3951
|
Stable suppression of MDR1 gene expression and function by RNAi in Caco-2 cells. Biochem Biophys Res Commun 2004; 324:365-71. [PMID: 15465028 DOI: 10.1016/j.bbrc.2004.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 11/18/2022]
Abstract
Vector-based RNAi was used to establish a stable Caco-2 cell line with a persistent knockdown of multidrug resistant gene 1 (MDR1) and P-glycoprotein (P-gp). Several positive clones were collected, many of which showed significantly reduced levels of MDR1 mRNA and P-gp compared to wt Caco-2 cells. Selected clones were sub-cultivated for six passages and real-time PCR showed that MDR1 expression remained significantly reduced (up to 96%) over this period of time. RNAi-MDR1 clones frozen long term also kept their low MDR1 expression levels when re-cultured. Permeability studies were performed across RNAi-MDR1 clone cell monolayers, and the efflux of cyclosporine A, digoxin, vinblastine, and vincristine showed 58%, 61%, 91%, and 78% decrease in active transport, respectively, compared to wt Caco-2 cells. This stably modified Caco-2 cell line provides a novel tool for studies on MDR1 and other ABC transporter protein gene cellular functions.
Collapse
|
3952
|
Suvannasankha A, Minderman H, O'Loughlin KL, Nakanishi T, Ford LA, Greco WR, Wetzler M, Ross DD, Baer MR. Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: frequent expression and possible correlation with shorter disease-free survival. Br J Haematol 2004; 127:392-8. [PMID: 15521915 DOI: 10.1111/j.1365-2141.2004.05211.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs used in treatment of adult acute lymphoblastic leukaemia (ALL) are substrates for breast cancer resistance protein (BCRP, MXR, ABCG2), which may thus play a role in resistance in this disease. Pretreatment blasts from 30 adult ALL patients were studied for BCRP mRNA by quantitative reverse transcription polymerase chain reaction analysis, BCRP protein by immunophenotyping with three antibodies and BCRP function by fumitremorgin C modulation of intracellular mitoxantrone retention, measured by flow cytometry. BCRP mRNA in all cases encoded wild type protein (BCRP(R482)), which mediates mitoxantrone and methotrexate resistance, but only low-level anthracycline resistance. The BXP-21, BXP-34 and anti-ABCG2 antibodies stained blasts in 13, 11 and 14 cases (43%, 37% and 47%); BXP-21 correlated well with BXP-34 and anti-ABCG2, but BXP-34 and anti-ABCG2 did not correlate, and antibody staining did not correlate with mRNA levels. BCRP function was seen in 21 cases (70%), but correlated poorly with antibody staining. An exploratory statistical analysis indicated that BXP-21 staining was predictive of shorter disease-free survival (DFS) (P = 0.0374) in this small patient population. Poor correlations between mRNA, protein and function indicate the complex biology of BCRP in adult ALL, and the possible correlation of BCRP expression with DFS should be studied in larger series.
Collapse
Affiliation(s)
- Attaya Suvannasankha
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3953
|
Abstract
P-glycoprotein is the product of the ABCB1 [also known as multidrug resistance 1 (MDR1)] gene. It translocates a broad variety of xenobiotics out of cells. P-glycoprotein was first described in tumor cells that were resistant to various anticancer agents as a result of P-glycoprotein overexpression. P-glycoprotein is not only expressed in tumor cells but also in a broad variety of normal tissues with excretory function (small intestine, liver and kidney) and at blood-tissue barriers (blood-brain barrier, blood-testis barrier and placenta). In particular, following the generation of P-glycoprotein-deficient mice it became clear that this efflux transporter limits the absorption of orally administered drugs, promotes drug elimination into bile and urine, and protects various tissues (e.g. brain, testis and fetus) from potentially toxic xenobiotics. In humans, a considerable interindividual variability in P-glycoprotein tissue expression is observed, and current research is focused on the potential role of ABCB1 polymorphisms and haplotypes that affect P-glycoprotein tissue expression, plasma concentrations of drugs, the frequency of adverse drug reactions and treatment outcome.
Collapse
Affiliation(s)
- Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
3954
|
Chapal N, Molina L, Molina F, Laplanche M, Pau B, Petit P. Pharmacoproteomic approach to the study of drug mode of action, toxicity, and resistance: applications in diabetes and cancer. Fundam Clin Pharmacol 2004; 18:413-22. [PMID: 15312147 DOI: 10.1111/j.1472-8206.2004.00258.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics is a powerful technique for investigating protein expression profiles in biological systems and their modifications in response to stimuli or to particular physiological or pathophysiological conditions. It is therefore a technique of choice for the study of drug mode of action, side-effects, toxicity and resistance. It is also a valuable approach for the discovery of new drug targets. All these proteomic applications to pharmacological issues may be called pharmacoproteomics. The pharmacoproteomic approach could be particularly useful for the identification of molecular alterations implicated in type 2 diabetes and for further characterization of existing or new drugs. In oncology, proteomics is widely used for the identification of tumour-specific protein markers, and pharmacoproteomics is used for the evaluation of chemotherapy, particularly for the characterization of drug-resistance mechanisms. The large amount of data generated by pharmacoproteomic screening requires the use of bioinformatic tools to insure a pertinent interpretation. Herein, we review the applications of pharmacoproteomics to the study of type 2 diabetes and to chemoresistance in different types of cancer and the current state of this technology in these pathologies. We also suggest a number of bioinformatic solutions for proteomic data management.
Collapse
Affiliation(s)
- Nicolas Chapal
- INNODIA S.A.S., 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
3955
|
Wang H, Hao B, Zhou K, Chen X, Wu S, Zhou G, Zhu Y, He F. Linkage Disequilibrium and Haplotype Architecture for two ABC Transporter Genes (ABCC1 and ABCG2) in Chinese Population: Implications for Pharmacogenomic Association Studies. Ann Hum Genet 2004; 68:563-73. [PMID: 15598215 DOI: 10.1046/j.1529-8817.2003.00124.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Information about linkage disequilibrium (LD) patterns and haplotype structures for candidate genes is instructive for the design and analysis of genetic association studies for complex diseases and drug response. ABCC1 and ABCG2 are genes coding for two multidrug resistance (MDR) associated transporters; they are also related to some pathophysiological traits. To pinpoint the LD profiles of these MDR genes in Chinese, we systemically screened 27 unrelated individuals for single nucleotide polymorphisms (SNPs) in the coding and regulatory regions of these genes, and thereby characterized their haplotype structures. Despite marked variations in haplotype diversity, LD pattern and intragenic recombination intensity between the two genes, both loci could be partitioned into several LD blocks, in which a modest number of haplotypes accounted for a high fraction of the sampled chromosomes. We concluded that each locus has its own genomic LD profile, but that they still share a common segmental LD architecture with low haplotype diversity. Our data will benefit genetic association studies of complex traits and drug response possibly related to these genes.
Collapse
Affiliation(s)
- H Wang
- Laboratory of Systems Biology, Beijing Institute of Radiation Medicine, Beijing 100850 PR China
| | | | | | | | | | | | | | | |
Collapse
|
3956
|
Ikezoe T, Hisatake Y, Takeuchi T, Ohtsuki Y, Yang Y, Said JW, Taguchi H, Koeffler HP. HIV-1 protease inhibitor, ritonavir: a potent inhibitor of CYP3A4, enhanced the anticancer effects of docetaxel in androgen-independent prostate cancer cells in vitro and in vivo. Cancer Res 2004; 64:7426-31. [PMID: 15492266 DOI: 10.1158/0008-5472.can-03-2677] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that HIV-1 protease inhibitors (PIs) slowed the proliferation of human myeloid leukemia cells and enhanced their differentiation in the presence of all-trans-retinoic acid. In this study, we found that PIs, including ritonavir, saquinavir, and indinavir, inhibited the growth of DU145 and PC-3 androgen-independent prostate cancer cells as measured by a clonal proliferation assay. Recent studies showed that ritonavir inhibited cytochrome P450 3A4 enzyme (CYP3A4) in liver microsomes. The CYP3A4 is involved in drug metabolism and acquisition of drug resistance. To clarify the drug interaction between ritonavir and other anticancer drugs, we cultured DU145 cells with docetaxel either alone or in combination with ritonavir. Ritonavir enhanced the antiproliferative and proapoptotic effects of docetaxel in the hormonally independent DU145 prostate cancer cells in vitro as measured by the clonogenic soft agar assay and detection of the activated form of caspase-3 and cleavage of poly(ADP-ribose) polymerase using Western blot analysis. Real-time PCR showed that docetaxel induced the expression of CYP3A4 at the transcriptional level, and ritonavir (10(-5) mol/L) completely blocked this induction. An ELISA-based assay also showed that ritonavir inhibited DNA binding activity of nuclear factor kappaB (NFkappaB) in DU145 cells, which is a contributor to drug resistance in cancer cells. Furthermore, combination treatment of docetaxel and ritonavir dramatically inhibited the growth of DU145 cells present as tumor xenografts in BNX nude mice compared with either drug alone. Importantly, docetaxel induced expression of CYP3A4 in DU145 xenografts, and ritonavir completely blocked this induction. Ritonavir also inhibited NFkappaB DNA binding activity in DU145 xenografts. Extensive histologic analyses of the liver, spleen, kidneys, bone marrow, skin, and subcutaneous fat pads from these mice showed no abnormalities. In summary, combination therapy of ritonavir and anticancer drugs holds promise for the treatment of individuals with advanced, drug resistant cancers.
Collapse
Affiliation(s)
- Takayuki Ikezoe
- Division of Hematology/Oncology, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3957
|
Peer D, Dekel Y, Melikhov D, Margalit R. Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and in human xenograft mouse tumor models. Cancer Res 2004; 64:7562-9. [PMID: 15492283 DOI: 10.1158/0008-5472.can-03-4046] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multidrug resistance (MDR) operated by extrusion pumps such as P-glycoprotein and multidrug-resistance-associated-proteins, is a major reason for poor responses and failures in cancer chemotherapy. MDR modulators (chemosensitizers) were found among drugs approved for noncancer indications and their derivatives. Yet toxicity, adverse effects, and poor solubility at doses required for MDR reversal prevent their clinical application. Among newly designed chemosensitizers, some still suffer from toxicity and adverse effects, whereas others progressed to clinical trials. Diversities among tumors and among MDR pumps indicate a need for several clinically approved MDR modulators. Here we report for the first time that fluoxetine (Prozac), the well-known antidepressant, is a highly effective chemosensitizer. In vitro, fluoxetine enhanced (10- to 100-fold) cytotoxicity of anticancer drugs (doxorubicin, mitomycin C, vinblastine, and paclitaxel) in drug-resistant but not in drug-sensitive cells (5 and 3 lines, respectively). Fluoxetine increased drug accumulation within MDR-cells and inhibited drug efflux from those cells. In vivo, fluoxetine enhanced doxorubicin accumulation within tumors (12-fold) with unaltered pharmacokinetics. In four resistant mouse tumor models of both syngeneic and human xenograft, combination treatment of fluoxetine and doxorubicin generated substantial (P < 0.001) improvements in tumor responses and in survivals (2- to 3-fold). Moreover, fluoxetine reversed MDR at doses that are well below its human safety limits, free of the severe dose-related toxicity, adverse effects, and poor solubility that are obstacles to other chemosensitizers. This low-dose range, together with the findings reported here, indicate that fluoxetine has a high potential to join the arsenal of MDR reversal agents that may reach the clinic.
Collapse
Affiliation(s)
- Dan Peer
- Department of Biochemistry, the George S. Wise Life Science Faculty, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
3958
|
Annereau JP, Szakács G, Tucker CJ, Arciello A, Cardarelli C, Collins J, Grissom S, Zeeberg BR, Reinhold W, Weinstein JN, Pommier Y, Paules RS, Gottesman MM. Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance. Mol Pharmacol 2004; 66:1397-405. [PMID: 15342794 DOI: 10.1124/mol.104.005009] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Discovery of the multidrug resistance protein 1 (MDR1), an ATP-binding cassette (ABC) transporter able to transport many anticancer drugs, was a clinically relevant breakthrough in multidrug resistance research. Although the overexpression of ABC transporters such as P-glycoprotein/ABCB1, MRP1/ABCC1, and MXR/ABCG2 seems to be a major cause of failure in the treatment of cancer, acquired resistance to multiple anticancer drugs may also be multifactorial, involving alteration of detoxification processes, apoptosis, DNA repair, drug uptake, and overexpression of other ABC transporters. As a tool for the study of such phenomena, we designed and created a microarray platform, the ABC-ToxChip, to evaluate relative levels of transcriptional activation among genes involved in the various mechanisms of resistance. In the ABC-ToxChip, a comprehensive set of genes important in toxicological responses (represented by 2200 cDNA probes) is complemented with probes specifically matching ABC transporters as well as oligonucleotides representing 18,000 unique human genes. By comparing the transcriptional profiles of KB-3-1 and DU-145 parental cells with resistant derivatives selected in colchicine (KB-8-5), and 9-nitro-camptothecin (RCO.1), respectively, we demonstrate that ABC transporters (ABCB1/MDR1 and ABCC2/MRP2, respectively) show dramatic overexpression, whereas the glutathione S-transferase gene GST-Pi shows the strongest decrease in expression among the 20,000 genes studied. The results were confirmed by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. The custom-designed ABC-Tox microarray presented here will be helpful to elucidate mechanisms leading to anticancer drug resistance.
Collapse
Affiliation(s)
- Jean-Philippe Annereau
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3959
|
Ee PR, He X, Ross DD, Beck WT. Modulation of breast cancer resistance protein ( BCRP/ ABCG2) gene expression using RNA interference. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1577.3.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Overexpression of the breast cancer resistance protein (BCRP/ABCG2) confers multidrug resistance (MDR) to tumor cells and often limits the efficacy of chemotherapy. To circumvent BCRP-mediated MDR, a common approach is the use of potent and specific inhibitors of BCRP transport such as fumitremorgin C, novobiocin, and GF120918. Here, we evaluated a new approach using RNA interference for the specific knockdown of BCRP. We designed and synthesized small interfering RNA (siRNA) using T7 RNA polymerase and showed that siRNAs markedly down-regulated both exogenous and endogenous expression of BCRP. As a functional consequence, knockdown of BCRP by siRNAs increased the sensitivity of human choriocarcinoma BeWo cells to mitoxantrone and topotecan by 10.5- and 8.2-fold, respectively. Using flow cytometry, we found that introduction of siRNAs also enhanced the intracellular accumulation of topotecan. We have previously identified an estrogen response element in the BCRP promoter and have shown that 17β-estradiol increased BCRP mRNA expression. Furthermore, in the present study, we found that expression of BCRP protein was inducible by 17β-estradiol and that this effect was ameliorated by the introduction of siRNAs. These studies indicate that siRNAs could modulate MDR in vitro and may present a new approach to overcome BCRP-mediated drug resistance.
Collapse
Affiliation(s)
- P.L. Rachel Ee
- 1Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois and
| | - Xiaolong He
- 1Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois and
| | - Douglas D. Ross
- 2University of Maryland Greenebaum Cancer Center and School of Medicine, and the Baltimore VA Medical Center, Baltimore, Maryland
| | - William T. Beck
- 1Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois and
| |
Collapse
|
3960
|
Abstract
Drug-metabolizing enzymes, drug transporters and drug targets play significant roles as determinants of drug efficacy and toxicity. Their genetic polymorphisms often affect the expression and function of their products and are expected to become surrogate markers to predict the response to drugs in individual patients. With the sequencing of the human genome, it has been estimated that approximately 500–1200 genes code for drug transporters and, recently, there have been significant and rapid advances in the research on the relationships between genetic polymorphisms of drug transporters and interindividual variation of drug disposition. At present, the clinical studies of multi-drug resistance protein 1 (MDR1, P-glycoprotein, ABCB1), which belongs to the ATP-binding cassette (ABC) superfamily, are the most comprehensive among the ABC transporters, but clinical investigations on other drug transporters are currently being performed around the world. MDR1 can be said to be the most important drug transporter, since clinical reports have suggested that it regulates the disposition of various types of clinically important drugs, but in vitro investigations or animal experiments have strongly suggested that the members of the multi-drug resistance-associated protein (MRP) subfamily can also become key molecules for pharmacotherapy. In addition to those, breast cancer resistance protein (BCRP, ABCG2), another ABC transporter, is well known as a key molecule of multi-drug resistance to several anticancer agents. However, this review focuses on the latest information on the pharmacogenetics of the MDR and MRP subfamilies, and its impact on pharmacotherapy is discussed.
Collapse
Affiliation(s)
- Noboru Okamura
- Kobe University Graduate School of Medicine, Department of Clinical Evaluation of Pharmacotherapy, Kobe University Graduate School of Medicine, 1-5-6, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Toshiyuki Sakaeda
- Kobe University, Department of Hospital Pharmacy, School of Medicine, Kobe University, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Katsuhiko Okumura
- Kobe University, Department of Hospital Pharmacy, School of Medicine, Kobe University, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
3961
|
Lo KC, Brugh VM, Parker M, Lamb DJ. Isolation and enrichment of murine spermatogonial stem cells using rhodamine 123 mitochondrial dye. Biol Reprod 2004; 72:767-71. [PMID: 15576830 DOI: 10.1095/biolreprod.104.033464] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cells possess enormous therapeutic potential in tissue replacement. To study stem cells further, they must be isolated. Techniques are available for enrichment and study of hematopoietic stems cells, but thus far, techniques for purification of spermatogonial stem cells have not been described. Enrichment techniques for hematopoietic stem cells include the use of fluorescence-activated cell sorter analysis with Hoechst 33342 and rhodamine 123 (Rho) dyes. Use of Hoechst dye to isolate spermatogonial stem cells has been unsuccessful in our laboratory, and our results have conflicted with those from other laboratories. Taking advantage of the differential staining of the Rho dye, we report a novel method to enrich murine spermatogonial stem cells. Testicular cells are harvested from cryptorchid ROSA26 male mice. Populations of these cells are then stained with the Hoechst and Rho dyes, allowing them to be sorted by flow cytometry into a side population (SP) of Hoechst low-intensity cells and populations of low (Rho(low)) or high (Rho(hi)) fluorescent intensity. Sterile recipients, W/W(v) mice, with an intrinsic germ cell deficiency were transplanted with the Hoechst SP cells, Rho(low), Rho(hi), and nonsorted donor cells. No spermatogonial stem cell colonies were derived from the Hoechst SP cells. The number of spermatogonial stem cell colonies from transplanted Rho(low) cells showed a 17- and 20-fold enrichment over those of Rho(hi) and nonsorted cells, respectively.
Collapse
Affiliation(s)
- Kirk C Lo
- Department of Urology, Mount Sinai Hospital, University of Toronto, Ontario, Canada, M5G 1X5
| | | | | | | |
Collapse
|
3962
|
Recanatini M, Bottegoni G, Cavalli A. In silico antitarget screening. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:209-215. [PMID: 24981487 DOI: 10.1016/j.ddtec.2004.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The need to early predict the possible failure of a drug candidate is becoming an absolute requirement in the drug discovery process. For this reason, from the initial phases of lead development, great attention is paid to the ADMET characteristics of the compounds. In this context, the recent discovery that hitting some well-identified macromolecular targets can induce undesired side effects has led drug designers to apply some classical in silico technologies to the goal of avoiding the interaction of lead candidates with such antitargets.:
Collapse
Affiliation(s)
- Maurizio Recanatini
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy.
| | - Giovanni Bottegoni
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
3963
|
Zhou J, O'brate A, Zelnak A, Giannakakou P. Survivin Deregulation in β-Tubulin Mutant Ovarian Cancer Cells Underlies Their Compromised Mitotic Response to Taxol. Cancer Res 2004; 64:8708-14. [PMID: 15574781 DOI: 10.1158/0008-5472.can-04-2538] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Taxol is one of the most successful drugs for the treatment of cancer because of its ability to target tubulin, block cell cycle progression at mitosis, and induce apoptosis. Despite the success of Taxol, the development of drug resistance hampers its clinical applicability. Herein we report that β-tubulin mutant, Taxol-resistant ovarian cancer cells exhibit defective mitotic response to Taxol, even at high concentrations that are sufficient to trigger apoptosis. This mitotic response-defective phenotype is independent of p53 status. We have found that survivin, the mitosis regulator and inhibitor of apoptosis protein, is deregulated in these Taxol-resistant cancer cells; Taxol fails to induce survivin levels and survivin phosphorylation in these cells, in contrast to their parental drug-sensitive counterparts. Exogenous expression of wild-type survivin is able to restore the mitotic response of the resistant cells to Taxol treatment. On the other hand, exogenous expression of dominant-negative survivin abrogates the Taxol-induced mitotic response in drug-sensitive cancer cells. We have also found that overexpression of the mitotic kinase Cdk1, which phosphorylates survivin, is unable to restore the Taxol-induced mitotic response in the resistant cells. Our results show the importance of survivin for the mitotic response in the context of Taxol resistance and provide novel insights into the mechanisms of mitotic arrest and apoptosis induced by microtubule-targeting agents.
Collapse
Affiliation(s)
- Jun Zhou
- Winship Cancer Institute and Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
3964
|
Suárez L, Vidriales MB, García-Laraña J, Sanz G, Moreno MJ, López A, Barrena S, Martínez R, Tormo M, Palomera L, Lavilla E, López-Berges MC, de Santiago M, de Equiza MEP, Miguel JFS, Orfao A. CD34+ Cells from Acute Myeloid Leukemia, Myelodysplastic Syndromes, and Normal Bone Marrow Display Different Apoptosis and Drug Resistance–Associated Phenotypes. Clin Cancer Res 2004; 10:7599-606. [PMID: 15569991 DOI: 10.1158/1078-0432.ccr-04-0598] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myelodysplastic syndromes and acute myeloid leukemia (AML) are heterogeneous disorders in which conflicting results in apoptosis and multidrug resistance (MDR) have been reported. We have evaluated by multiparameter flow cytometry the expression of apoptosis- (APO2.7, bcl-2, and bax) and MDR-related proteins [P-glycoprotein (P-gp), multidrug resistance protein (MRP), and lung resistance protein (LRP)] specifically on bone marrow (BM) CD34+ cells, and their major CD32-/dim and CD32+ subsets, in de novo AML (n=90), high-risk myelodysplastic syndrome (n=9), and low-risk myelodysplastic syndrome (n=21) patients at diagnosis, and compared with normal BM CD34+ cells (n=6). CD34+ myeloid cells from AML and high-risk myelodysplastic syndrome patients displayed higher expression of bcl-2 (P <0.0001) and lower reactivity for APO2.7 (P=0.002) compared with low-risk myelodysplastic syndrome and normal controls. Similar results applied to the two predefined CD34+ myeloid cell subsets. No significant differences were found in the expression of P-gp, MRP, and LRP between low-risk myelodysplastic syndrome patients and normal BM, but decreased expression of MRP (P <0.03) in AML and high-risk myelodysplastic syndromes and P-gp (P=0.008) in high-risk myelodysplastic syndromes were detected. Hierarchical clustering analysis showed that low-risk myelodysplastic syndrome patients were clustered next to normal BM samples, whereas high-risk myelodysplastic syndromes were clustered together and mixed with the de novo AML patients. In summary, increased resistance to chemotherapy of CD34+ cells from both AML and high-risk myelodysplastic syndromes would be explained more appropriately in terms of an increased antiapoptotic phenotype rather than a MDR phenotype. In low-risk myelodysplastic syndromes abnormally high apoptotic rates would be restricted to the CD34- cell compartments.
Collapse
Affiliation(s)
- Lilia Suárez
- Department of Hematology, Hospital Universitario, Centro de Investigación del Cáncer, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3965
|
Hunter HM, Pallis M, Seedhouse CH, Grundy M, Gray C, Russell NH. The expression of P-glycoprotein in AML cells with FLT3 internal tandem duplications is associated with reduced apoptosis in response to FLT3 inhibitors. Br J Haematol 2004; 127:26-33. [PMID: 15384974 DOI: 10.1111/j.1365-2141.2004.05145.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
P-glycoprotein (pgp), a membrane efflux pump, is recognized to have an anti-apoptotic function. Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) receptor are the most common mutations in acute myeloid leukaemia (AML). Both ITDs and pgp positivity confer an adverse clinical prognosis. FLT3 inhibitors induce variable apoptosis in cell lines transfected with FLT3 ITDs. We studied the effect of herbimycin A, AG1296 and PKC412 on primary AML blasts. All compounds showed significantly higher cell kill after 48-h incubation in samples with an ITD compared with wild type (Herbimicin P < 0.001; AG1296 P = 0.001, PKC412, P = 0.002). Pgp-positive samples were significantly less sensitive to herbimycin and AG1296 than pgp-negative samples, although neither molecule inhibited the efflux function of pgp. The concurrent incubation with the pgp inhibitor PSC833 resulted in an enhanced cell kill in 4/5 ITD pgp-positive samples versus two of nine ITD pgp-negative samples. PKC412 inhibited pgp function and induced cell death in FLT3 ITD/pgp-positive samples. We conclude that AML samples with a FLT3 ITD are more susceptible to these inhibitors than wild-type samples. However, the expression of pgp in cells with FLT3 ITDs can reduce their sensitivity to FLT3 inhibitors and therefore pgp expression should be assessed in clinical trials of FLT3 inhibitors.
Collapse
|
3966
|
Benlloch M, Ortega A, Ferrer P, Segarra R, Obrador E, Asensi M, Carretero J, Estrela JM. Acceleration of glutathione efflux and inhibition of gamma-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity. J Biol Chem 2004; 280:6950-9. [PMID: 15561710 DOI: 10.1074/jbc.m408531200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Highly metastatic B16 melanoma (B16M)-F10 cells, as compared with the low metastatic B16M-F1 line, have higher GSH content and preferentially overexpress BCL-2. In addition to its anti-apoptotic properties, BCL-2 inhibits efflux of GSH from B16M-F10 cells and thereby may facilitate metastatic cell resistance against endothelium-induced oxidative/nitrosative stress. Thus, we investigated in B16M-F10 cells which molecular mechanisms channel GSH release and whether their modulation may influence metastatic activity. GSH efflux was abolished in multidrug resistance protein 1 knock-out (MRP-/-1) B16M-F10 transfected with the Bcl-2 gene or in MRP-/-1 B16M-F10 cells incubated with l-methionine, which indicates that GSH release from B16M-F10 cells is channeled through MRP1 and a BCL-2-dependent system (likely related to an l-methionine-sensitive GSH carrier previously detected in hepatocytes). The BCL-2-dependent system was identified as the cystic fibrosis transmembrane conductance regulator, since monoclonal antibodies against this ion channel or H-89 (a protein kinase A-selective inhibitor)-induced inhibition of cystic fibrosis transmembrane conductance regulator gene expression completely blocked the BCL-2-sensitive GSH release. By using a perifusion system that mimics in vivo conditions, we found that GSH depletion in metastatic cells can be achieved by using Bcl-2 antisense oligodeoxynucleotide- and verapamil (an MRP1 activator)-induced acceleration of GSH efflux, in combination with acivicin-induced inhibition of gamma-glutamyltranspeptidase (which limits GSH synthesis by preventing cysteine generation from extracellular GSH). When applied under in vivo conditions, this strategy increased tumor cytotoxicity (up to approximately 90%) during B16M-F10 cell adhesion to the hepatic sinusoidal endothelium.
Collapse
Affiliation(s)
- María Benlloch
- Departamento de Fisiología, Universidad de Valencia, 46010 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
3967
|
Abstract
P-glycoprotein (Pgp) is a 170 kDa phosphorylated glycoprotein encoded by human MDR1 gene. It is responsible for the systemic disposition of numerous structurally and pharmacologically unrelated lipophilic and amphipathic drugs, carcinogens, toxins, and other xenobiotics in many organs, such as the intestine, liver, kidney, and brain. Like cytochrome P450s (CYP3A4), Pgp is vulnerable to inhibition, activation, or induction by herbal constituents. This was demonstrated by using an ATPase assay, purified Pgp protein or intact Pgp-expressing cells, and proper probe substrates and inhibitors. Curcumin, ginsenosides, piperine, some catechins from green tea, and silymarin from milk thistle were found to be inhibitors of Pgp, while some catechins from green tea increased Pgp-mediated drug transport by heterotropic allosteric mechanism, and St. John's wort induced the intestinal expression of Pgp in vitro and in vivo. Some components (e.g., bergamottin and quercetin) from grapefruit juice were reported to modulate Pgp activity. Many of these herbal constituents, in particular flavonoids, were reported to modulate Pgp by directly interacting with the vicinal ATP-binding site, the steroid-binding site, or the substrate-binding site. Some herbal constituents (e.g., hyperforin and kava) were shown to activate pregnane X receptor, an orphan nuclear receptor acting as a key regulator of MDR1 and many other genes. The inhibition of Pgp by herbal constituents may provide a novel approach for reversing multidrug resistance in tumor cells, whereas the stimulation of Pgp expression or activity has implication for chemoprotective enhancement by herbal medicines. Certain natural flavonols (e.g., kaempferol, quercetin, and galangin) are potent stimulators of the Pgp-mediated efflux of 7,12-dimethylbenz(a)-anthracene (a carcinogen). The modulation of Pgp activity and expression by these herb constituents may result in altered absorption and bioavailability of drugs that are Pgp substrates. This is exemplified by increased oral bioavailability of phenytoin and rifampin by piperine and decreased bioavailability of indinavir, tacrolimus, cyclosporine, digoxin, and fexofenadine by coadministered St. John's wort. However, many of these drugs are also substrates of CYP3A4. Thus, the modulation of intestinal Pgp and CYP3A4 represents an important mechanism for many clinically important herb-drug interactions. Further studies are needed to explore the relative role of Pgp and CYP3A4 modulation by herbs and the mechanism for the interplay of these two important proteins in herb-drug interactions.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | |
Collapse
|
3968
|
Muñoz-Martínez F, Lu P, Cortés-Selva F, Pérez-Victoria JM, Jiménez IA, Ravelo AG, Sharom FJ, Gamarro F, Castanys S. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance. Cancer Res 2004; 64:7130-8. [PMID: 15466210 DOI: 10.1158/0008-5472.can-04-1005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential applications in cancer chemotherapy because of their MDR reversal potency and specificity for P-glycoprotein.
Collapse
Affiliation(s)
- Francisco Muñoz-Martínez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
3969
|
Ford J, Khoo SH, Back DJ. The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother 2004; 54:982-90. [PMID: 15537695 DOI: 10.1093/jac/dkh487] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Therapeutic drug monitoring (TDM) of antiretroviral protease inhibitors (PIs) has been suggested to have the potential to both reduce toxicity and optimize individual therapy. However, the major target of PIs is within cells infected with HIV. Therefore clinical outcome ultimately must be related to intracellular drug concentrations since antiviral activity of PIs is highly correlated with intracellular concentrations in vitro. Intracellular pharmacokinetics provides information regarding drug disposition in a compartment where HIV replication occurs and combined with plasma data may be useful in understanding therapeutic failure in relation to cellular resistance. In order to improve therapeutic efficacy, it is therefore important that the intracellular pharmacokinetics of drugs, such as PIs, is studied in addition to plasma pharmacokinetics. Multidrug resistance transporters may result in a lower cellular concentration of drug via an efflux mechanism, thus contributing to sanctuary site formation. However, conclusive proof that transporters contribute to clinical drug resistance is still lacking, although recent studies have attempted to address this issue. In relation to host and cellular factors, this review considers several issues involved in influencing intracellular drug concentrations and discusses the intracellular levels of PIs recently published from cellular studies.
Collapse
Affiliation(s)
- J Ford
- Department of Pharmacology and Therapeutics, University of Liverpool, 70 Pembroke Place, Liverpool L69 3GF, UK.
| | | | | |
Collapse
|
3970
|
Loo TW, Bartlett MC, Clarke DM. The drug-binding pocket of the human multidrug resistance P-glycoprotein is accessible to the aqueous medium. Biochemistry 2004; 43:12081-9. [PMID: 15379547 DOI: 10.1021/bi049045t] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P-Glycoprotein (P-gp) is an ATP-dependent drug pump that transports a broad range of compounds out of the cell. Cross-linking studies have shown that the drug-binding pocket is at the interface between the transmembrane (TM) domains and can simultaneously bind two different drug substrates. Here, we determined whether cysteine residues within the drug-binding pocket were accessible to the aqueous medium. Cysteine mutants were tested for their reactivity with the charged thiol-reactive compounds sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) and [2-(trimethylammonium)ethyl)]methanethiosulfonate (MTSET). Residue Ile-306(TM5) is close to the verapamil-binding site. It was changed to cysteine, reacted with MTSES or MTSET, and assayed for verapamil-stimulated ATPase activity. Reaction of mutant I306C(TM5) with either compound reduced its affinity for verapamil. We confirmed that the reduced affinity for verapamil was indeed due to introduction of a charge at position 306 by demonstrating that similar effects were observed when Ile-306 was replaced with arginine or glutamic acid. Mutant I306R showed a 50-fold reduction in affinity for verapamil and very little change in the affinity for rhodamine B or colchicine. MTSES or MTSET modification also affected the cross-linking pattern between pairs of cysteines in the drug-binding pocket. For example, both MTSES and MTSET inhibited cross-linking between I306C(TM5) and I868C(TM10). Inhibition was enhanced by ATP hydrolysis. By contrast, cross-linking of cysteine residues located outside the drug-binding pocket (such as G300C(TM5)/F770C(TM8)) was not affected by MTSES or MTSET. These results indicate that the drug-binding pocket is accessible to water.
Collapse
Affiliation(s)
- Tip W Loo
- CIHR Group in Membrane Biology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
3971
|
Chen ZQ, Annilo T, Shulenin S, Dean M. Three ATP-binding cassette transporter genes, Abca14, Abca15, and Abca16, form a cluster on mouse Chromosome 7F3. Mamm Genome 2004; 15:335-43. [PMID: 15170222 DOI: 10.1007/s00335-004-2281-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
We have identified and cloned three mouse genes that belong to the ABCA subfamily of ATP-binding cassette (ABC) transporters. These three genes are arranged in a tandem head-to-tail cluster spanning about 300 kb on mouse Chromosome (Chr) 7F3. Phylogenetic analysis indicates that although the three genes are related to human and mouse ABCA3, they are not orthologs of any of the current list of 48 human ABC genes and were, therefore, named Abca14, Abca15, and Abca16. The coding region of each gene is split into 31 exons, has an open reading frame of more than 1600 amino acids, and encodes a full transporter molecule with two nucleotide-binding folds (NBF) and two transmembrane domains (TMD). All three genes are predominantly expressed in testis, which suggests that they may perform special functions in testicular development or spermatogenesis. Interestingly, the human genome contains only fragments (less than ten exons) of at least two different ABC genes in the syntenic region on Chromosome 16p12 that are scattered among other, unrelated genes and are not capable of coding functional ABC transporters.
Collapse
Affiliation(s)
- Zhang-qun Chen
- Basic Research Program, SAIC-Frederick, NCI-Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
3972
|
Losada A, López-Oliva JM, Sánchez-Puelles JM, García-Fernández LF. Establishment and characterisation of a human carcinoma cell line with acquired resistance to Aplidin. Br J Cancer 2004; 91:1405-13. [PMID: 15365569 PMCID: PMC2409906 DOI: 10.1038/sj.bjc.6602166] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aplidin (APL) is a new antitumoral drug from marine origin currently in phase II clinical trials against a wide multiplicity of cancers. As resistance may be, as with other drugs, an important obstacle to the APL therapeutic efficacy, we have established an acquired resistance cellular model by continuous exposure of HeLa cells to the drug. The stably resistant subline generated (HeLa-APL), possessing more than 1000-fold relative resistance to APL than parental cells, did not show crossresistance to a subset of clinically relevant antitumoral agents. In addition, resistance was not related to overexpression of P-glycoprotein or differences in overall drug accumulation. Comparing to parental cells, HeLa-APL cells did not present either significant differences in the growth rate or apparent alterations in the cell cycle distribution. Aplidin induced rapid and persistent phosphorylation of both JNK and p38 MAPKs, resulting in activation of the mitochondrial apoptotic pathway in parental cells, but, notably, in HeLa-APL-resistant cells MAPKs activation only occurred in a slight and transiently manner, failing to activate the above-mentioned apoptotic machinery. These results suggest that sustained activation of JNK and p38 is essential for triggering the apoptotic programme induced by APL and that HeLa-APL cells bypass this apoptotic response by preventing the specific mechanisms that prime and sustain the long-term activation of these signalling cascades. Although far from human tumour physiology in vivo, HeLa-APL cells represent a potentially useful tool in gaining insights into the mode of action of APL, in selecting non-crossresistant APL structural analogues, as well as in investigating and developing methods to prevent resistance to this drug.
Collapse
Affiliation(s)
- A Losada
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
| | - J M López-Oliva
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
| | - J M Sánchez-Puelles
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
| | - L F García-Fernández
- Drug Discovery Department, PharmaMar, S.A., E-28770-Colmenar Viejo, Madrid, Spain
- PharmaMar, S.A.U. Drug Discovery Department, Avda. de los Reyes 1, P.I. La Mina-Norte, E-28770-Colmenar Viejo, Madrid, Spain. E-mail:
| |
Collapse
|
3973
|
|
3974
|
Troost J, Lindenmaier H, Haefeli WE, Weiss J. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells. Mol Pharmacol 2004; 66:1332-9. [PMID: 15308763 DOI: 10.1124/mol.104.002329] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The drug transporter P-glycoprotein (ABCB1) plays an important role in drug distribution and elimination, and when overexpressed it may confer multidrug resistance (MDR). P-glycoprotein is localized in the plasma membrane, especially within rafts and caveolae, characterized as detergent-resistant membranes (DRMs). This study investigated the effect of cholesterol depletion and repletion as well as saturation on subcellular localization and function of P-glycoprotein to determine the effect of DRM localization on P-glycoprotein-mediated drug efflux. In L-MDR1 overexpressing human P-glycoprotein, cholesterol depletion removed P-glycoprotein from the raft membranes into non-DRM fractions, whereas repletion fully reconstituted raft localization. P-glycoprotein function was assessed by realtime monitoring with confocal laser scanning microscopy using BODIPY-verapamil as substrate. Cholesterol depletion reduced P-glycoprotein function in L-MDR1 cells resulting in intracellular substrate accumulation (159% +/- 43, p < 0.001; control = 100%). Cholesterol repletion reduced intracellular substrate fluorescence (120% +/- 36, p < 0.001) and restored the transporter activity. Addition of surplus cholesterol (saturation) even enhanced drug efflux in L-MDR1 cells, leading to reduced intracellular accumulation of BODIPY-verapamil (69% +/- 10, p < 0.001). Transport of BODIPY-verapamil in cells not expressing human P-glycoprotein (LLC-PK1) was not susceptible to cholesterol alterations. These results demonstrate that cholesterol alterations influence P-glycoprotein localization and function, which might contribute to the large interindividual variability of P-glycoprotein activity known from in vivo studies.
Collapse
Affiliation(s)
- Joachim Troost
- Department of Internal Medicine VI, Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
3975
|
Abstract
Curative therapies for hepatocellular carcinoma (HCC), such as resection, liver transplantation, and percutaneous ablation, can be applied in selected patients with early tumors; this includes approximately 30%-40% of all cases. More advanced stages require local or systemic therapies. Data on the efficacy of these treatments are derived from small randomized controlled trials (RCT) and meta-analysis. Chemoembolization, a technique combining intra-arterial chemotherapy and selected ischemia, has produced modest survival advantages in 2 RCTs and a meta-analysis, and is currently the mainstay of treatment for these stages. The ideal candidates for this option are patients with well-preserved liver function (Child-Pugh class A) and multinodular asymptomatic tumors without vascular invasion, who constitute less than 15% of the HCC population. In these cases, the benefits derived by achieving objective responses (30%-50% of cases) are not offset by the deterioration of the liver function. Treatment-related mortality is less than 4%. No survival advantages have yet been shown with embolization or intra-arterial chemotherapy alone. Further RCTs are needed to assess the best chemotherapeutic agent and the ideal retreatment schedule. The analysis of efficacy in these trials should be adjusted for prognostic factors, such as the presence of symptoms, Child-Pugh class, and segmental vascular invasion.
Collapse
Affiliation(s)
- Jordi Bruix
- BCLC Group, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
3976
|
Chen VY, Khersonsky SM, Shedden K, Chang YT, Rosania GR. System Dynamics of Subcellular Transport. Mol Pharm 2004; 1:414-25. [PMID: 16028353 DOI: 10.1021/mp049916t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.
Collapse
Affiliation(s)
- Vivien Y Chen
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
3977
|
Richaud-Patin Y, Vega-Boada F, Vidaller A, Llorente L. Multidrug resistance-1 (MDR-1) in autoimmune disorders IV. P-glycoprotein overfunction in lymphocytes from myasthenia gravis patients. Biomed Pharmacother 2004; 58:320-4. [PMID: 15194168 DOI: 10.1016/j.biopha.2004.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Indexed: 11/30/2022] Open
Abstract
Multidrug resistance (MDR) mechanisms have been widely studied in cancer. Among them, P-glycoprotein (P-gp) overfunction has been associated with resistance to several antineoplastic agents. The physiological role of P-gp involves hormone and metabolite secretion, bacterial product detoxification, and transport of several drugs to the extracellular space, thus inhibiting their toxic or therapeutic effects. The study of MDR-1 in diseases of autoimmune origin has just recently emerged. Corticosteroids remain the mainstay therapy for autoimmune diseases. As prednisone (PDN) is transported by P-gp, the aim of this study was to evaluate the P-gp function in lymphocytes from myasthenia gravis (MG) patients. Thirty MG patients and 25 healthy controls were studied. Peripheral blood mononuclear cells were isolated by gradient centrifugation and incubated with daunorubicin (DNR) (a fluorescent drug extruded by P-gp). Functional activity of P-gp was analyzed by flow cytometry. Results were expressed as percentage of gated lymphocytes able to efflux DNR. Overall, MG patients showed increased numbers of lymphocytes with functional P-gp activity when compared with controls (x = 4.92 +/- 5.26% vs. x = 0.7 +/- 0.48%, respectively) (P < 0.0001). When patients were classified as responders (n = 21) or refractory (n = 9) to treatment, the latter group exhibited higher values of functional P-gp (x = 10.18 +/- 6.39%) when compared to the responder group (x = 2.66 +/- 2.45%) (P = 0.0076). These data suggest, on the one hand, that drug resistance may be induced by long-term treatment or by high PDN doses and, on the other, emphasize the need for the study of P-gp antagonists in order to improve the current therapeutical schemes for the treatment of MG.
Collapse
Affiliation(s)
- Yvonne Richaud-Patin
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Tlalpan 14000, Mexico City, D.F., Mexico
| | | | | | | |
Collapse
|
3978
|
Niethammer AG, Wodrich H, Loeffler M, Lode HN, Emmerich K, Abdollahi A, Krempien R, Debus J, Huber PE, Reisfeld RA. Multidrug resistance-1 (MDR-1): a new target for T cell-based immunotherapy. FASEB J 2004; 19:158-9. [PMID: 15498893 DOI: 10.1096/fj.04-2355fje] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acquired multidrug resistance (MDR) remains a major challenge in the treatment of cancer with chemotherapeutic drugs. It can be mediated by the up-regulated expression of different proteins within the tumor cell membrane. Here, we used murine multidrug resistance-1 (MDR-1) as a target-antigen for the immunotherapy of cancer. We successfully demonstrated that peripheral T cell tolerance can be broken by oral administration of a DNA vaccine encoding MDR-1 and carried by attenuated Salmonella typhimurium to secondary lymphoid organs. Thus, mice, immunized orally three times at 2-wk intervals and challenged 2 wk thereafter with either MDR-1 expressing CT-26 colon carcinoma cells or MDR-1 expressing Lewis lung carcinoma cells, revealed a significant increase in life span. This was evident, when compared with animals either vaccinated with the empty control vector or challenged with the parental cell lines lacking overexpression of MDR-1. The immune response induced was antigen-specific and CD8+ T cell-mediated. The presence of the target antigen led to up-regulation of activation markers on CD8+ T cells and resulted in a strong cytotoxic T cell response as well as lysis of tumor target cells in vitro. We furthermore established the vaccine to be an effective treatment for established multi-drug-resistant tumor metastases, resulting in a significantly increased life span of experimental animals. Absence of CD8+ T cells due to in vivo depletion led to abrogation of effectiveness. Taken together, our results demonstrate that T cell tolerance against the MDR-1 self-antigen can be broken. It is anticipated that the combination of such an approach with chemotherapy could lead to more effective treatments of cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- CD8-Positive T-Lymphocytes/physiology
- Cancer Vaccines
- Cell Line, Tumor
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Genes, MDR/genetics
- Genes, MDR/immunology
- Genetic Vectors/biosynthesis
- Genetic Vectors/genetics
- Immunity/physiology
- Immunization/methods
- Immunotherapy/methods
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Subcutaneous Tissue/metabolism
- Subcutaneous Tissue/pathology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Transduction, Genetic/methods
- Vaccination/methods
Collapse
Affiliation(s)
- Andreas G Niethammer
- Department of Radiation Oncology, Heidelberg Medical School, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3979
|
Minderman H, O'Loughlin KL, Pendyala L, Baer MR. VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 2004; 10:1826-34. [PMID: 15014037 DOI: 10.1158/1078-0432.ccr-0914-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The pipecolinate derivative VX-710 (biricodar; Incel) is a clinically applicable modulator of P-glycoprotein (Pgp) and multidrug resistance protein (MRP-1); we studied its activity against the third multidrug resistance (MDR)-associated drug efflux protein, breast cancer resistance protein (BCRP). EXPERIMENTAL DESIGN VX-710 modulation of uptake, retention, and cytotoxicity of mitoxantrone, daunorubicin, doxorubicin, topotecan, and SN38 was studied in cell lines overexpressing Pgp, MRP-1 and wild-type (BCRP(R482)) and mutant (BCRP(R482T)) BCRP. RESULTS In 8226/Dox6 cells (Pgp), VX-710 increased mitoxantrone and daunorubicin uptake by 55 and 100%, respectively, increased their retention by 100 and 60%, respectively, and increased their cytotoxicity 3.1- and 6.9-fold, respectively. In HL60/Adr cells (MRP-1), VX-710 increased mitoxantrone and daunorubicin uptake by 43 and 130%, increased their retention by 90 and 60%, and increased their cytotoxicity 2.4- and 3.3-fold. In 8226/MR20 cells (BCRP(R482)), VX-710 increased mitoxantrone uptake and retention by 60 and 40%, respectively, and increased cytotoxicity 2.4-fold. VX-710 increased daunorubicin uptake and retention by only 10% in 8226/MR20 cells, consistent with the fact that daunorubicin is not a substrate for BCRP(R482), but, nevertheless, it increased daunorubicin cytotoxicity 3.6-fold, and this increase was not associated with intracellular drug redistribution. VX-710 had little effect on uptake, retention, or cytotoxicity of mitoxantrone, daunorubicin, doxorubicin, topotecan, or SN38 in MCF7 AdVP3000 cells (BCRP(R482T)). CONCLUSIONS VX-710 modulates Pgp, MRP-1, and BCRP(R482), and has potential as a clinical broad-spectrum MDR modulator in malignancies such as the acute leukemias in which these proteins are expressed.
Collapse
Affiliation(s)
- Hans Minderman
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
3980
|
ABCs of drug resistance. Nat Rev Drug Discov 2004. [DOI: 10.1038/nrd1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3981
|
Di Nicolantonio F, Knight LA, Glaysher S, Whitehouse PA, Mercer SJ, Sharma S, Mills L, Prin A, Johnson P, Charlton PA, Norris D, Cree IA. Ex vivo reversal of chemoresistance by tariquidar (XR9576). Anticancer Drugs 2004; 15:861-9. [PMID: 15457126 DOI: 10.1097/00001813-200410000-00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The expression of P-glycoprotein (P-gp) has been demonstrated to confer resistance to several anticancer drugs, including anthracyclines, taxanes and vinca alkaloids. Tariquidar is a novel inhibitor of P-gp that has been shown to reverse resistance to cytotoxic drugs in tumor cell lines and mouse xenografts. We have used an ATP-based chemosensitivity assay (ATP-TCA) to compare the activity of cytotoxic drugs in combination with tariquidar against a variety of solid tumors (n = 37). The expression of P-gp was determined in a subset of solid tumor samples by immunohistochemistry (n = 16). Resistance was seen in 20 of 37 (54%) tumors tested with doxorubicin, in 27 of 34 (79%) samples tested with paclitaxel and 17 of 31 (55%) with vinorelbine. Tariquidar alone showed no activity over a wide range of concentrations up to 2 microM (n = 14). The median IC90s for doxorubicin, paclitaxel and vinorelbine, alone were 2.57, 27.4 and 15.5 microM. These decreased to 1.67 (p<0.0005), 20.6 (p<0.05) and 9.5 microM (p<0.001), respectively, in combination with tariquidar. Tariquidar also significantly decreased resistance in 14 of 20 (70%), six of 27 (22%) and six of 17 (35%) samples tested with doxorubicin, paclitaxel and vinorelbine, respectively. Immunohistochemical staining for P-gp was positive in nine of 16 (56%) samples and in all of these cases addition of tariquidar improved the activity of the cytotoxic. The results show that tariquidar is able to decrease resistance in a number of solid tumors resistant to cytotoxic drugs known to be P-gp substrates. These data support the introduction of tariquidar in combination with chemotherapy to clinical trials of patients expressing P-gp.
Collapse
Affiliation(s)
- Federica Di Nicolantonio
- Translational Oncology Research Centre, Department of Histopathology, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3982
|
Loganzo F, Hari M, Annable T, Tan X, Morilla DB, Musto S, Zask A, Kaplan J, Minnick AA, May MK, Ayral-Kaloustian S, Poruchynsky MS, Fojo T, Greenberger LM. Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1319.3.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
HTI-286, a synthetic analogue of hemiasterlin, depolymerizes microtubules and is proposed to bind at the Vinca peptide site in tubulin. It has excellent in vivo antitumor activity in human xenograft models, including tumors that express P-glycoprotein, and is in phase II clinical evaluation. To identify potential mechanisms of resistance induced by HTI-286, KB-3-1 epidermoid carcinoma cells were exposed to increasing drug concentrations. When maintained in 4.0 nmol/L HTI-286, cells had 12-fold resistance to HTI-286. Cross-resistance was observed to other Vinca peptide-binding agents, including hemiasterlin A, dolastatin-10, and vinblastine (7- to 28-fold), and DNA-damaging drugs, including Adriamycin and mitoxantrone (16- to 57-fold), but minimal resistance was seen to taxanes, epothilones, or colchicine (1- to 4-fold). Resistance to HTI-286 was retained when KB-HTI-resistant cells were grown in athymic mice. Accumulation of [3H]HTI-286 was lower in cells selected in intermediate (2.5 nmol/L) and high (4.0 nmol/L) concentrations of HTI-286 compared with parental cells, whereas accumulation of [14C]paclitaxel was unchanged. Sodium azide treatment partially reversed low HTI-286 accumulation, suggesting involvement of an ATP-dependent drug pump. KB-HTI-resistant cells did not overexpress P-glycoprotein, breast cancer resistance protein (BCRP/ABCG2/MXR), MRP1, or MRP3. No mutations were found in the major β-tubulin isoform. However, 4.0 nmol/L HTI-286-selected cells had a point mutation in α-tubulin that substitutes Ser for Ala12 near the nonexchangeable GTP-binding site of α-tubulin. KB-HTI-resistant cells removed from drug became less resistant to HTI-286, no longer had low HTI-286 accumulation, and retained the Ala12 mutation. These data suggest that HTI-286 resistance may be partially mediated by mutation of α-tubulin and by an ATP-binding cassette drug pump distinct from P-glycoprotein, ABCG2, MRP1, or MRP3.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arie Zask
- 2Chemical and Screening Sciences, and
| | | | | | - Michael K. May
- 3Radiosynthesis Group, Wyeth Research, Pearl River, New York and
| | | | | | - Tito Fojo
- 4Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|
3983
|
Aszalos A. P-glycoprotein-based drug-drug interactions: preclinical methods and relevance to clinical observations. Arch Pharm Res 2004; 27:127-35. [PMID: 15022711 DOI: 10.1007/bf02980095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple drug administration is common in elderly, HIV, and cancer patients. Such treatments may result in drug-drug interactions due to interference at the metabolic enzyme level, and due to modulation of transporter protein functions. Both kinds of interference may result in altered drug distribution and toxicity in the human body. In this review, we have dealt with drug-drug interactions related to the most studied human transporter, P-glycoprotein. This transporter is constitutively expressed in several sites in the human body. Its function can be studied in vitro with different cell lines expressing P-glycoprotein in experiments using methods and equipment such as flow cytometry, cell proliferation, cell-free ATP as activity determination and Transwell culture equipment. In vivo experiments can be carried out by mdr1a(-/-) animals and by noninvasive methods such as NMR spectrometry. Some examples are also given for determination of possible drug-drug interactions using the above-mentioned cell lines and methods. Such preclinical studies may influence decisions concerning the fate of new drug candidates and their possible dosages. Some examples of toxicities obtained in clinics and summarized in this review indicate careful consideration in cases of polypharmacy and the requirement of preclinical studies in drug development activities.
Collapse
Affiliation(s)
- Adorjan Aszalos
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4254, USA.
| |
Collapse
|
3984
|
Shen DW, Liang XJ, Gawinowicz MA, Gottesman MM. Identification of Cytoskeletal [14C]Carboplatin-Binding Proteins Reveals Reduced Expression and Disorganization of Actin and Filamin in Cisplatin-Resistant Cell Lines. Mol Pharmacol 2004. [DOI: 10.1124/mol.66.4.789] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3985
|
Pang A, Au WY, Kwong YL. Caveolin-1 gene is coordinately regulated with the multidrug resistance 1 gene in normal and leukemic bone marrow. Leuk Res 2004; 28:973-7. [PMID: 15234575 DOI: 10.1016/j.leukres.2004.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/22/2004] [Accepted: 01/28/2004] [Indexed: 11/29/2022]
Abstract
Caveolin-1 is a structural protein that may function as a scaffold for plasma membrane proteins, one of which is P-glycoprotein (P-gp), product of the multidrug resistance-1 (MDR-1) gene. We tested the hypothesis that if P-gp and caveolin-1 interacted physically, caveolin-1 and MDR-1 genes might be coordinately regulated; by quantifiying their gene expression with quantitative-polymerase chain reaction. MDR-1 and caveolin-1 gene expressions were normalized to an internal control and related to a fixed calibrator by a comparative cycle-threshold (CT) method. In four different groups of marrow samples (20 normal, 56 acute myeloid leukemias (AML) at diagnosis, 48 AMLs at relapse, and 51 regenerating marrows), caveolin-1 and MDR-1 gene expressions were positively correlated. In 65 samples with MDR-1 over-expression, caveolin-1 and MDR-1 expressions were also correlated. The coordinate expression of caveolin-1 and MDR-1 suggests that they may either interact physically, or are involved in the same aberrant pathway(s) activated during MDR-1 up-regulation.
Collapse
Affiliation(s)
- Annie Pang
- University Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, PR China
| | | | | |
Collapse
|
3986
|
Sauna ZE, Nandigama K, Ambudkar SV. Multidrug resistance protein 4 (ABCC4)-mediated ATP hydrolysis: effect of transport substrates and characterization of the post-hydrolysis transition state. J Biol Chem 2004; 279:48855-64. [PMID: 15364914 DOI: 10.1074/jbc.m408849200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), transports cyclic nucleoside monophosphates, nucleoside analog drugs, chemotherapeutic agents, and prostaglandins. In this study we characterize ATP hydrolysis by human MRP4 expressed in insect cells. MRP4 hydrolyzes ATP (Km, 0.62 mm), which is inhibited by orthovanadate and beryllium fluoride. However, unlike ATPase activity of P-glycoprotein, which is equally sensitive to both inhibitors, MRP4-ATPase is more sensitive to beryllium fluoride than to orthovanadate. 8-Azido[alpha-32P]ATP binds to MRP4 (concentration for half-maximal binding approximately 3 microm) and is displaced by ATP or by its non-hydrolyzable analog AMPPNP (concentrations for half-maximal inhibition of 13.3 and 308 microm). MRP4 substrates, the prostaglandins E1 and E2, stimulate ATP hydrolysis 2- to 3-fold but do not affect the Km for ATP. Several other substrates, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine, and methotrexate do not stimulate ATP hydrolysis but inhibit prostaglandin E2-stimulated ATP hydrolysis. Although both post-hydrolysis transition states MRP4.8-azido[alpha-32P]ADP.Vi and MRP4.8-azido[alpha-32P]ADP.beryllium fluoride can be generated, nucleotide trapping is approximately 4-fold higher with beryllium fluoride. The divalent cations Mg2+ and Mn2+ support comparable levels of nucleotide binding, hydrolysis, and trapping. However, Co2+ increases 8-azido[alpha-32P]ATP binding and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping but does not support steady-state ATP hydrolysis. ADP inhibits basal and prostaglandin E2-stimulated ATP hydrolysis (concentrations for half-maximal inhibition 0.19 and 0.25 mm, respectively) and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping, whereas Pi has no effect up to 20 mm. In aggregate, our results demonstrate that MRP4 exhibits substrate-stimulated ATP hydrolysis, and we propose a kinetic scheme suggesting that ADP release from the post-hydrolysis transition state may be the rate-limiting step during the catalytic cycle.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4256, USA
| | | | | |
Collapse
|
3987
|
Gibson SL, Hilf R, Donnelly DJ, Detty MR. Analogues of tetramethylrosamine as transport molecules for and inhibitors of P-glycoprotein-mediated multidrug resistance. Bioorg Med Chem 2004; 12:4625-31. [PMID: 15358289 DOI: 10.1016/j.bmc.2004.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 06/25/2004] [Accepted: 06/26/2004] [Indexed: 10/26/2022]
Abstract
Tetramethylrosamine and its thio- and seleno- analogues (TMR-O, TMR-S, and TMR-Se, respectively) were examined for their ability to be transported by Pgp into chemo-resistant CR1R12 cells. Verapamil (7 x 10(-6)M) enhanced the uptake of TMR-O and TMR-S into CR1R12 cells compared to those cultures not previously exposed to verapamil. The uptake of TMR-O and TMR-S in CR1R12 cells in the presence of 7 x 10(-6)M verapamil was equivalent to its uptake in the chemo-sensitive parent cell line AUXB1 in the absence or presence of verapamil. None of the TMR analogues were effective alone as photosensitizers of CR1R12 cells. However, when either TMR-S or TMR-Se was added to CR1R12 cells after 7 x 10(-6)M verapamil exposure for 2h, irradiation of cultures with 5.0J cm(-2) of 350-750 nm light caused significant phototoxicity. TMR-O showed no significant phototoxicity in the presence of verapamil. Chemo-sensitive AUXB1 cells are equally susceptible to phototoxicity using TMR-Se with or without previous exposure to verapamil. The Pgp modulators verapamil and CsA increased the uptake of CAM into CR1R12. Exposure of CR1R12 cells to TMR-S or TMR-Se for 2h in the dark resulted in no significant change in the intracellular accumulation of CAM. However, 1h of light exposure after incubation of cells with TMR-S or TMR-Se resulted in an up to 2-fold increase in CAM uptake.
Collapse
Affiliation(s)
- Scott L Gibson
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, PO Box 607, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
3988
|
Shatz M, Liscovitch M. Caveolin-1 and cancer multidrug resistance: coordinate regulation of pro-survival proteins? Leuk Res 2004; 28:907-8. [PMID: 15234566 DOI: 10.1016/j.leukres.2004.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Indexed: 11/24/2022]
|
3989
|
Zhang Z, Wu JY, Hait WN, Yang JM. Regulation of the stability of P-glycoprotein by ubiquitination. Mol Pharmacol 2004; 66:395-403. [PMID: 15322230 DOI: 10.1124/mol.104.001966] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ubiquitination plays a crucial role in regulating protein turnover. Here we show that ubiquitination regulates the stability of the MDR1 gene product, P-glycoprotein, thereby affecting the functions of this membrane transporter that mediates multidrug resistance. We found that P-glycoprotein was constitutively ubiquitinated in drug-resistant cancer cells. Transfection of multidrug-resistant cells with wild-type ubiquitin or treatment with an N-glycosylation inhibitor increased the ubiquitination of P-glycoprotein and increased P-glycoprotein degradation. Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132), a proteasome inhibitor, induced accumulation of ubiquitinated P-glycoprotein, suggesting the involvement of the proteasome in the turnover of the transporter. Treatment of multidrug-resistant cells with 12-O-tetradecanoylphorbol-13-acetate, a phorbol ester that increases the phosphorylation of P-glycoprotein through activation of protein kinase C, or substituting phosphorylation sites of P-glycoprotein by nonphosphorylatable residues did not affect the ubiquitination of the transporter. Enhanced ubiquitination of P-glycoprotein resulted in a decrease of the function of the transporter, as demonstrated by increased intracellular drug accumulation and increased cellular sensitivity to drugs transported by P-glycoprotein. Our results indicate that the stability and function of P-glycoprotein can be regulated by the ubiquitin-proteasome pathway and suggest that modulating the ubiquitination of P-glycoprotein might be a novel approach to the reversal of drug resistance.
Collapse
Affiliation(s)
- Zhigang Zhang
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
3990
|
Zeng H, Lin ZP, Sartorelli AC. Resistance to purine and pyrimidine nucleoside and nucleobase analogs by the human MDR1 transfected murine leukemia cell line L1210/VMDRC.06. Biochem Pharmacol 2004; 68:911-21. [PMID: 15294454 DOI: 10.1016/j.bcp.2004.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 06/07/2004] [Indexed: 11/30/2022]
Abstract
Overexpression of human MDR1 P-glycoprotein [Pgp] is associated with cellular resistance to bulky amphipathic drugs, such as taxol, anthracyclines, vinca alkaloids, and epipodophyllotoxins by actively effluxing drugs from cells. We have found that human MDR1 transfected murine L1210/VMDRC.06 leukemia cells exhibit relatively large amounts of Pgp and high levels of resistance to 6-mercaptopurine [6-MP] and other purine and pyrimidine nucleobase and nucleoside analogs. L1210/VMDRC.06 cells accumulated 6-MP as the nucleotide in vitro at only about one-third of that formed by parental L1210 cells in normal medium; however, under conditions of ATP-depletion, the amount of 6-MP nucleotide formed was essentially the same in both cell lines. The findings support active efflux of 6-MP in L1210 cells, suggesting involvement of Pgp in 6-MP resistance even though it is generally believed that Pgp does not transport such agents. The resistance pattern observed in L1210/VMDRC.06 cells was not duplicated in P388/VMDRC.04 leukemia cells transfected with the same MDR1 cDNA, even though a similar amount of Pgp was present in both cell lines. Immunofluorescent staining of surface membrane Pgp showed that L1210/VMDRC.06 cells contained at least three-fold more surface Pgp than P388/VMDRC.04, implying that P388/VMDRC.04 cells are unable to actively efflux 6-MP and other antimetabolites as effectively as L1210/VMDRC.06, because of significantly lower membrane Pgp. The findings suggest that the exceedingly large concentration of overexpressed Pgp in the surface membrane of L1210/MDRC.06 cells is responsible for resistance to 6-MP and other purine and pyrimidine analogs, even though these agents usually are not considered to be substrates for Pgp.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | |
Collapse
|
3991
|
Neuronal-associated microtubule proteins class III β-tubulin and MAP2c in neuroblastoma: Role in resistance to microtubule-targeted drugs. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1137.3.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Advanced stage neuroblastoma has a poor clinical outcome and microtubule-destabilizing agents, such as the Vinca alkaloids, are an important component in the treatment of this childhood cancer. Vinca alkaloids bind to β-tubulin on the α/β-tubulin heterodimer and disrupt microtubule dynamics, leading to cell death. To date, studies examining the contribution of microtubules and associated proteins to the efficacy of microtubule-destabilizing agents in neuroblastoma have been limited. In this study, BE(2)-C neuroblastoma cells previously selected for resistance to either vincristine (BE/VCR10) or colchicine (BE/CHCb0.2) were found to display significant decreases in neuronal-specific class III β-tubulin. Interestingly, vincristine-selected cells exhibited increased levels of polymerized tubulin that were not due to α-tubulin and class I, II, or III β-tubulin mutations. Expression levels of the microtubule-depolymerizing protein stathmin were significantly increased in BE/VCR10 cells. In contrast, levels of MAP2a and MAP2b were relatively unaltered. A marked decrease in the neuronal protein, MAP2c, was identified in the vincristine-selected cells and, to a lesser extent, in the colchicine-selected cells. This is the first report describing specific microtubule alterations in neuroblastoma cells resistant to tubulin-targeted agents. The results indicate a need to identify the factors responsible for resistance to tubulin-targeted agents in neuroblastoma so that improved and novel treatment strategies can be developed for this drug refractory disease.
Collapse
|
3992
|
Zhao X, Gu J, Yin D, Chen X. Synthesis and biological evaluation of taxinine analogues as orally active multidrug resistance reversal agents in cancer. Bioorg Med Chem Lett 2004; 14:4767-70. [PMID: 15324905 DOI: 10.1016/j.bmcl.2004.06.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 06/21/2004] [Indexed: 11/30/2022]
Abstract
Three novel taxinine analogues were prepared and tested for their activity as multidrug resistance (MDR) reversal agents in comparison with verapamil. In vitro testing demonstrated that compounds 8-10 possess MDR-reversal activity in the KB/V cell line. Half-hour after treatment with 5, 10, and 20 micromol/L compound 9, the intracellular rhodamine123 concentration increased 2.3, 2.9, and 3.2-fold, respectively, higher than 1.88-fold of 10 micromol/L verapamil in KB/V cell line. In vivo studies with VCR-resistant KB/V tumor xenografts showed that compound 9 in combination with VCR significantly inhibited tumor growth. Treatment with VCR or 9 alone did not result in growth inhibition. These results reveal that three taxinine analogues are good modifiers of MDR in tumor cells.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academic of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijng 100050, China
| | | | | | | |
Collapse
|
3993
|
Yagüe E, Higgins CF, Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 2004; 11:1170-4. [PMID: 15164094 DOI: 10.1038/sj.gt.3302269] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Overexpression of P-glycoprotein, encoded by the MDR1 gene, confers multidrug resistance (MDR) on cancer cells and is a frequent impediment to successful chemotherapy. Recent developments in the use of small interfering RNAs to inhibit specific protein expression have highlighted their potential use as therapeutic agents. We have expressed two different short hairpin RNAs from stably integrated plasmids in doxorubicin-resistant K562 leukaemic cells. The MDR1-targeted RNA interference (RNAi) resulted in decreased MDR1 mRNA, abolished P-glycoprotein expression, and completely reversed the MDR phenotype to that of the drug-sensitive K562 parental line. This study demonstrates that MDR, which is solely due to overexpression of P-glycoprotein, can be reversed by RNAi. These target sequences can in the future be integrated into gene therapy vectors with potential clinical application.
Collapse
Affiliation(s)
- E Yagüe
- Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | | | | |
Collapse
|
3994
|
Catalano A, Rodilossi S, Rippo MR, Caprari P, Procopio A. Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. J Biol Chem 2004; 279:46706-14. [PMID: 15337769 DOI: 10.1074/jbc.m406696200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Malignant mesothelioma (MM) is strongly resistant to conventional chemotherapy by unclear mechanisms. We and others have previously reported that cytokine- and growth factor-mediated signal transduction is involved in the growth and progression of MM. Here, we identified a pathway that involves stem cell factor (SCF)/c-Kit/Slug in mediating multidrug resistance of MM cells. When we compared gene expression profiles between five MM cells and their multidrug-resistant (MM DX) sublines, we found that MM DX cells expressed both SCF and c-Kit and had higher mRNA levels of Slug. Knockdown of c-Kit or Slug expression with their respective small interfering RNA sensitized MM DX cells to the induction of apoptosis by different chemotherapeutic agents, including doxorubicin, paclitaxel, and vincristine. Transfection of c-Kit in parental MM cells in the presence of SCF up-regulated Slug and increased resistance to the chemotherapeutic agents. Moreover, MM cells expressing Slug showed a similar increased resistance to the chemotherapeutic agents. These results indicate that induction of Slug by autocrine production of SCF and c-Kit activation plays a key role in conferring a broad spectrum chemoresistance on MM cells and reveal a novel signal transduction pathway for pharmacological or genetic intervention of MM patients.
Collapse
Affiliation(s)
- Alfonso Catalano
- Department of Molecular Pathology and Innovative Therapies, Polytechnic University of Marche, Ancona 60131, Italy.
| | | | | | | | | |
Collapse
|
3995
|
Tombline G, Bartholomew LA, Tyndall GA, Gimi K, Urbatsch IL, Senior AE. Properties of P-glycoprotein with mutations in the "catalytic carboxylate" glutamate residues. J Biol Chem 2004; 279:46518-26. [PMID: 15326176 DOI: 10.1074/jbc.m408052200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is known from earlier work that two conserved Glu residues, designated "catalytic carboxylates," are critical for function in P-glycoprotein (Pgp). Here the role of these residues (Glu-552 and Glu-1197 in mouse MDR3 Pgp) was studied further. Mutation E552Q or E1197Q reduced Pgp-ATPase to low but still measurable rates. Two explanations previously offered for effects of these mutations, namely that ADP release is slowed or that a second (drug site-resetting) round of ATP hydrolysis is blocked, were evaluated and appeared unsatisfactory. Thus the study was extended to include E552A, -D, and -K and E1197A, -D, and -K mutants. All reduced ATPase to similar low but measurable rates. Orthovanadate-trapping experiments showed that mutation to Gln, Ala, Asp, or Lys altered characteristics of the transition state but did not eliminate its formation in contrast e.g. with mutation of the analogous catalytic Glu in F1-ATPase. Retention of ATP as well as ADP was seen in Ala, Asp, and Lys mutants. Mutation E552A in nucleotide binding domain 1 (NBD1) was combined with mutation S528A or S1173A in the LSGGQ sequence of NBD1 or NBD2, respectively. Synergistic effects were seen. E552A/S1173A had extremely low turnover rate for ATPase, while E552A/S528A showed zero or close to zero ATPase. Both showed orthovanadate-independent retention of ATP and ADP. We propose that mutations of the catalytic Glu residues interfere with formation and characteristics of a closed conformation, involving an interdigitated NBD dimer interface, which normally occurs immediately following ATP binding and progresses to the transition state.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
3996
|
Shen DW, Su A, Liang XJ, Pai-Panandiker A, Gottesman MM. Reduced expression of small GTPases and hypermethylation of the folate binding protein gene in cisplatin-resistant cells. Br J Cancer 2004; 91:270-6. [PMID: 15199393 PMCID: PMC2409801 DOI: 10.1038/sj.bjc.6601956] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reduced accumulation of cisplatin is the most consistent feature seen in cisplatin-resistant (CP-r) cells that are cross-resistant to other cytotoxic compounds, such as methotrexate. In this report, defective uptake of a broad range of compounds, including [14C]-carboplatin, [3H]MTX, [3H]folic acid (FA), [125I]epidermal growth factor, 59Fe, [3H]glucose, and [3H]proline, as well as 73As5+ and 73As3+, was detected in CP-r human hepatoma and epidermal carcinoma cells that we have previously shown are defective in fluid-phase endocytosis. Downregulation of several small GTPases, such as rab5, rac1, and rhoA, which regulate endocytosis, was found in CP-r cells. However, expression of an early endosomal protein and clathrin heavy chain was not changed, suggesting that the defective endocytic pathway is clathrin independent. Reduced expression of the cell surface protein, folate-binding protein (FBP), which is a carrier for the uptake of MTX, was also observed in the CP-r cells by confocal immunofluorescence microscopy and Real-Time PCR. Reactivation of the silenced FBP gene in the CP-r cells by a DNA demethylation agent, 2-deoxy-5-aza-cytidine (DAC) demonstrates that hypermethylation occurred in the CP-r cells. The uptake of [14C]carboplatin, [3H]FA, and [3H]MTX increased in an early stage CP-r cell line (KB-CP1) after treatment with DAC. Both a defective endocytic pathway and DNA hypermethylation resulting in the downregulation of small regulatory GTPases and cell surface receptors contribute to the reduced accumulation of a broad range of compounds in CP-r cells.
Collapse
Affiliation(s)
- D-W Shen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4254
| | - A Su
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4254
| | - X-J Liang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4254
| | - A Pai-Panandiker
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4254
| | - M M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4254
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4254. E-mail:
| |
Collapse
|
3997
|
Chen JSK, Konopleva M, Andreeff M, Multani AS, Pathak S, Mehta K. Drug-resistant breast carcinoma (MCF-7) cells are paradoxically sensitive to apoptosis. J Cell Physiol 2004; 200:223-34. [PMID: 15174092 DOI: 10.1002/jcp.20014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to determine whether expression of tissue transglutaminase (TG2) and caspase-3 proteins in drug-resistant breast carcinoma MCF-7/DOX cells would render these cells selectively susceptible to apoptotic stimuli. Despite high resistance to multidrug resistance (MDR)-related drug, doxorubicin (> or =150-fold), the MCF-7/DOX cells were extremely sensitive to apoptotic stimuli. Thus, calcium ionophore, A23187 (A23187) and the protein kinase C inhibitor staurosporine (STS) each induced rapid and time-dependent apoptosis in MCF-7/DOX cells. The apoptosis induced by either agent was accompanied by caspase-3 activation and other downstream changes that are typical of cells undergoing apoptosis. The alterations upstream of caspase-3 activation, however, such as loss in mitochondrial membrane potential (DeltaPsi), release of cytochrome c, and activation of caspase-8, and caspase-9, were detected only in STS-treated cells. The A12387 failed to induce any of the caspase-3 upstream changes, implying that A23187-induced apoptosis may utilize one or more novel upstream pathways leading to the activation of caspase 3. In summary, these data demonstrate that MCF-7/DOX cells are much more sensitive to apoptotic stimuli than previously thought and that A23187-induced apoptosis may involve some novel, yet unidentified, upstream pathway that leads to the activation of caspase-3 and other downstream events.
Collapse
Affiliation(s)
- Jack S K Chen
- Department of Bioimmunotherapy, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
3998
|
Oloo EO, Tieleman DP. Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD. J Biol Chem 2004; 279:45013-9. [PMID: 15308647 DOI: 10.1074/jbc.m405084200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporters use the free energy of ATP hydrolysis to transport structurally diverse molecules across prokaryotic and eukaryotic membranes. Computer simulation studies of the "real-time" dynamics of the ATP binding process in BtuCD, the vitamin B12 importer from Escherichia coli, demonstrate that the docking of ATP to the catalytic pockets progressively draws the two cytoplasmic nucleotide-binding cassettes toward each other. Movement of the cassettes into closer opposition in turn induces conformational rearrangement of alpha-helices in the transmembrane domain. The shape of the translocation pathway consequently changes in a manner that could aid the vectorial movement of vitamin B12. These results suggest that ATP binding may indeed represent the power stroke in the catalytic mechanism. Moreover, occlusion of ATP at one catalytic site is mechanically coupled to opening of the nucleotide-binding pocket at the second site. We propose that this asymmetry in nucleotide binding behavior at the two catalytic pockets may form the structural basis by which the transporter is able to alternate ATP hydrolysis from one site to the other.
Collapse
Affiliation(s)
- Eliud O Oloo
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
3999
|
Huang Y, Anderle P, Bussey KJ, Barbacioru C, Shankavaram U, Dai Z, Reinhold WC, Papp A, Weinstein JN, Sadée W. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 2004; 64:4294-301. [PMID: 15205344 DOI: 10.1158/0008-5472.can-03-3884] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane transporters and channels (collectively the transportome) govern cellular influx and efflux of ions, nutrients, and drugs. We used oligonucleotide arrays to analyze gene expression of the transportome in 60 human cancer cell lines used by the National Cancer Institute for drug screening. Correlating gene expression with the potencies of 119 standard anticancer drugs identified known drug-transporter interactions and suggested novel ones. Folate, nucleoside, and amino acid transporters positively correlated with chemosensitivity to their respective drug substrates. We validated the positive correlation between SLC29A1 (nucleoside transporter ENT1) expression and potency of nucleoside analogues, azacytidine and inosine-glycodialdehyde. Application of an inhibitor of SLC29A1, nitrobenzylmercaptopurine ribonucleoside, significantly reduced the potency of these two drugs, indicating that SLC29A1 plays a role in cellular uptake. Three ABC efflux transporters (ABCB1, ABCC3, and ABCB5) showed significant negative correlations with multiple drugs, suggesting a mechanism of drug resistance. ABCB1 expression correlated negatively with potencies of 19 known ABCB1 substrates and with Baker's antifol and geldanamycin. Use of RNA interference reduced ABCB1 mRNA levels and concomitantly increased sensitivity to these two drugs, as expected for ABCB1 substrates. Similarly, specific silencing of ABCB5 by small interfering RNA increased sensitivity to several drugs in melanoma cells, implicating ABCB5 as a novel chemoresistance factor. Ion exchangers, ion channels, and subunits of proton and sodium pumps variably correlated with drug potency. This study identifies numerous potential drug-transporter relationships and supports a prominent role for membrane transport in determining chemosensitivity. Measurement of transporter gene expression may prove useful in predicting anticancer drug response.
Collapse
Affiliation(s)
- Ying Huang
- Program of Pharmacogenomics, Department of Pharmacology, College of Medicine and Public Health, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4000
|
Maley CC, Reid BJ, Forrest S. Cancer Prevention Strategies That Address the Evolutionary Dynamics of Neoplastic Cells: Simulating Benign Cell Boosters and Selection for Chemosensitivity. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.1375.13.8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Cells in neoplasms evolve by natural selection. Traditional cytotoxic chemotherapies add further selection pressure to the evolution of neoplastic cells, thereby selecting for cells resistant to the therapies. An alternative proposal is a benign cell booster. Rather than trying to kill the highly dysplastic or malignant cells directly, a benign cell booster increases the fitness of the more benign cells, which may be either normal or benign clones, so that they may outcompete more advanced or malignant cells in a neoplasm. In silico simulations of benign cell boosters in neoplasms with evolving clones show benign cell boosters to be effective at destroying advanced or malignant cells and preventing relapse even when applied late in progression. These results are conditional on the benign cell boosters giving a competitive advantage to the benign cells in the neoplasm. Furthermore, the benign cell boosters must be applied over a long period of time in order for the benign cells to drive the dysplastic cells to extinction or near extinction. Most importantly, benign cell boosters based on this strategy must target a characteristic of the benign cells that is causally related to the benign state to avoid relapse. Another promising strategy is to boost cells that are sensitive to a cytotoxin, thereby selecting for chemosensitive cells, and then apply the toxin. Effective therapeutic and prevention strategies will have to alter the competitive dynamics of a neoplasm to counter progression toward invasion, metastasis, and death.
Collapse
Affiliation(s)
- Carlo C. Maley
- 1Human Biology and Divisions of
- 2Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Departments of
| | - Brian J. Reid
- 1Human Biology and Divisions of
- 2Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Departments of
- 3Medicine and
- 4Genome Sciences, University of Washington, Seattle, Washington; and
| | - Stephanie Forrest
- 5Department of Computer Science, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|