3951
|
Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2016; 528:218-24. [PMID: 26659182 PMCID: PMC4866648 DOI: 10.1038/nature15749] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022]
Abstract
Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.
Collapse
Affiliation(s)
- Sihem Cheloufi
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Barbara Hopfgartner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Youngsook L Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Jernej Murn
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Maria Hubmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Aimee I Badeaux
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Danielle Tenen
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Daniel J Wesche
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Nadezhda Abazova
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Max Hogue
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Nilgun Tasdemir
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Justin Brumbaugh
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Philipp Rathert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Julian Jude
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Francesco Ferrari
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Andres Blanco
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Michaela Fellner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Daniel Wenzel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Marietta Zinner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Simon E Vidal
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Scott W Lowe
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John Rinn
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alexei Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Yang Shi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Konrad Hochedlinger
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
3952
|
Yan H, Tian S, Slager SL, Sun Z, Ordog T. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies. Am J Epidemiol 2016; 183:96-109. [PMID: 26721890 DOI: 10.1093/aje/kwv187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species. Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environmental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent discoveries in this field could be translated into clinical diagnosis, prevention, and treatment. We introduce platforms for mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methylation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation-sequencing technologies into disease association studies. We highlight practical considerations in applying high-throughput epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acquisition, experimental procedures, data analysis, and interpretation and make recommendations on further refinement in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our understanding of the epigenetic basis of disease and help identify novel therapeutic targets.
Collapse
|
3953
|
Abstract
Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA—including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome—we develop a Bayes-factor–based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites.
Collapse
|
3954
|
Park SJ, Saito-Adachi M, Komiyama Y, Nakai K. Advances, practice, and clinical perspectives in high-throughput sequencing. Oral Dis 2016; 22:353-64. [DOI: 10.1111/odi.12403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023]
Affiliation(s)
- S-J Park
- Human Genome Center; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| | - M Saito-Adachi
- Division of Cancer Genomics; National Cancer Center Research Institute; Tokyo Japan
| | - Y Komiyama
- Human Genome Center; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| | - K Nakai
- Human Genome Center; The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
3955
|
Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab 2016; 5:233-244. [PMID: 26977395 PMCID: PMC4770267 DOI: 10.1016/j.molmet.2016.01.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 01/20/2023] Open
Abstract
Objective Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. Methods We sorted human α- and β-cells and performed the “Assay for Transposase-Accessible Chromatin with high throughput sequencing” (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. Results We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The “group specific protein” (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. Conclusions We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion. Defined open chromatin regions in sorted human α- and β-cells using ATAC-seq. Detected type 2 diabetes-associated risk loci in human α- and β-cell open chromatin. Classified human α- and β-cell-specific transcripts using mRNA-seq. Discovered novel human α- and β-cell signature proteins. Identified potential gene regulatory regions by integrating ATAC- and mRNA-seq data.
Collapse
Key Words
- ARX, aristaless related homeobox
- ATAC-seq, Assay for Transposase-Accessible Chromatin with high throughput sequencing
- Alpha cell
- Beta cell
- CHODL, chondrolectin
- ChIP-seq, Chromatin Immunoprecipitation followed by high throughput sequencing
- DAPI, 4′,6-diamidino-2-phenylindole
- DPP4, dipeptidyl-peptidase 4
- Diabetes
- Epigenetics
- FACS, fluorescence-activated cell sorting
- FAIRE-seq, Formaldehyde-Assisted Isolation of Regulatory Elements followed by high throughput sequencing
- GC, group-specific protein
- GCG, glucagon
- GHRL, ghrelin
- IGF2, insulin like growth factor 2
- INS, insulin
- IRX2, iroquois homeobox 2
- Islet
- MAFA, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A
- NEUROD1, neuronal differentiation 1
- Open chromatin
- PP, pancreatic polypeptide
- SNP, single nucleotide polymorphism
- SST, somatostatin
Collapse
Affiliation(s)
- Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Jonathan Schug
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| |
Collapse
|
3956
|
Brozovic M, Martin C, Dantec C, Dauga D, Mendez M, Simion P, Percher M, Laporte B, Scornavacca C, Di Gregorio A, Fujiwara S, Gineste M, Lowe EK, Piette J, Racioppi C, Ristoratore F, Sasakura Y, Takatori N, Brown TC, Delsuc F, Douzery E, Gissi C, McDougall A, Nishida H, Sawada H, Swalla BJ, Yasuo H, Lemaire P. ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Res 2016; 44:D808-18. [PMID: 26420834 PMCID: PMC4702943 DOI: 10.1093/nar/gkv966] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022] Open
Abstract
Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr.
Collapse
Affiliation(s)
- Matija Brozovic
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Cyril Martin
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Christelle Dantec
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Delphine Dauga
- Institut de Biologie du Développement de Marseille (IBDM), UMR7288 CNRS-Aix Marseille Université, Parc Scientifique de Luminy, Case 907, F-13288 Marseille Cedex 9, France Bioself Communication, 28 rue de la Bibliothèque, F-13001 Marseille, France
| | - Mickaël Mendez
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Paul Simion
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Madeline Percher
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Baptiste Laporte
- Institut de Biologie du Développement de Marseille (IBDM), UMR7288 CNRS-Aix Marseille Université, Parc Scientifique de Luminy, Case 907, F-13288 Marseille Cedex 9, France
| | - Céline Scornavacca
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Shigeki Fujiwara
- Department of Applied Science, Kochi University, Kochi-shi, Kochi 780-8520, Japan
| | - Mathieu Gineste
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Elijah K Lowe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Jacques Piette
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Naohito Takatori
- Developmental Biology Laboratory, Department of Biological Sciences, School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiooji, Tokyo 192-0397, Japan Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Titus C Brown
- Population Health and Reproduction, UC Davis, Davis, CA 95616, USA
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Emmanuel Douzery
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS-IRD-Université de Montpellier, F-34090 Montpellier, France
| | - Carmela Gissi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Alex McDougall
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba 517-0004, Japan
| | - Billie J Swalla
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250-9299, USA
| | - Hitoyoshi Yasuo
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France
| | - Patrick Lemaire
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090 Montpellier, France Institut de Biologie du Développement de Marseille (IBDM), UMR7288 CNRS-Aix Marseille Université, Parc Scientifique de Luminy, Case 907, F-13288 Marseille Cedex 9, France
| |
Collapse
|
3957
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3958
|
Baek S, Sung MH. Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes. Methods Mol Biol 2016; 1418:225-40. [PMID: 27008018 DOI: 10.1007/978-1-4939-3578-9_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-throughput sequencing technologies have made it possible for biologists to generate genome-wide profiles of chromatin features at the nucleotide resolution. Enzymes such as nucleases or transposes have been instrumental as a chromatin-probing agent due to their ability to target accessible chromatin for cleavage or insertion. On the scale of a few hundred base pairs, preferential action of the nuclear enzymes on accessible chromatin allows mapping of cell state-specific accessibility in vivo. Such accessible regions contain functionally important regulatory sites, including promoters and enhancers, which undergo active remodeling for cells adapting in a dynamic environment. DNase-seq and the more recent ATAC-seq are two assays that are gaining popularity. Deep sequencing of DNA libraries from these assays, termed genomic footprinting, has been proposed to enable the comprehensive construction of protein occupancy profiles over the genome at the nucleotide level. Recent studies have discovered limitations of genomic footprinting which reduce the scope of detectable proteins. In addition, the identification of putative factors that bind to the observed footprints remains challenging. Despite these caveats, the methodology still presents significant advantages over alternative techniques such as ChIP-seq or FAIRE-seq. Here we describe computational approaches and tools for analysis of chromatin accessibility and genomic footprinting. Proper experimental design and assay-specific data analysis ensure the detection sensitivity and maximize retrievable information. The enzyme-based chromatin profiling approaches represent a powerful and evolving methodology which facilitates our understanding of how the genome is regulated.
Collapse
Affiliation(s)
- Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD, 20892, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD, 20892, USA. .,Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
3959
|
Abstract
Mammals have at least 210 histologically diverse cell types (Alberts, Molecular biology of the cell. Garland Science, New York, 2008) and the number would be even higher if functional differences are taken into account. The genome in each of these cell types is differentially programmed to express the specific set of genes needed to fulfill the phenotypical requirements of the cell. Furthermore, in each of these cell types, the gene program can be differentially modulated by exposure to external signals such as hormones or nutrients. The basis for the distinct gene programs relies on cell type-selective activation of transcriptional enhancers, which in turn are particularly sensitive to modulation. Until recently we had only fragmented insight into the regulation of a few of these enhancers; however, the recent advances in high-throughput sequencing technologies have enabled the development of a large number of technologies that can be used to obtain genome-wide insight into how genomes are reprogrammed during development and in response to specific external signals. By applying such technologies, we have begun to reveal the cross-talk between metabolism and the genome, i.e., how genomes are reprogrammed in response to metabolites, and how the regulation of metabolic networks is coordinated at the genomic level.
Collapse
Affiliation(s)
- Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
3960
|
Abstract
Nucleosome occupancy in promoter and genic regions can severely influence the transcription levels. Few methods have been established to investigate the nucleosome occupancy along the DNA. In this chapter we describe a detailed protocol to analyze the nucleosome occupancy at a specific locus using MNase-pPCR.
Collapse
|
3961
|
Monteiro A, Gupta M. Identifying Coopted Networks and Causative Mutations in the Origin of Novel Complex Traits. Curr Top Dev Biol 2016; 119:205-26. [DOI: 10.1016/bs.ctdb.2016.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3962
|
Davies JO, Telenius JM, McGowan S, Roberts NA, Taylor S, Higgs DR, Hughes JR. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat Methods 2016; 13:74-80. [PMID: 26595209 PMCID: PMC4724891 DOI: 10.1038/nmeth.3664] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
Methods for analyzing chromosome conformation in mammalian cells are either low resolution or low throughput and are technically challenging. In next-generation (NG) Capture-C, we have redesigned the Capture-C method to achieve unprecedented levels of sensitivity and reproducibility. NG Capture-C can be used to analyze many genetic loci and samples simultaneously. High-resolution data can be produced with as few as 100,000 cells, and single-nucleotide polymorphisms can be used to generate allele-specific tracks. The method is straightforward to perform and should greatly facilitate the investigation of many questions related to gene regulation as well as the functional dissection of traits examined in genome-wide association studies.
Collapse
Affiliation(s)
- James O.J. Davies
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Jelena M. Telenius
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Simon McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Nigel A. Roberts
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Stephen Taylor
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Douglas R. Higgs
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Jim R. Hughes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| |
Collapse
|
3963
|
Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 2015; 8:57. [PMID: 26719772 PMCID: PMC4696349 DOI: 10.1186/s13072-015-0050-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Considerable progress towards an understanding of complex diseases has been made in recent years due to the development of high-throughput genotyping technologies. Using microarrays that contain millions of single-nucleotide polymorphisms (SNPs), Genome Wide Association Studies (GWASs) have identified SNPs that are associated with many complex diseases or traits. For example, as of February 2015, 2111 association studies have identified 15,396 SNPs for various diseases and traits, with the number of identified SNP-disease/trait associations increasing rapidly in recent years. However, it has been difficult for researchers to understand disease risk from GWAS results. This is because most GWAS-identified SNPs are located in non-coding regions of the genome. It is important to consider that the GWAS-identified SNPs serve only as representatives for all SNPs in the same haplotype block, and it is equally likely that other SNPs in high linkage disequilibrium (LD) with the array-identified SNPs are causal for the disease. Because it was hoped that disease-associated coding variants would be identified if the true casual SNPs were known, investigators have expanded their analyses using LD calculation and fine-mapping. However, such analyses also identified risk-associated SNPs located in non-coding regions. Thus, the GWAS field has been left with the conundrum as to how a single-nucleotide change in a non-coding region could confer increased risk for a specific disease. One possible answer to this puzzle is that the variant SNPs cause changes in gene expression levels rather than causing changes in protein function. This review provides a description of (1) advances in genomic and epigenomic approaches that incorporate functional annotation of regulatory elements to prioritize the disease risk-associated SNPs that are located in non-coding regions of the genome for follow-up studies, (2) various computational tools that aid in identifying gene expression changes caused by the non-coding disease-associated SNPs, and (3) experimental approaches to identify target genes of, and study the biological phenotypes conferred by, non-coding disease-associated SNPs.
Collapse
Affiliation(s)
- Yu Gyoung Tak
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
3964
|
Abstract
Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime-challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal-fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Michael D Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, California 94143, USA
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, USA
| | - Abul K Abbas
- Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
3965
|
Valensisi C, Liao JL, Andrus C, Battle SL, Hawkins RD. cChIP-seq: a robust small-scale method for investigation of histone modifications. BMC Genomics 2015; 16:1083. [PMID: 26692029 PMCID: PMC4687106 DOI: 10.1186/s12864-015-2285-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/10/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND ChIP-seq is highly utilized for mapping histone modifications that are informative about gene regulation and genome annotations. For example, applying ChIP-seq to histone modifications such as H3K4me1 has facilitated generating epigenomic maps of putative enhancers. This powerful technology, however, is limited in its application by the large number of cells required. ChIP-seq involves extensive manipulation of sample material and multiple reactions with limited quality control at each step, therefore, scaling down the number of cells required has proven challenging. Recently, several methods have been proposed to overcome this limit but most of these methods require extensive optimization to tailor the protocol to the specific antibody used or number of cells being profiled. RESULTS Here we describe a robust, yet facile method, which we named carrier ChIP-seq (cChIP-seq), for use on limited cell amounts. cChIP-seq employs a DNA-free histone carrier in order to maintain the working ChIP reaction scale, removing the need to tailor reactions to specific amounts of cells or histone modifications to be assayed. We have applied our method to three different histone modifications, H3K4me3, H3K4me1 and H3K27me3 in the K562 cell line, and H3K4me1 in H1 hESCs. We successfully obtained epigenomic maps for these histone modifications starting with as few as 10,000 cells. We compared cChIP-seq data to data generated as part of the ENCODE project. ENCODE data are the reference standard in the field and have been generated starting from tens of million of cells. Our results show that cChIP-seq successfully recapitulates bulk data. Furthermore, we showed that the differences observed between small-scale ChIP-seq data and ENCODE data are largely to be due to lab-to-lab variability rather than operating on a reduced scale. CONCLUSIONS Data generated using cChIP-seq are equivalent to reference epigenomic maps from three orders of magnitude more cells. Our method offers a robust and straightforward approach to scale down ChIP-seq to as low as 10,000 cells. The underlying principle of our strategy makes it suitable for being applied to a vast range of chromatin modifications without requiring expensive optimization. Furthermore, our strategy of a DNA-free carrier can be adapted to most ChIP-seq protocols.
Collapse
Affiliation(s)
- Cristina Valensisi
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Jo Ling Liao
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Colin Andrus
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Stephanie L Battle
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA. .,Turku Centre for Biotechnology, Turku, Finland.
| |
Collapse
|
3966
|
Bao X, Rubin AJ, Qu K, Zhang J, Giresi PG, Chang HY, Khavari PA. A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biol 2015; 16:284. [PMID: 26683334 PMCID: PMC4699366 DOI: 10.1186/s13059-015-0840-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/19/2015] [Indexed: 01/04/2023] Open
Abstract
Background Open chromatin regions are correlated with active regulatory elements in development and are dysregulated in diseases. The BAF (SWI/SNF) complex is essential for development, and has been demonstrated to remodel reconstituted chromatin in vitro and to control the accessibility of a few individual regions in vivo. However, it remains unclear where and how BAF controls the open chromatin landscape to regulate developmental processes, such as human epidermal differentiation. Results Using a novel “on-plate” ATAC-sequencing approach for profiling open chromatin landscapes with a low number of adherent cells, we demonstrate that the BAF complex is essential for maintaining 11.6 % of open chromatin regions in epidermal differentiation. These BAF-dependent open chromatin regions are highly cell-type-specific and are strongly enriched for binding sites for p63, a master epidermal transcription factor. The DNA sequences of p63 binding sites intrinsically favor nucleosome formation and are inaccessible in other cell types without p63 to prevent ectopic activation. In epidermal cells, BAF and p63 mutually recruit each other to maintain 14,853 open chromatin regions. We further demonstrate that BAF and p63 cooperatively position nucleosomes away from p63 binding sites and recruit transcriptional machinery to control tissue differentiation. Conclusions BAF displays high specificity in controlling the open chromatin landscape during epidermal differentiation by cooperating with the master transcription factor p63 to maintain lineage-specific open chromatin regions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0840-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaomin Bao
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA.
| | - Adam J Rubin
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Kun Qu
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Jiajing Zhang
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Paul G Giresi
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, 269 Campus Drive, Stanford, CA, 94305, USA. .,Veterans Affairs Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3967
|
Becher OJ, Holland EC. Glioma Stem-like Cells Keep Their H3.3 Variant Levels at Bay. Cancer Cell 2015; 28:679-680. [PMID: 26678332 DOI: 10.1016/j.ccell.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pediatric glioblastomas (GBMs) commonly harbor mutations in histone variant H3.3, while adult GBMs do not. In this issue of Cancer Cell, Gallo and colleagues demonstrate that adult GBM stem-like cells repress H3.3 expression to maintain self-renewal properties.
Collapse
Affiliation(s)
- Oren J Becher
- Division of Pediatric Hematology-Oncology, Duke University Medical Center, Durham, NC 27710, USA; Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA.
| | - Eric C Holland
- Division of Human Biology, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Alvord Brain Tumor Center, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|
3968
|
Kumasaka N, Knights AJ, Gaffney DJ. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat Genet 2015; 48:206-13. [PMID: 26656845 PMCID: PMC5098600 DOI: 10.1038/ng.3467] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
When cellular traits are measured using high-throughput DNA sequencing, quantitative trait loci (QTLs) manifest as fragment count differences between individuals and allelic differences within individuals. We present RASQUAL (Robust Allele-Specific Quantitation and Quality Control), a new statistical approach for association mapping that models genetic effects and accounts for biases in sequencing data using a single, probabilistic framework. RASQUAL substantially improves fine-mapping accuracy and sensitivity relative to existing methods in RNA-seq, DNase-seq and ChIP-seq data. We illustrate how RASQUAL can be used to maximize association detection by generating the first map of chromatin accessibility QTLs (caQTLs) in a European population using ATAC-seq. Despite a modest sample size, we identified 2,707 independent caQTLs (at a false discovery rate of 10%) and demonstrated how RASQUAL and ATAC-seq can provide powerful information for fine-mapping gene-regulatory variants and for linking distal regulatory elements with gene promoters. Our results highlight how combining between-individual and allele-specific genetic signals improves the functional interpretation of noncoding variation.
Collapse
Affiliation(s)
| | - Andrew J Knights
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Daniel J Gaffney
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
3969
|
Gallo M, Coutinho FJ, Vanner RJ, Gayden T, Mack SC, Murison A, Remke M, Li R, Takayama N, Desai K, Lee L, Lan X, Park NI, Barsyte-Lovejoy D, Smil D, Sturm D, Kushida MM, Head R, Cusimano MD, Bernstein M, Clarke ID, Dick JE, Pfister SM, Rich JN, Arrowsmith CH, Taylor MD, Jabado N, Bazett-Jones DP, Lupien M, Dirks PB. MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell 2015; 28:715-729. [PMID: 26626085 DOI: 10.1016/j.ccell.2015.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023]
Abstract
Mutations in the histone 3 variant H3.3 have been identified in one-third of pediatric glioblastomas (GBMs), but not in adult tumors. Here we show that H3.3 is a dynamic determinant of functional properties in adult GBM. H3.3 is repressed by mixed lineage leukemia 5 (MLL5) in self-renewing GBM cells. MLL5 is a global epigenetic repressor that orchestrates reorganization of chromatin structure by punctuating chromosomes with foci of compacted chromatin, favoring tumorigenic and self-renewing properties. Conversely, H3.3 antagonizes self-renewal and promotes differentiation. We exploited these epigenetic states to rationally identify two small molecules that effectively curb cancer stem cell properties in a preclinical model. Our work uncovers a role for MLL5 and H3.3 in maintaining self-renewal hierarchies in adult GBM.
Collapse
Affiliation(s)
- Marco Gallo
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tenzin Gayden
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3H 1P4, Canada
| | - Stephen C Mack
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland, OH 44195, USA; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alex Murison
- Ontario Institute for Cancer Research and Princess Margaret Cancer Centre-University Health Network, Toronto, ON M5G 1L7, Canada
| | - Marc Remke
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ren Li
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Naoya Takayama
- Ontario Institute for Cancer Research and Princess Margaret Cancer Centre-University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kinjal Desai
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03755, USA
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaoyang Lan
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole I Park
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dalia Barsyte-Lovejoy
- Ontario Institute for Cancer Research and Princess Margaret Cancer Centre-University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, Toronto, ON M5G 1L7, Canada
| | - David Smil
- Ontario Institute for Cancer Research and Princess Margaret Cancer Centre-University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, Toronto, ON M5G 1L7, Canada
| | - Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Michelle M Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Renee Head
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada; St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Mark Bernstein
- Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| | - Ian D Clarke
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - John E Dick
- Ontario Institute for Cancer Research and Princess Margaret Cancer Centre-University Health Network, Toronto, ON M5G 1L7, Canada
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Cheryl H Arrowsmith
- Ontario Institute for Cancer Research and Princess Margaret Cancer Centre-University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, Toronto, ON M5G 1L7, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nada Jabado
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre Research Institute, Montreal, QC H3H 1P4, Canada
| | - David P Bazett-Jones
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mathieu Lupien
- Ontario Institute for Cancer Research and Princess Margaret Cancer Centre-University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3970
|
Abstract
Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.
Collapse
|
3971
|
Maeso I, Tena JJ. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework. Semin Cell Dev Biol 2015; 57:2-10. [PMID: 26673387 DOI: 10.1016/j.semcdb.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 12/22/2022]
Abstract
Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements.
Collapse
Affiliation(s)
- Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
3972
|
Mazumdar C, Shen Y, Xavy S, Zhao F, Reinisch A, Li R, Corces MR, Flynn RA, Buenrostro JD, Chan SM, Thomas D, Koenig JL, Hong WJ, Chang HY, Majeti R. Leukemia-Associated Cohesin Mutants Dominantly Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation. Cell Stem Cell 2015; 17:675-688. [PMID: 26607380 PMCID: PMC4671831 DOI: 10.1016/j.stem.2015.09.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/24/2015] [Accepted: 09/23/2015] [Indexed: 01/14/2023]
Abstract
Recurrent mutations in cohesin complex proteins have been identified in pre-leukemic hematopoietic stem cells and during the early development of acute myeloid leukemia and other myeloid malignancies. Although cohesins are involved in chromosome separation and DNA damage repair, cohesin complex functions during hematopoiesis and leukemic development are unclear. Here, we show that mutant cohesin proteins block differentiation of human hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo and enforce stem cell programs. These effects are restricted to immature HSPC populations, where cohesin mutants show increased chromatin accessibility and likelihood of transcription factor binding site occupancy by HSPC regulators including ERG, GATA2, and RUNX1, as measured by ATAC-seq and ChIP-seq. Epistasis experiments show that silencing these transcription factors rescues the differentiation block caused by cohesin mutants. Together, these results show that mutant cohesins impair HSPC differentiation by controlling chromatin accessibility and transcription factor activity, possibly contributing to leukemic disease.
Collapse
Affiliation(s)
- Claire Mazumdar
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying Shen
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seethu Xavy
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feifei Zhao
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M Ryan Corces
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryan A Flynn
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason D Buenrostro
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven M Chan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julie L Koenig
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wan-Jen Hong
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3973
|
Ikeuchi M, Iwase A, Sugimoto K. Control of plant cell differentiation by histone modification and DNA methylation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:60-7. [PMID: 26454697 DOI: 10.1016/j.pbi.2015.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 05/10/2023]
Abstract
How cells differentiate and acquire diverse arrays of determined states in multicellular organisms is a fundamental and yet unanswered question in biology. Molecular genetic studies over the last few decades have identified many transcriptional regulators that activate or repress gene expression to promote cell differentiation in plant development. What has recently emerged as an additional important regulatory layer is the control at the epigenetic level by which locus-specific DNA methylation and histone modification alter the chromatin state and limit the expression of key developmental regulators to specific windows of time and space. Accumulating evidence suggests that histone acetylation is commonly linked with active transcription and this mechanism is adopted to control sequential progression of cell differentiation. Histone H3 trimethylation at lysine 27 and DNA methylation are both associated with gene repression, and these mechanisms are often utilised to promote and/or maintain the differentiated status of plant cells.
Collapse
Affiliation(s)
- Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
3974
|
McKnight RA, Yost CC, Yu X, Wiedmeier JE, Callaway CW, Brown AS, Lane RH, Fung CM. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene. Physiol Genomics 2015; 47:634-43. [DOI: 10.1152/physiolgenomics.00082.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.
Collapse
Affiliation(s)
- Robert A. McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C. Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Xing Yu
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Julia E. Wiedmeier
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christopher W. Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Ashley S. Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Robert H. Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
3975
|
Gregersen PK, Klein G, Keogh M, Kern M, DeFranco M, Simpfendorfer KR, Kim SJ, Diamond B. The Genotype and Phenotype (GaP) registry: a living biobank for the analysis of quantitative traits. Immunol Res 2015; 63:107-12. [PMID: 26467974 DOI: 10.1007/s12026-015-8711-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe the development of the Genotype and Phenotype (GaP) Registry, a living biobank of normal volunteers who are genotyped for genetic markers related to human disease. Participants in the GaP can be recalled for hypothesis driven study of disease associated genetic variants. The GaP has facilitated functional studies of several autoimmune disease associated loci including Csk, Blk, PDRM1 (Blimp-1) and PTPN22. It is likely that expansion of such living biobank registries will play an important role in studying and understanding the function of disease associated alleles in complex disease.
Collapse
Affiliation(s)
- Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Gila Klein
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Mary Keogh
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Marlena Kern
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Margaret DeFranco
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kim R Simpfendorfer
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
3976
|
Kim TK, Shiekhattar R. Architectural and Functional Commonalities between Enhancers and Promoters. Cell 2015; 162:948-59. [PMID: 26317464 DOI: 10.1016/j.cell.2015.08.008] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/23/2023]
Abstract
With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components, including histone modifications and associated binding factors, and their functional contribution to transcription. This Review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
3977
|
Ren B, Yue F. Transcriptional Enhancers: Bridging the Genome and Phenome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:17-26. [PMID: 26582789 DOI: 10.1101/sqb.2015.80.027219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enhancers play a major role in animal development by modulating spatiotemporal expression of genes. They interact with sequence-specific transcriptional regulators in response to internal and external cues to bring about transcriptional changes, thus serving as the critical link between an organism's genome and its phenotypic traits. Deciphering the biology of enhancers is a key to understanding the genetic basis of common human diseases. Although a large number of candidate enhancers have been annotated through genome-wide analyses of chromatin accessibility, transcription factor binding, and histone modification in diverse cell types, efforts to characterize their biological roles in human diseases have only begun. Recent experiments have suggested a role for the three-dimensional chromatin architecture in regulation of gene expression by enhancers.
Collapse
Affiliation(s)
- Bing Ren
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, and Moores Cancer Center, La Jolla, California 92093-0653
| | - Feng Yue
- Department of Biochemistry and Molecular Biology and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
3978
|
Shen SQ, Myers CA, Hughes AEO, Byrne LC, Flannery JG, Corbo JC. Massively parallel cis-regulatory analysis in the mammalian central nervous system. Genome Res 2015; 26:238-55. [PMID: 26576614 PMCID: PMC4728376 DOI: 10.1101/gr.193789.115] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/12/2015] [Indexed: 01/23/2023]
Abstract
Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in functionally interpreting these data. To address this issue, massively parallel reporter assays (MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells, and the resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types. Here, we present two advances that extend the biological relevance and applicability of MPRAs. First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling across the targeted regions and markedly increasing the length of CREs that can be readily assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing delivery to target organs in vivo. As a proof of concept, we introduce a capture library of about 46,000 constructs, corresponding to roughly 3500 DNase I hypersensitive (DHS) sites, into the mouse retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach should enable massively parallel functional analysis of a wide range of CREs in any organ or species that can be infected by AAV, such as nonhuman primates and human stem cell–derived organoids.
Collapse
Affiliation(s)
- Susan Q Shen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Andrew E O Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Leah C Byrne
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
3979
|
Carén H, Stricker SH, Bulstrode H, Gagrica S, Johnstone E, Bartlett TE, Feber A, Wilson G, Teschendorff AE, Bertone P, Beck S, Pollard SM. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest. Stem Cell Reports 2015; 5:829-842. [PMID: 26607953 PMCID: PMC4649264 DOI: 10.1016/j.stemcr.2015.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor whose growth is driven by stemcell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stemcells (GSCs) and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Herewe find only a subset ofGSCcultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy forGBM.
Collapse
Affiliation(s)
- Helena Carén
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; Samantha Dickson Brain Cancer Unit, University College London, London WC1E 6BT, UK
| | - Stefan H Stricker
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Samantha Dickson Brain Cancer Unit, University College London, London WC1E 6BT, UK
| | - Harry Bulstrode
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sladjana Gagrica
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Ewan Johnstone
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Thomas E Bartlett
- Department of Mathematics and CoMPLEX, University College London, London WC1E 6BT, UK
| | - Andrew Feber
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Gareth Wilson
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Andrew E Teschendorff
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Paul Bertone
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, UK; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK; Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Beck
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Steven M Pollard
- Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Samantha Dickson Brain Cancer Unit, University College London, London WC1E 6BT, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
3980
|
Bortnick A, Murre C. Cellular and chromatin dynamics of antibody-secreting plasma cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:136-49. [PMID: 26488117 DOI: 10.1002/wdev.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/10/2015] [Accepted: 08/15/2015] [Indexed: 12/12/2022]
Abstract
Plasma cells are terminally differentiated B cells responsible for maintaining protective serum antibody titers. Despite their clinical importance, our understanding of the linear genomic features and chromatin structure of plasma cells is incomplete. The plasma cell differentiation program can be triggered by different signals and in multiple, diverse peripheral B cell subsets. This heterogeneity raises questions about the gene regulatory circuits required for plasma cell specification. Recently, new regulators of plasma cell differentiation have been identified and the enhancer landscapes of naïve B cells have been described. Other studies have revealed that the bone marrow niche harbors heterogeneous plasma cell subsets. Still undefined are the minimal requirements to become a plasma cell and what molecular features make peripheral B cell subsets competent to become antibody-secreting plasma cells. New technologies promise to reveal underlying chromatin configurations that promote efficient antibody secretion. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexandra Bortnick
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3981
|
Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E, Yelin D, Shank K, Reyes J, Chiu A, Romin Y, Boyko V, Thota S, Maciejewski JP, Melnick A, Bradner JE, Levine RL. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med 2015; 212:1819-32. [PMID: 26438361 PMCID: PMC4612085 DOI: 10.1084/jem.20151317] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/04/2015] [Indexed: 01/18/2023] Open
Abstract
Cohesin complex members have recently been identified as putative tumor suppressors in hematologic and epithelial malignancies. The cohesin complex guides chromosome segregation; however, cohesin mutant leukemias do not show genomic instability. We hypothesized that reduced cohesin function alters chromatin structure and disrupts cis-regulatory architecture of hematopoietic progenitors. We investigated the consequences of Smc3 deletion in normal and malignant hematopoiesis. Biallelic Smc3 loss induced bone marrow aplasia with premature sister chromatid separation and revealed an absolute requirement for cohesin in hematopoietic stem cell (HSC) function. In contrast, Smc3 haploinsufficiency increased self-renewal in vitro and in vivo, including competitive transplantation. Smc3 haploinsufficiency reduced coordinated transcriptional output, including reduced expression of transcription factors and other genes associated with lineage commitment. Smc3 haploinsufficiency cooperated with Flt3-ITD to induce acute leukemia in vivo, with potentiated Stat5 signaling and altered nucleolar topology. These data establish a dose dependency for cohesin in regulating chromatin structure and HSC function.
Collapse
Affiliation(s)
- Aaron D Viny
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Barbara Spitzer
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Martin Rivas
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Cem Meydan
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Efthymia Papalexi
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dana Yelin
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Department of Medicine, Rabin Medical Center, Beilinson Campus, Petah Tikvah 49100, Israel
| | - Kaitlyn Shank
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jaime Reyes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - April Chiu
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yevgeniy Romin
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Vitaly Boyko
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Swapna Thota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
3982
|
Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data. Sci Rep 2015; 5:14955. [PMID: 26459872 PMCID: PMC4602202 DOI: 10.1038/srep14955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
The rapid advancement of next generation sequencing technology has greatly accelerated the progress for understanding human inherited diseases via such innovations as exome sequencing. Nevertheless, the identification of causative variants from sequencing data remains a great challenge. Traditional statistical genetics approaches such as linkage analysis and association studies have limited power in analyzing exome sequencing data, while relying on simply filtration strategies and predicted functional implications of mutations to pinpoint pathogenic variants are prone to produce false positives. To overcome these limitations, we herein propose a supervised learning approach, termed snvForest, to prioritize candidate nonsynonymous single nucleotide variants for a specific type of disease by integrating 11 functional scores at the variant level and 8 association scores at the gene level. We conduct a series of large-scale in silico validation experiments, demonstrating the effectiveness of snvForest across 2,511 diseases of different inheritance styles and the superiority of our approach over two state-of-the-art methods. We further apply snvForest to three real exome sequencing data sets of epileptic encephalophathies and intellectual disability to show the ability of our approach to identify causative de novo mutations for these complex diseases. The online service and standalone software of snvForest are found at http://bioinfo.au.tsinghua.edu.cn/jianglab/snvforest.
Collapse
|
3983
|
|
3984
|
Schick S, Fournier D, Thakurela S, Sahu SK, Garding A, Tiwari VK. Dynamics of chromatin accessibility and epigenetic state in response to UV damage. J Cell Sci 2015; 128:4380-94. [PMID: 26446258 DOI: 10.1242/jcs.173633] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.
Collapse
Affiliation(s)
- Sandra Schick
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | |
Collapse
|
3985
|
Transcriptional enhancers: functional insights and role in human disease. Curr Opin Genet Dev 2015; 33:71-6. [PMID: 26433090 PMCID: PMC4720706 DOI: 10.1016/j.gde.2015.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 01/20/2023]
Abstract
In recent years, studies of cis-regulatory mechanisms have evolved from a predominant focus on promoter regions to the realization that spatial and temporal gene regulation is frequently driven by long-range enhancer clusters that operate within chromosomal compartments. This increased understanding of genome function, together with the emergence of technologies that enable whole-genome sequencing of patients’ DNAs, open the prospect of dissecting the role of cis-regulatory defects in human disease. In this review we discuss how recent epigenomic studies have provided insights into the function of transcriptional enhancers. We then present examples that illustrate how integrative genomics can help uncover enhancer sequence variants underlying Mendelian and common polygenic human disease.
Collapse
|
3986
|
Robinson WH, Mao R. Decade in review-technology: Technological advances transforming rheumatology. Nat Rev Rheumatol 2015; 11:626-8. [PMID: 26439404 DOI: 10.1038/nrrheum.2015.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, CCSR 4135, 269 Campus Drive, Stanford, CA 94305, USA
| | - Rong Mao
- Division of Immunology and Rheumatology, CCSR 4135, 269 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
3987
|
Raj A, Shim H, Gilad Y, Pritchard JK, Stephens M. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding. PLoS One 2015; 10:e0138030. [PMID: 26406244 PMCID: PMC4583425 DOI: 10.1371/journal.pone.0138030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.
Collapse
Affiliation(s)
- Anil Raj
- Department of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail: (AR); (HS); (YG); (JKP); (MS)
| | - Heejung Shim
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AR); (HS); (YG); (JKP); (MS)
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AR); (HS); (YG); (JKP); (MS)
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (AR); (HS); (YG); (JKP); (MS)
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AR); (HS); (YG); (JKP); (MS)
| |
Collapse
|
3988
|
Ye M, Zhang H, Yang H, Koche R, Staber PB, Cusan M, Levantini E, Welner RS, Bach CS, Zhang J, Krivtsov AV, Armstrong SA, Tenen DG. Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia. Cell Stem Cell 2015; 17:611-23. [PMID: 26412561 DOI: 10.1016/j.stem.2015.08.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/11/2015] [Accepted: 08/14/2015] [Indexed: 11/26/2022]
Abstract
Mutations in acute myeloid leukemia (AML)-associated oncogenes often arise in hematopoietic stem cells (HSCs) and promote acquisition of leukemia stem cell (LSC) phenotypes. However, as LSCs often share features of lineage-restricted progenitors, the relative contribution of differentiation status to LSC transformation is unclear. Using murine MLL-AF9 and MOZ-TIF2 AML models, we show that myeloid differentiation to granulocyte macrophage progenitors (GMPs) is critical for LSC generation. Disrupting GMP formation by deleting the lineage-restricted transcription factor C/EBPa blocked normal granulocyte formation and prevented initiation of AML. However, restoring myeloid differentiation in C/EBPa mutants with inflammatory cytokines reestablished AML transformation capacity. Genomic analyses of GMPs, including gene expression and H3K79me2 profiling in conjunction with ATAC-seq, revealed a permissive genomic environment for activation of a minimal transcription program shared by GMPs and LSCs. Together, these findings show that myeloid differentiation is a prerequisite for LSC formation and AML development, providing insights for therapeutic development.
Collapse
Affiliation(s)
- Min Ye
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Singapore, 117599
| | - Richard Koche
- Cancer Biology and Genetics Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | - Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology and Hemostaseology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, A-1090 Vienna, Austria
| | - Monica Cusan
- Cancer Biology and Genetics Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | - Elena Levantini
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Institute of Biomedical Technologies, National Research Council, Pisa 56124, Italy
| | - Robert S Welner
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christian S Bach
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Hematology/Oncology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Junyan Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrei V Krivtsov
- Cancer Biology and Genetics Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | - Scott A Armstrong
- Cancer Biology and Genetics Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Science Institute, National University of Singapore, Singapore, 117599.
| |
Collapse
|
3989
|
Madrigal P. On Accounting for Sequence-Specific Bias in Genome-Wide Chromatin Accessibility Experiments: Recent Advances and Contradictions. Front Bioeng Biotechnol 2015; 3:144. [PMID: 26442258 PMCID: PMC4585268 DOI: 10.3389/fbioe.2015.00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pedro Madrigal
- Wellcome Trust Sanger Institute , Cambridge , UK ; Department of Surgery, University of Cambridge , Cambridge , UK
| |
Collapse
|
3990
|
González AJ, Setty M, Leslie CS. Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation. Nat Genet 2015; 47:1249-59. [PMID: 26390058 PMCID: PMC4626279 DOI: 10.1038/ng.3402] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
Abstract
We carried out an integrative analysis of enhancer landscape and gene expression dynamics during hematopoietic differentiation using DNase-seq, histone mark ChIP-seq and RNA sequencing to model how the early establishment of enhancers and regulatory locus complexity govern gene expression changes at cell state transitions. We found that high-complexity genes-those with a large total number of DNase-mapped enhancers across the lineage-differ architecturally and functionally from low-complexity genes, achieve larger expression changes and are enriched for both cell type-specific and transition enhancers, which are established in hematopoietic stem and progenitor cells and maintained in one differentiated cell fate but lost in others. We then developed a quantitative model to accurately predict gene expression changes from the DNA sequence content and lineage history of active enhancers. Our method suggests a new mechanistic role for PU.1 at transition peaks during B cell specification and can be used to correct assignments of enhancers to genes.
Collapse
Affiliation(s)
- Alvaro J González
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Manu Setty
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3991
|
Pacis A, Tailleux L, Morin AM, Lambourne J, MacIsaac JL, Yotova V, Dumaine A, Danckaert A, Luca F, Grenier JC, Hansen KD, Gicquel B, Yu M, Pai A, He C, Tung J, Pastinen T, Kobor MS, Pique-Regi R, Gilad Y, Barreiro LB. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res 2015; 25:1801-11. [PMID: 26392366 PMCID: PMC4665002 DOI: 10.1101/gr.192005.115] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells.
Collapse
Affiliation(s)
- Alain Pacis
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, H3T1C5 Canada; Department of Biochemistry, University of Montreal, Montreal, H3T1J4 Canada
| | - Ludovic Tailleux
- Institut Pasteur, Mycobacterial Genetics Unit, Paris, 75015 France
| | - Alexander M Morin
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - John Lambourne
- Génome Québec Innovation Centre, Department of Human Genetics, McGill University, Montreal, H3A0G1 Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Vania Yotova
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, H3T1C5 Canada
| | - Anne Dumaine
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, H3T1C5 Canada
| | | | - Francesca Luca
- Center for Molecular Medicine and Genetics and Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48202, USA
| | | | - Kasper D Hansen
- Department of Biostatistics and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Brigitte Gicquel
- Institut Pasteur, Mycobacterial Genetics Unit, Paris, 75015 France
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Athma Pai
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology and Duke Population Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Tomi Pastinen
- Génome Québec Innovation Centre, Department of Human Genetics, McGill University, Montreal, H3A0G1 Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics and Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48202, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, H3T1C5 Canada; Department of Pediatrics, University of Montreal, Montreal, H3T1J4 Canada
| |
Collapse
|
3992
|
Franchini LF, Pollard KS. Genomic approaches to studying human-specific developmental traits. Development 2015; 142:3100-12. [DOI: 10.1242/dev.120048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes – human and non-human – that can be compared to discover the regulatory machinery of genes involved in human development. This approach has identified thousands of human-specific genome alterations in developmental genes and their regulatory regions. With recent advances in stem cell techniques, genome engineering, and genomics, we can now test these sequences for effects on developmental gene regulation and downstream phenotypes in human cells and tissues.
Collapse
Affiliation(s)
- Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
3993
|
Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L, Gage FH, Swigut T, Wysocka J. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 2015; 163:68-83. [PMID: 26365491 DOI: 10.1016/j.cell.2015.08.036] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/06/2015] [Accepted: 07/21/2015] [Indexed: 01/23/2023]
Abstract
cis-regulatory changes play a central role in morphological divergence, yet the regulatory principles underlying emergence of human traits remain poorly understood. Here, we use epigenomic profiling from human and chimpanzee cranial neural crest cells to systematically and quantitatively annotate divergence of craniofacial cis-regulatory landscapes. Epigenomic divergence is often attributable to genetic variation within TF motifs at orthologous enhancers, with a novel motif being most predictive of activity biases. We explore properties of this cis-regulatory change, revealing the role of particular retroelements, uncovering broad clusters of species-biased enhancers near genes associated with human facial variation, and demonstrating that cis-regulatory divergence is linked to quantitative expression differences of crucial neural crest regulators. Our work provides a wealth of candidates for future evolutionary studies and demonstrates the value of "cellular anthropology," a strategy of using in-vitro-derived embryonic cell types to elucidate both fundamental and evolving mechanisms underlying morphological variation in higher primates.
Collapse
Affiliation(s)
- Sara L Prescott
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rajini Srinivasan
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Carolina Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3994
|
Nguyen MLT, Jones SA, Prier JE, Russ BE. Transcriptional Enhancers in the Regulation of T Cell Differentiation. Front Immunol 2015; 6:462. [PMID: 26441967 PMCID: PMC4563239 DOI: 10.3389/fimmu.2015.00462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2015] [Indexed: 12/24/2022] Open
Abstract
The changes in phenotype and function that characterize the differentiation of naïve T cells to effector and memory states are underscored by large-scale, coordinated, and stable changes in gene expression. In turn, these changes are choreographed by the interplay between transcription factors and epigenetic regulators that act to restructure the genome, ultimately ensuring lineage-appropriate gene expression. Here, we focus on the mechanisms that control T cell differentiation, with a particular focus on the role of regulatory elements encoded within the genome, known as transcriptional enhancers (TEs). We discuss the central role of TEs in regulating T cell differentiation, both in health and disease.
Collapse
Affiliation(s)
- Michelle L T Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| | - Sarah A Jones
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health , Melbourne, VIC , Australia
| | - Julia E Prier
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| | - Brendan E Russ
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
3995
|
Thompson D, Regev A, Roy S. Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu Rev Cell Dev Biol 2015; 31:399-428. [PMID: 26355593 DOI: 10.1146/annurev-cellbio-100913-012908] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
Collapse
Affiliation(s)
- Dawn Thompson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | | | | |
Collapse
|
3996
|
Abstract
Epigenomic profiling of complex tissues obscures regulatory elements that distinguish one cell type from another. In this issue of Neuron, Mo et al. (2015) apply cell-type-specific profiling to mouse neuronal subtypes and discover an unprecedented level of neuronal diversity.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute and Basic Sciences Division Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA.
| |
Collapse
|
3997
|
Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R, Huber W, Kyewski B, Steinmetz LM. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 2015; 16:933-41. [PMID: 26237553 PMCID: PMC4675844 DOI: 10.1038/ni.3246] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022]
Abstract
Expression of tissue-restricted self antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for the induction of self-tolerance and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and is coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA sequencing and obtained evidence of numerous recurring TRA-co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process that might involve local remodeling of chromatin and thus ensures a comprehensive representation of the immunological self.
Collapse
Affiliation(s)
- Philip Brennecke
- 1] Department of Genetics, Stanford University, School of Medicine, California, USA. [2] Stanford Genome Technology Center, Stanford University, California, USA
| | - Alejandro Reyes
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Kristin Rattay
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Michelle Nguyen
- 1] Department of Genetics, Stanford University, School of Medicine, California, USA. [2] Stanford Genome Technology Center, Stanford University, California, USA
| | - Rita Küchler
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Lars M Steinmetz
- 1] Department of Genetics, Stanford University, School of Medicine, California, USA. [2] Stanford Genome Technology Center, Stanford University, California, USA. [3] European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
3998
|
Romanoski CE, Link VM, Heinz S, Glass CK. Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends Immunol 2015; 36:507-18. [PMID: 26298065 PMCID: PMC4548828 DOI: 10.1016/j.it.2015.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/18/2022]
Abstract
The mammalian genome contains on the order of a million enhancer-like regions that are required to establish the identities and functions of specific cell types. Here, we review recent studies in immune cells that have provided insight into the mechanisms that selectively activate certain enhancers in response to cell lineage and environmental signals. We describe a working model wherein distinct classes of transcription factors define the repertoire of active enhancers in macrophages through collaborative and hierarchical interactions, and discuss important challenges to this model, specifically providing examples from T cells. We conclude by discussing the use of natural genetic variation as a powerful approach for decoding transcription factor combinations that play dominant roles in establishing the enhancer landscapes, and the potential that these insights have for advancing our understanding of the molecular causes of human disease.
Collapse
Affiliation(s)
- Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA; Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Planegg-Martinsried 85152, Germany
| | - Sven Heinz
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA.
| |
Collapse
|
3999
|
Bowman SK. Discovering enhancers by mapping chromatin features in primary tissue. Genomics 2015; 106:140-144. [DOI: 10.1016/j.ygeno.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/04/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
|
4000
|
Genomic-wide transcriptional profiling in primary myoblasts reveals Runx1-regulated genes in muscle regeneration. GENOMICS DATA 2015; 6:120-2. [PMID: 26697350 PMCID: PMC4664707 DOI: 10.1016/j.gdata.2015.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022]
Abstract
In response to muscle damage the muscle adult stem cells are activated and differentiate into myoblasts that regenerate the damaged tissue. We have recently showed that following myopathic damage the level of the Runx1 transcription factor (TF) is elevated and that during muscle regeneration this TF regulates the balance between myoblast proliferation and differentiation (Umansky et al.). We employed Runx1-dependent gene expression, Chromatin Immunoprecipitation sequencing (ChIP-seq), Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) and histone H3K4me1/H3K27ac modification analyses to identify a subset of Runx1-regulated genes that are co-occupied by the TFs MyoD and c-Jun and are involved in muscle regeneration (Umansky et al.). The data is available at the GEO database under the superseries accession number GSE56131.
Collapse
|