351
|
Martins PM, Santos LH, Mariano D, Queiroz FC, Bastos LL, Gomes IDS, Fischer PHC, Rocha REO, Silveira SA, de Lima LHF, de Magalhães MTQ, Oliveira MGA, de Melo-Minardi RC. Propedia: a database for protein-peptide identification based on a hybrid clustering algorithm. BMC Bioinformatics 2021; 22:1. [PMID: 33388027 PMCID: PMC7776311 DOI: 10.1186/s12859-020-03881-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Protein-peptide interactions play a fundamental role in a wide variety of biological processes, such as cell signaling, regulatory networks, immune responses, and enzyme inhibition. Peptides are characterized by low toxicity and small interface areas; therefore, they are good targets for therapeutic strategies, rational drug planning and protein inhibition. Approximately 10% of the ethical pharmaceutical market is protein/peptide-based. Furthermore, it is estimated that 40% of protein interactions are mediated by peptides. Despite the fast increase in the volume of biological data, particularly on sequences and structures, there remains a lack of broad and comprehensive protein-peptide databases and tools that allow the retrieval, characterization and understanding of protein-peptide recognition and consequently support peptide design. RESULTS We introduce Propedia, a comprehensive and up-to-date database with a web interface that permits clustering, searching and visualizing of protein-peptide complexes according to varied criteria. Propedia comprises over 19,000 high-resolution structures from the Protein Data Bank including structural and sequence information from protein-peptide complexes. The main advantage of Propedia over other peptide databases is that it allows a more comprehensive analysis of similarity and redundancy. It was constructed based on a hybrid clustering algorithm that compares and groups peptides by sequences, interface structures and binding sites. Propedia is available through a graphical, user-friendly and functional interface where users can retrieve, and analyze complexes and download each search data set. We performed case studies and verified that the utility of Propedia scores to rank promissing interacting peptides. In a study involving predicting peptides to inhibit SARS-CoV-2 main protease, we showed that Propedia scores related to similarity between different peptide complexes with SARS-CoV-2 main protease are in agreement with molecular dynamics free energy calculation. CONCLUSIONS Propedia is a database and tool to support structure-based rational design of peptides for special purposes. Protein-peptide interactions can be useful to predict, classifying and scoring complexes or for designing new molecules as well. Propedia is up-to-date as a ready-to-use webserver with a friendly and resourceful interface and is available at: https://bioinfo.dcc.ufmg.br/propedia.
Collapse
Affiliation(s)
- Pedro M. Martins
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Av Pres. Antônio Carlos, Belo Horizonte, MG 31720-901 Brazil
| | - Lucianna H. Santos
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Av Pres. Antônio Carlos, Belo Horizonte, MG 31720-901 Brazil
| | - Diego Mariano
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Av Pres. Antônio Carlos, Belo Horizonte, MG 31720-901 Brazil
| | - Felippe C. Queiroz
- Department of Computer Science, Universidade Federal de Viçosa, Av Peter Henry Rolfs, Viçosa, MG Brazil
| | - Luana L. Bastos
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Av Pres. Antônio Carlos, Belo Horizonte, MG 31720-901 Brazil
| | - Isabela de S. Gomes
- Department of Computer Science, Universidade Federal de Viçosa, Av Peter Henry Rolfs, Viçosa, MG Brazil
| | - Pedro H. C. Fischer
- Laboratory of Molecular Modeling and Bioinformatics, Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, Sete Lagoas, MG Brazil
| | - Rafael E. O. Rocha
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Av Pres. Antônio Carlos, Belo Horizonte, MG 31720-901 Brazil
| | - Sabrina A. Silveira
- Department of Computer Science, Universidade Federal de Viçosa, Av Peter Henry Rolfs, Viçosa, MG Brazil
| | - Leonardo H. F. de Lima
- Laboratory of Molecular Modeling and Bioinformatics, Department of Exact and Biological Sciences, Universidade Federal de São João Del-Rei, Rua Sétimo Moreira Martins, Sete Lagoas, MG Brazil
| | - Mariana T. Q. de Magalhães
- Macromolecule Biophysics Laboratory (LBM), Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av Pres. Antônio Carlos, Belo Horizonte, MG 31720-901 Brazil
| | - Maria G. A. Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av Peter Henry Rolfs, Viçosa, MG Brazil
| | - Raquel C. de Melo-Minardi
- Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Av Pres. Antônio Carlos, Belo Horizonte, MG 31720-901 Brazil
| |
Collapse
|
352
|
Xiong Y, Shi C, Li L, Tang Y, Zhang X, Liao S, Zhang B, Sun C, Ren C. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02230j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence is widely used to detect functional groups and ions, and peptides are used in various fields due to their excellent biological activity.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Sisi Liao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai 264000, China
| |
Collapse
|
353
|
Peptides: Molecular and Biotechnological Aspects. Biomolecules 2021; 11:biom11010052. [PMID: 33401441 PMCID: PMC7823528 DOI: 10.3390/biom11010052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
|
354
|
Hall AJ, Haskali MB. Radiolabelled Peptides: Optimal Candidates for Theranostic Application in Oncology. Aust J Chem 2021. [DOI: 10.1071/ch21118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
355
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
356
|
Kapadia A, Sharma KK, Maurya IK, Singh V, Khullar M, Jain R. Structural and mechanistic insights into the inhibition of amyloid-β aggregation by Aβ 39-42 fragment derived synthetic peptides. Eur J Med Chem 2020; 212:113126. [PMID: 33395622 DOI: 10.1016/j.ejmech.2020.113126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The inhibition of amyloid-β (Aβ) aggregation is a promising approach towards therapeutic intervention for Alzheimer's disease (AD). Thirty eight tetrapeptides based upon Aβ39-42C-terminus fragment of the parent Aβ peptide were synthesized. The sequential replacement/modification employing unnatural amino acids imparted scaffold diversity, augmented activity, enhanced blood brain barrier permeability and offered proteolytic stability to the synthetic peptides. Several peptides exhibited promising protection against Aβ aggregation-mediated-neurotoxicity in PC-12 cells at doses ranged between 10 μM and 0.1 μM, further confirmed by the thioflavin-T fluorescence assay. CD study illustrate that these peptides restrict the β-sheet formation, and the non-appearance of Aβ42 fibrillar structures in the electron microscopy confirm the inhibition of Aβ42 aggregation. HRMS and ANS fluorescence spectroscopic analysis provided additional mechanistic insights. Two selected lead peptides 5 and 16 depicted enhanced blood-brain penetration and stability against serum and proteolytic enzyme. Structural insights into ligand-Aβ interactions on the monomeric and proto-fibrillar units of Aβ were computationally studied. Promising inhibitory potential and short sequence of the lead peptides offers new avenues for the advancement of peptide-derived therapeutics for AD.
Collapse
Affiliation(s)
- Akshay Kapadia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Indresh Kumar Maurya
- Department of Microbial Biotechnology, Punjab University, Sector 25, Chandigarh, 160 014, India
| | - Varinder Singh
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Madhu Khullar
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India.
| |
Collapse
|
357
|
Chan KH, Lim J, Jee JE, Aw JH, Lee SS. Peptide-Peptide Co-Assembly: A Design Strategy for Functional Detection of C-peptide, A Biomarker of Diabetic Neuropathy. Int J Mol Sci 2020; 21:ijms21249671. [PMID: 33352955 PMCID: PMC7766332 DOI: 10.3390/ijms21249671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes-related neuropathy is a debilitating condition that may be averted if it can be detected early. One possible way this can be achieved at low cost is to utilise peptides to detect C-peptide, a biomarker of diabetic neuropathy. This depends on peptide-peptide co-assembly, which is currently in a nascent stage of intense study. Instead, we propose a bead-based triple-overlay combinatorial strategy that can preserve inter-residue information during the screening process for a suitable complementary peptide to co-assemble with C-peptide. The screening process commenced with a pentapeptide general library, which revealed histidine to be an essential residue. Further screening with seven tetrapeptide focused libraries led to a table of self-consistent peptide sequences that included tryptophan and lysine at high frequencies. Three complementary nonapeptides (9mer com-peptides), wpkkhfwgq (Trp-D), kwkkhfwgq (Lys-D), and KWKKHFWGQ (Lys-L) (as a negative control) were picked from this table for co-assembly studies with C-peptide. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopies were utilized to study inter-peptide interactions and changes in secondary structures respectively. ATR-FTIR studies showed that there is indeed inter-peptide interaction between C-peptide and the tryptophan residues of the 9mer com-peptides. CD studies of unaggregated and colloidal C-peptide with the 9mer com-peptides suggest that the extent of co-assembly of C-peptide with Trp-D is greatest, followed by Lys-D and Lys-L. These results are promising and indicate that the presented strategy is viable for designing and evaluating longer complementary peptides, as well as complementary peptides for co-assembly with other polypeptides of interest and importance. We discuss the possibility of designing complementary peptides to inhibit toxic amyloidosis with this approach.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
- Correspondence: (K.H.C.); (S.S.L.)
| | - Jaehong Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; (J.L.); (J.E.J.)
| | - Joo Eun Jee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; (J.L.); (J.E.J.)
| | - Jia Hui Aw
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; (J.L.); (J.E.J.)
- Correspondence: (K.H.C.); (S.S.L.)
| |
Collapse
|
358
|
Díaz N, Suárez D. Understanding the Conformational Properties of Fluorinated Polypeptides: Molecular Modelling of Unguisin A. J Chem Inf Model 2020; 61:223-237. [PMID: 33325701 DOI: 10.1021/acs.jcim.0c00746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we investigate the conformational properties of unguisin A, a natural macrocyclic heptapeptide that incorporates a γ-aminobutyric acid (Gaba), and four of its difluorinated stereoisomers at the Gaba residue. According to nuclear magnetic resonance (NMR) experiments, their secondary structure depends dramatically on the stereochemistry of the fluorinated carbon atoms. However, many molecular details of the structure and flexibility of these systems remain unknown, so that a rationale of the conformational changes induced by the fluorine atoms in the macrocycle is still missing. To fill this gap, we apply enhanced molecular dynamics (MD) techniques to explore the peptide conformational space in dimethyl sulfoxide solution followed by 4-8 μs of conventional MD simulations that provide extensive equilibrium sampling. The simulations, which compare reasonably well with the NMR-based observations, show that the secondary structure of the macrocycle is altered substantially upon fluorination, except for the (S,S) diastereomer. It also turns out that the conformations of the fluorinated peptides are visited during the enhanced MD simulation of natural unguisin A, suggesting thus that conformations accessible to the unsubstituted macrocyclic peptide may be selected by fluorination. Therefore, computational characterization of the macrocyclic peptides could be helpful in the rational design of stereoselective fluorinated peptides with fine-tuned conformation and activity.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
359
|
Monty OBC, Simmons N, Chamakuri S, Matzuk MM, Young DW. Solution-Phase Fmoc-Based Peptide Synthesis for DNA-Encoded Chemical Libraries: Reaction Conditions, Protecting Group Strategies, and Pitfalls. ACS COMBINATORIAL SCIENCE 2020; 22:833-843. [PMID: 33074645 DOI: 10.1021/acscombsci.0c00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptide drug discovery has shown a resurgence since 2000, bringing 28 non-insulin therapeutics to the market compared to 56 since its first peptide drug, insulin, in 1923. While the main method of discovery has been biological display-phage, mRNA, and ribosome-the synthetic limitations of biological systems has restricted the depth of exploration of peptide chemical space. In contrast, DNA-encoded chemistry offers the synergy of large numbers and ribosome-independent synthetic flexibility for the fast and deeper exploration of the same space. Hence, as a bridge to building DNA-encoded chemical libraries (DECLs) of peptides, we have developed substrate-tolerant amide coupling reaction conditions for amino acid monomers, performed a coupling screen to illustrate such tolerance, developed protecting group strategies for relevant amino acids and reported the limitations thereof, developed a strategy for the coupling of α,α-disubstituted alkenyl amino acids relevant to all-hydrocarbon stapled peptide drug discovery, developed reaction conditions for the coupling of tripeptides likely to be used in DECL builds, and synthesized a fully deprotected DNA-decamer conjugate to illustrate the potency of the developed methodology for on-DNA peptide synthesis.
Collapse
Affiliation(s)
- Olivier B. C. Monty
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005 United States
| | - Nicholas Simmons
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Damian W. Young
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005 United States
| |
Collapse
|
360
|
Vithani N, Ward MD, Zimmerman MI, Novak B, Borowsky JH, Singh S, Bowman GR. SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.10.420109. [PMID: 33330873 PMCID: PMC7743098 DOI: 10.1101/2020.12.10.420109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coronaviruses have caused multiple epidemics in the past two decades, in addition to the current COVID-19 pandemic that is severely damaging global health and the economy. Coronaviruses employ between twenty and thirty proteins to carry out their viral replication cycle including infection, immune evasion, and replication. Among these, nonstructural protein 16 (Nsp16), a 2'-O-methyltransferase, plays an essential role in immune evasion. Nsp16 achieves this by mimicking its human homolog, CMTr1, which methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. The requirement of this binding partner presents two questions that we investigate in this manuscript. First, how does Nsp10 activate Nsp16? While experimentally-derived structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric Nsp16 have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using over one millisecond of molecular dynamics simulations of both Nsp16 and its complex with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16's conformational ensemble in order to activate it. Second, guided by this activation mechanism and Markov state models (MSMs), we investigate if Nsp16 adopts inactive structures with cryptic pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabilizing its inactive state. After identifying such a pocket in SARS-CoV-2 Nsp16, we show that this cryptic pocket also opens in SARS-CoV-1 and MERS, but not in human CMTr1. Therefore, it may be possible to develop pan-coronavirus antivirals that target this cryptic pocket. STATEMENT OF SIGNIFICANCE Coronaviruses are a major threat to human health. These viruses employ molecular machines, called proteins, to infect host cells and replicate. Characterizing the structure and dynamics of these proteins could provide a basis for designing small molecule antivirals. In this work, we use computer simulations to understand the moving parts of an essential SARS-CoV-2 protein, understand how a binding partner turns it on and off, and identify a novel pocket that antivirals could target to shut this protein off. The pocket is also present in other coronaviruses but not in the related human protein, so it could be a valuable target for pan-coronavirus antivirals.
Collapse
Affiliation(s)
- Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael D. Ward
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Maxwell I. Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Jonathan H. Borowsky
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
361
|
Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020; 25:molecules25245804. [PMID: 33316949 PMCID: PMC7763478 DOI: 10.3390/molecules25245804] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria and microalgae are oxygen-producing photosynthetic unicellular organisms encompassing a great diversity of species, which are able to grow under all types of extreme environments and exposed to a wide variety of predators and microbial pathogens. The antibacterial compounds described for these organisms include alkaloids, fatty acids, indoles, macrolides, peptides, phenols, pigments and terpenes, among others. This review presents an overview of antibacterial peptides isolated from cyanobacteria and microalgae, as well as their synergism and mechanisms of action described so far. Antibacterial cyanopeptides belong to different orders, but mainly from Oscillatoriales and Nostocales. Cyanopeptides have different structures but are mainly cyclic peptides. This vast peptide repertoire includes ribosomal and abundant non-ribosomal peptides, evaluated by standard conventional methodologies against pathogenic Gram-negative and Gram-positive bacteria. The antibacterial activity described for microalgal peptides is considerably scarcer, and limited to protein hydrolysates from two Chlorella species, and few peptides from Tetraselmis suecica. Despite the promising applications of antibacterial peptides and the importance of searching for new natural sources of antibiotics, limitations still persist for their pharmaceutical applications.
Collapse
|
362
|
Mishra M, Singh V, Tellis MB, Joshi RS, Pandey KC, Singh S. Cyclic peptide engineered from phytocystatin inhibitory hairpin loop as an effective modulator of falcipains and potent antimalarial. J Biomol Struct Dyn 2020; 40:3642-3654. [PMID: 33292080 DOI: 10.1080/07391102.2020.1848629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cystatins are classical competitive inhibitors of C1 family cysteine proteases (papain family). Phytocystatin superfamily shares high sequence homology and typical tertiary structure with conserved glutamine-valine-glycine (Q-X-V-X-G) loop blocking the active site of C1 proteases. Here, we develop a cysteine-bounded cyclic peptide (CYS-cIHL) and linear peptide (CYS-IHL), using the conserved inhibitory hairpin loop amino acid sequence. Using an in silico approach based on modeling, protein-peptide docking, molecular dynamics simulations and calculation of free energy of binding, we designed and validated inhibitory peptides against falcipain-2 (FP-2) and -3 (FP-3), cysteine proteases from the malarial parasite Plasmodium falciparum. Falcipains are critical hemoglobinases of P. falciparum that are validated targets for the development of antimalarial therapies. CYS-cIHL was able to bind with micromolar affinity to FP-2 and modulate its binding with its substrate, hemoglobin in in vitro and in vivo assays. CYS-cIHL could effectively block parasite growth and displayed antimalarial activity in culture assays with no cytotoxicity towards human cells. These results indicated that cyclization can substantially increase the peptide affinity to the target. Furthermore, this can be applied as an effective strategy for engineering peptide inhibitory potency against proteases.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi B Tellis
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Rakesh S Joshi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kailash C Pandey
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, Dwarka, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
363
|
Nandakumar R, Dinu V. Developing a machine learning model to identify protein–protein interaction hotspots to facilitate drug discovery. PeerJ 2020; 8:e10381. [PMID: 33354416 PMCID: PMC7727375 DOI: 10.7717/peerj.10381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 02/01/2023] Open
Abstract
Throughout the history of drug discovery, an enzymatic-based approach for identifying new drug molecules has been primarily utilized. Recently, protein–protein interfaces that can be disrupted to identify small molecules that could be viable targets for certain diseases, such as cancer and the human immunodeficiency virus, have been identified. Existing studies computationally identify hotspots on these interfaces, with most models attaining accuracies of ~70%. Many studies do not effectively integrate information relating to amino acid chains and other structural information relating to the complex. Herein, (1) a machine learning model has been created and (2) its ability to integrate multiple features, such as those associated with amino-acid chains, has been evaluated to enhance the ability to predict protein–protein interface hotspots. Virtual drug screening analysis of a set of hotspots determined on the EphB2-ephrinB2 complex has also been performed. The predictive capabilities of this model offer an AUROC of 0.842, sensitivity/recall of 0.833, and specificity of 0.850. Virtual screening of a set of hotspots identified by the machine learning model developed in this study has identified potential medications to treat diseases caused by the overexpression of the EphB2-ephrinB2 complex, including prostate, gastric, colorectal and melanoma cancers which are linked to EphB2 mutations. The efficacy of this model has been demonstrated through its successful ability to predict drug-disease associations previously identified in literature, including cimetidine, idarubicin, pralatrexate for these conditions. In addition, nadolol, a beta blocker, has also been identified in this study to bind to the EphB2-ephrinB2 complex, and the possibility of this drug treating multiple cancers is still relatively unexplored.
Collapse
|
364
|
The Role of Counter-Ions in Peptides-An Overview. Pharmaceuticals (Basel) 2020; 13:ph13120442. [PMID: 33287352 PMCID: PMC7761850 DOI: 10.3390/ph13120442] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Peptides and proteins constitute a large group of molecules that play multiple functions in living organisms. In conjunction with their important role in biological processes and advances in chemical approaches of synthesis, the interest in peptide-based drugs is still growing. As the side chains of amino acids can be basic, acidic, or neutral, the peptide drugs often occur in the form of salts with different counter-ions. This review focuses on the role of counter-ions in peptides. To date, over 60 peptide-based drugs have been approved by the FDA. Based on their area of application, biological activity, and results of preliminary tests they are characterized by different counter-ions. Moreover, the impact of counter-ions on structure, physicochemical properties, and drug formulation is analyzed. Additionally, the application of salts as mobile phase additives in chromatographic analyses and analytical techniques is highlighted.
Collapse
|
365
|
Synthetic Peptide ΔM4-Induced Cell Death Associated with Cytoplasmic Membrane Disruption, Mitochondrial Dysfunction and Cell Cycle Arrest in Human Melanoma Cells. Molecules 2020; 25:molecules25235684. [PMID: 33276536 PMCID: PMC7730669 DOI: 10.3390/molecules25235684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Melanoma is the most dangerous and lethal form of skin cancer, due to its ability to spread to different organs if it is not treated at an early stage. Conventional chemotherapeutics are failing as a result of drug resistance and weak tumor selectivity. Therefore, efforts to evaluate novel molecules for the treatment of skin cancer are necessary. Antimicrobial peptides have become attractive anticancer agents because they execute their biological activity with features such as a high potency of action, a wide range of targets, and high target specificity and selectivity. In the present study, the antiproliferative activity of the synthetic peptide ΔM4 on A375 human melanoma cells and spontaneously immortalized HaCaT human keratinocytes was investigated. The cytotoxic effect of ΔM4 treatment was evaluated through propidium iodide uptake by flow cytometry. The results indicated selective toxicity in A375 cells and, in order to further investigate the mode of action, assays were carried out to evaluate morphological changes, mitochondrial function, and cell cycle progression. The findings indicated that ΔM4 exerts its antitumoral effects by multitarget action, causing cell membrane disruption, a change in the mitochondrial transmembrane potential, an increase of reactive oxygen species, and cell cycle accumulation in S-phase. Further exploration of the peptide may be helpful in the design of novel anticancer peptides.
Collapse
|
366
|
Lou W, Stimple SD, Desai AA, Makowski EK, Kalyoncu S, Mogensen JE, Spang LT, Asgreen DJ, Staby A, Duus K, Amstrup J, Zhang Y, Tessier PM. Directed evolution of conformation-specific antibodies for sensitive detection of polypeptide aggregates in therapeutic drug formulations. Biotechnol Bioeng 2020; 118:797-808. [PMID: 33095442 DOI: 10.1002/bit.27610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Biologics such as peptides and proteins possess a number of attractive attributes that make them particularly valuable as therapeutics, including their high activity, high specificity, and low toxicity. However, one of the key challenges associated with this class of drugs is their propensity to aggregate. Given the safety and immunogenicity concerns related to polypeptide aggregates, it is particularly important to sensitively detect aggregates in therapeutic drug formulations as part of the quality control process. Here, we report the development of conformation-specific antibodies that recognize polypeptide aggregates composed of a GLP-1 receptor agonist (liraglutide) and their integration into a sensitive immunoassay for detecting liraglutide amyloid fibrils. We sorted single-chain antibody libraries against liraglutide fibrils using yeast surface display and magnetic-activated cell sorting, and identified several antibodies with high conformational specificity. Interestingly, these antibodies cross-react with amyloid fibrils formed by several other polypeptides, revealing that they recognize molecular features common to different types of fibrils. Moreover, we find that our immunoassay using these antibodies is >50-fold more sensitive than the conventional method for detecting liraglutide aggregation (Thioflavin T fluorescence). We expect that our systematic approach for generating a sensitive, aggregate-specific immunoassay can be readily extended to other biologics to improve the quality and safety of formulated drug products.
Collapse
Affiliation(s)
- Wenjia Lou
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel D Stimple
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alec A Desai
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily K Makowski
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sibel Kalyoncu
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | | | | | | | | - Yulei Zhang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
367
|
Cavaco M, Andreu D, Castanho MARB. The Challenge of Peptide Proteolytic Stability Studies: Scarce Data, Difficult Readability, and the Need for Harmonization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marco Cavaco
- Department of Biochemistry Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Av. Prof Egas Moniz 1649-028 Lisboa Portugal
- Proteomics and Protein Chemistry Unit Department of Experimental and Health Sciences Pompeu Fabra University Dr Aiguader 88, Barcelona Biomedical Research Park 08003 Barcelona Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit Department of Experimental and Health Sciences Pompeu Fabra University Dr Aiguader 88, Barcelona Biomedical Research Park 08003 Barcelona Spain
| | - Miguel A. R. B. Castanho
- Department of Biochemistry Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Av. Prof Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
368
|
Dougherty PG, Karpurapu M, Koley A, Lukowski JK, Qian Z, Nirujogi TS, Rusu L, Chung S, Hummon AB, Li HW, Christman JW, Pei D. A Peptidyl Inhibitor that Blocks Calcineurin-NFAT Interaction and Prevents Acute Lung Injury. J Med Chem 2020; 63:12853-12872. [PMID: 33073986 PMCID: PMC8011862 DOI: 10.1021/acs.jmedchem.0c01236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory lung disease with a high morbidity and mortality rate, for which no pharmacologic treatment is currently available. Our previous studies discovered that a pivotal step in the disease process is the activation of the nuclear factor of activated T cells (NFAT) c3 in lung macrophages, suggesting that inhibitors against the upstream protein phosphatase calcineurin should be effective for prevention/treatment of ARDS. Herein, we report the development of a highly potent, cell-permeable, and metabolically stable peptidyl inhibitor, CNI103, which selectively blocks the interaction between calcineurin and NFATc3, through computational and medicinal chemistry. CNI103 specifically inhibited calcineurin signaling in vitro and in vivo and exhibited a favorable pharmacokinetic profile, broad tissue distribution following different routes of administration, and minimal toxicity. Our data indicate that CNI103 is a promising novel treatment for ARDS and other inflammatory diseases.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Manjula Karpurapu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| | - Jessica K. Lukowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Teja Srinivas Nirujogi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
- East Liverpool City Hospital, 425 W 5th Street, East Liverpool, Ohio 43920, United States
| | - Luiza Rusu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Sangwoon Chung
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, United States
| | - Hao W. Li
- Columbia Center for Translational Immunology, Columbia University, 650 W. 168 Street, New York, New York 10032, United States
| | - John W. Christman
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| |
Collapse
|
369
|
Mushnoori S, Lu CY, Schmidt K, Zang E, Dutt M. Peptide-based vesicles and droplets: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:053002. [PMID: 32942264 DOI: 10.1088/1361-648x/abb995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Peptide assembly is an increasingly important field of study due to the versatility, tunability and vast design space of amino acid based biomolecular assemblies. Peptides can be precisely engineered to possess various useful properties such as the ability to form supramolecular assemblies, desired response to pH, or thermal stability. These peptide supramolecular assemblies have diverse morphologies including vesicles, nanotubes, nanorods and ribbons. Of specific interest is the domain of engineering peptides that aggregate into spherical nanostructures due to their encapsulation properties: the ability to hold, transport and release chemical payloads in a controllable manner. This is invaluable to the fields of nanomedicine and targeted drug delivery. In this review, the state of the art in the domain of peptide-based vesicles and nanospheres is summarized. Specifically, an overview of the assembly of peptides into nanovesicles and nanospheres is provided. Both aromatic as well as aliphatic side chain amino acids are discussed. The domain of aromatic side chained amino acid residues is largely dominated by phenylalanine based peptides and variants thereof. Tyrosine also demonstrates similar aggregation properties. Both experimentally and computationally driven approaches are discussed. The domain of aliphatic amino acid residues based vesicles and droplets is broader, and details multiple amino acid residues such as alanine, valine, lysine, glycine, proline, and aspartic acid. Finally, a discussion on potential future directions is provided.
Collapse
Affiliation(s)
- Srinivas Mushnoori
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Chien Y Lu
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Kassandra Schmidt
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Ethan Zang
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| |
Collapse
|
370
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020; 59:19762-19772. [PMID: 32436259 PMCID: PMC11042487 DOI: 10.1002/anie.202005379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/19/2023]
Abstract
In this Minireview, we describe synthetic polymers densely functionalized with sequence-defined biomolecular sidechains. We focus on synthetic brush polymers of oligonucleotides, oligosaccharides, and oligopeptides, prepared via graft-through polymerization from biomolecule functionalized monomers. The resulting structures are brush polymers wherein a biomolecular graft is positioned at each monomer backbone unit. We describe key synthetic milestones, identify synthetic opportunities, and highlight recent advances in the field, including biological applications.
Collapse
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Hao Sun
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Claudia Battistella
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Or Berger
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Maria A. Vratsanos
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Max M. Wang
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Nathan C. Gianneschi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| |
Collapse
|
371
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Hao Sun
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Claudia Battistella
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Or Berger
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Maria A. Vratsanos
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Max M. Wang
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Nathan C. Gianneschi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| |
Collapse
|
372
|
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Radacsi N, Williams GR. Protein encapsulation by electrospinning and electrospraying. J Control Release 2020; 329:1172-1197. [PMID: 33127450 DOI: 10.1016/j.jconrel.2020.10.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.
Collapse
Affiliation(s)
| | - Dan Lawson
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Lesley Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
373
|
Horn V, Jongkees SAK, van Ingen H. Mimicking the Nucleosomal Context in Peptide-Based Binders of a H3K36me Reader Increases Binding Affinity While Altering the Binding Mode. Molecules 2020; 25:molecules25214951. [PMID: 33114657 PMCID: PMC7662849 DOI: 10.3390/molecules25214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022] Open
Abstract
Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of acetylated lysines. However, this approach proved to be a challenging task for methyllysine readers, which typically feature shallow binding pockets. Moreover, reader proteins of trimethyllysine K36 on the histone H3 (H3K36me3) not only bind the methyllysine but also the nucleosomal DNA. Here, we sought to find peptide-based binders of H3K36me3 reader PSIP1, which relies on DNA interactions to tightly bind H3K36me3 modified nucleosomes. We designed several peptides that mimic the nucleosomal context of H3K36me3 recognition by including negatively charged Glu-rich regions. Using a detailed NMR analysis, we find that addition of negative charges boosts binding affinity up to 50-fold while decreasing binding to the trimethyllysine binding pocket. Since screening and selection of compounds for reader domains is typically based solely on affinity measurements due to their lack of enzymatic activity, our case highlights the need to carefully control for the binding mode, in particular for the challenging case of H3K36me3 readers.
Collapse
Affiliation(s)
- Velten Horn
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502 Leiden, The Netherlands;
| | - Seino A. K. Jongkees
- Chemical Biology and Drug Discovery Group, Utrecht University, P.O. Box 80082 Utrecht, The Netherlands;
| | - Hugo van Ingen
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502 Leiden, The Netherlands;
- NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-30-253-9934
| |
Collapse
|
374
|
Basso V, Tran DQ, Ouellette AJ, Selsted ME. Host Defense Peptides as Templates for Antifungal Drug Development. J Fungi (Basel) 2020; 6:jof6040241. [PMID: 33113935 PMCID: PMC7711597 DOI: 10.3390/jof6040241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Current treatment for invasive fungal diseases is limited to three classes of antifungal drugs: azoles, polyenes, and echinocandins. The most recently introduced antifungal class, the echinocandins, was first approved nearly 30 years ago. The limited antifungal drug portfolio is rapidly losing its clinical utility due to the inexorable rise in the incidence of invasive fungal infections and the emergence of multidrug resistant (MDR) fungal pathogens. New antifungal therapeutic agents and novel approaches are desperately needed. Here, we detail attempts to exploit the antifungal and immunoregulatory properties of host defense peptides (HDPs) in the design and evaluation of new antifungal therapeutics and discuss historical limitations and recent advances in this quest.
Collapse
Affiliation(s)
- Virginia Basso
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
| | - Dat Q. Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
375
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
376
|
Aguilera-Mendoza L, Marrero-Ponce Y, García-Jacas CR, Chavez E, Beltran JA, Guillen-Ramirez HA, Brizuela CA. Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach. Sci Rep 2020; 10:18074. [PMID: 33093586 PMCID: PMC7583304 DOI: 10.1038/s41598-020-75029-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
The increasing interest in bioactive peptides with therapeutic potentials has been reflected in a large variety of biological databases published over the last years. However, the knowledge discovery process from these heterogeneous data sources is a nontrivial task, becoming the essence of our research endeavor. Therefore, we devise a unified data model based on molecular similarity networks for representing a chemical reference space of bioactive peptides, having an implicit knowledge that is currently not explicitly accessed in existing biological databases. Indeed, our main contribution is a novel workflow for the automatic construction of such similarity networks, enabling visual graph mining techniques to uncover new insights from the "ocean" of known bioactive peptides. The workflow presented here relies on the following sequential steps: (i) calculation of molecular descriptors by applying statistical and aggregation operators on amino acid property vectors; (ii) a two-stage unsupervised feature selection method to identify an optimized subset of descriptors using the concepts of entropy and mutual information; (iii) generation of sparse networks where nodes represent bioactive peptides, and edges between two nodes denote their pairwise similarity/distance relationships in the defined descriptor space; and (iv) exploratory analysis using visual inspection in combination with clustering and network science techniques. For practical purposes, the proposed workflow has been implemented in our visual analytics software tool ( http://mobiosd-hub.com/starpep/ ), to assist researchers in extracting useful information from an integrated collection of 45120 bioactive peptides, which is one of the largest and most diverse data in its field. Finally, we illustrate the applicability of the proposed workflow for discovering central nodes in molecular similarity networks that may represent a biologically relevant chemical space known to date.
Collapse
Affiliation(s)
- Longendri Aguilera-Mendoza
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, 22860, Mexico
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av. Interoceánica Km 12 1/2 y Av. Florencia, 17-1200-841, Quito, Ecuador.
- Grupo GINUMED, Corporacion Universitaria Rafael Nuñez. Facultad de Salud, Programa de Medicina, Cartagena, Colombia.
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Valencia, Spain.
| | - César R García-Jacas
- Cátedras Conacyt - Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Edgar Chavez
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, 22860, Mexico
| | - Jesus A Beltran
- Department of Informatics, University of California, Irvine, Irvine, CA, USA
| | - Hugo A Guillen-Ramirez
- Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland
| | - Carlos A Brizuela
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, 22860, Mexico.
| |
Collapse
|
377
|
Vantourout JC, Adusumalli SR, Knouse KW, Flood D, Ramirez A, Padial NM, Istrate A, Maziarz K, deGruyter JN, Merchant RR, Qiao JX, Schmidt MA, Deery MJ, Eastgate MD, Dawson PE, Bernardes GJL, Baran PS. Serine-Selective Bioconjugation. J Am Chem Soc 2020; 142:17236-17242. [PMID: 32965106 PMCID: PMC8350984 DOI: 10.1021/jacs.0c05595] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Communication reports the first general method for rapid, chemoselective, and modular functionalization of serine residues in native polypeptides, which uses a reagent platform based on the P(V) oxidation state. This redox-economical approach can be used to append nearly any kind of cargo onto serine, generating a stable, benign, and hydrophilic phosphorothioate linkage. The method tolerates all other known nucleophilic functional groups of naturally occurring proteinogenic amino acids. A variety of applications can be envisaged by this expansion of the toolbox of site-selective bioconjugation methods.
Collapse
Affiliation(s)
- Julien C. Vantourout
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Srinivasa Rao Adusumalli
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Kyle W. Knouse
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dillon Flood
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Natalia M. Padial
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Alena Istrate
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Katarzyna Maziarz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Justine N. deGruyter
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Rohan R. Merchant
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jennifer X. Qiao
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Michael A. Schmidt
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Michael J. Deery
- Cambridge Centre for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, CB2 0AW Cambridge, United Kingdom
| | - Martin D. Eastgate
- Chemical Process Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States
| | - Philip E. Dawson
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Gonçalo J. L. Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
378
|
Sindhikara D, Wagner M, Gkeka P, Güssregen S, Tiwari G, Hessler G, Yapici E, Li Z, Evers A. Automated Design of Macrocycles for Therapeutic Applications: From Small Molecules to Peptides and Proteins. J Med Chem 2020; 63:12100-12115. [PMID: 33017535 DOI: 10.1021/acs.jmedchem.0c01500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrocycles and cyclic peptides are increasingly attractive therapeutic modalities as they often have improved affinity, are able to bind to extended protein surfaces, and otherwise have favorable properties. Macrocyclization of a known binder may stabilize its bioactive conformation and improve its metabolic stability, cell permeability, and in certain cases oral bioavailability. Herein, we present implementation and application of an approach that automatically generates, evaluates, and proposes cyclizations utilizing a library of well-established chemical reactions and reagents. Using the three-dimensional (3D) conformation of the linear molecule in complex with a target protein as the starting point, this approach identifies attachment points, generates linkers, evaluates their geometric compatibility, and ranks the resulting molecules with respect to their predicted conformational stability and interactions with the target protein. As we show here with prospective and retrospective case studies, this procedure can be applied for the macrocyclization of small molecules and peptides and even PROteolysis TArgeting Chimeras (PROTACs) and proteins.
Collapse
Affiliation(s)
- Dan Sindhikara
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Michael Wagner
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Paraskevi Gkeka
- Integrated Drug Discovery, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Stefan Güssregen
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Garima Tiwari
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Engin Yapici
- Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Ziyu Li
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Andreas Evers
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
379
|
Coronado-Cáceres LJ, Rabadán-Chávez G, Mojica L, Hernández-Ledesma B, Quevedo-Corona L, Lugo Cervantes E. Cocoa ( Theobroma cacao L.) Seed Proteins' Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models. Foods 2020; 9:E1359. [PMID: 32992701 PMCID: PMC7599879 DOI: 10.3390/foods9101359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to determine the pancreatic lipase (PL) inhibitory effect of cocoa protein (CP) hydrolysates (CPH) using in silico and in vitro approaches, and an in vivo high-fat diet (HF) obese rat model. The results showed better theoretical affinity on PL for cocoa peptides EEQR, GGER, QTGVQ, and VSTDVNIE released from vicilin and albumins (-6.5, -6.3, -6.2, and -6.1 kcal/mol, respectively). Absorption, distribution, metabolism, and excretion (ADMET) prediction showed the human intestinal absorption (HIA) capacity of orlistat and eight cocoa peptides, demonstrating that they presented a low probability of toxicity with values lower than 0.6, while the orlistat has a high probability of hepatotoxicity with a mean value of 0.9. CPH (degree of hydrolysis of 55%) inhibited PL with an IC50 (concentration needed to inhibit 50% of enzyme activity) value of 1.38 mg/mL. The intragastric administration of 150 mg CP/kg/day to rats increased total lipids and triglycerides excretion in feces, ranging from 11% to 15% compared to the HF-diet. The HF + CP-diet also significantly decreased (p < 0.05) the apparent rate of fat absorption compared with the HF group. These results suggest that CP has anti-obesity potential by inhibiting PL, thus helping to prevent the development of non-communicable diseases.
Collapse
Affiliation(s)
- Luis Jorge Coronado-Cáceres
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| | - Griselda Rabadán-Chávez
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| | - Luis Mojica
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 28049 Madrid, Spain
| | - Lucía Quevedo-Corona
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu s/n esq. Manuel I. Stampa. Col. Unidad Profesional Adolfo López Mateos CP, 07738 Ciudad de México, Mexico;
| | - Eugenia Lugo Cervantes
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| |
Collapse
|
380
|
Bergasa-Caceres F, Rabitz HA. Interdiction of Protein Folding for Therapeutic Drug Development in SARS CoV-2. J Phys Chem B 2020; 124:8201-8208. [PMID: 32790379 PMCID: PMC7466092 DOI: 10.1021/acs.jpcb.0c03716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Indexed: 12/12/2022]
Abstract
In this article, we predict the folding initiation events of the ribose phosphatase domain of protein Nsp3 and the receptor binding domain of the spike protein from the severe acute respiratory syndrome (SARS) coronavirus-2. The calculations employ the sequential collapse model and the crystal structures to identify the segments involved in the initial contact formation events of both viral proteins. The initial contact locations may provide good targets for therapeutic drug development. The proposed strategy is based on a drug binding to the contact location, thereby aiming to prevent protein folding. Peptides are suggested as a natural choice for such protein folding interdiction drugs.
Collapse
Affiliation(s)
| | - Herschel A. Rabitz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United
States
| |
Collapse
|
381
|
Antimicrobial Excipient-Induced Reversible Association of Therapeutic Peptides in Parenteral Formulations. J Pharm Sci 2020; 110:850-859. [PMID: 32980392 DOI: 10.1016/j.xphs.2020.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
New classes of therapeutic peptides are being developed to prosecute biological targets which have been inaccessible to other modalities. Higher potency and longer half-life peptides have given rise to multiuse injectable formulations that enable convenient, low volume, and self-administered dosing; however, inclusion of antimicrobial preservatives to meet bactericidal requirements can impact other attributes of peptide formulations. Peptide-preservative interactions influencing solution-phase self-association of a non-insulin, linear, palmitoylated 31 amino acid peptide and two structurally similar peptides were assessed via turbidity, intrinsic fluorescence shifts and quenching, isothermal titration calorimetry, and 1H NMR. Meta-cresol and phenol specifically interact with the peptide, result in increased hydrophobicity near the tryptophan residue, and induce conformational changes, while benzyl alcohol does not impact tryptophan fluorescence, demonstrate any interaction enthalpy, or induce conformational changes. These same trends did not hold true for the other palmitoylated peptides evaluated, reinforcing the impacts of unique peptide sequences. Importantly, the presence of benzyl alcohol does increase the physical stability and solubility of the linear, 31 amino acid peptide under salt stress. We report new insights into the physical interactions of peptides with antimicrobial excipients, demonstrating a reversible association phenomenon and highlighting practical implications for formulation design and excipient selection.
Collapse
|
382
|
Wu Y, Tam WS, Chau HF, Kaur S, Thor W, Aik WS, Chan WL, Zweckstetter M, Wong KL. Solid-phase fluorescent BODIPY-peptide synthesis via in situ dipyrrin construction. Chem Sci 2020; 11:11266-11273. [PMID: 34094367 PMCID: PMC8162834 DOI: 10.1039/d0sc04849f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Traditional fluorescent peptide chemical syntheses hinge on the use of limited fluorescent/dye-taggable unnatural amino acids and entail multiple costly purifications. Here we describe a facile and efficient protocol for in situ construction of dipyrrins on the N-terminus with 20 natural and five unnatural amino acids and the lysine's side chain of selected peptides/peptide drugs through Fmoc-based solid-phase peptide synthesis. The new strategy enables the direct formation of boron-dipyrromethene (BODIPY)-peptide conjugates from simple aldehyde and pyrrole derivatives without pre-functionalization, and only requires a single-time chromatographic purification at the final stage. As a model study, synthesized EBNA1-targeting BODIPY1-Pep4 demonstrates intact selectivity in vitro, responsive fluorescence enhancement, and higher light cytotoxicity due to the photo-generation of cytotoxic singlet oxygen. This work offers a novel practical synthetic platform for fluorescent peptides for multifaceted biomedical applications.
Collapse
Affiliation(s)
- Yue Wu
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Wing-Sze Tam
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Ho-Fai Chau
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Simranjeet Kaur
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Wei Shen Aik
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Wai-Lun Chan
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Von-Siebold-Str. 3a 37075 Göttingen Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Von-Siebold-Str. 3a 37075 Göttingen Germany
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| |
Collapse
|
383
|
Song Y, Kim M, Kim Y. Homology Modeling and Optimized Expression of Truncated IK Protein, tIK, as an Anti-Inflammatory Peptide. Molecules 2020; 25:molecules25194358. [PMID: 32977406 PMCID: PMC7583991 DOI: 10.3390/molecules25194358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022] Open
Abstract
Rheumatoid arthritis, caused by abnormalities in the autoimmune system, affects about 1% of the population. Rheumatoid arthritis does not yet have a proper treatment, and current treatment has various side effects. Therefore, there is a need for a therapeutic agent that can effectively treat rheumatoid arthritis without side effects. Recently, research on pharmaceutical drugs based on peptides has been actively conducted to reduce negative effects. Because peptide drugs are bio-friendly and bio-specific, they are characterized by no side effects. Truncated-IK (tIK) protein, a fragment of IK protein, has anti-inflammatory effects, including anti-rheumatoid arthritis activity. This study focused on the fact that tIK protein phosphorylates the interleukin 10 receptor. Through homology modeling with interleukin 10, short tIK epitopes were proposed to find the essential region of the sequence for anti-inflammatory activity. TH17 differentiation experiments were also performed with the proposed epitope. A peptide composed of 18 amino acids with an anti-inflammatory effect was named tIK-18mer. Additionally, a tIK 9-mer and a 14-mer were also found. The procedure for the experimental expression of the proposed tIK series (9-mer, 14-mer, and 18-mer) using bacterial strain is discussed.
Collapse
Affiliation(s)
| | | | - Yongae Kim
- Correspondence: ; Tel.: +82-2-2173-8705; Fax: +82-31-330-4566
| |
Collapse
|
384
|
Zhang X, Chai Z, Samulski RJ, Li C. Bound Protein- and Peptide-Based Strategies for Adeno-Associated Virus Vector-Mediated Gene Therapy: Where Do We Stand Now? Hum Gene Ther 2020; 31:1146-1154. [PMID: 32940063 DOI: 10.1089/hum.2020.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have become one of the most promising and efficacious delivery vehicles for human gene therapy; however, low infectivity remains a major ongoing obstacle in the clinical application of rAAV vectors. Multiple strategies, including rAAV capsid modification and the application of pharmacological reagents, have been explored to enhance rAAV vector gene delivery. Recently, a new strategy using native proteins or various peptides has shown promise for increasing rAAV transduction locally or globally. This review summarizes the current status of protein- and peptide-based strategies and mechanisms to modulate rAAV transduction. We also provide a potential insight regarding the design of effective approaches for rAAV transduction enhancement in future clinical studies.
Collapse
Affiliation(s)
- Xintao Zhang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of
| | - Zheng Chai
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of.,Pharmacology and
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of.,Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
385
|
Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020; 11:2177. [PMID: 33072081 PMCID: PMC7533533 DOI: 10.3389/fimmu.2020.02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to describe antifungal therapeutic candidates in preclinical and clinical development derived from, or directly influenced by, the immune system, with a specific focus on antimicrobial peptides (AMP). Although the focus of this review is AMP with direct antimicrobial effects on fungi, we will also discuss compounds with direct antifungal activity, including monoclonal antibodies (mAb), as well as immunomodulatory molecules that can enhance the immune response to fungal infection, including immunomodulatory AMP, vaccines, checkpoint inhibitors, interferon and colony stimulating factors as well as immune cell therapies. The focus of this manuscript will be a non-exhaustive review of antifungal compounds in preclinical and clinical development that are based on the principles of immunology and the authors acknowledge the incredible amount of in vitro and in vivo work that has been conducted to develop such therapeutic candidates.
Collapse
|
386
|
Muthunayake NS, Islam R, Inutan ED, Colangelo W, Trimpin S, Cunningham PR, Chow CS. Expression and In Vivo Characterization of the Antimicrobial Peptide Oncocin and Variants Binding to Ribosomes. Biochemistry 2020; 59:3380-3391. [PMID: 32840100 DOI: 10.1021/acs.biochem.0c00600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides have important biomedical applications, but poor correlation between in vitro and in vivo activities can limit their development for clinical use. The ability to generate peptides and monitor their expression with new mass spectrometric methods and biological activities in vivo would be an advantage for the discovery and improvement of peptide-based drugs. In this study, a plasmid-based system was used to express the ribosome-targeting peptide oncocin (19 amino acids, VDKPPYLPRPRPPRRIYNR) and to determine its direct antibacterial effects on Escherichia coli. Previous biochemical and structure studies showed that oncocin targets the bacterial ribosome. The oncocin peptide generated in vivo strongly inhibits bacterial growth. In vivo dimethyl sulfate footprinting of oncocin on the rRNA gives results that are consistent with those of in vitro studies but reveals additional binding interactions with E. coli ribosomes. Furthermore, expression of truncated or mutated peptides reveals which amino acids are important for antimicrobial activity. Overall, the in vivo peptide expression system can be used to investigate biological activities and interactions of peptides with their targets within the cellular environment and to separate contributions of the sequence to cellular transport. This strategy has future applications for improving the effectiveness of existing peptides and developing new peptide-based drugs.
Collapse
Affiliation(s)
- Nisansala S Muthunayake
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.,Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Rabiul Islam
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ellen D Inutan
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan 9200, Philippines
| | - Wesley Colangelo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Philip R Cunningham
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
387
|
Jabłuszewska A, Krawczuk A, Dos Santos LHR, Macchi P. Accurate Modelling of Group Electrostatic Potential and Distributed Polarizability in Dipeptides. Chemphyschem 2020; 21:2155-2165. [DOI: 10.1002/cphc.202000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Angelika Jabłuszewska
- Faculty of Chemistry Jagiellonian University in Krakow Gronostajowa 2 30-387 Krakow Poland
| | - Anna Krawczuk
- Faculty of Chemistry Jagiellonian University in Krakow Gronostajowa 2 30-387 Krakow Poland
| | - Leonardo H. R. Dos Santos
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 31270-901 Belo Horizonte MG Brazil
| | - Piero Macchi
- Department of Chemistry, Materials and Chemical Engineering Polytechnics of Milan Via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
388
|
Futaki S, Arafiles JVV, Hirose H. Peptide-assisted Intracellular Delivery of Biomacromolecules. CHEM LETT 2020. [DOI: 10.1246/cl.200392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
389
|
Giannakoulias S, Shringari SR, Liu C, Phan HAT, Barrett TM, Ferrie JJ, Petersson EJ. Rosetta Machine Learning Models Accurately Classify Positional Effects of Thioamides on Proteolysis. J Phys Chem B 2020; 124:8032-8041. [PMID: 32869996 DOI: 10.1021/acs.jpcb.0c05981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thioamide substitutions of the peptide backbone have been shown to stabilize therapeutic and imaging peptides toward proteolysis. In order to rationally design thioamide modifications, we have developed a novel Rosetta custom score function to classify thioamide positional effects on proteolysis in substrates of serine and cysteine proteases. Peptides of interest were docked into proteases using the FlexPepDock application in Rosetta. Docked complexes were modified to contain thioamides parametrized through the creation of custom atom types in Rosetta based on ab intio simulations. Thioamide complexes were simulated, and the resultant structural complexes provided features for machine learning classification as the decomposed values of the Rosetta score function. An ensemble, majority voting model was developed to be a robust predictor of previously unpublished thioamide proteolysis holdout data. Theoretical control simulations with pseudo-atoms that modulate only one physical characteristic of the thioamide show differential effects on prediction accuracy by the optimized voting classification model. These pseudo-atom model simulations, as well as statistical analyses of the full thioamide simulations, implicate steric effects on peptide binding as being primarily responsible for thioamide positional effects on proteolytic resistance.
Collapse
Affiliation(s)
- Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sumant R Shringari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chunxiao Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hoang Anh T Phan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Taylor M Barrett
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
390
|
Monti A, Sturlese M, Caporale A, Roger JDA, Mascanzoni F, Ruvo M, Doti N. Design, synthesis, structural analysis and biochemical studies of stapled AIF(370-394) analogues as ligand of CypA. Biochim Biophys Acta Gen Subj 2020; 1864:129717. [PMID: 32861757 DOI: 10.1016/j.bbagen.2020.129717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The neuronal apoptotic process requires the nuclear translocation of Apoptosis Inducing Factor (AIF) in complex with Cyclophilin A (CypA) with consequent chromatin condensation and DNA degradation events. Targeting CypA by delivering an AIF-blocking peptide (AIF(370-394)) provides a significant neuroprotection, demonstrating the biological relevance of the AIF/CypA complex. To date pharmaceutical compounds targeting this complex are missing. METHODS We designed and synthesized a set of mono and bicyclic AIF(370-394) analogs containing both disulfide and 1,2,3-triazole bridges, in the attempt to both stabilize the peptide conformation and improve its binding affinity to CypA. Peptide structures in solution and in complex with CypA have been studied by circular dichroism (CD), Nuclear Magnetic Resonance (NMR) and molecular modeling. The ability of stapled peptides to interact with CypA was evaluated by using Epic Corning label free technique and Isothermal Titration Calorimetry experiments. RESULTS We identified a stapled peptide analogue of AIF(370-394) with a ten-fold improved affinity for CypA. Molecular modeling studies reveal that the new peptide acquires β-turn/β-fold structures and shares with the parent molecule the same binding region on CypA. CONCLUSIONS Data obtained provide invaluable assistance in designing new ligand of CypA for therapeutic approaches in neurodegenerative diseases. GENERAL SIGNIFICANCE Due to the crucial role of AIF/CypA complex formation in neurodegeneration, identification of selective inhibitors is of high importance for targeted therapies. We describe new bicyclic peptide inhibitors with improved affinity for CypA, investigating the kinetic, thermodynamic and structural effects of conformational constraints on the protein-ligand interaction, and their utility for drug design.
Collapse
Affiliation(s)
- Alessandra Monti
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy; DISTABIF, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, CE, Italy
| | - Mattia Sturlese
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Andrea Caporale
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Jessica De Almeida Roger
- Molecular Modeling Section, Dipartimento di Scienze del Farmaco, Università di Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Fabiola Mascanzoni
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini-CNR; Via Mezzocannone, 16, 80134 Napoli, Italy.
| |
Collapse
|
391
|
Nasako H, Takashina Y, Eguchi H, Ito A, Ishikawa Y, Matsunaga T, Endo S, Ikari A. Increase in Toxicity of Anticancer Drugs by PMTPV, a Claudin-1-Binding Peptide, Mediated via Down-Regulation of Claudin-1 in Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2020; 21:ijms21165909. [PMID: 32824620 PMCID: PMC7460671 DOI: 10.3390/ijms21165909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/15/2023] Open
Abstract
Claudin-1 (CLDN1), a tight junctional protein, is highly expressed in lung cancer cells and may contribute to chemoresistance. A drug which decreases CLDN1 expression could be a chemosensitizer for enhancing the efficacy of anticancer drugs, but there is no such drug known. We found that PMTPV, a short peptide, which mimics the structure of second extracellular loop (ECL2) of CLDN1, can reduce the protein level of CLDN1 without affecting the mRNA level in A549 cells derived from human lung adenocarcinoma. The PMTPV-induced decrease in CLDN1 expression was inhibited by monodansylcadaverine, a clathrin-mediated endocytosis inhibitor, and chloroquine, a lysosome inhibitor. Quartz crystal microbalance assay showed that PMTPV can directly bind to the ECL2 of CLDN1. In transwell assay, PMTPV increased fluxes of Lucifer yellow (LY), a paracellular flux marker, and doxorubicin (DXR), an anthracycline anticancer drug, without affecting transepithelial electrical resistance. In three-dimensional spheroid culture, the size and cell viability were unchanged by short peptides, but the fluorescence intensity of hypoxia probe LOX-1 was decreased by PMTPV. PMTPV elevated the accumulation and cytotoxicity of DXR in the spheroids. Similar results were observed by knockdown of CLDN1. Furthermore, the sensitivities to cisplatin (CDDP), docetaxel, and gefitinib were enhanced by PMTPV. The level of CLDN1 expression in CDDP-resistant cells was higher than that in parental A549 cells, which was reduced by PMTPV. PMTPV restored the toxicity to DXR in the CDDP-resistant cells. Our data suggest that PMTPV may become a novel chemosensitizer for lung adenocarcinoma.
Collapse
Affiliation(s)
- Haruka Nasako
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Yui Takashina
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Ayaka Ito
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Yoshinobu Ishikawa
- Department of Physical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
- Correspondence: ; Tel.: +81-58-230-8124; Fax: +81-58-230-8124
| |
Collapse
|
392
|
Teajaroen W, Phimwapi S, Daduang J, Klaynongsruang S, Tipmanee V, Daduang S. A Role of Newly Found Auxiliary Site in Phospholipase A 1 from Thai Banded Tiger Wasp ( Vespa affinis) in Its Enzymatic Enhancement: In Silico Homology Modeling and Molecular Dynamics Insights. Toxins (Basel) 2020; 12:toxins12080510. [PMID: 32784438 PMCID: PMC7472737 DOI: 10.3390/toxins12080510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Phospholipase A1 from Thai banded tiger wasp (Vespa affinis) venom also known as Ves a 1 plays an essential role in fatal vespid allergy. Ves a 1 becomes an important therapeutic target for toxin remedy. However, established Ves a 1 structure or a mechanism of Ves a 1 function were not well documented. This circumstance has prevented efficient design of a potential phospholipase A1 inhibitor. In our study, we successfully recruited homology modeling and molecular dynamic (MD) simulation to model Ves a 1 three-dimensional structure. The Ves a 1 structure along with dynamic behaviors were visualized and explained. In addition, we performed molecular docking of Ves a 1 with 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) lipid to assess a possible lipid binding site. Interestingly, molecular docking predicted another lipid binding region apart from its corresponding catalytic site, suggesting an auxiliary role of the alternative site at the Ves a 1 surface. The new molecular mechanism related to the surface lipid binding site (auxiliary site) provided better understanding of how phospholipase A1 structure facilitates its enzymatic function. This auxiliary site, conserved among Hymenoptera species as well as some mammalian lipases, could be a guide for interaction-based design of a novel phospholipase A1 inhibitor.
Collapse
Affiliation(s)
- Withan Teajaroen
- Biomedical Sciences Program, Graduate School of Khon Kaen University, Khon Kaen 40002, Thailand;
| | | | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen 40002, Thailand;
| | - Varomyalin Tipmanee
- EZ-Mol-Design Laboratory and Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Correspondence: (V.T.); (S.D.); Tel.: +66-74-45-1180 (V.T.); +66-43-34-2911 (S.D.)
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (V.T.); (S.D.); Tel.: +66-74-45-1180 (V.T.); +66-43-34-2911 (S.D.)
| |
Collapse
|
393
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
394
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
395
|
Gunjal VB, Thakare R, Chopra S, Reddy DS. Teixobactin: A Paving Stone toward a New Class of Antibiotics? J Med Chem 2020; 63:12171-12195. [PMID: 32520557 DOI: 10.1021/acs.jmedchem.0c00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is a serious threat to human health worldwide, prompting research efforts on a massive scale in search of novel antibiotics to fill an urgent need for a remedy. Teixobactin, a macrocyclic depsipeptide natural product, isolated from uncultured bacteria (Eleftheria terrae), displayed potent activity against several Gram-positive pathogenic bacteria. The distinct pharmacological profile and interesting structural features of teixobactin with nonstandard amino acid (three d-amino acids and l-allo-enduracididine) residues attracted several research groups to work on this target molecule in search of novel antibiotics with new mechanism. Herein, we present a comprehensive and critical perspective on immense possibilities offered by teixobactin in the domain of drug discovery. Efforts made by various research groups since its isolation are discussed, highlighting the molecule's considerable potential with special emphasis on replacement of amino acids. Critical analysis of synthetic efforts, SAR studies, and the way forward are provided hereunder.
Collapse
Affiliation(s)
- Vidya B Gunjal
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritesh Thakare
- CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - D Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
396
|
Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids 2020; 52:863-870. [PMID: 32577910 DOI: 10.1007/s00726-020-02864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family consists of seven cytosolic serine/threonine (Ser/Thr) protein kinases, and among them, GRK2 is involved in the regulation of an enormous range of both G protein-coupled receptors (GPCRs) and non-GPCR substrates that participate in or regulate many critical cellular processes. GRK2 dysfunction is associated with multiple diseases, including cancers, brain diseases, cardiovascular and metabolic diseases, and therefore GRK2-specific substrates/inhibitors are needed not only for studies of GRK2-mediated cellular functions but also for GRK2-targeted drug development. Here, we first review the structure, regulation and functions of GRK2, and its synthetic substrates and inhibitors. We then highlight recent work on synthetic peptide substrates/inhibitors as promising tools for fundamental studies of the physiological functions of GRK2, and as candidates for applications in clinical diagnostics.
Collapse
|
397
|
A new opening for the tricky untargeted investigation of natural and modified short peptides. Talanta 2020; 219:121262. [PMID: 32887153 DOI: 10.1016/j.talanta.2020.121262] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Short peptides are of extreme interest in clinical and food research fields, nevertheless they still represent a crucial analytical issue. The main aim of this paper was the development of an analytical platform for a considerable advancement in short peptides identification. For the first time, short sequences presenting both natural and post-translationally modified amino acids were comprehensively studied thanks to the generation of specific databases. Short peptide databases had a dual purpose. First, they were employed as inclusion lists for a suspect screening mass-spectrometric analysis, overcoming the limits of data dependent acquisition mode and allowing the fragmentation of such low-abundance substances. Moreover, the databases were implemented in Compound Discoverer 3.0, a software dedicated to the analysis of short molecules, for the creation of a data processing workflow specifically dedicated to short peptide tentative identification. For this purpose, a detailed study of short peptide fragmentation pathways was carried out for the first time. The proposed method was applied to the study of short peptide sequences in enriched urine samples and led to the tentative identification more than 200 short natural and modified short peptides, the highest number ever reported.
Collapse
|
398
|
Sengupta S, Mehta G. Macrocyclization via C-H functionalization: a new paradigm in macrocycle synthesis. Org Biomol Chem 2020; 18:1851-1876. [PMID: 32101232 DOI: 10.1039/c9ob02765c] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The growing emphasis on macrocycles in engaging difficult therapeutic targets such as protein-protein interactions and GPCRs via preferential adaptation of bioactive and cell penetrating conformations has provided impetus to the search for de novo macrocyclization strategies that are efficient, chemically robust and amenable to diversity creation. An emerging macrocyclization paradigm based on the C-H activation logic, of particular promise in the macrocyclization of complex peptides, has added a new dimension to this pursuit, enabling efficacious access to macrocycles of various sizes and topologies with high atom and step economy. Significant achievements in macrocyclization methodologies and their applications in the synthesis of bioactive natural products and drug-like molecules, employing strategic variations of C-H activation are captured in this review. It is expected that this timely account will foster interest in newer ways of macrocycle construction among practitioners of organic synthesis and chemical biology to advance the field.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad-5000 046, Telengana, India.
| |
Collapse
|
399
|
Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020; 27:149-168. [PMID: 32427225 PMCID: PMC7233194 DOI: 10.1007/s10989-020-10072-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.
Collapse
Affiliation(s)
- Garima Agarwal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
400
|
Mansbach RA, Chakraborty S, Travers T, Gnanakaran S. Graph-Directed Approach for Downselecting Toxins for Experimental Structure Determination. Mar Drugs 2020; 18:E256. [PMID: 32422972 PMCID: PMC7281422 DOI: 10.3390/md18050256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Conotoxins are short, cysteine-rich peptides of great interest as novel therapeutic leads and of great concern as lethal biological agents due to their high affinity and specificity for various receptors involved in neuromuscular transmission. Currently, of the approximately 6000 known conotoxin sequences, only about 3% have associated structural characterization, which leads to a bottleneck in rapid high-throughput screening (HTS) for identification of potential leads or threats. In this work, we combine a graph-based approach with homology modeling to expand the library of conotoxin structures and to identify those conotoxin sequences that are of the greatest value for experimental structural characterization. The latter would allow for the rapid expansion of the known structural space for generating high quality template-based models. Our approach generalizes to other evolutionarily-related, short, cysteine-rich venoms of interest. Overall, we present and validate an approach for venom structure modeling and experimental guidance and employ it to produce a 290%-larger library of approximate conotoxin structures for HTS. We also provide a set of ranked conotoxin sequences for experimental structure determination to further expand this library.
Collapse
Affiliation(s)
- Rachael A. Mansbach
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Timothy Travers
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (R.A.M.); (S.C.); (T.T.)
| |
Collapse
|