:4279-95. [PMID: 12475952 PMCID: PMC138633 DOI: 10.1091/mbc.e02-02-0105] [Citation(s) in RCA: 4923] [Impact Index Per Article: 223.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Collapse
Affiliation(s)
- Patricia A Zuk
- Department of Surgery and Orthopedics, Regenerative Bioengineering and Repair Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Bonsignore MR, Morici G, Santoro A, Pagano M, Cascio L, Bonanno A, Abate P, Mirabella F, Profita M, Insalaco G, Gioia M, Vignola AM, Majolino I, Testa U, Hogg JC. Circulating hematopoietic progenitor cells in runners. J Appl Physiol (1985) 2002; 93:1691-7. [PMID: 12381755 DOI: 10.1152/japplphysiol.00376.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because endurance exercise causes release of mediators and growth factors active on the bone marrow, we asked whether it might affect circulating hematopoietic progenitor cells (HPCs) in amateur runners [n = 16, age: 41.8 +/- 13.5 (SD) yr, training: 93.8 +/- 31.8 km/wk] compared with sedentary controls (n = 9, age: 39.4 +/- 10.2 yr). HPCs, plasma cortisol, interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), and the growth factor fms-like tyrosine kinase-3 (flt3)-ligand were measured at rest and after a marathon (M; n = 8) or half-marathon (HM; n = 8). Circulating HPC counts (i.e., CD34(+) cells and their subpopulations) were three- to fourfold higher in runners than in controls at baseline. They were unaffected by HM or M acutely but decreased the morning postrace. Baseline cortisol, flt3-ligand, IL-6, and G-CSF levels were similar in runners and controls. IL-6 and G-CSF increased to higher levels after M compared with HM, whereas cortisol and flt3-ligand increased similarly postrace. Our data suggest that increased HPCs reflect an adaptation response to recurrent, exercise-associated release of neutrophils and stress and inflammatory mediators, indicating modulation of bone marrow activity by habitual running.
Collapse
Affiliation(s)
- Maria R Bonsignore
- Institute of Respiratory Pathophysiology, National Research Council, 90146 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30:973-81. [PMID: 12225788 DOI: 10.1016/s0301-472x(02)00883-4] [Citation(s) in RCA: 568] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mobilization of hematopoietic stem and progenitor cells from the bone marrow into the circulation by repetitive, daily stimulations with G-CSF alone, or in combination with cyclophosphamide, is increasingly used clinically; however, the mechanism is not fully understood. Moreover, following mobilization stem cells also home back to the bone marrow, suggesting that stem cell release/mobilization and homing are sequential events with physiological roles. Previously, a role for cytokines such as G-CSF and SCF, and adhesion molecules such as VLA-4 and P/E selectins, was determined for stem cell mobilization. Recent results using experimental animal models and samples from clinical mobilization protocols demonstrate major involvement of chemokines such as stromal derived factor-1 (SDF-1) and IL-8, as well as proteolytic enzymes such as elastase, cathepsin G, and various MMPs in the mobilization process. These results will be reviewed together with the central roles of SDF-1 and CXCR4 interactions in G-CSF or G-CSF in combination with cyclophosphamide-induced mobilization. Furthermore, the central role of this chemokine in stem cell homing to the bone marrow as well as retention of undifferentiated cells within this tissue will also be discussed.
Collapse
Affiliation(s)
- Tsvee Lapidot
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
360
|
Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3:687-94. [PMID: 12068293 DOI: 10.1038/ni813] [Citation(s) in RCA: 984] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) induced hematopoietic stem cell mobilization is widely used for clinical transplantation; however, the mechanism is poorly understood. We report here that G-CSF induced a reduction of the chemokine stromal cell derived factor 1 (SDF-1) and an increase in its receptor CXCR4 in the bone marrow (BM), whereas their protein expression in the blood was less affected. The gradual decrease of BM SDF-1, due mostly to its degradation by neutrophil elastase, correlated with stem cell mobilization. Elastase inhibition reduced both activities. Human and murine stem cell mobilization was inhibited by neutralizing CXCR4 or SDF-1 antibodies, demonstrating SDF-1 CXCR4 signaling in cell egress. We suggest that manipulation of SDF-1 CXCR4 interactions may be a means with which to control the navigation of progenitors between the BM and blood to improve the outcome of clinical stem cell transplantation.
Collapse
Affiliation(s)
- Isabelle Petit
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Velders GA, Pruijt JFM, Verzaal P, van Os R, van Kooyk Y, Figdor CG, de Kruijf EJFM, Willemze R, Fibbe WE. Enhancement of G-CSF-induced stem cell mobilization by antibodies against the beta 2 integrins LFA-1 and Mac-1. Blood 2002; 100:327-33. [PMID: 12070044 DOI: 10.1182/blood.v100.1.327] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta 2 integrins leukocyte function antigen-1 (LFA-1, CD11a) and macrophage antigen-1 (Mac-1, CD11b) have been reported to play a role in the attachment of CD34(+) cells to stromal cells in the bone marrow. When administered prior to interleukin-8 (IL-8), anti-LFA-1 antibodies completely prevent the IL-8-induced mobilization of hematopoietic stem cells in mice. Here, we studied the role of anti-beta 2 integrin antibodies in granulocyte colony-stimulating factor (G-CSF)-induced mobilization of hematopoietic progenitor cells. Administration of antibodies against the alpha chain of LFA-1 or against the alpha chain of Mac-1 followed by daily injections of G-CSF for more than 1 day resulted in a significant enhancement of mobilization of hematopoietic progenitor cells when compared with mobilization induced by G-CSF alone. Also, the number of late (day 28) cobblestone area-forming cells in vitro was significantly higher after mobilization with anti-LFA-1 antibodies followed by 5 microg G-CSF for 5 days than with G-CSF alone (119 +/- 34 days vs 17 +/- 14 days), indicating mobilization of repopulating stem cells. Pretreatment with blocking antibodies to intercellular adhesion molecule-1 (ICAM-1; CD54), a ligand of LFA-1 and Mac-1, did not result in an effect on G-CSF-induced mobilization, suggesting that the enhancing effect required an interaction of the beta 2 integrins and one of their other ligands. Enhancement of mobilization was not observed in LFA-1-deficient (CD11a) mice, indicating that activated cells expressing LFA-1 mediate the synergistic effect, rather than LFA-1-mediated adhesion.
Collapse
Affiliation(s)
- Gerjo A Velders
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
362
|
van Os R, van Schie MLJ, Willemze R, Fibbe WE. Proteolytic enzyme levels are increased during granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization in human donors but do not predict the number of mobilized stem cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:513-21. [PMID: 12183836 DOI: 10.1089/15258160260090979] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies from our laboratory indicate that functional, mature neutrophils are essential for interleukin-8 (IL-8)-induced stem cell mobilization. To study a possible role of neutrophils in granulocyte colony-stimulating factor (G-CSF) induced hematopoietic mobilization, we assessed the number of circulating CD34+ cells in healthy allogeneic stem cell donors on days 3, 4, and 5 of mobilization for comparison with the number of peripheral blood neutrophils and the plasma levels of IL-8, Flt3 ligand (FL), matrix metalloproteinase-9 (MMP-9), and human neutrophil elastase (HNE). Thirty-seven of 45 donors required 1 day of apheresis to obtain 5 x 10(6) CD34+/kg recipient body weight (high responders), the remaining 8 donors required 1 extra day of apheresis on day 6 (low responders). On day 5, CD34+ numbers in the blood were significantly highe in high responders (116 x 10(3) +/- 10.4/ml) than in low responders (54.1 x 10(3) +/- 10.3, p < 0.001). In all donors, MMP-9 and HNE levels were increased compared to nonmobilized individuals, but in high responders, plasma MMP-9 levels on days 3-5 of mobilization were substantially higher than in low responders (p < or = 0.02 for MMP-9 and p = 0.89, p = 0.05 and p = 0.52 for HNE on days 3, 4, and 5, respectively). These results are in accordance with the hypothesis that neutrophils play a role in G-CSF-induced mobilization through the release of proteases such as MMP-9 and elastase. No change in plasma levels of IL-8 or Flt3 ligand was observed, suggesting that these cytokines do not play a role in stem cell mobilization. However, because stem cell numbers could not be predicted by proteolytic enzyme levels and/or neutrophil numbers, other undefined factors may be more important.
Collapse
Affiliation(s)
- R van Os
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
363
|
Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109:625-37. [PMID: 12062105 PMCID: PMC2826110 DOI: 10.1016/s0092-8674(02)00754-7] [Citation(s) in RCA: 1271] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stem cells within the bone marrow (BM) exist in a quiescent state or are instructed to differentiate and mobilize to circulation following specific signals. Matrix metalloproteinase-9 (MMP-9), induced in BM cells, releases soluble Kit-ligand (sKitL), permitting the transfer of endothelial and hematopoietic stem cells (HSCs) from the quiescent to proliferative niche. BM ablation induces SDF-1, which upregulates MMP-9 expression, and causes shedding of sKitL and recruitment of c-Kit+ stem/progenitors. In MMP-9-/- mice, release of sKitL and HSC motility are impaired, resulting in failure of hematopoietic recovery and increased mortality, while exogenous sKitL restores hematopoiesis and survival after BM ablation. Release of sKitL by MMP-9 enables BM repopulating cells to translocate to a permissive vascular niche favoring differentiation and reconstitution of the stem/progenitor cell pool.
Collapse
Affiliation(s)
- Beate Heissig
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Koichi Hattori
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Sergio Dias
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Matthias Friedrich
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Barbara Ferris
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
- Division of Genetic Medicine, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Neil R. Hackett
- Division of Genetic Medicine, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Ronald G. Crystal
- Division of Genetic Medicine, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Peter Besmer
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10021
| | - David Lyden
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
| | - Malcolm A.S. Moore
- Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10021
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, HSW 1321, 513 Parnassus Avenue, San Francisco, California 94143
| | - Shahin Rafii
- Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, Room D601, New York, New York 10021
- Correspondence:
| |
Collapse
|
364
|
Panopoulos AD, Bartos D, Zhang L, Watowich SS. Control of myeloid-specific integrin alpha Mbeta 2 (CD11b/CD18) expression by cytokines is regulated by Stat3-dependent activation of PU.1. J Biol Chem 2002; 277:19001-7. [PMID: 11889125 PMCID: PMC2388249 DOI: 10.1074/jbc.m112271200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) plays an essential role in regulating multiple aspects of hematopoiesis. To elucidate the role of G-CSF in controlling hematopoietic cell migration capabilities, we studied inducible expression of the myeloid-specific marker, integrin alpha(M)beta(2) (CD11b/CD18, Mac-1), in the myeloid cell line, 32D. We found that G-CSF stimulates the synthesis and cell surface expression of alpha(M) and beta(2) integrin subunits. Induction of both alpha(M) and beta(2) is dependent on Stat3, a major G-CSF-responsive signaling protein. However, the kinetics of expression suggested the involvement of an intermediate protein regulated by Stat3. Our results demonstrate that Stat3 signaling stimulates the expression of PU.1, a critical regulator of myelopoiesis. Furthermore, we show that PU.1 is an essential intermediate for the inducible expression of alpha(M)beta(2) integrin. Thus, Stat3 promotes alpha(M)beta(2) integrin expression through its activation of PU.1. These findings indicate that G-CSF-dependent Stat3 signals stimulate the changes in cell adhesion and migration capabilities that occur during myeloid cell development. These data also demonstrate a link between Stat3 and PU.1, suggesting that Stat3 may play an instructive role in hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Stephanie S. Watowich
- ‡ To whom correspondence should be addressed: University of Texas M.D. Anderson Cancer Center, Box 178, 1515 Holcombe Blvd., Houston, TX 77030. Tel.: 713-792-8376; Fax: 713-794-1322; E-mail:
| |
Collapse
|
365
|
Valenzuela-Fernández A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, Delaunay T, Lazarini F, Virelizier JL, Chignard M, Pidard D, Arenzana-Seisdedos F. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277:15677-89. [PMID: 11867624 DOI: 10.1074/jbc.m111388200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of CXCR4 by the CXC chemokine stromal cell-derived factor-1 (SDF-1) requires interaction of the amino-terminal domains of both molecules. We report that proteinases released from either mononucleated blood cells or polymorphonuclear neutrophils degranulated by inflammatory stimuli generate an SDF-1 fragment that is deleted from amino-terminal residues Lys(1)-Pro(2)-Val(3), as characterized by mass spectrometry analysis. The proteolyzed chemokine fails to induce agonistic functions and is unable to prevent the fusogenic capacity of CXCR4-tropic human immunodeficiency viruses. Furthermore, we observed that exposure of CXCR4-expressing cells to leukocyte proteinases results in the proteolysis of the extracellular amino-terminal domain of the receptor, as assessed by flow cytometry analysis and electrophoretic separation of immunoprecipitated CXCR4. Blockade of SDF-1 and CXCR4 proteolysis by the specific leukocyte elastase inhibitor, N-methoxysuccinyl-alanine-alanine-proline-valine-chloromethyl ketone, identified elastase as the major enzyme among leukocyte-secreted proteinases that accounts for inactivation of both SDF-1 and CXCR4. Indeed, purified leukocyte elastase generated in either SDF-1 or CXCR4 a pattern of cleavage indistinguishable from that observed with leukocyte-secreted proteinases. Our findings suggest that elastase-mediated proteolysis of SDF-1/CXCR4 is part of a mechanism regulating their biological functions in both homeostatic and pathologic processes.
Collapse
|
366
|
Lévesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30:440-9. [PMID: 12031650 DOI: 10.1016/s0301-472x(02)00788-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Hematopoietic stem and progenitor cells normally reside in the bone marrow but can be mobilized into the peripheral blood following treatment with granulocyte colony-stimulating factor (G-CSF) or myelosuppressive chemotherapy. Although the number of transplants performed with mobilized blood currently exceeds those performed with bone marrow, little is known of the molecular mechanisms responsible for this phenomenon. We sought to determine whether mobilization induced by G-CSF or chemotherapy was triggered by common or distinct mechanisms. METHODS Balb/c mice were mobilized with either G-CSF alone, cyclophosphamide alone, or the combination of both agents. Spleens, peripheral blood, bone marrow extracellular fluids, and cells were taken at different time points and analyzed for the expression of VCAM-1, the number of peripheral blood progenitor cells, concentration of neutrophil proteases, and number of granulocytes. RESULTS Administration of either G-CSF or the myelosuppressive agent cyclophosphamide results in a sharp reduction of VCAM-1/CD106 expression in the bone marrow that coincides with the accumulation of granulocytic precursors and release of active neutrophil proteases neutrophil elastase and cathepsin G that directly cleave VCAM-1/CD106 in vitro. These events follow precisely the kinetics of hematopoietic progenitor cell mobilization into the peripheral blood. CONCLUSION We have identified a commonality of events during mobilization induced by either G-CSF or chemotherapy, which include the accumulation in the bone marrow of active neutrophil proteases that directly cleave VCAM-1 and lead to the sharp reduction of VCAM-1 expression in this tissue.
Collapse
Affiliation(s)
- Jean Pierre Lévesque
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
367
|
Gazitt Y. Comparison between granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr Opin Hematol 2002; 9:190-8. [PMID: 11953663 DOI: 10.1097/00062752-200205000-00003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peripheral blood stem cells (PBSC) have become the preferred source of stem cells for autologous transplantation because of the technical advantage and the shorter time to engraftment. Mobilization of CD34+ into the peripheral blood can be achieved by the administration of granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or both, either alone or in combination with chemotherapy. G-CSF and GM-CSF differ somewhat in the number and composition of PBSCs and effector cells mobilized to the peripheral blood. The purpose of this review is to give a recent update on the type and immunologic properties of CD34+ cells and CD34+ cell subsets mobilized by G-CSF or GM-CSF with emphasis on (1) relative efficacy of CD34+ cell mobilization; (2) relative toxicities of G-CSF and GM-CSF as mobilizing agents; (3) mobilization of dendritic cells and their subsets; (4) delineation of the role of adhesion molecules, CXC receptor 4, and stromal cell-derived factor-1 signaling pathway in the release of CD34+ cell to the peripheral blood after treatment with G-CSF or GM-CSF.
Collapse
Affiliation(s)
- Yair Gazitt
- Department of Medicine/Hematology, University of Texas Health Science Center, San Antonio, Texas 78284, USA.
| |
Collapse
|
368
|
Thomas J, Liu F, Link DC. Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 2002; 9:183-9. [PMID: 11953662 DOI: 10.1097/00062752-200205000-00002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic progenitor cells can be mobilized from the bone marrow to the blood by a wide variety of stimuli, including hematopoietic growth factors, chemotherapy, and chemokines. Increasingly, mobilized peripheral blood hematopoietic progenitor cells instead of bone marrow hematopoietic progenitor cells have been used to reconstitute hematopoiesis after myeloablative therapy because of their reduced engraftment times and relative ease of collection. A striking feature of hematopoietic progenitor cell mobilization is the ability of hematopoietic growth factors with distinct cellular targets and biologic activities to mobilize a similar spectrum of pluripotent and lineage-committed hematopoietic progenitor cells into the blood. Recent studies have identified some of the key adhesive interactions that regulate hematopoietic progenitor cell trafficking in the bone marrow. In addition, pathways linking mobilizing agents to hematopoietic progenitor cell mobilization have begun to be elucidated. This review summarizes these advances, emphasizing the mechanisms regulating granulocyte colony-stimulating factor-induced mobilization.
Collapse
Affiliation(s)
- John Thomas
- Washington University School of Medicine, Division of Oncology, Section of Stem Cell Biology, St. Louis, Missouri 63110-1093, USA
| | | | | |
Collapse
|
369
|
Pruijt JFM, Verzaal P, van Os R, de Kruijf EJFM, van Schie MLJ, Mantovani A, Vecchi A, Lindley IJD, Willemze R, Starckx S, Opdenakker G, Fibbe WE. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci U S A 2002; 99:6228-33. [PMID: 11983913 PMCID: PMC122931 DOI: 10.1073/pnas.092112999] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2001] [Accepted: 02/26/2002] [Indexed: 11/18/2022] Open
Abstract
The CXC chemokine interleukin-8 (IL-8/CXCL8) induces rapid mobilization of hematopoietic progenitor cells (HPCs). Previously we showed that mobilization could be prevented completely in mice by pretreatment with neutralizing antibodies against the beta2-integrin LFA-1 (CD11a). In addition, murine HPCs do not express LFA-1, indicating that mobilization requires a population of accessory cells. Here we show that polymorphonuclear cells (PMNs) serve as key regulators in IL-8-induced HPC mobilization. The role of PMNs was studied in mice rendered neutropenic by administration of a single injection of antineutrophil antibodies. Absolute neutropenia was observed up to 3-5 days with a rebound neutrophilia at day 7. The IL-8-induced mobilizing capacity was reduced significantly during the neutropenic phase, reappeared with recurrence of the PMNs, and was increased proportionally during the neutrophilic phase. In neutropenic mice, the IL-8-induced mobilizing capacity was restored by the infusion of purified PMNs but not by infusion of mononuclear cells. Circulating metalloproteinase gelatinase B (MMP-9) levels were detectable only in neutropenic animals treated with PMNs in combination with IL-8, showing that in vivo activated PMNs are required for the restoration of mobilization. However, IL-8-induced mobilization was not affected in MMP-9-deficient mice, indicating that MMP-9 is not indispensable for mobilization. These data demonstrate that IL-8-induced mobilization of HPCs requires the in vivo activation of circulating PMNs.
Collapse
Affiliation(s)
- Johannes F M Pruijt
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Adkison AM, Raptis SZ, Kelley DG, Pham CTN. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002; 109:363-71. [PMID: 11827996 PMCID: PMC150852 DOI: 10.1172/jci13462] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Leukocyte recruitment in inflammation is critical for host defense, but excessive accumulation of inflammatory cells can lead to tissue damage. Neutrophil-derived serine proteases (cathepsin G [CG], neutrophil elastase [NE], and proteinase 3 [PR3]) are expressed specifically in mature neutrophils and are thought to play an important role in inflammation. To investigate the role of these proteases in inflammation, we generated a mouse deficient in dipeptidyl peptidase I (DPPI) and established that DPPI is required for the full activation of CG, NE, and PR3. Although DPPI(-/-) mice have normal in vitro neutrophil chemotaxis and in vivo neutrophil accumulation during sterile peritonitis, they are protected against acute arthritis induced by passive transfer of monoclonal antibodies against type II collagen. Specifically, there is no accumulation of neutrophils in the joints of DPPI(-/-) mice. This protective effect correlates with the inactivation of neutrophil-derived serine proteases, since NE(-/-) x CG(-/-) mice are equally resistant to arthritis induction by anti-collagen antibodies. In addition, protease-deficient mice have decreased response to zymosan- and immune complex-mediated inflammation in the subcutaneous air pouch. This defect is accompanied by a decrease in local production of TNF-alpha and IL-1 beta. These results implicate DPPI and polymorphonuclear neutrophil-derived serine proteases in the regulation of cytokine production at sites of inflammation.
Collapse
Affiliation(s)
- April M Adkison
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
371
|
Adkison AM, Raptis SZ, Kelley DG, Pham CT. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002. [DOI: 10.1172/jci0213462] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
372
|
Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T. Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 2002; 99:44-51. [PMID: 11756151 DOI: 10.1182/blood.v99.1.44] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously reported that treatment with the sulfated polysaccharide fucoidan or the structurally similar dextran sulfate increased circulating mature white blood cells and hematopoietic progenitor/stem cells (HPCs) in mice and nonhuman primates; however, the mechanism mediating these effects was unclear. It is reported here that plasma concentrations of the highly potent chemoattractant stromal-derived factor 1 (SDF-1) increase rapidly and dramatically after treatment with fucoidan in monkeys and in mice, coinciding with decreased levels in bone marrow. In vitro and in vivo data suggest that the SDF-1 increase is due to its competitive displacement from heparan sulfate proteoglycans that sequester the chemokine on endothelial cell surfaces or extracellular matrix in bone marrow and other tissues. Although moderately increased levels of interleukin-8, MCP1, or MMP9 were also present after fucoidan treatment, studies in gene-ablated mice (GCSFR(-/-), MCP1(-/-), or MMP9(-/-)) and the use of metalloprotease inhibitors do not support their involvement in the concurrent mobilization. Instead, SDF-1 increases, uniquely associated with sulfated glycan-mobilizing treatments and not with several other mobilizing agents tested, are likely responsible. To the authors' knowledge, this is the first published report of disrupting the SDF-1 gradient between bone marrow and peripheral blood through a physiologically relevant mechanism, resulting in mobilization with kinetics similar to other mobilizing CXC chemokines. The study further underscores the importance of the biological roles of carbohydrates.
Collapse
|
373
|
Theilgaard-Mönch K, Raaschou-Jensen K, Palm H, Schjødt K, Heilmann C, Vindeløv L, Jacobsen N, Dickmeiss E. Flow cytometric assessment of lymphocyte subsets, lymphoid progenitors, and hematopoietic stem cells in allogeneic stem cell grafts. Bone Marrow Transplant 2001; 28:1073-82. [PMID: 11781619 DOI: 10.1038/sj.bmt.1703270] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Accepted: 09/17/2001] [Indexed: 11/08/2022]
Abstract
Currently, bone marrow (BM), cord blood (CB), and G-CSF-mobilized peripheral blood progenitor cells (PBPCs) are the most commonly used sources for allogeneic stem cell transplantation (SCT). The aim of this study was to assess the yields and distribution of lymphocyte subsets, lymphocyte progenitors and hematopoietic stem cells (HSC) in each type of allograft by three-color flow cytometry. The yields of CD34(+)CD38(-) HSCs did not differ significantly between BM grafts (2.80 +/- 0.74 x 10(6)) and leukapheresis products (LPs) (1.82 +/- 0.64 x 10(6)), and were lowest in CB grafts (0.21 +/- 0.05 x 10(6)). For most lymphocyte subsets yields were lowest in CB grafts and significantly higher in LPs than in BM grafts. BM grafts, however, contained the highest yields of CD34(+)CD19(+)CD20(-) B cell progenitors and CD19(+)CD20(-) B cells. The relative frequencies of the naive CD45RA(+)CD45RO(-) phenotype among CD4(+) and CD8(high) T cells were highest in CB grafts (P < or = 0.001), and higher in LPs than in BM grafts (P < or = 0.02). The latter finding was in accordance with a preferential G-CSF mobilization of naive T cells relative to the total lymphocyte population (P < or = 0.014). CD3(+)CD8(low) and CD3(+)CD8(low)CD4(-) subsets, which facilitate engraftment in murine transplantation models, demonstrated a tendency towards lower frequencies among T cells in CB grafts and LPs compared to BM grafts. This observation coincided with a significantly reduced mobilization of subsets potentially enriched for facilitating cells as compared to the total lymphocyte population (P < or = 0.036). The CD34(+) compartment of CB grafts contained a significantly higher percentage (12.1%) of CD34(+)CD7(+)CD3(-) T cell progenitors than those of BM grafts (5.1%) and LPs (3.6%). In addition, CB lymphocytes contained the highest fraction of CD3(-)CD16/56(+) NK cells (P < or = 0.013) and almost no CD3(+)CD16/56(+) NKT cells (P < 0.001) compared to adult cell sources. In summary, LPs, CB allografts and BM allografts differ widely with respect to the cellular composition of their lymphocyte compartments, which is partially affected by a varying mobilization efficiency of G-CSF for distinct lymphocyte subsets.
Collapse
Affiliation(s)
- K Theilgaard-Mönch
- Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|