351
|
Goldshmit Y, Frisca F, Pinto AR, Pébay A, Tang JKKY, Siegel AL, Kaslin J, Currie PD. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 2014; 4:187-200. [PMID: 24683512 PMCID: PMC3967535 DOI: 10.1002/brb3.172] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/30/2013] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES A major impediment for recovery after mammalian spinal cord injury (SCI) is the glial scar formed by proliferating reactive astrocytes. Finding factors that may reduce glial scarring, increase neuronal survival, and promote neurite outgrowth are of major importance for improving the outcome after SCI. Exogenous fibroblast growth factor (Fgf) has been shown to decrease injury volume and improve functional outcome; however, the mechanisms by which this is mediated are still largely unknown. METHODS In this study, Fgf2 was administered for 2 weeks in mice subcutaneously, starting 30 min after spinal cord hemisection. RESULTS Fgf2 treatment decreased the expression of TNF-a at the lesion site, decreased monocyte/macrophage infiltration, and decreased gliosis. Fgf2 induced astrocytes to adopt a polarized morphology and increased expression of radial markers such as Pax6 and nestin. In addition, the levels of chondroitin sulfate proteoglycans (CSPGs), expressed by glia, were markedly decreased. Furthermore, Fgf2 treatment promotes the formation of parallel glial processes, "bridges," at the lesion site that enable regenerating axons through the injury site. Additionally, Fgf2 treatment increased Sox2-expressing cells in the gray matter and neurogenesis around and at the lesion site. Importantly, these effects were correlated with enhanced functional recovery of the left paretic hind limb. CONCLUSIONS Thus, early pharmacological intervention with Fgf2 following SCI is neuroprotective and creates a proregenerative environment by the modulation of the glia response.
Collapse
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia ; Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital East Melbourne, VIC, Australia
| | - Frisca Frisca
- Department of Ophthalmology, The University of Melbourne East Melbourne, VIC, Australia
| | - Alexander R Pinto
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Alice Pébay
- Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital East Melbourne, VIC, Australia ; Department of Ophthalmology, The University of Melbourne East Melbourne, VIC, Australia
| | | | - Ashley L Siegel
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute East Melbourne, VIC, Australia
| |
Collapse
|
352
|
Orts-Del’Immagine A, Kastner A, Tillement V, Tardivel C, Trouslard J, Wanaverbecq N. Morphology, distribution and phenotype of polycystin kidney disease 2-like 1-positive cerebrospinal fluid contacting neurons in the brainstem of adult mice. PLoS One 2014; 9:e87748. [PMID: 24504595 PMCID: PMC3913643 DOI: 10.1371/journal.pone.0087748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/30/2013] [Indexed: 11/18/2022] Open
Abstract
The mammalian spinal cord and medulla oblongata harbor unique neurons that remain in contact with the cerebrospinal fluid (CSF-cNs). These neurons were shown recently to express a polycystin member of the TRP channels family (PKD2L1) that potentially acts as a chemo- or mechanoreceptor. Recent studies carried out in young rodents indicate that spinal CSF-cNs express immature neuronal markers that appear to persist even in adult cells. Nevertheless, little is known about the phenotype and morphological properties of medullar CSF-cNs. Using immunohistochemistry and confocal microscopy techniques on tissues obtained from three-month old PKD2L1:EGFP transgenic mice, we analyzed the morphology, distribution, localization and phenotype of PKD2L1(+) CSF-cNs around the brainstem and cervical spinal cord central canal. We show that PKD2L1(+) CSF-cNs are GABAergic neurons with a subependymal localization, projecting a dendrite towards the central canal and an axon-like process running through the parenchyma. These neurons display a primary cilium on the soma and the dendritic process appears to bear ciliary-like structures in contact with the CSF. PKD2L1(+) CSF-cNs present a conserved morphology along the length of the medullospinal central canal with a change in their density, localization and dendritic length according to the rostro-caudal axis. At adult stages, PKD2L1(+) medullar CSF-cNs appear to remain in an intermediate state of maturation since they still exhibit characteristics of neuronal immaturity (DCX positive, neurofilament 160 kDa negative) along with the expression of a marker representative of neuronal maturation (NeuN). In addition, PKD2L1(+) CSF-cNs express Nkx6.1, a homeodomain protein that enables the differentiation of ventral progenitors into somatic motoneurons and interneurons. The present study provides valuable information on the cellular properties of this peculiar neuronal population that will be crucial for understanding the physiological role of CSF-cNs in mammals and their link with the stem cells contained in the region surrounding the medullospinal central canal.
Collapse
Affiliation(s)
- Adeline Orts-Del’Immagine
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Anne Kastner
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Vanessa Tillement
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Catherine Tardivel
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Jérôme Trouslard
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
| | - Nicolas Wanaverbecq
- Aix-Marseille Université (AMU), Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) - EA 4674, Faculté des Sciences St. Jérôme, Marseille, France
- * E-mail:
| |
Collapse
|
353
|
Lacroix S, Hamilton LK, Vaugeois A, Beaudoin S, Breault-Dugas C, Pineau I, Lévesque SA, Grégoire CA, Fernandes KJL. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions. PLoS One 2014; 9:e85916. [PMID: 24475059 PMCID: PMC3903496 DOI: 10.1371/journal.pone.0085916] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI) and multiple sclerosis (MS). Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC), and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE) model of MS. Contusion SCI at the T9-10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE), remyelination (LPC) and significant locomotor defects (EAE). Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.
Collapse
Affiliation(s)
- Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – CHUL et Département de médicine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Laura K. Hamilton
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Alexandre Vaugeois
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Stéfanny Beaudoin
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Christian Breault-Dugas
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Isabelle Pineau
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – CHUL et Département de médicine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Sébastien A. Lévesque
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec – CHUL et Département de médicine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Catherine-Alexandra Grégoire
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
| | - Karl J. L. Fernandes
- Department of Neurosciences, Faculty of Medicine, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
354
|
Abstract
OBJECTIVE AND BACKGROUND FOXJ1 is a member of the Forkhead/winged-helix (Fox) family of transcription factors, which is required for the differentiation of the cells acting as adult neural stem cells which participate in neurogenesis and give rise to neurons, astrocytes, oligodendrocytes. The expression pattern of FOXJ1 in the brain after cerebral ischemia has so far not been described. In the current study, we investigated the expression pattern of FOXJ1 in the rat brain after cerebral ischemia by animal model. METHODS We performed a middle cerebral artery occlusion (MCAO) model in adult rats and investigated the expression of FOXJ1 in the brain by Western blotting and immunochemistry; double immunofluorescence staining was used to analyze FOXJ1's co-expression with Ki67. RESULTS Western blot analysis showed that the expression of FOXJ1 was lower than normal and sham-operated brain after cerebral ischemia, but the level of FOXJ1 gradually increased from Day 1 to Day 14. Immuohistochemical staining suggested that the immunostaining of FOXJ1 deposited strongly in the ipsilateral and contralateral hemisphere in the cortical penumbra (CP). There was no FOXJ1 expression in the ischemic core (IC). The positive cells in the cortical penumbra might migrate to the ischemic core. In addition, double immunofluorescence staining revealed that FOXJ1 was co-expressed with mAP-2 and gFAP, and Ki67 had the colocalization with NeuN, GFAP, and FOXJ1. CONCLUSIONS All our findings suggest that FOXJ1 plays an important role on neuronal production and neurogenesis in the adult brain after cerebral ischemia.
Collapse
|
355
|
Functional regeneration beyond the glial scar. Exp Neurol 2014; 253:197-207. [PMID: 24424280 DOI: 10.1016/j.expneurol.2013.12.024] [Citation(s) in RCA: 486] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022]
Abstract
Astrocytes react to CNS injury by building a dense wall of filamentous processes around the lesion. Stromal cells quickly take up residence in the lesion core and synthesize connective tissue elements that contribute to fibrosis. Oligodendrocyte precursor cells proliferate within the lesion and entrap dystrophic axon tips. Here we review evidence that this aggregate scar acts as the major barrier to regeneration of axons after injury. We also consider several exciting new interventions that allow axons to regenerate beyond the glial scar, and discuss the implications of this work for the future of regeneration biology.
Collapse
|
356
|
Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic Niches and Neurogenesis Modulation by Vitamins. ACTA ACUST UNITED AC 2014. [PMID: 26203401 DOI: 10.4172/2157-7633.1000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the generation of new neurons occurs in adult mammals, it has been classically described in two defined regions of the brain denominated neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus. In these regions, neural stem cells give rise to new neurons and glia, which functionally integrate into the existing circuits under physiological conditions. However, accumulating evidence indicates the presence of neurogenic potential in other brain regions, from which multipotent precursors can be isolated and differentiated in vitro. In some of these regions, neuron generation occurs at low levels; however, the addition of growth factors, hormones or other signaling molecules increases the proliferation and differentiation of precursor cells. In addition, vitamins, which are micronutrients necessary for normal brain development, and whose deficiency produces neurological impairments, have a regulatory effect on neural stem cells in vitro and in vivo. In the present review, we will describe the progress that has been achieved in determining the neurogenic potential in other regions, known as unconventional niches, as well as the characteristics of the neural stem cells described for each region. Finally, we will revisit the roles of commonly known vitamins as modulators of precursor cell proliferation and differentiation, and their role in the complex and tight molecular signaling that impacts these neurogenic niches.
Collapse
Affiliation(s)
- Karina Oyarce
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| |
Collapse
|
357
|
Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Exp Neurol 2013; 253:91-101. [PMID: 24365539 DOI: 10.1016/j.expneurol.2013.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 01/17/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motoneuron loss in the CNS. In G93A-SOD1 mice, motoneuron degeneration is associated with proliferative restorative attempts of ependymal stem progenitor cells (epSPCs), usually quiescent in the spinal cord. The aims of the study were to demonstrate that epSPCs isolated from the spinal cord of G93A-SOD1 mice express neurogenic potential in vitro, and thus gain a better understanding of epSPC neural differentiation properties. For this purpose, we compared the ability of epSPCs from asymptomatic and symptomatic G93A-SOD1 and WT SOD1 transgenic mice to proliferate and differentiate into neural cells. Compared to control cells, G93A-SOD1 epSPCs differentiated more into neurons than into astrocytes, whereas oligodendrocyte proportions were similar in the two populations. G93A-SOD1 neurons were small and astrocytes had an activated phenotype. Evaluation of microRNAs, specific for neural cell fate and cell-cycle regulation, in G93A-SOD1 epSPCs showed that miR-9, miR-124a, miR-19a and miR-19b were differentially expressed. Expression analysis of the predicted miRNA targets allowed identification of a functional network in which Hes1, Pten, Socs1, and Stat3 genes were important for controlling epSPC fate. Our findings demonstrate that G93A-SOD1 epSPCs are a source of multipotent cells that have neurogenic potential in vitro, and might be a useful tool to investigate the mechanisms of neural differentiation in relation to miRNA expression whose modulation might constitute new targeted therapeutic approaches to ALS.
Collapse
|
358
|
Trujillo-Cenóz O, Marichal N, Rehermann MI, Russo RE. The inner lining of the reptilian brain: A heterogeneous cellular mosaic. Glia 2013; 62:300-16. [DOI: 10.1002/glia.22607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Omar Trujillo-Cenóz
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Nicolás Marichal
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - María Inés Rehermann
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Raúl E. Russo
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| |
Collapse
|
359
|
Penha EM, Aguiar PHP, Barrouin-Melo SM, de Lima RS, da Silveira ACC, Otelo ARS, Pinheiro CMB, Ribeiro-Dos-Santos R, Soares MBP. Clinical neurofunctional rehabilitation of a cat with spinal cord injury after hemilaminectomy and autologous stem cell transplantation. Int J Stem Cells 2013; 5:146-50. [PMID: 24298368 DOI: 10.15283/ijsc.2012.5.2.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/23/2022] Open
Abstract
Stem cell-based therapy has been investigated in a number of degenerative and traumatic diseases, including spinal cord injury. In the present study, we investigated the use of autologous mesenchymal stem cells in the functional rehabilitation of a domestic cat presenting a compressive L1-L5 fracture. Bone marrow cells collected by puncture of the iliac crest were cultured to obtain mesenchymal stem cells three weeks before surgery. Hemilaminectomy was performed, followed by injection of the mesenchymal stem cells in the injured area. Clinical evaluation of the animal prior to surgery showed absence of pain, muscular tonus, and panniculi reflexes. Seven days after surgery and cell transplantation the examination revealed a progressive recovery of the panniculus reflexes and of the responses to superficial and deep pain stimuli despite the low proprioceptive and hyperreflexic ataxic hind limbs. Physiotherapy protocols were applied for clinical rehabilitation after surgery. The cat's first steps, three-minute weight-bearing, and intestine and urinary bladder partial reestablishment were observed 75 days post-surgery. Our results indicate the therapeutic potential of mesenchymal stem cells in chronic spinal cord injuries.
Collapse
Affiliation(s)
- Euler M Penha
- Escola de Medicina Veterinária, Universidade Federal da Bahia ; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz
| | | | | | | | | | | | | | | | | |
Collapse
|
360
|
McDonough A, Hoang AN, Monterrubio A, Greenhalgh S, Martínez-Cerdeño V. Compression injury in the mouse spinal cord elicits a specific proliferative response and distinct cell fate acquisition along rostro-caudal and dorso-ventral axes. Neuroscience 2013; 254:1-17. [DOI: 10.1016/j.neuroscience.2013.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
|
361
|
Panayiotou E, Malas S. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury. Front Physiol 2013; 4:340. [PMID: 24348422 PMCID: PMC3842874 DOI: 10.3389/fphys.2013.00340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/05/2013] [Indexed: 01/27/2023] Open
Abstract
Spinal cord injury (SCI) is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following SCI activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to limit the damage, rendering this physiological response mainly ineffective. Research is now focusing on the manipulation of ependymal cells to produce cells of the oligodendrocyte lineage which are primarily lost in such a situation leading to secondary neuronal degeneration. Thus, there is a need for a more focused approach to understand the molecular properties of adult ependymal cells in greater detail and develop effective strategies for guiding their response during SCI.
Collapse
Affiliation(s)
- Elena Panayiotou
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology and Genetics Nicosia, Cyprus
| | - Stavros Malas
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology and Genetics Nicosia, Cyprus
| |
Collapse
|
362
|
Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci 2013; 33:15350-61. [PMID: 24068802 DOI: 10.1523/jneurosci.2510-13.2013] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developing approaches to promote the regeneration of descending supraspinal axons represents an ideal strategy for rebuilding neuronal circuits to improve functional recovery after spinal cord injury (SCI). Our previous studies demonstrated that genetic deletion of phosphatase and tensin homolog (PTEN) in mouse corticospinal neurons reactivates their regenerative capacity, resulting in significant regeneration of corticospinal tract (CST) axons after SCI. However, it is unknown whether nongenetic methods of suppressing PTEN have similar effects and how regenerating axons interact with the extrinsic environment. Herein, we show that suppressing PTEN expression with short-hairpin RNA (shRNA) promotes the regeneration of injured CST axons, and these axons form anatomical synapses in appropriate areas of the cord caudal to the lesion. Importantly, this model of increased CST regrowth enables the analysis of extrinsic regulators of CST regeneration in vivo. We find that regenerating axons avoid dense clusters of fibroblasts and macrophages in the lesion, suggesting that these cell types might be key inhibitors of axon regeneration. Furthermore, most regenerating axons cross the lesion in association with astrocytes, indicating that these cells might be important for providing a permissive bridge for axon regeneration. Lineage analysis reveals that these bridge-forming astrocytes are not derived from ependymal stem cells within the spinal cord, suggesting that they are more likely derived from a subset of mature astrocytes. Overall, this study reveals insights into the critical extrinsic and intrinsic regulators of axon regeneration and establishes shRNA as a viable means to manipulate these regulators and translate findings into other mammalian models.
Collapse
|
363
|
Chen X, Yao Y, Guan J, Chen X, Zhang F. Up-regulation of FoxN4 expression in adult spinal cord after injury. J Mol Neurosci 2013; 52:403-9. [PMID: 24217796 PMCID: PMC3924027 DOI: 10.1007/s12031-013-0166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
Abstract
FoxN4 (forkhead box N4), which is a transcription factor involved in developing spinal cord and spinal neurogenesis, implied important roles in the central nervous system (CNS). However, its expression and function in the adult CNS lesion are still unclear. In this study, we established a spinal cord injury (SCI) model in adult rats and investigated the expression of FoxN4 in the spinal cord. Western blot analysis revealed that FoxN4 was present in normal spinal cord. It gradually increased, peaked at day 3 after SCI, and then decreased during the following days. Immunohistochemistry further confirmed that FoxN4 was expressed at low levels in gray and white matters in normal condition and increased after SCI. Double immunofluorescence staining showed that FoxN4 is located on neurons and astrocytes, and FoxN4 expression was increased progressively in reactive astrocytes within the vicinity of the lesion, predominately in the white matter. In addition, almost all FoxN4-positive cells also expressed nestin or PCNA. Our data suggested that FoxN4 might play important roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Xiangdong Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yu Yao
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Junjie Guan
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Feng Zhang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
364
|
Sabelstrom H, Stenudd M, Reu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Goritz C, Frisen J. Resident Neural Stem Cells Restrict Tissue Damage and Neuronal Loss After Spinal Cord Injury in Mice. Science 2013; 342:637-40. [DOI: 10.1126/science.1242576] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
365
|
Guérout N, Li X, Barnabé-Heider F. Cell fate control in the developing central nervous system. Exp Cell Res 2013; 321:77-83. [PMID: 24140262 DOI: 10.1016/j.yexcr.2013.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases.
Collapse
Affiliation(s)
- Nicolas Guérout
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Xiaofei Li
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | | |
Collapse
|
366
|
Fiorelli R, Cebrian-Silla A, Garcia-Verdugo JM, Raineteau O. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential. Glia 2013; 61:2100-13. [DOI: 10.1002/glia.22579] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Fiorelli
- Brain Research Institute; University of Zurich/ETHZ; Switzerland
| | - Arantxa Cebrian-Silla
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva; University of Valencia, 46980, CIBERNED; Valencia Spain
| | - Jose-Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva; University of Valencia, 46980, CIBERNED; Valencia Spain
| | | |
Collapse
|
367
|
Barbour HR, Plant CD, Harvey AR, Plant GW. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion. BMC Neurosci 2013; 14:106. [PMID: 24070030 PMCID: PMC3849889 DOI: 10.1186/1471-2202-14-106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022] Open
Abstract
Background It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. Results OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was observed at both time points following glial SCs transplantation. In addition, OEG transplants showed significantly decreased chondroitin proteoglycan synthesis in the lesion site, suggesting a more CNS tolerant graft. Conclusions These results show that transplantation of OEG and SCs in a sub-acute phase can improve anatomical outcomes after a contusion injury to the spinal cord, by increasing the number of spared/regenerated supraspinal fibers, reducing cavitation and enhancing tissue integrity. This provides important information on the time window of glial transplantation for the repair of the spinal cord.
Collapse
Affiliation(s)
- Helen R Barbour
- Department of Neurosurgery, Stanford Partnership for Spinal Cord Injury and Repair, Stanford University, Lorry I Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
368
|
Nakano N, Nakai Y, Seo TB, Homma T, Yamada Y, Ohta M, Suzuki Y, Nakatani T, Fukushima M, Hayashibe M, Ide C. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats. PLoS One 2013; 8:e73494. [PMID: 24039961 PMCID: PMC3770680 DOI: 10.1371/journal.pone.0073494] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 07/30/2013] [Indexed: 12/18/2022] Open
Abstract
It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs) through the cerebrospinal fluid (CSF) has beneficial effects on acute spinal cord injury (SCI) in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury), and/or chronic (4-week post-injury) SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly) into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0–3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle)-injection subgroups, it increased only from 0.5–4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF.
Collapse
Affiliation(s)
- Norihiko Nakano
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Yoshiyasu Nakai
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Tae-Beom Seo
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Tamami Homma
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Yoshihiro Yamada
- Department of Physical Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Masayoshi Ohta
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Toshio Nakatani
- Emergency and Critical Care Center, Kansai Medical University, Osaka, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Miki Hayashibe
- Department of Occupational Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
| | - Chizuka Ide
- Institute of Regeneration and Rehabilitation, Aino University School of Nursing and Rehabilitation, Osaka, Japan
- Department of Occupational Therapy, Aino University School of Nursing and Rehabilitation, Osaka, Japan
- * E-mail:
| |
Collapse
|
369
|
Chan WS, Sideris A, Sutachan JJ, Montoya G JV, Blanck TJJ, Recio-Pinto E. Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ. Front Mol Neurosci 2013; 6:23. [PMID: 23986655 PMCID: PMC3753454 DOI: 10.3389/fnmol.2013.00023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/01/2013] [Indexed: 01/12/2023] Open
Abstract
Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs.
Collapse
Affiliation(s)
- Wai Si Chan
- Department of Anesthesiology, New York University Langone Medical Center New York, NY, USA
| | | | | | | | | | | |
Collapse
|
370
|
Fandel D, Wasmuht D, Avila-Martín G, Taylor JS, Galán-Arriero I, Mey J. Spinal cord injury induced changes of nuclear receptors PPARα and LXRβ and modulation with oleic acid/albumin treatment. Brain Res 2013; 1535:89-105. [PMID: 23958344 DOI: 10.1016/j.brainres.2013.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 11/19/2022]
Abstract
In previous studies with animal models of spinal cord injury (SCI) pharmacological activation of peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) were used to reduce tissue damage and promote behavioral recovery in animal models. We have studied the endogenous expression of the transcription factors PPARα and LXRβ in the chronic stage after SCI in rats. The immunohistochemical investigation revealed a long lasting increase in the level of PPARα in white matter in the vicinity of the lesion site. The source of this signal was identified in a subpopulation of astrocytes outside of the glial scar area. Intrathecal injections of oleic acid/albumin reduced the lesion-induced PPARα immunoreactivity. In addition, ependymal cells displayed a prominent PPARα signal in the non-injured spinal cord, and continued to express the receptor as they proliferated and migrated within the damaged tissue. The nuclear receptor LXRβ was detected at similar levels after SCI as in sham operated animals. We found high levels of immunoreactivity in the gray matter, while in the white matter it was present in subpopulations of astrocytes and oligodendrocytes. Macrophages that had accumulated within the center of the lesion contained LXRβ in their cell nuclei. Possible endogenous functions of PPARα and LXRβ after SCI are discussed, specifically the control of fatty acid and cholesterol metabolism and the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Daniel Fandel
- Laboratorio Regeneración Nerviosa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | | | | | | | | | | |
Collapse
|
371
|
Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: New perspectives in CNS neurogenesis and repair. Pharmacol Ther 2013; 141:21-31. [PMID: 23954656 DOI: 10.1016/j.pharmthera.2013.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/11/2022]
Abstract
The pharmacological support and stimulation of endogenous and transplanted neural stem cells (NSCs) is a major challenge in brain repair. Trauma to the central nervous system (CNS) results in a distinct inflammatory response caused by local and infiltrating immune cells. This makes NSC-supported regeneration difficult due to the presence of inhibitory immune factors which are upregulated around the lesion site. The continual and dual role of the neuroinflammatory response leaves it difficult to decipher upon a single modulatory strategy. Therefore, understanding the influence of cytokines upon regulation of NSC self-renewal, proliferation and differentiation is crucial when designing therapies for CNS repair. There is a plethora of partially conflicting data in vitro and in vivo on the role of cytokines in modulating the stem cell niche and the milieu around NSC transplants. This is mainly due to the pleiotropic role of many factors. In order for cell-based therapy to thrive, treatment must be phase-specific to the injury and also be personalized for each patient, i.e. taking age, sex, neuroimmune and endocrine status as well as other key parameters into consideration. In this review, we will summarize the most relevant information concerning interleukin (IL)-1, IL-4, IL-10, IL-15, IFN-γ, the neuropoietic cytokine family and TNF-α in order to extract promising therapeutic approaches for further research. We will focus on the consequences of neuroinflammation on endogenous brain stem cells and the transplantation environment, the effects of the above cytokines on NSCs, as well as immunopharmacological manipulation of the microenvironment for potential therapeutic use.
Collapse
Affiliation(s)
- Dearbhaile Dooley
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium
| | - Pia Vidal
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium
| | - Sven Hendrix
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium.
| |
Collapse
|
372
|
Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J. Spinal cord regeneration: Lessons for mammals from non-mammalian vertebrates. Genesis 2013; 51:529-44. [DOI: 10.1002/dvg.22406] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Dasfne Lee-Liu
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| | - Gabriela Edwards-Faret
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| | - Víctor S. Tapia
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| | - Juan Larraín
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| |
Collapse
|
373
|
Corns LF, Deuchars J, Deuchars SA. GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord. Neurosci Lett 2013; 553:57-62. [PMID: 23872091 PMCID: PMC3809510 DOI: 10.1016/j.neulet.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
Extensive dye-coupling occurs between mammalian spinal cord ependymal cells. GABA depolarised all spinal cord ependymal cells tested. GABA effects were mediated by GABAA receptors but not GABA uptake transporters.
The area surrounding the central canal of the postnatal mammalian spinal cord is a highly plastic region that exhibits many similarities to other postnatal neurogenic niches, such as the subventricular zone. Within this region, ependymal cells have been identified as neural stem cells however very little is known about their properties and how the local environment, including neurotransmitters, is capable of affecting them. The neurotransmitter GABA is present around the central canal and is known to affect cells within other postnatal neurogenic niches. This study used whole cell patch clamp electrophysiology and intracellular dye-loading in in vitro Wistar rat spinal cord slices to characterise ependymal cells and their ability to respond to GABA. Ependymal cells were defined by their passive response properties and low input resistances. Extensive dye-coupling was observed between ependymal cells; this was confirmed as gap junction coupling using the gap junction blocker, 18β-glycyrrhetinic acid, which significantly increased the input resistance of ependymal cells. GABA depolarised all ependymal cells tested; the partial antagonism of this response by bicuculline and gabazine indicates that GABAA receptors contribute to this response. A lack of effect by baclofen suggests that GABAB receptors do not contribute to the GABAergic response. The ability of ependymal cells to respond to GABA suggests that GABA could be capable of influencing the proliferation and differentiation of cells within the neurogenic niche of the postnatal spinal cord.
Collapse
Affiliation(s)
- Laura F Corns
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
374
|
Yuan YM, He C. The glial scar in spinal cord injury and repair. Neurosci Bull 2013; 29:421-35. [PMID: 23861090 DOI: 10.1007/s12264-013-1358-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/03/2013] [Indexed: 12/21/2022] Open
Abstract
Glial scarring following severe tissue damage and inflammation after spinal cord injury (SCI) is due to an extreme, uncontrolled form of reactive astrogliosis that typically occurs around the injury site. The scarring process includes the misalignment of activated astrocytes and the deposition of inhibitory chondroitin sulfate proteoglycans. Here, we first discuss recent developments in the molecular and cellular features of glial scar formation, with special focus on the potential cellular origin of scar-forming cells and the molecular mechanisms underlying glial scar formation after SCI. Second, we discuss the role of glial scar formation in the regulation of axonal regeneration and the cascades of neuro-inflammation. Last, we summarize the physical and pharmacological approaches targeting the modulation of glial scarring to better understand the role of glial scar formation in the repair of SCI.
Collapse
Affiliation(s)
- Yi-Min Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | | |
Collapse
|
375
|
Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2013; 9:168-81. [PMID: 23771592 PMCID: PMC3955130 DOI: 10.1007/s11481-013-9479-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
The four platelet-derived growth factor (PDGF) ligands and PDGF receptors (PDGFRs), α and β (PDGFRA, PDGFRB), are essential proteins that are expressed during embryonic and mature nervous systems, i.e., in neural progenitors, neurons, astrocytes, oligodendrocytes, and vascular cells. PDGF exerts essential roles from the gastrulation period to adult neuronal maintenance by contributing to the regulation of development of preplacodal progenitors, placodal ectoderm, and neural crest cells to adult neural progenitors, in coordinating with other factors. In adulthood, PDGF plays critical roles for maintenance of many specific cell types in the nervous system together with vascular cells through controlling the blood brain barrier homeostasis. At injury or various stresses, PDGF modulates neuronal excitability through adjusting various ion channels, and affecting synaptic plasticity and function. Furthermore, PDGF stimulates survival signals, majorly PI3-K/Akt pathway but also other ways, rescuing cells from apoptosis. Studies imply an involvement of PDGF in dendrite spine morphology, being critical for memory in the developing brain. Recent studies suggest association of PDGF genes with neuropsychiatric disorders. In this review, we will describe the roles of PDGF in the nervous system, from the discovery to recent findings, in order to understand the broad spectrum of PDGF in the nervous system. Recent development of pharmacological and replacement therapies targeting the PDGF system is discussed.
Collapse
Affiliation(s)
- Keiko Funa
- Sahlgrenska Cancer Center, University of Gothenburg, Box 425, SE 405 30, Gothenburg, Sweden,
| | | |
Collapse
|
376
|
Gauthier MK, Kosciuczyk K, Tapley L, Karimi-Abdolrezaee S. Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur J Neurosci 2013; 38:2693-715. [PMID: 23758598 DOI: 10.1111/ejn.12268] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/14/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) results in degeneration of oligodendrocytes that leads to demyelination and axonal dysfunction. Replacement of oligodendrocytes is impaired after SCI, owing to the improper endogenous differentiation and maturation of myelinating oligodendrocytes. Here, we report that SCI-induced dysregulation of neuregulin-1 (Nrg-1)-ErbB signaling may underlie the poor replacement of oligodendrocytes. Nrg-1 and its receptors, ErbB-2, ErbB-3, and ErbB-4, play essential roles in several aspects of oligodendrocyte development and physiology. In rats with SCI, we demonstrate that the Nrg-1 level is dramatically reduced at 1 day after injury, with no restoration at later time-points. Our characterisation shows that Nrg-1 is mainly expressed by neurons, axons and oligodendrocytes in the adult spinal cord, and the robust and lasting decrease in its level following SCI reflects the permanent loss of these cells. Neural precursor cells (NPCs) residing in the spinal cord ependyma express ErbB receptors, suggesting that they are responsive to Nrg-1 availability. In vitro, exogenous Nrg-1 enhanced the proliferation and differentiation of spinal NPCs into oligodendrocytes while reducing astrocyte differentiation. In rats with SCI, recombinant human Nrg-1β1 treatment resulted in a significant increase in the number of new oligodendrocytes and the preservation of existing ones after injury. Nrg-1β1 administration also enhanced axonal preservation and attenuated astrogliosis, tumor necrosis factor-α release and tissue degeneration after SCI. The positive effects of Nrg-1β1 treatment were reversed by inhibiting its receptors. Collectively, our data provide strong evidence to suggest an impact of Nrg-1-ErbB signaling on endogenous oligodendrocyte replacement and maintenance in the adult injured spinal cord, and its potential as a therapeutic target for SCI.
Collapse
Affiliation(s)
- Marie-Krystel Gauthier
- Departments of Physiology and Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
377
|
Alfaro-Cervello C, Soriano-Navarro M, Mirzadeh Z, Alvarez-Buylla A, Garcia-Verdugo JM. Biciliated ependymal cell proliferation contributes to spinal cord growth. J Comp Neurol 2013; 520:3528-52. [PMID: 22434575 DOI: 10.1002/cne.23104] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.
Collapse
Affiliation(s)
- Clara Alfaro-Cervello
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, 46980, Valencia, Spain
| | | | | | | | | |
Collapse
|
378
|
Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen YC, Rozov S, Frazer SL, Wyatt C, Higashijima SI, Patton EE, Panula P, Chandran S, Becker T, Becker CG. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Dev Cell 2013; 25:478-91. [PMID: 23707737 DOI: 10.1016/j.devcel.2013.04.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/01/2013] [Accepted: 04/22/2013] [Indexed: 01/10/2023]
Abstract
Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.
Collapse
Affiliation(s)
- Michell M Reimer
- Centre for Neuroregeneration, School of Biomedical Sciences, The Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Yu K, McGlynn S, Matise MP. Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord. Development 2013; 140:1594-604. [PMID: 23482494 DOI: 10.1242/dev.090845] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell fate specification in the CNS is controlled by the secreted morphogen sonic hedgehog (Shh). At spinal cord levels, Shh produced by both the notochord and floor plate (FP) diffuses dorsally to organize patterned gene expression in dividing neural and glial progenitors. Despite the fact that two discrete sources of Shh are involved in this process, the individual contribution of the FP, the only intrinsic source of Shh throughout both neurogenesis and gliogenesis, has not been clearly defined. Here, we have used conditional mutagenesis approaches in mice to selectively inactivate Shh in the FP (Shh(FP)) while allowing expression to persist in the notochord, which underlies the neural tube during neurogenesis but not gliogenesis. We also inactivated Smo, the common Hh receptor, in neural tube progenitors. Our findings confirm and extend prior studies suggesting an important requirement for Shh(FP) in specifying oligodendrocyte cell fates via repression of Gli3 in progenitors. Our studies also uncover a connection between embryonic Shh signaling and astrocyte-mediated reactive gliosis in adults, raising the possibility that this pathway is involved in the development of the most common cell type in the CNS. Finally, we find that intrinsic spinal cord Shh signaling is required for the proper formation of the ependymal zone, the epithelial cell lining of the central canal that is also an adult stem cell niche. Together, our studies identify a crucial late embryonic role for Shh(FP) in regulating the specification and differentiation of glial and epithelial cells in the mouse spinal cord.
Collapse
Affiliation(s)
- Kwanha Yu
- Department of Neuroscience and Cell Biology, UMDNJ/Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08840, USA
| | | | | |
Collapse
|
380
|
Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J. Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol 2013; 48:690-701. [PMID: 23613214 DOI: 10.1007/s12035-013-8460-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/09/2013] [Indexed: 12/16/2022]
Abstract
Reactive gliosis, also known as glial scar formation, is an inflammatory response characterized by the proliferation of microglia and astrocytes as well as astrocytic hypertrophy following injury in the central nervous system (CNS). The glial scar forms a physical and molecular barrier to isolate the injured area from adjacent normal nervous tissue for re-establishing the integrity of the CNS. It prevents the further spread of cellular damage but represents an obstacle to regrowing axons. In this review, we integrated the current findings to elucidate the tightly reciprocal modulation between activated microglia and astrocytes in reactive gliosis and proposed that modification of cellular response to the injury or cellular reprogramming in the glial scar could lead advances in axon regeneration and functional recovery after the CNS injury.
Collapse
Affiliation(s)
- Zhongwen Gao
- Department of Spine Surgery, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | | | | | | | | | | | | |
Collapse
|
381
|
Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 2013; 451:353-64. [DOI: 10.1042/bj20121807] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Major trauma to the mammalian spinal cord often results in irreversible loss of function, i.e. paralysis, and current therapies ranging from drugs, implantations of stem cells and/or biomaterials, and electrically stimulated nerve regrowth, have so far offered very limited success in improving quality-of-life. However, in marked contrast with this basic shortcoming of ours, certain vertebrate species, including fish and salamanders, display the amazing ability to faithfully regenerate various complex body structures after injury or ablation, restoring full functionality, even in the case of the spinal cord. Despite the inherently strong and obvious translational potential for improving treatment strategies for human patients, our in-depth molecular-level understanding of these decidedly more advanced repair systems remains in its infancy. In the present review, we will discuss the current state of this field, focusing on recent progress in such molecular analyses using various regenerative species, and how these so far relate to the mammalian situation.
Collapse
|
382
|
Kuscha V, Frazer SL, Dias TB, Hibi M, Becker T, Becker CG. Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. J Comp Neurol 2013; 520:3604-16. [PMID: 22473852 DOI: 10.1002/cne.23115] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In contrast to mammals, adult zebrafish regenerate neurons in the lesioned spinal cord. For example, motor neurons are generated from an olig2-expressing population of pMN-like ependymoradial glial cells in a ventrolateral position at the central canal. However, the extent of neuronal regeneration is unclear. Here we show, using a transgenic fish in which V2 interneurons are labeled by green fluorescent protein (GFP) under the control of the vsx1 promoter, that after a complete spinal cord transection, large numbers of V2 interneurons are generated in the vicinity of the lesion site. Tg(vsx1:GFP)⁺ cells are not present in the unlesioned spinal cord and label with the proliferation marker bromodeoxyuridine (BrdU) after a lesion. Some mediolaterally elongated Tg(vsx1:GFP)⁺ cells contact the central canal in a medial position. These cells likely arise from a p2-like domain of ependymoradial glial progenitor cells, indicated by coexpression of Pax6 and Nkx6.1, but not DsRed driven by the olig2 promoter in these cells. We also present evidence that Pax2⁺ interneurons are newly generated after a spinal lesion, whereas the generation rate for a dorsal population of parvalbuminergic interneurons is comparatively low. Our results identify the regenerative potential of different interneuron types for the first time and support a model in which different progenitor cell domains in distinct dorsoventral positions around the central canal are activated by a lesion to give rise to diverse neuronal cell types in the adult zebrafish spinal cord.
Collapse
Affiliation(s)
- Veronika Kuscha
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
383
|
Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE. Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord. Stem Cells 2013; 30:2020-31. [PMID: 22821702 DOI: 10.1002/stem.1175] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During spinal cord development, progenitors in the neural tube are arranged within spatial domains that generate specific cell types. The ependyma of the postnatal spinal cord seems to retain cells with properties of the primitive neural stem cells, some of which are able to react to injury with active proliferation. However, the functional complexity and organization of this stem cell niche in mammals remains poorly understood. Here, we combined immunohistochemistry for cell-specific markers with patch-clamp recordings to test the hypothesis that the ependyma of the neonatal rat spinal cord contains progenitor-like cells functionally segregated within specific domains. Cells on the lateral aspects of the ependyma combined morphological and molecular traits of ependymocytes and radial glia (RG) expressing S100β and vimentin, displayed passive membrane properties and were electrically coupled via Cx43. Cells contacting the ventral and dorsal poles expressed the neural stem cell markers nestin and/or vimentin, had the typical morphology of RG, and appeared uncoupled displaying various combinations of K(+) and Ca(2+) voltage-gated currents. Although progenitor-like cells were mitotically active around the entire ependyma, the proliferative capacity seemed higher on lateral domains. Our findings represent the first evidence that the ependyma of the rat harbors progenitor-like cells with heterogeneous electrophysiological phenotypes organized in spatial domains. The manipulation of specific functional properties in the heterogeneous population of progenitor-like cells contacting the ependyma may in future help to regulate their behavior and lineage potential, providing the cell types required for the endogenous repair of the injured spinal cord.
Collapse
Affiliation(s)
- Nicolás Marichal
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP11600, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
384
|
Culver JC, Vadakkan TJ, Dickinson ME. A specialized microvascular domain in the mouse neural stem cell niche. PLoS One 2013; 8:e53546. [PMID: 23308251 PMCID: PMC3538546 DOI: 10.1371/journal.pone.0053546] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/03/2012] [Indexed: 12/27/2022] Open
Abstract
The microenvironment of the subependymal zone (SEZ) neural stem cell niche is necessary for regulating adult neurogenesis. In particular, signaling from the microvasculature is essential for adult neural stem cell maintenance, but microvascular structure and blood flow dynamics in the SEZ are not well understood. In this work, we show that the mouse SEZ constitutes a specialized microvascular domain defined by unique vessel architecture and reduced rates of blood flow. Additionally, we demonstrate that hypoxic conditions are detectable in the ependymal layer that lines the ventricle, and in a subpopulation of neurons throughout the SEZ and striatum. Together, these data highlight previously unidentified features of the SEZ neural stem cell niche, and further demonstrate the extent of microvascular specialization in the SEZ microenvironment.
Collapse
Affiliation(s)
- James C. Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tegy J. Vadakkan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
385
|
Abstract
Whereas neural stem cells and their niches have been extensively studied in the brain, little is known on these cells, their environment and their function in the adult spinal cord. Adult spinal cord neural stem cells are located in a complex niche surrounding the central canal and these cells expressed genes which are specifically expressed in the caudal central nervous system (CNS). In depth characterization of these cells in vivo and in vitro will provide interesting clues on the possibility to utilize this endogenous cell pool to treat spinal cord damages. We describe here a procedure to derive and culture neural spinal cord stem cells from adult mice using the neurosphere method.
Collapse
Affiliation(s)
- Jean-Philippe Hugnot
- Hopital Saint Eloi, INSERM U1051, Institute for Neuroscience of Montpellier, University Montpellier 2, Montpellier, France
| |
Collapse
|
386
|
Endogenous proliferation after spinal cord injury in animal models. Stem Cells Int 2012; 2012:387513. [PMID: 23316243 PMCID: PMC3539424 DOI: 10.1155/2012/387513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/06/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) results in motor and sensory deficits, the severity of which depends on the level and extent of the injury. Animal models for SCI research include transection, contusion, and compression mouse models. In this paper we will discuss the endogenous stem cell response to SCI in animal models. All SCI animal models experience a similar peak of cell proliferation three days after injury; however, each specific type of injury promotes a specific and distinct stem cell response. For example, the transection model results in a strong and localized initial increase of proliferation, while in contusion and compression models, the initial level of proliferation is lower but encompasses the entire rostrocaudal extent of the spinal cord. All injury types result in an increased ependymal proliferation, but only in contusion and compression models is there a significant level of proliferation in the lateral regions of the spinal cord. Finally, the fate of newly generated cells varies from a mainly oligodendrocyte fate in contusion and compression to a mostly astrocyte fate in the transection model. Here we will discuss the potential of endogenous stem/progenitor cell manipulation as a therapeutic tool to treat SCI.
Collapse
|
387
|
Yoshioka N, Asou H, Hisanaga SI, Kawano H. The astrocytic lineage marker calmodulin-regulated spectrin-associated protein 1 (Camsap1): phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain. J Comp Neurol 2012; 520:1301-17. [PMID: 22095662 DOI: 10.1002/cne.22788] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calmodulin-regulated spectrin-associated protein 1 (Camsap1) has been recognized as a new marker for astrocytic lineage cells and is expressed on mature astrocytes in the adult brain (Yamamoto et al. [2009] J. Neurosci. Res. 87:503–513). In the present study, we found that newly born Camsap1-expressing cells exhibited regional heterogeneity in an early phase after stab injury of the mouse brain. In the surrounding area of the lesion site, Camsap1 was expressed on quiescent astrocytes. At 3 days after injury, Camsap1 immunoreactivity was upregulated on glial fibrillary acidic protein-immunoreactive (GFAP-ir) astrocytes. Some of these astrocytes incorporated bromodeoxyuridine (BrdU) together with re-expression of the embryonic cytoskeleton protein nestin. In the neighboring region of the lesion cavity, Camsap1 was expressed on GFAP-negative cells. At 3 days after injury, GFAP-ir astrocytes were absent around the lesion cavity. At this stage, NG2-ir cells immunopositive for Camsap1 and immunonegative for GFAP were distributed in border of the lesion cavity. By 10 days, Camsap1 immunoreactivity was exclusively detected on GFAP-ir reactive astrocytes devoid of NG2 immunoreactivity. BrdU pulse-chase labeling assay suggested the differentiation of Camsap1+/NG2+ cells into Camsap1+/GFAP+ astrocytes. In the subependymal zone of the lateral ventricle, Camsap1-ir cells increased after injury. Camsap1 immunoreactivity was distributed on ependymal and subependymal cells bearing various astrocyte markers, and BrdU incorporation was enhanced on such Camsap1-ir cells after injury. These results suggest that newly born reactive astrocytes are derived from heterogeneous Camsap1-expressing cells in the injured brain.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
388
|
Spatio-temporal expression pattern of frizzled receptors after contusive spinal cord injury in adult rats. PLoS One 2012; 7:e50793. [PMID: 23251385 PMCID: PMC3519492 DOI: 10.1371/journal.pone.0050793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/24/2012] [Indexed: 02/01/2023] Open
Abstract
Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological spinal cord function and in the cellular and molecular events that characterise its neuropathology.
Collapse
|
389
|
Garcia-Ovejero D, Arevalo-Martin A, Paniagua-Torija B, Sierra-Palomares Y, Molina-Holgado E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J Comp Neurol 2012; 521:233-51. [DOI: 10.1002/cne.23184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/22/2012] [Accepted: 07/06/2012] [Indexed: 01/23/2023]
|
390
|
Lee HJ, Wu J, Chung J, Wrathall JR. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. J Neurosci Res 2012; 91:196-210. [PMID: 23169458 DOI: 10.1002/jnr.23151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/13/2012] [Accepted: 09/07/2012] [Indexed: 01/28/2023]
Abstract
The upregulation of genes normally associated with development may occur in the adult after spinal cord injury (SCI). To test this, we performed real-time RT-PCR array analysis of mouse spinal cord mRNAs comparing embryonic day (E)14.5 spinal cord with intact adult and adult cord 1 week after a clinically relevant standardized contusion SCI. We found significantly increased expression of a large number of neural development- and stem cell-associated genes after SCI. These included Sox2 (sex determining region Y-box 2), a transcription factor that regulates self-renewal and potency of embryonic neural stem cells and is one of only a few key factors needed to induce pluripotency. In adult spinal cord of Sox2-EGFP mice, Sox2-EGFP was found mainly in the ependymal cells of the central canal. After SCI, both mRNA and protein levels of Sox2 were significantly increased at and near the injury site. By 1 day, Sox2 was upregulated in NG2(+) oligodendrocyte progenitor cells (OPC) in the spared white matter. By 3 days, Sox2-EGFP ependymal cells had increased proliferation and begun to form multiple layers and clusters of cells in the central lesion zone of the cord. Expression of Sox2 by NG2(+) cells had declined by 1 week, but increased numbers of other Sox2-expressing cells persisted for at least 4 weeks after SCI in both mouse and rat models. Thus, SCI upregulates many genes associated with development and neural stem cells, including the key transcription factor Sox2, which is expressed in a pool of cells that persists for weeks after SCI.
Collapse
Affiliation(s)
- Hyun Joon Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
391
|
Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Brain Behav Immun 2012; 26:1310-21. [PMID: 22884901 DOI: 10.1016/j.bbi.2012.07.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and morbidity in young adults. This complex condition is characterized by significant blood brain barrier leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Recovery of function after TBI is partly through neuronal plasticity. In order to test whether treatments that enhance plasticity might improve functional recovery, a controlled cortical impact (CCI) in adult mice, as a model of TBI, in which a controlled cortical impactor produced full thickness lesions of the forelimb region of the sensorimotor cortex, was performed. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. The endogenous fatty acid palmitoylethanolamide (PEA) is one of the members of N-acyl-ethanolamines family that maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether PEA shows efficacy in a mice model of experimental TBI. PEA treatment is able to reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level further support the efficacy of PEA therapy. The PEA treatment blocked infiltration of astrocytes and restored CCI-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, CD11b and GFAP. PEA inhibited the TBI-mediated decrease in the expression of pJNK and NF-κB. PEA-treated injured animals improved neurobehavioral functions as evaluated by behavioral tests.
Collapse
|
392
|
Jaerve A, Schira J, Müller HW. Concise review: the potential of stromal cell-derived factor 1 and its receptors to promote stem cell functions in spinal cord repair. Stem Cells Transl Med 2012. [PMID: 23197665 DOI: 10.5966/sctm.2012-0068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transplanted stem cells provide beneficial effects on regeneration/recovery after spinal cord injury (SCI) by the release of growth-promoting factors, increased tissue preservation, and provision of a permissive environment for axon regeneration. A rise in chemokine stromal cell-derived factor 1 (SDF-1/CXCL12) expression levels in central nervous system (CNS) injury sites has been shown to play a central role in recruiting transplanted stem cells. Although technically more challenging, it has been shown that after SCI few endogenous stem cells are recruited via SDF-1/CXCR4 signaling. Evidence is accumulating that increasing SDF-1 levels at the injury site (e.g., by exogenous application or transfection methods) further enhances stem cell recruitment. Moreover, SDF-1 might, in addition to migration, also influence survival, proliferation, differentiation, and cytokine secretion of stem cells. Here, we discuss the experimental data available on the role of SDF-1 in stem and progenitor cell biology following CNS injury and suggest strategies for how manipulation of the SDF-1 system could facilitate stem cell-based therapeutic approaches in SCI. In addition, we discuss challenges such as how to circumvent off-target effects in order to facilitate the transfer of SDF-1 to the clinic.
Collapse
Affiliation(s)
- Anne Jaerve
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
393
|
Ahmad A, Genovese T, Impellizzeri D, Crupi R, Velardi E, Marino A, Esposito E, Cuzzocrea S. Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats. Brain Res 2012; 1477:45-58. [PMID: 23046519 DOI: 10.1016/j.brainres.2012.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Stroke is the third leading cause of death and the leading cause of long-term disability in adults. Current therapeutic strategies for stroke, including thrombolytic drugs, such as tissue plasminogen activator offer great promise for the treatment, but complimentary neuroprotective treatments are likely to provide a better outcome. To counteract the ischemic brain injury in mice, a new therapeutic approach has been employed by using palmitoylethanolamide (PEA). PEA is one of the members of N-acyl-ethanolamine family maintain not only redox balance but also inhibit the mechanisms of secondary injury on ischemic brain injury. Treatment of the middle cerebral artery occlusion (MCAo)-induced animals with PEA reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride (TTC) staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level (assayed by Bax and Bcl-2) further support the efficacy of PEA therapy. We demonstrated that PEA treatment blocked infiltration of astrocytes and restored MCAo-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, growth factors (BDNF and GDNF) and GFAP. PEA also inhibited the MCAo-mediated increased expression of pJNK, NF-κB, and degradation of IκB-α. PEA-treated injured animals improved neurobehavioral functions as evaluated by motor deficits. Based on these findings we propose that PEA would be useful in lowering the risk of damage or improving function in ischemia-reperfusion brain injury-related disorders.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
394
|
Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner P, Stojkovic M. Stem cell-based therapy for spinal cord injury. Cell Transplant 2012; 22:1309-23. [PMID: 23043847 DOI: 10.3727/096368912x657260] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stem cells (SCs) represent a new therapeutic approach for spinal cord injury (SCI) by enabling improved sensory and motor functions in animal models. The main goal of SC-based therapy for SCI is the replacement of neurons and glial cells that undergo cell death soon after injury. Stem cells are able to promote remyelination via oligodendroglia cell replacement to produce trophic factors enhancing neurite outgrowth, axonal elongation, and fiber density and to activate resident or transplanted progenitor cells across the lesion cavity. While several SC transplantation strategies have shown promising yet partial efficacy, mechanistic proof is generally lacking and is arguably the largest impediment toward faster progress and clinical application. The main challenge ahead is to spur on cooperation between clinicians, researchers, and patients in order to define and optimize the mechanisms of SC function and to establish the ideal source/s of SCs that produce efficient and also safe therapeutic approaches.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Medical Faculty, University of Kragujevac, Serbia
| | | | | | | | | | | |
Collapse
|
395
|
McKillop WM, Dragan M, Schedl A, Brown A. Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia 2012; 61:164-77. [PMID: 23027386 DOI: 10.1002/glia.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/31/2012] [Indexed: 11/12/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) found in perineuronal nets and in the glial scar after spinal cord injury have been shown to inhibit axonal growth and plasticity. Since we have previously identified SOX9 as a transcription factor that upregulates the expression of a battery of genes associated with glial scar formation in primary astrocyte cultures, we predicted that conditional Sox9 ablation would result in reduced CSPG expression after spinal cord injury and that this would lead to increased neuroplasticity and improved locomotor recovery. Control and Sox9 conditional knock-out mice were subject to a 70 kdyne contusion spinal cord injury at thoracic level 9. One week after injury, Sox9 conditional knock-out mice expressed reduced levels of CSPG biosynthetic enzymes (Xt-1 and C4st), CSPG core proteins (brevican, neurocan, and aggrecan), collagens 2a1 and 4a1, and Gfap, a marker of astrocyte activation, in the injured spinal cord compared with controls. These changes in gene expression were accompanied by improved hind limb function and locomotor recovery as evaluated by the Basso Mouse Scale (BMS) and rodent activity boxes. Histological assessments confirmed reduced CSPG deposition and collagenous scarring at the lesion of Sox9 conditional knock-out mice, and demonstrated increased neurofilament-positive fibers in the lesion penumbra and increased serotonin immunoreactivity caudal to the site of injury. These results suggest that SOX9 inhibition is a potential strategy for the treatment of SCI.
Collapse
Affiliation(s)
- William M McKillop
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
396
|
Kuscha V, Barreiro-Iglesias A, Becker CG, Becker T. Plasticity of tyrosine hydroxylase and serotonergic systems in the regenerating spinal cord of adult zebrafish. J Comp Neurol 2012; 520:933-51. [PMID: 21830219 DOI: 10.1002/cne.22739] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monoaminergic innervation of the spinal cord has important modulatory functions for locomotion. Here we performed a quantitative study to determine the plastic changes of tyrosine hydroxylase-positive (TH1(+); mainly dopaminergic), and serotonergic (5-HT(+)) terminals and cells during successful spinal cord regeneration in adult zebrafish. TH1(+) innervation in the spinal cord is derived from the brain. After spinal cord transection, TH1(+) immunoreactivity is completely lost from the caudal spinal cord. Terminal varicosities increase in density rostral to the lesion site compared with unlesioned controls and are re-established in the caudal spinal cord at 6 weeks post lesion. Interestingly, axons mostly fail to re-innervate more caudal levels of the spinal cord even after prolonged survival times. However, densities of terminal varicosities correlate with recovery of swimming behavior, which is completely lost again after re-lesion of the spinal cord. Similar observations were made for terminals derived from descending 5-HT(+) axons from the brain. In addition, spinal 5-HT(+) neurons were newly generated after a lesion and transiently increased in number up to fivefold, which depended in part on hedgehog signaling. Overall, TH1(+) and 5-HT(+) innervation is massively altered in the successfully regenerated spinal cord of adult zebrafish. Despite these changes in TH and 5-HT systems, a remarkable recovery of swimming capability is achieved, suggesting significant plasticity of the adult spinal network during regeneration.
Collapse
Affiliation(s)
- Veronika Kuscha
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
397
|
Lecca D, Ceruti S, Fumagalli M, Abbracchio MP. Purinergic trophic signalling in glial cells: functional effects and modulation of cell proliferation, differentiation, and death. Purinergic Signal 2012; 8:539-57. [PMID: 22528683 PMCID: PMC3360088 DOI: 10.1007/s11302-012-9310-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022] Open
Abstract
In the last decades, the discovery that glial cells do not only fill in the empty space among neurons or furnish them with trophic support but are rather essential participants to the various activities of the central and peripheral nervous system has fostered the search for the signalling pathways controlling their functions. Since the early 1990s, purines were foreseen as some of the most promising candidate molecules. Originally just a hypothesis, this has become a certainty as experimental evidence accumulated over years, as demonstrated by the exponentially growing number of articles related to the role of extracellular nucleotides and nucleosides in controlling glial cell functions. Indeed, as new functions for already known glial cells (for example, the ability of parenchymal astrocytes to behave as stem cells) or new subtypes of glial cells (for example, NG2(+) cells, also called polydendrocytes) are discovered also, new actions and new targets for the purinergic system are identified. Thus, glial purinergic receptors have emerged as new possible pharmacological targets for various acute and chronic pathologies, such as stroke, traumatic brain and spinal cord injury, demyelinating diseases, trigeminal pain and migraine, and retinopathies. In this article, we will summarize the most important and promising actions mediated by extracellular purines and pyrimidines in controlling the functions, survival, and differentiation of the various "classical" types of glial cells (i.e., astrocytes, oligodendrocytes, microglial cells, Müller cells, satellite glial cells, and enteric glial cells) but also of some rather new members of the family (e.g., polydendrocytes) and of other cells somehow related to glial cells (e.g., pericytes and spinal cord ependymal cells).
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| | - Maria P. Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| |
Collapse
|
398
|
Alberto Travagli R. Neurones in the dorsal vagal complex may be more tasteful than expected. J Physiol 2012; 590:3637-8. [PMID: 22904361 DOI: 10.1113/jphysiol.2012.237750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University – College of Medicine, Hershey, PA, USA.
| |
Collapse
|
399
|
Grondona JM, Granados-Durán P, Fernández-Llebrez P, López-Ávalos MD. A simple method to obtain pure cultures of multiciliated ependymal cells from adult rodents. Histochem Cell Biol 2012; 139:205-20. [PMID: 22878526 DOI: 10.1007/s00418-012-1008-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
Ependymal cells form an epithelium lining the ventricular cavities of the vertebrate brain. Numerous methods to obtain primary culture ependymal cells have been developed. Most of them use foetal or neonatal rat brain and the few that utilize adult brain hardly achieve purity. Here, we describe a simple and novel method to obtain a pure non-adherent ependymal cell culture from explants of the striatal and septal walls of the lateral ventricles. The combination of a low incubation temperature followed by a gentle enzymatic digestion allows the detachment of most of the ependymal cells from the ventricular wall in a period of 6 h. Along with ependymal cells, a low percentage (less than 6 %) of non-ependymal cells also detaches. However, they do not survive under two restrictive culture conditions: (1) a simple medium (alpha-MEM with glucose) without any supplement; and (2) a low density of 1 cell/µl. This purification method strategy does not require cell labelling with antibodies and cell sorting, which makes it a simpler and cheaper procedure than other methods previously described. After a period of 48 h, only ependymal cells survive such conditions, revealing the remarkable survival capacity of ependymal cells. Ependymal cells can be maintained in culture for up to 7-10 days, with the best survival rates obtained in Neurobasal supplemented with B27 among the tested media. After 7 days in culture, ependymal cells lose most of the cilia and therefore the mobility, while acquiring radial glial cell markers (GFAP, BLBP, GLAST). This interesting fact might indicate a reprogramming of the cell identity.
Collapse
Affiliation(s)
- J M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | | | | | | |
Collapse
|
400
|
Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci 2012; 32:5654-66. [PMID: 22514327 DOI: 10.1523/jneurosci.0455-12.2012] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The adult mammalian forebrain contains neural stem/progenitor cells (NSCs) that generate neurons throughout life. As in other somatic stem cell systems, NSCs are proposed to be predominantly quiescent and proliferate only sporadically to produce more committed progeny. However, quiescence has recently been shown not to be an essential criterion for stem cells. It is not known whether NSCs show differences in molecular dependence based on their proliferation state. The subventricular zone (SVZ) of the adult mouse brain has a remarkable capacity for repair by activation of NSCs. The molecular interplay controlling adult NSCs during neurogenesis or regeneration is not clear but resolving these interactions is critical in order to understand brain homeostasis and repair. Using conditional genetics and fate mapping, we show that Notch signaling is essential for neurogenesis in the SVZ. By mosaic analysis, we uncovered a surprising difference in Notch dependence between active neurogenic and regenerative NSCs. While both active and regenerative NSCs depend upon canonical Notch signaling, Notch1-deletion results in a selective loss of active NSCs (aNSCs). In sharp contrast, quiescent NSCs (qNSCs) remain after Notch1 ablation until induced during regeneration or aging, whereupon they become Notch1-dependent and fail to fully reinstate neurogenesis. Our results suggest that Notch1 is a key component of the adult SVZ niche, promoting maintenance of aNSCs, and that this function is compensated in qNSCs. Therefore, we confirm the importance of Notch signaling for maintaining NSCs and neurogenesis in the adult SVZ and reveal that NSCs display a selective reliance on Notch1 that may be dictated by mitotic state.
Collapse
|